1	Partial pressure of CO_2 and CO_2 emission in a monsoon-driven hydroelectric
2	reservoir (Danjiangkou Reservoir), China.
3	
4	Siyue Li, Quanfa Zhang
5	
6	Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden,
7	the Chinese Academy of Sciences, Wuhan 430074, China.
8	
9	
10	Correspondence
11	Siyue Li and Quanfa Zhang
12	Key Laboratory of Aquatic Botany and Watershed Ecology
13	Wuhan Botanical Garden
14	The Chinese Academy of Sciences
15	Wuhan 430074, P.R. China
16	Tel: 86-027-87510881
17	Fax: 86-027-87510251
18	Email: lisiyue@wbgcas.cn; syli2006@163.com (S. Li), qzhang@wbgcas.cn (Q.
19	Zhang).
20	Present adresse for Siyue Li: Southern Cross GeoScience, Southern Cross University,
21	PO Box 157, Lismore NSW 2480, Australia.

22 Abstract

23	Hydroelectric reservoirs have been under sampled to establish them as sources or
24	sinks of the atmospheric carbon dioxide (CO ₂). Such poor coverage is well known for
25	subtropic, particularly monsoon driven reservoirs in China. Our study presented the
26	spatiotemporal changes of the carbonate system and CO ₂ flux in a hydroelectric
27	reservoir (Dangjiankou Reservoir) locating in a subtropical monsoon climate region.
28	Our 21 filed surveys conducted during 2004-2011 revealed significantly spatial and
29	monthly variations of surface water partial pressure of CO_2 (pCO_2) in the Reservoir.
30	pCO ₂ , showing higher concentrations in the wet and warm seasons, averaged 595±545
31	μ atm (ranging from 53-3751 μ atm) in the reservoir surface, while substantially higher
32	pCO ₂ (1132±1220 µatm) was observed in the river <u>below</u> downstream the dam. A clear
33	pCO ₂ drawdown in the reservoir as water flows demonstrated a significantly
34	descending order of Dan Reservoir>site close to dam>Han Reservoir. This spatial
35	contrast can also be seen in the distributions of dissolved inorganic carbon and total
36	alkalinity. Pronounced seasonality in pCO_2 was controlled by seasonal monsoon
37	rainfall, while photosynthetic CO ₂ uptake dominated spatial patterns and dry-month
38	variability of pCO_2 . We further related pCO_2 to water chemical properties and
39	indicated that pCO_2 had strong positive correlations with Si, <u>P speciations</u> , <u>TOC</u> TP
40	and DOC, negative correlations with DO saturation, TN and Chl-a, while weak
41	correlations with other variables including biogenic elements. CO ₂ flux from the
42	Reservoir surface showed a bottom average of 9 mmol $/m^2/d$ in comparison with other
43	hydroelectric reservoir in China. River downstream the dam had quite high flux of

44	CO_2 (119 mmol/m ² /d), which was intermediate between temperate rivers and
45	compared to global rivers' average. This means that water releasing from reservoir
46	would be an important channel for atmospheric CO_2 sources. The annual CO_2
47	emission from the Danjiangkou Reservoir was estimated <u>atto be</u> 3.4×10^9 mol C.
48	Remarkably spatial and temporal heterogeneities in CO ₂ flux from China's
49	hydroelectric reservoirs are urgently included for advancing global models of
50	reservoirs' carbon emissions.
51	

- **Key words:** partial pressure of CO_2 (pCO_2), CO_2 flux, carbon emission, hydroelectric
- 53 reservoir, dissolved inorganic carbon, seasonal and spatial variations.

1. Introduction

55	Inland waters including rivers, lakes and reservoirs have been identified as
56	potentially important sources of green house gas (GHG) including methane (CH ₄) and
57	carbon dioxide (CO ₂) (St. Louis et al., 2000; Cole et al., 2007; Lima et al., 2008;
58	Battin et al., 2009; Tranvik et al., 2009; Aufdenkamp et al., 2011; Barros et al., 2011;
59	Bastviken et al., 2011; Butman and Raymond, 2011; Fearnside and Pueyo, 2012; Li et
60	al., 2012; Chen et al., 2013). Previous studies reported 1.4 Pg C emission estimate per
61	year as CO_2 from freshwaters, higher than the river-borne carbon transport (1 Pg C/yr)
62	to the ocean (Tranvik et al., 2009; Amiotte Suchet et al., 2003), this estimated CO_2
63	emission together with CH4 emission of 103 Tg CH4/yr (0.7 Pg C (CO2eq)/yr
64	expressed as CO ₂ equivalents (eq)) have balance the terrestrial carbon sink (Bastviken
65	et al., 2011) and thus represent a critical component of global carbon cycling.
66	Artificial reservoirs especially the traditional clean hydroelectric reservoirs have
67	been increasingly concerned due to their huge contributions to GHG emissions (<u>St.</u>
68	Louis et al., 2000; Giles, 2006; Lima et al., 2008; Barros et al., 2011; Fearnside and
69	Pueyo, 2012). Recent researches particularly on the tropic reservoirs demonstrated
70	quite high C emission fluxes via water-air interface (cf. Fearnside et al., 1995; 2005;
71	Richey et al., 2002; Rosa et al., 2004; <u>Abril et al., 2005;</u> Dos Santos et al., 2006;
72	Guerin et al., 2006; Roland et al., 2010; Kemenes et al., 2007; 2011), and the "green"
73	credentials of hydroelectricity have been quashed (Giles, 2006). For instance
74	hydropower reservoirs such as Samuel, Tres Marias, and Barra Bonita, in the tropic
75	zone posted higher C emission than their equivalent thermo-power counterparts (Dos

76	Santos et al., 2006; Delmas et al., 2001). These observations cause the doubts on the
77	effects of hydroelectricity on global GHG reduction.
78	The more recent work by Barros et al (2011 in Nature Geoscience) estimated 48
79	Tg C as CO_2 and 3 Tg C as CH_4 annually from hydroelectricity, respectively, a
80	downgrade from earlier estimates of 321 Tg C per year (St. Louis et al., 2001). The
81	estimate was based on 85 globally distributed hydroelectric reservoirs from the
82	Americas and Northern Europe. No reservoirs from Asia especially from China were
83	included, which could be a key component that limits the C emission quantification
84	due to more than 80, 000 reservoirs in operation and many projected in China, as
85	reflected by Barros et al. (2011) that carbon fluxes from reservoirs correlate well to
86	reservoir age, size, latitude, and environmental factors. This was corroborated by
87	distinct sample size and incomplete coverage of spatial cases in particular, which
88	contributed to large variability of CO ₂ releases from global reservoirs. For example,
89	the areal flux of CO ₂ in the temperate reservoirs averaged 387-1400 mg CO ₂ /m ² /d (St.
90	Louis et al., 2000; Barros et al., 2011). A broad ranges were also found for CH ₄
91	release from global hydroelectric reservoirs, i.e., from 4 Tg CH_4 /yr (Barros et al.,
92	2011) to 100 Tg CH ₄ /yr (Lima et al., 2008). Thus, more data particularly in China is
93	urgently fueled for precise assessment on the liberation of GHG from hydroelectric
94	reservoirs.
95	China, one of the largest hydroelectricity producer has a hydropower capacity of
96	654×10^9 kWh per year, contributing 14% to the total national electricity. More than 40,

97 000 reservoirs are located in the Yangtze basin with subtropical monsoon climate,

98	while very few reports concern their GHG emissions. Until now, methane efflux has
99	only been studied for the Three Gorges Reservoir (TGR) (Chen et al., 2009; 2011;
100	Yang et al, 2012; Zhao et al., 2013), Miyun (Yang et al., 2011) and Ertan (Zheng et al.,
101	2011), however, more limited studies were conducted on CO ₂ emissions from
102	hydropower reservoirs, i.e., two papers from ISI-listed journals (e.g., caseade-
103	reservoirs (Hongfeng, Baihua, Xiuwen and Hongyan) in the Wujiang of the Yangtze-
104	basin by Wang et al., 2011; , as well as TGR by Zhao et al., 2013), and five Chinese
105	journal papers (Hongjiadu by Y u et al., 2008; Xin'anjiang by Y ao et al., 2010; Nihe by
106	Lu et al., 2010; Wan'an by Mei et al., 2011; Shuibuya by Zhao et al., 2012, which are
107	not readable by international scholars). Therefore, carbon emission from reservoirs in-
108	China largely lags behind. Combining very limited studies with clearly spatial (cf.
109	10-90 mg CO ₂ /m ² /h for) and temporal (cf22-330 mg CO ₂ /m ² /h) heterogeneities in
110	CO ₂ flux relating to China's hydroelectricity, we can urge that current data paucity of
111	carbon release from China's reservoirs is constraining the accurate quantification of
112	global carbon emission from hydroelectric reservoirs.
113	Similar to its adjacent reservoir (ca. 1.7 ± 2.7 mg CH ₄ /m ² /h for Nam Leuk in Laos;
114	Chanudet et al., 2011) and reservoirs in the tropical zone (cf. Abril et al., 2005),
115	Chinese hydroelectric reservoirs also receive world-wide concerns mainly because of
116	very high methane flux (6.7 ± 13.3 mg CH_4/m²/h) and CO_2 flux (88-175 mmol/m²/d)
117	from the Three Gorges Reservoir (TGR) (Chen et al., 2009; Zhao et al., 2013) and
118	have been described as "GHG menace" reported in Nature News (Qiu, 2009).
119	However, a recent estimate gave a this perspective is challenging by the drastically

120	downward revision of the previous emission rate. For example, estimated the-
121	subsequent measurements of 0.29 mg $CH_4/m^2/h$ and 0.18 mg $CH_4/m^2/h$ (Yang et al.,
122	2012), 3%-4% of the previous CH_4 flux in the drawdown area of the TGR (Chen et al.,
123	2011), implied carbon emission from hydroelectricity could be largely over-estimated.
124	Previous reports suggested that sSpatiotemporal sampling and varied calculated
125	methods could caused large differences in CO ₂ flux from monsoonal rivers such as
126	Yangtze and Pearl River systems (Yao et al., 2007; Wang et al., 2011; Li et al., 2012).
127	These could complicate the quantification of reservoirs' carbon emission potentially-
128	cause an over estimate of CO ₂ flux from TGR, where extremely high level occurs-
129	when compared to other China's hydropower reservoirs and is comparable to the-
130	tropical reservoirs (e.g., Petit Saut and Balbina) (cf. Zhao et al., 2013; Guerin et al.,
131	$\frac{2006}{100}$. Therefore, more cases should be developed to better constrain the GHG
132	emission from China's hydroelectricity
133	Consequently, our study here focuses on the Danjiangkou Reservoir in the Han
134	River, which belongs to Yangtze drainage basin and has a subtropical monsoon
135	climate. The main objectivities are to (1) examine the spatial and temporal changes of
136	partial pressure CO_2 (pCO_2), (2) unravel the mechanisms controlling the variability of
137	pCO ₂ and (3) quantify the water-air interface CO ₂ flux in the surface water of the
138	reservoir.
139	
140	2. Material and methods

2.1. Study area

142	The Danjiangkou Reservoir (32 36'-33 48'N, 110 59'-111 49'E) built in 1970s is
143	situated at the confluence of Han River and Dan Riverin the juncture of Hubei and-
144	Henan provinces, Central China. The reservoir is accordingly divided into two distinct
145	arms (Han Reservoir and Dan Reservoir; Fig. 1). It has a drainage area of approx. 95,
146	000 km ² which includes the upper Han River and Dan River basins (Fig. 1; Li et al.,
147	2008b; 2009a). The Reservoir drains a region of northern subtropical monsoon
148	climate with distinct transitional climatic characteristics. The annual mean
149	temperature is 15-176°C (Fig. 2). The average annual precipitation is 800-14000 mm
150	with large inter and intra-annual variability, and 80%-90% of which concentrates in
151	the time period of May through October (Fig. 2: Li et al., 2009a; Li and Zhang, 2010).
152	Similar to the rainfall patterns, the 41.1×10^9 m ³ /yr runoff from its upper basin to the
153	Reservoir also shows large annual and interannual variability. For example, in the
154	historical records, the flood peak was 34, 300 m^3 /s, the mean maximum monthly flow
155	was 7500 $m^3\!/\!s$ in the wet season and the minimum flow in the dry season was 64 $m^3\!/\!s$
156	(cf. Li et al., 2009a).
157	Currently, the maximal water level of the Reservoir is 157 m, and its
158	corresponding water surface area and storage capacity are 745 km^2 and 17.5 $\times 10^9$ m^3 ,
159	respectively. The historical minimal water level is 134 m. Due to the China's South to
160	North Water Transfer Project, the water level will be 170 m with the dam height
161	increasing from the current 162 m to 176.6 m, the water surface area will reach 1050
162	km ² when the project is finished in 2014. In our study, five sampling sites during
163	2004-2006 while eight sites for 2007-2011 were geolocated in the Reservoir using a

164	portable Global Position System (Table 1 and Fig. 1). Distance from dam for DJK 1 is	
165	around 30 km, 22 km for DJK2, 19 km for DJK3 and 18 km for D1 in the Dan	
166	Reservoir, while 22 km for DJK4 and 10 km for D2 in the Han Reservoir, and D3 and	
167	DJK 5 are respectively distributed 1 km from the upper and below the dam. In our	
168	considered period, wet season includes June through November, while dry season	
169	includes December through May.	
170		
171	2.2. Water sampling and analyses	
172	21 field surveys were conducted for water samplings in the Danjiangkou Reservoir	
173	during 2004-2011 (Table 2). A total of 432 grab water samples (3 liters), consisting of	
174	three replicates within a 200-m diameter circle, were taken from 50-100 cm depth	
175	below water surface using previously acid-washed high-density polyethylene (HDPE)	
176	containers. Thus, a total of 144 samples were pretreated for laboratory analysis after	
177	mixing with replicates. The acid-washed containers were rinsed thrice with sampled	
178	water on site, and the rinsing process was carried out downwind. A 500 ml subsample	
179	was filtered in situ through a previously acid-washed 0.45 µm pore Millipore	
180	nitrocellulose membrane filter. The initial portion of the filtration was discarded to	
181	clean the membrane. A small portion of the filtrate was used for measuring major	
182	anions Cl ⁻ , F ⁻ and SO ₄ ^{2^-} , while another portion for major cation analyses was acidified	
183	to pH<2 using ultra-pure concentrated nitric acid. Filtrates for measurements of	
184	dissolved organic carbon (DOC), dissolved nitrogen (DN) and solute reactive	
185	phosphate (SRP) were also prepared. Raw water samples for determination of total	

186	phosphorus (TP), total nitrogen (TN), total organic carbon (TOC), biogeochemical
187	oxygen demand (BOD) and chemical oxygen demand (COD_{Mn}) were acidified with
188	10% (v/v) sulphuric acid to pH<2. Filtrates and raw samples were all stored in
189	pre-cleaned HDPE bottles, and transported to the laboratory in a refrigerator at 4 °C.
190	Water temperature (T), pH, dissolved oxygen (DO), oxidation-reduction potential
191	(ORP), electrical conductivity (EC), turbidity, nitrate-nitrogen (NO ₃ ⁻ -N) and
192	ammonium-nitrogen (NH_4^N) were determined on site using a YSI 6920 (YSI Inc.,
193	Yellow Springs, Ohio, USA). The instrument was calibrated at 0 and 100% oxygen
194	saturation before and after usage for DO measurement. The pH electrode was
195	calibrated at 7 and 10, and turbidity electrode at 123 and 0 before sampling. The
196	nitrogen sondes were both calibrated at 100 and 1 mg/l before sampling. The
197	membranes used for filtration were dried at 63 °C to constant weight, and total
198	suspended solid (TSS) was calculated from the difference in the filter paper weights
199	before and after filtering. Alkalinity, a measurement of bicarbonate buffering
200	components in solution, was determined by titration of hydrochloric acid (0.020 M) in
201	situ to pH 4.5 using Methyl orange (Li and Zhang, 2008; 2009; 2010). Total
202	phosphorus (TP) was analysed with acidified molybdate to form reduced
203	phosphor-molybdenum blue and measured spectrophotometrically at 700 nm, with the
204	method detection limit (MDL) of 0.01 mg/L (CSEPB, 2002). SRP was determined by
205	the same analytical method as TP, but measured spectrophotometrically at 882 nm
206	(CSEPB, 2002). TN and DN were determined by alkaline potassium persulfate
207	digestion-UV spectrophotometric method, and TOC and DOC were determined using

带格式的: 下标

208	TOC analyzer (MultiN/C2100 TOC/TN, Jena). Chlorophyll-a (Chl-a) was analysed	
209	using spectrophotometer (PE-Lambda45, USA). Determinations of BOD and COD _{Mn}	带格式的: 下标
210	were following Li et al. (2008a). The methods given by the Chinese State	
211	Environment Protection Bureau were followed in all the procedures (CSEPB, 2002).	
212	pH is critical for pCO_2 calculations, we very carefully vetted the values as	
213	follows: (1) the records of pH probe werewas carefully calibrated to be respectively	
214	7.00 and 10.00 using standard pH 7 buffer and pH 10 buffer solution (1 pint/475 ml	
215	from YSI), the records could be respectively 7.00 and 10.00 for standard pH 7 and pH-	
216	10 buffer solution, (2) we record the <i>in situ</i> pH levels when the pH levels stabilize in a	带格式的: 字体:倾斜
217	unit of 0.01 for 2 minutes (30 records for 2 minutes). For alkalinity determination, two	
218	or three replicates for individual sample indicated that the differences between	
219	duplicates were within 5%.	
219 220	duplicates were within 5%.	带格式的: 箱进: 首行缩进: 0 厘米
219 220 221	<u>duplicates were within 5%.</u> Anions (Cl ⁻ , F ⁻ and SO ₄ ²⁻) were measured using a Dionex Ion Chromatograph	带格式的: 缩进:首行缩进: 0 厘米
219 220 221 222	duplicates were within 5%. Anions (Cl ⁻ , F ⁻ and SO ₄ ²⁻) were measured using a Dionex Ion Chromatograph (Dionex Corporation, Sunnyvale, California, USA). An inductively-coupled plasma	带格式的: 缩进:首行缩进:0 厘米
 219 220 221 222 222 223 	<u>duplicates were within 5%.</u> Anions (Cl ⁻ , F ⁻ and SO ₄ ²⁻) were measured using a Dionex Ion Chromatograph (Dionex Corporation, Sunnyvale, California, USA). An inductively-coupled plasma optical emission spectrometer (ICP-OES) (IRIS Intrepid II XSP DUO, USA) was used	带格式的: 缩进:首行缩进:0厘米
 219 220 221 222 223 224 	duplicates were within 5%. Anions (Cl ⁻ , F ⁻ and SO ₄ ²⁻) were measured using a Dionex Ion Chromatograph (Dionex Corporation, Sunnyvale, California, USA). An inductively-coupled plasma optical emission spectrometer (ICP-OES) (IRIS Intrepid II XSP DUO, USA) was used to determine the concentrations of major cations (K ⁺ , Ca ²⁺ , Na ⁺ and Mg ²⁺), Si and	带格式的: 缩进: 首行缩进: 0 厘米
 219 220 221 222 223 224 225 	duplicates were within 5%. Anions (Cl ⁻ , F ⁻ and SO ₄ ²⁻) were measured using a Dionex Ion Chromatograph (Dionex Corporation, Sunnyvale, California, USA). An inductively-coupled plasma optical emission spectrometer (ICP-OES) (IRIS Intrepid II XSP DUO, USA) was used to determine the concentrations of major cations (K ⁺ , Ca ²⁺ , Na ⁺ and Mg ²⁺), Si and dissolved phosphorus. Reagent and procedural blanks were determined in parallel to	带格式的: 缩进: 首行缩进: 0 厘米
 219 220 221 222 223 224 225 226 	duplicates were within 5%. Anions (Cl ⁻ , F ⁻ and SO ₄ ²⁻) were measured using a Dionex Ion Chromatograph (Dionex Corporation, Sunnyvale, California, USA). An inductively-coupled plasma optical emission spectrometer (ICP-OES) (IRIS Intrepid II XSP DUO, USA) was used to determine the concentrations of major cations (K ⁺ , Ca ²⁺ , Na ⁺ and Mg ²⁺), Si and dissolved phosphorus. Reagent and procedural blanks were determined in parallel to the sample treatment using identical procedures. Each calibration curve was evaluated	带格式的: 缩进: 首行缩进: 0 厘米
 219 220 221 222 223 224 225 226 227 	duplicates were within 5%. Anions (CI [*] , F [*] and SO ₄ ²⁻) were measured using a Dionex Ion Chromatograph (Dionex Corporation, Sunnyvale, California, USA). An inductively-coupled plasma optical emission spectrometer (ICP-OES) (IRIS Intrepid II XSP DUO, USA) was used to determine the concentrations of major cations (K ⁺ , Ca ²⁺ , Na ⁺ and Mg ²⁺), Si and dissolved phosphorus. Reagent and procedural blanks were determined in parallel to the sample treatment using identical procedures. Each calibration curve was evaluated by analyses of these quality control standards before, during and after the analyses of	带格式的: 缩进: 首行缩进: 0 厘米
 219 220 221 222 223 224 225 226 227 228 	duplicates were within 5%. Anions (Cl ⁻ , F ⁻ and SO ₄ ²⁻) were measured using a Dionex Ion Chromatograph (Dionex Corporation, Sunnyvale, California, USA). An inductively-coupled plasma optical emission spectrometer (ICP-OES) (IRIS Intrepid II XSP DUO, USA) was used to determine the concentrations of major cations (K ⁺ , Ca ²⁺ , Na ⁺ and Mg ²⁺), Si and dissolved phosphorus. Reagent and procedural blanks were determined in parallel to the sample treatment using identical procedures. Each calibration curve was evaluated by analyses of these quality control standards before, during and after the analyses of a set of samples. Our analytical precision for major cations was better than $\pm 10\%$,	带格式的 : 缩进: 首行缩进: 0 厘米

2.3. *p*CO₂ calculations

232	There are direct and indirect methods using acidimetric titrations for pCO_2
233	determinations. The direct method, named the headspace technique, has been
234	described in detail by Hope et al (1995). The indirect method, much simplified
235	procedure of alkalinity determination by titration to pH 4.5, has been widely used, i.e.,
236	<i>p</i> CO ₂ is calculated via pH/DIC and pH/alkalinity in particular (Neal et al., 1998a,
237	1998b; Telmer and Veizer, 1999; Yao et al., 2007; Butman and Raymond., 2011; Wang
238	et al., 2011; Li et al., 2012). This titration based method for measurements of
239	dissolved CO_2 are well acknowledged especially for natural rivers with pH > 6 and
240	low organic carbon content.
241	Popular methods for measurements of pCO_2 include temperature-dependent
242	constants in the chemistry equilibrium via pH/alkalinity (commonly used) (i.e., Neal
243	et al., 1998a; 1998b; Telmer and Veizer, 1999; Yao et al., 2007; Wang et al., 2011; Li
244	et al., 2012) and CO ₂ SYS (Lewis and Wallace, 1998). The former detailed algorithm
245	has been presented elsewhere (i.e., Yao et al., 2007; Wang et al., 2011; Li et al., 2012).
246	The program CO ₂ SYS dependent on measured pH <u>using YSI pH probe</u> , alkalinity and
247	water temperature, employed in our work, was considered to be reliable (cf. Hunt et
248	al., 2011; Butman and Raymond, 2011; Sarma et al., 2011). Our pCO ₂ values with an
249	assumption of pH shifts in a ± 0.01 unit demonstrated a precision of $<\pm 5\%$.
250	

251 2.4. Water-air interface CO₂ flux calculations

252	The diffusion flux of CO_2 (F) across the water-air interface can be estimated	
253	based on a theoretical diffusion model: $F=k \times K_h \times (pCO_{2water} - pCO_{2air})$	带格式的:字体:倾斜 带格式的:字体:倾斜
254	Where k is the gas transfer velocity of CO_2 (also referred to as piston velocity),	
255	pCO_{2water} in µatm is the partial pressure of CO ₂ in the surface water, and pCO_{2air} in	带格式的:字体:倾斜 带格式的:字体:倾斜
256	μatm is the CO_2 concentration in equilibrium with atmosphere. K_h is the solubility of	
257	CO ₂ corrected using temperature. This model has been widely used (i.e., Telmer and	
258	Veizer, 1999; Richey et al., 2002; Yao et al., 2007; Teodoru et al., 2009; Alin et al.,	
259	2011; Wang et al., 2011; Li el., 2012 <u>; 2014</u>).	
260	The piston velocity (k in cm/h) of CO ₂ at the water air interface is affected by-	
261	different basin physical factors but largely by wind speed and water turbulence-	
262	(Telmer and Veizer, 1999; Alin et al., 2011). Extensive efforts have been made to	
263	constrain improve the reliability of the k term term for highly precise and accurate	
264	quantificationmethods of water-air CO2 evasion, such as k values from a suit of	
265	empirical functions of wind speed (i.e., Wanninkhof, 1992; Guerin et al., 2007;	
266	Raymond and Cole, 2001; Frost and Upstill-Goddard, 2002; Vachon et al., 2010; Alin	
267	et al., 2011). However, k values from their models showed large differences (Zhai et-	
268	al., 2007). Heterogeneous basin physical characteristics particularly wind speed and	
269	water turbulence, however, result in wide ranges of k levels (Telmer and Veizer, 1999;	
270	Alin et al., 2011), for example, 3 cm/h to 115 cm/h (Aucour et al., 1999; Raymond	
271	and Cole, 2001).	
272	The riverine k values showed wide ranges of 3 cm/h to 115 cm/h (Aucour et al., *	 带格式的: 缩进: 首行缩进: 2 字符
273	1999; Raymond and Cole, 2001), however, 8-15 cm/h for k values has been widely	

274	adopted for large rivers, for instance k values (8-15) in the River Rhone and Saone	
275	(Aucour et al., 1999), 10 cm/h for Amazon mainstream (Raymond and Cole, 2001)	
276	and 15 cm/h for St Lawrence (Yang et al., 1996) Albeit 8-15 cm/h of k-value was	
277	8-15 cm/h of k values was also designated in some Asian rivers such as Xijiang River	
278	and Wujiang River (Yao et al., 2007; Wang et al., 2011) ₁₇ <u>however</u> Alin et al. (2011)	
279	got <u>athe</u> k ₆₀₀ level of 22 cm/h at a temperature of 20 °C for <u>the</u> Asian monsoon river <u>of</u>	
280	Mekong(e.g., Mekong) through field measurements., This level was comparable toand	
281	20 cm/h for temperate rivers (Aufdenkampe et al., 2011). Thus, we estimated an	
282	averaged k of 15 cm/h in the river downstream the dam considering the normal k level	
283	of 10 cm/h due to the similar hydrographic features with other Yangtze River system	
284	and world rivers (Aucour et al., 1999; Yao et al., 2007; Wang et al., 2011), and 20	
285	cm/h for reservoir discharge with high turbulence.	
286	Considering the mean wind speed in the Dnajiangkou Reservoir is around 2.5	
287	m/s, thus, the k level of water surface in the Danjiangkou Reservoir can be calculated	
288	using a function of wind speed and temperature (Cole and Caraco, 1998):	
289	$k_{600} = 2.07 + 0.215 U_{10}^{1.7}$ (1)	
290	$k_{600} = k_T (\frac{600}{S_{CT}})^{-0.5} \tag{2}$	
291	$S_{CT} = 1911.1 - 118.11T + 3.4527T^2 - 0.04132T^3$ (3) (Wanninkhof, 1992)	
292	Where k_T is the measured values <i>in situ</i> temperature (T), S_{CT} is the Schmidt	
293	number of temperature T (unit in °C), and U_{10} is the wind speed at 10 m above waters	
294	(m/s). Here, T=20 °C, S _{CT} =600 and k ₆₀₀ =3.1 cm/h , which is comparable to other -	
295	reservoirs in China, i.e., 2-4 for k value (cf. Yao et al., 2010; Mei et al., 2011; Wang et	

296	al., 2011). Then we can get the <i>in site</i> temperature-dependent k levels using the	
297	equations (2) and (3). For both the river below the dam and the reservoir, the use of	
298	two extreme values of k_{600} allowed us to give a ranges for the emissions (2 cm/h and 4	带格
299	cm/h as lower and upper limit for reservoir, while 10 cm/h and 20 cm/h for river) (cf.	
300	Yao et al., 2010; Mei et al., 2011; Wang et al., 2011).	
301		
302	2.5. Statistical analyses	
303	Multivariate statistics such as correlation analyses and analysis of variance (ANOVA)	
304	were used in our study. Correlation analyses was employed for relations between	
305	pCO ₂ and environmental parameters, while ANOVA was performed for differences of	
306	spatial and monthly DIC system with significance at p<0.05. The statistical processes	
307	were conducted using SPSS 16.0 (Li and Zhang, 2009; Li et al., 2013b).	
308		
309	3. Results	
310	3.1. Hydro-climatology	
311	The annual mean air temperature was 16.1° C with maximal and minimal daily values	
312	of 34.2 °C and -2°C during the period of 2004-2011. Mean monthly air temperature	
313	had significant differences with highest and lowest in July (24.2 \pm 1.2 $^{\circ}$ C) and January	
314	(3.5 \pm 1.1°C) (Fig. 2). Annual rainfall ranged from 768 mm (2006) to 1422 mm	
315	(2010) with an average of 1077 mm. Monthly mean precipitation was 88 mm,	
316	minimum and maximum values were respectively 1.6 ± 1.7 (January) and 256 ± 152	
317	mm (July). The precipitation from May to October accounted for 86% of the total	

带格式的:下标

318	annual.	
319		
320	3.21. Variability of water temperature, pH and alkalinity	
321	The original data of water temperature (T), pH and alkalinity were presented in Fig.	
322	S1. Their descriptive statistics were listed in Tables S2 and S3. T averaged 9±0.4 $^{\circ}$ C to	
323	29±1.4 $^{\circ}$ C with minimum and maximum in <u>the dry season</u> winter (Jan. 2010) and <u>wet</u>	
324	seasonsummer (Jul. 2008), respectively. pH showed lower values in the monsoon	
325	rainy season, for example, June through November, ranging from 7.81±0.18 (Nov.	
326	2009) to 8.65±0.09 (Jan. 2010). Alkalinity ranged from 1795±456 (Aug. 2010) to	
327	3241±332 µmol/l (Nov. 2008) (Table <u>\$</u> 2). In total, water temperature, pH and	
328	alkalinity averaged 18.75 $^\circ\!\mathrm{C},$ 8.22 and 2385 $\mu mol/l,$ respectively and all of them	
329	exhibited significant monthly differences (p<0.01 by ANOVA; Table 24a).	
330	Contrary to the monthly variations, T and pH in the Danjiangkou Reservoir	
331	showed insignificant variability among sampling sites (Table 24b). T and pH levels in	
332	the Reservoir surface were higher than the site downstream the dam (DJK5) with	
333	lowest averages of 16.4 \pm 8 °C for T and 8.01 \pm 0.38 for pH (Table <u>S</u> 3). However,	
334	alkalinity showed significant variations among sites with highest and lowest levels of	
335	2736±437 $\mu mol/l$ (DJK1 in the Dan Reservoir) and 2117±390 $\mu mol/l$ (DJK4 in the	
336	Han Reservoir), respectively. Generally, alkalinity significantly decreased in the Dan	
337	Reservoir as water flows (R^2 =0.68, p<0.01) till the site (DJK 4) in the Han Reservoir,	
338	and then increased significantly onward till the downstream of the dam (R^2 =0.93,	
339	p<0.01). In total, alkalinity in the different zones of the Reservoir was following in an	

带格式的: 非突出显示

340 order of Dan Reservoir >river downstream the Reservoir>site close to dam>Han

	D	•
2/1	Pacaru	OIT
341	I CSCI V	on.

342		
343	3. <u>3</u> 2. Dissolved inorganic carbon (DIC) species	
344	The DIC species calculated using CO ₂ SYS were presented in Figs. <u>3, 4, and 5.</u> 2,	
345	$\frac{3 \text{ and } 4}{3}$, HCO ₃ , showing similar trends with DIC in space and month, was the	
346	dominant component of DIC for all samples, accounting for ~93.5% of DIC on	
347	average, followed by dissolved $\text{CO}_3^{2\text{-}}$ and CO_2 , accounting for 5.3% and 1.2%,	
348	respectively. Also, HCO_3^- accounted for almost all of the alkalinity, up to an average	
349	of 97.4%.	
350	There were pronounced monthly and spatial variations in pCO ₂ illustrated by	
351	box-whiskers plots (Figs. 3, 4, and 5Figs 2, 3, and 4). Monthly statistics of pCO_2 in	
352	the Reservoir area generally showed same medians and means with the ratio of	
353	0.83-1.17 (median/mean), while extremely spatial variations resulted in that the mean	
354	concentration (491 μ atm) was three-fold the median (154 μ atm) in July 2006 (Fig. 2).	
355	Both of them displayed the minimal and maximal concentrations in the flooding	
356	season (ca. June-November), i.e., pCO2 median values ranged 90 µatm in Aug. 2009	
357	to 1530 µatm in Nov. 2008, while 110 (Aug. 2009)-1580 µatm (Nov. 2008) for <i>p</i> CO ₂	
358	mean values (Fig. $\underline{32}$).	
359	As for pCO_2 downstream the Reservoir, highest level (4764 µatm) occurred in	
360	July, and lowest level (155 μ atm) in January 2010 (Fig. 3). <i>p</i> CO ₂ concentrations in the	
361	site downstream the dam were consistently higher in relation to those in the reservoir	

surface when November 2008 was excluded (Figs. <u>3 and 4</u> 2 and <u>3</u>).
Spatial patterns indicated great variations from 53-3751 µatm and 155-4764
μ atm of <i>p</i> CO ₂ upstream and downstream the dam, respectively (Fig. <u>5</u> 4). The
box-whiskers plots illustrated that pCO_2 median levels significantly decreased as
water flows in the Dan Reservoir (R^2 =0.41, p<0.05). There was a significant decrease
(R ² =0.61, p<0.05) in terms of pCO_2 medians from Dan Reservoir-Han Reservoir-Dam
with lowest level (320 µatm) in the site close to Dam. The maximal median (702 µatm)
was observed downstream the dam (Fig. 54).
pCO_2 mean values significantly decreased from the Dan Reservoir to Han
Reservoir (R^2 =0.42, p<0.05), then increased quickly till the downstream of dam
(R^2 =0.88, p<0.05) with lowest (477 µatm) and highest levels (1132 µatm) in sites D2
(Han Reservoir) and DJK5 (downstream of the dam), respectively. The pCO_2 mean
values were consistently higher relative to pCO_2 medians, reflected by the ratio of
mean to median from 1.14 (D1 in the Dan Reservoir)-1.87 (D3 close to the dam).
Regarding to respective sampling site, large variation factors of pCO_2 (max./min.)
varied from 9 at DJK2 in the Dan Reservoir to 31 at the river downstream the
Reservoir (Fig. <u>54</u>). pCO_2 totally averaged 595±545 µatm (mean±S.D) in the reservoir
surface area, which was around 1/2 of the average downstream the Reservoir
(1132±1220 μatm).
3.43. CO ₂ diffusion fluxes of the Danjiangkou Reservoir

383 The average CO_2 diffusion fluxes (FCO₂) were calculated, as illustrated in Fig.

384	<u>65</u> . FCO ₂ was generally higher in the wet season, with averages of -8.2-31.4		
385	mmol/m ² /d, and in the dry season, it ranged from -5.8-10.6 mmol/m ² /d in the reservoir		
386	surface waters. Similar to the distribution of pCO_2 , FCO ₂ demonstrated remarkable		
387	variations upstream and downstream the dam in each sampling month. Generally,		
388	FCO_2 downstream the dam was quite high, with ranges of -20-703 mmol/m ² /d in the		
389	wet season, and -38-125 mmol/m ² /d in the dry season (Fig. 65 a).		
390	Spatial FCO ₂ in the reservoir surface demonstrated the following descending		
391	order: Dan Reservoir (3.2-13.7 mmol/m ² /d) > the site close to dam (6 mmol/m ² /d)>		
392	Han Reservoir (3-3.4 mmol/m ² /d) (Fig. <u>6</u> 5b). FCO ₂ downstream the dam was much		
393	higher than the reservoir surface, i.e., averages of 119 vs 9 mmol/m ² /d for		
394	downstream and upstream the dam, respectively (Fig. <u>65</u>). In total, the Danjiangkou		
395	Reservoir emitted 2.4×10^9 mol CO ₂ /yr in the current situation while 3.4×10^9 mol		
396	CO_2 /yr from 2014 onward, respectively representing 8.3% and 11.7% the CO_2		
397	emission from Three Gorges Reservoir (ca. 29.5×10^9 mol CO ₂ /yr; Zhao et al., 2013).		
398			
399	<u>3.5. Ancillary data</u>		
400	Seasonal and spatial characteristics of water quality variables are illustrated in Fig. 7.		
401	Major ions such as Cl, SO _d , Na, K, Ca and Mg showed higher concentrations in the	带格式的: 下标	
402	dry season than the wet season. Concentrations of major ions decreased as water		
403	flows in the Dan Reservoir, and tended to reach the minimal in the Han Reservoir.		
404	Concentrations in site close to Dam were comparable to the Han Reservoir due to		
405	much higher contribution of runoff from Han River (40 km ³ /yr vs 1 km ³ /yr for Han	带格式的:上标 带格式的:上标	

406	River and Dan River). TSS, COD_{Mp} , TOC showed higher concentrations in the wet	帯
407	season, while DOC tended to have higher concentration in the dry season. Chl-a was	
407	season, while Dee tonded to have inglier concentration in the dry season. Chi a was	
408	higher in the wet season with high temperature and nutrient loads. Nutrient variables	
409	such as nitrate and DP showed higher concentrations in the wet season, while other	
410	variables had mixed seasonality (Fig. 7). Nutrients were consistently the highest in the	
411	river below the Dam when their spatial patterns considered (Fig. 7).	
412	Trophic level index (TLI) and trophic state index (TSI) are used to evaluate	
413	lake's eutrophication (cf. Liu et al., 2012). Our results indicated that TLI of COD _{Mn}	#
414	was in the range of oligotrophic status, TLIs of TP and Chl-a were included in the	
415	mesotrophic ranges, while TLI of TN was very high (64-92). TSI levels of TP ranged	
416	between 74 and 85, which were comparable to the acknowledged eutrophic lakes in	
417	the Yunan Plateau (Liu et al., 2012). Danjiangkou Reservoir thus can be regarded as	
418	mesotrophic and eutrophic (Fig. S2).	
419		
420	4. Discussion	
421	4.1. Controls on aqueous <i>p</i> CO ₂ (CO ₂ flux)	
422	Potential processes such as soil CO ₂ by runoff and <i>in situ</i> aquatic respiration of	
423	organic carbon would elevate <u>aquatic pCO₂-in water</u> , and resulted in oversaturated	
424	CO ₂ in the rivers worldwide with respect to atmosphere (cf. Cole and Caraco, 2001;	
425	Richey et al., 2002; Yao et al., 2007; Sarma et al., 2011; Wang et al., 2007; 2011; Li et	
426	al., 2012), albeit photosynthesis and water-air interface CO ₂ evasion decrease the	
427	aqueous pCO ₂ (Cole and Caraco, 2001; Zeng and Masiello, 2010). Temperature and	

带格式的: 下标

带格式的:下标

428	monsoonal precipitation in the <u>upper catchmentupstream</u> of the Danjiangkou	
429	Reservoir (Fig. $\frac{26}{26}$) thus have large effects on aquatic pCO_2 levels due to that rainfall	
430	alters the biogeochemical processes in the terrestrial ecosystem and organic carbon	
431	composition in the Reservoir (Yao et al., 2007; Zeng and Masiello, 2010). This	
432	hypothesis was corroborated by pronounced seasonality in pCO_2 concentrations (Figs.	
433	$\underline{32}$ and $\underline{43}$). Previous researches reported that negative or positive contributions of	
434	rainfall events to pCO_2 depend on rainfall intensity and basin impermeability (Ho et	
435	al., 1997; Yao et al., 2007; Zeng and Masiello, 2010; Li et al., 2012), for example,	
436	initial rainfall enhances the export of soil CO2 and soil organic carbon load to river	
437	system, while the following continued rain especially the concentrated precipitation	
438	lowers soil permeability and consequently shows dominant dilution effects. Moreover,	
439	pH was lower in the initial rainfall than the latter (Fig. S3), and each storm event	
440	increased the rainfall pH, i.e., increase in pH from 6.02 (12 May) to 7.85 (13 June)	
441	and from 6.6 (3 August) to 7.1 (7 August). This suggests that the following storm	
442	facilitates the transformation of CO ₂ to alkalinity. These mechanisms are relevant	带林
443	to could explain large variability in p CO ₂ occurring in the wet months (ca. August	
444	2005 vs August 2009) (Fig. <u>3</u> 2). In the year of 2009, persistent precipitation (22 July	
445	to 5 August) and particularly the extreme storm (i.e., 62 mm/d) from the onset of	
446	August (Fig. 26) had flushed out the soil CO ₂ and hence storm dilution effects	
447	dominated, which resulted in the trough of pCO_2 on 11 August (Fig. <u>3</u> 2).	
448	Fig. 8. depicts the Samplings in 2005 allowed us analyze seasonal controls on	
449	pCO_2 in a hydrological year (Fig. 7). Little rainfall occurred between the date of	

带格式的:下标

450	sampling in January and April in 2005, while rise in temperature and algae blooming
451	increased photosynthesis in pre-monsoonal month (April) the Spring season-would
452	reduce aquatic pCO ₂ (from 372 to 294 µatm). Albeit there was no sampling in May
453	2005, enhanced pCO_2 in this month could be assumed due to export of soil CO_2 yia
454	monsoonal rainfall events fFrom May afterward, more rainfall eventsoccurred due-
455	to monsoonal effects, and enhanced pCO ₂ in May could be assumed albeit no-
456	sampling in May 2005. This, However, this could be supported by the pCO_2
457	concentrations observed in May 2007 (582 µatm) and May 2011 (650 µatm), which
458	was likely caused by export of soil CO_2 by rain runoff. Weaker biological CO_2 uptake
459	through photosynthesis due to lower sun angle and high-turbid water might be
460	additional reasons for the rapid pCO_2 increase. The continued rain especially the
461	storm water with lower permeability or without infiltration into soil contributed to the
462	trough of pCO_2 (150 µatm) in June. However, from the late of July to the mid-August,
463	proper temperature and wetted soils by lower precipitation favored soil bacterial
464	respiration and thus higher soil CO ₂ content, consequently making elevated aqueous
465	pCO ₂ via baseflow and interflow albeit more rainfall events in 13-19 August partially
466	contributed to dilution effects. As expected, precipitation showed a quick decrease
467	from the mid-October onward, evenly distributed precipitation and appropriate
468	rainfall, however, provided optimum environment for soil respiration (cf. Zeng and
469	Masiello, 2010; Li et al., 2012). This allowed the rain water to infiltrate and flush out
470	soil CO_2 to the river with limited dilut <u>edion</u> effects, and therefore contributed to the
471	crest level of pCO_2 in November (Fig. <u>87</u>), similar toas indicated by other two major

带格式的:下标 **带格式的:**字体:倾斜

472	pCO_2 peaks in November in 2008 and 2009 (Fig. <u>3</u> 2). Henceforth, little rainfall and
473	lowest temperature in December through January limited the export of soil CO ₂ to
474	rivers, <u>leading towhich resulted in</u> very low pCO_2 in January (the most cold and dry
475	month) (Fig <u>s</u> . <u>2 and 8</u> 7).
476	Consistent with previous studies (Richey et al., 2002; Yao et al., 2007; Zeng and
477	Masiello, 2010; Li et al., 2012), pCO_2 in the reservoir surface was generally higher in
478	the warm and wet season (May-November) than in cold and dry season
479	(December-April) (Figs. 32 and 87). We also concluded that enhanced photosynthesis
480	due towith abundant phytoplankton and high water temperature could not explain
481	clearly pCO_2 fluctuations by a factor of more than 10 in the monsoon <u>al</u> season (Fig.
482	<u>3</u> ²) (Cole et al., 1992). This was corroborated by previous studies (cf. <u>Lu et al., 2010;</u>
483	Zeng and Masiello, 2010) that diurnal pCO_2 showed little changes in the sunny or
484	<u>cloudy</u> day with little rain while large differences in the rainier day, as well as little
485	differences of diurnal pCO_2 in the Nihe Reservoir, China (Lu et al., 2010).
486	Different monthly patterns of pCO_2 occurred in the river downstream the
487	Danjiangkou Dam when compared to reservoir surface waters (Fig. 43). This could be
488	responsible for artificial water regulation, for example, water discharges via deep
489	turbines before monsoonal flooding arrival for flood control strategy made the
490	extreme pCO_2 in July. However, the second pCO_2 peak level in November 2009 was
491	due to autumn flooding.
492	As water flows in the reservoir, aquatic ecosystem gradually transformed from
493	"heterotrophy" to "autotrophy" with more photosynthetic uptake of CO_2 close to dam

494	(Saito et al., 2001). This could explain the significant decrease as water flows in the
495	Dan Reservoir ($R^2=0.41$, p<0.05 for pCO_2 medians). However, both pCO_2 medians
496	and means were higher in the Dan Reservoir than in the Han Reservoir, which could
497	be contributable to higher pollution load (i.e., COD _{Mn} , BOD and N; Fig. 7) and thus
498	relatively lower pH in the Dan Reservoir zone (Li et al., 2009a). Shifts of hydrological
499	dynamics, nutrient structure and complicated biogeochemical process in the Reservoir
500	generally reduced the pCO_2 close to the dam, as indicated by significant decreases in
501	pCO ₂ medians from Dan Reservoir-Han Reservoir-Dam (R ² =0.61, p<0.05; Fig. <u>5</u> 4),
502	as well as other cases in China such as Wan'an (Mei et al., 2011) and Xin'anjiang
503	Reservoirs (Yao et al., 2010). Turbines with intake of deep water in the Danjiangkou
504	Reservoir produce a hydroelectricity of 45×10^8 k <u>W</u> w.h/yr, this water releases had
505	hypoxic environment with lower pH and higher CO ₂ concentration (cf. Wang et al.,
506	2011), as well as considerably enhanced pCO_2 in the river <u>below</u> downstream the dam.
507	Similar results were obtained in China's other hydroelectric reservoirs such as
508	Hongjiadu (Yu et al., 2008) and Xin'anjiang (Yao et al., 2010).
509	
510	4.2. Correlations between water quality and pCO_2
511	A part from precipitation prevailing on monthly nCO_{2} variations, as well as

.1

.

带格式的: 下标

Apart from precipitation prevailing on monthly pCO_2 variations, as well as 511 512 hydrological and biogeochemical processes on spatial pCO₂ variations in the reservoir area, water chemical variables including nutrients (ammonium-N, nitrate-N, total-N, 513 dissolved N, soluble reactive phosphorus, dissolved phosphorus, total phosphorus 514 (TP), DO%), organic carbon (TOC, DOC), biogenic elements (Cl⁻, SO₄²⁻, Na⁺, K⁺, 515

带格式的: 下标

516	Ca^{2+} , Mg^{2+} and Si), water pollution parameters (chemical oxygen demand (COD _{Mn}),
517	biochemical oxygen demand (BOD), total suspended solid (TSS), turbidity) and Chl-a
518	were correlated to pCO_2 to gain insights of the possible controls (<u>Table 3</u> ; Fig. <u>S38</u> ;
519	Table S2). Our data demonstrated varied relationships between pCO_2 and water
520	quality parameters. Generally, indicated that pCO_2 was significantly and positively
521	related to Si, <u>P species, TOC</u> TP and DOC, and negatively to DO saturation, TN and
522	Chl-a, while slightly to other <u>chemicalwater</u> variables including biogenic elements.
523	The increased nitrogen could enhance aquatic photosynthesis and thus O_2
524	production, while reduce dissolved CO ₂ level (e.g., Cole and Caraco, 2011; Wang et
525	al., 2007), which was relevant to the negative relationships between pCO_2 and
526	nitrogen, Chl-a and DO concentration (Table 382). Higher organic carbon appeared to
527	facilitate high bacteria respiration (cf. Sarma et al., 2009; 2011; Zeng and Masiello,
528	2010), and thus led to increase in pCO_2 , while O_2 was consumed simultaneously. This
529	process was consistent with the algal photosynthesis process that caused opposite
530	changes between pCO_2 and O_{2-2} . The results were in excellent agreement with the
531	observations in other China's hydropower reservoirs, e.g., Shuibuya (Zhao et al.,
532	2012), Wan'an (Mei et al., 2011) and Three Gorges Reservoir (Zhao et al., 2011;
533	2013).
534	Moreover, aquatic ecosystems tend to have an optimum nutrient stoichiometry of
535	phytoplankton (e.g., Redfield Ratio; Redfield, 1958). Phytoplankton via
536	photosynthesis therefore assimilates dissolved CO ₂ and nutrients such as nitrogen,
537	phosphorus, and silica in a stable element stoichiometric ratio. Thus, dramatic

538	increase in nitrogen load due to anthropogenic inputs in the upper basin of the					
539	Reservoir (Li et al., 2009b; 2013) could stimulate the assimilation of dissolved CO_2					
540	and P and Si by aquatic photosynthesis. Slightly increase in P and exclusive source					
541	from silicate weathering for Si in the upper Han River (Li et al., 2009c)					
542	understandably resulted in positive correlations between pCO_2 and Si and P. These					
543	trends were, in general, in concurrence with the results elsewhere (cf. Wang et al.,					
544	2007). Yet these processes could not explain the associations between pCO_2 and					
545	nitrogen species and biogenic elements, this could be attributed to large					
546	anthropogenic-driven effects on nitrogen or multi-collinear effects of water quality					
547	properties, for example, varied effects of nitrate on pCO_2 were observed (cf. Wang et					
548	al., 2007; Li et al., 2012).					
549						
550	4.3. Comparison with other water areas					
551	CO_2 efflux (9 mmol/m ² /d) from the Danjiangkou Reservoir surface area was at					
552	the bottom in contrast to other China's hydroelectric reservoirs (e.g., 6-96 $\text{mmol/m}^2/\text{d}$),					
553	which resulted in that total CO ₂ emission from the Danjiangkou was an order of					
554	magnitude lower than the TGR albeit they have same water surface area (Zhao et al.,					

555 2013). Our estimated CO_2 emission rate was much higher than some temperate

reservoirs (e.g., Wallula, New Melones and Dworkshak): these three reservoirs acted

- as the atmospheric CO_2 sink, however, much lower than those from boreal and tropic
- reservoirs. For example, the estimate of CO_2 flux was around 40% of that from
- 559 Arrow-Upper (boreal) and only 1% that from Samuel (tropic) (see Table <u>45</u>).

560	On the basis of the available literature, Barros et al. (2011) recently estimated an
561	average of CO ₂ flux ~8.8 mmol/m ² /d from temperate hydroelectric reservoirs (25-50 $^{\circ}$
562	latitudinal belt). Our calculated CO ₂ flux from the Danjiangkou Reservoir equaled to
563	the currently estimated global average for the mid-latitude reservoirs, however, there
564	exited significantly geographical heterogeneities in CO ₂ flux from China's
565	hydroelectric reservoirs (see Table 45). For the global estimates, data on CO ₂ emission
566	from China's reservoirs have been excluded (cf. St Louis et al., 2000; McCully, 2006;
567	Aufdenkampe et al., 2011; Barros et al., 2011). This indicated that the current global
568	estimation of CO ₂ emission from reservoirs could be under-estimated or
569	overestimated, as reflected by the wide ranges (see Table 45). It is clear therefore that
570	more data particularly in China, where a large number of hydropower dams exist with
571	many planned for the future, are mandatory to better constrain the global CO_2
572	emission from hydroelectric reservoirs.
573	Worldwide riverine pCO_2 was primarily 2-20 times supersaturated in CO_2
574	relative to the atmosphere (Cole and Caraco, 2001), our calculations of 1132±1220
575	μ atm (ranges of 155-4764 μ atm) in the river downstream-of the Reservoir was three
576	times lower than global river's average (3230 μatm calculated from world 47 large
577	rivers; Cole and Caraco, 2001). However, our results were comparable to the Chinese
578	Rivers such as Yangtze (1297±901 µatm; Wang et al., 2007), Pearl (450-2360 µatm;
579	Zhang et al., 2007), Yellow (1137±189 µatm; Cole and Caraco, 2001), and other Asian
580	river such as Mekong (703-1475 µatm, Alin et al., 2011; 1090±290 µatm;- <u>Li et al.,</u>
581	2014 <i>unpublished</i>), and other world Rivers, i.e., Hudson (1125±403 µatm, Raymond et

582	al., 1997), St. Lawrence (1300 µatm, Helli et al., 2002), Ottawa rivers (1200 µatm,
583	Telmer and Veizer, 1999) and Mississippi (1335 \pm 130 µatm, Dubois et al., 2010).
584	Our areal flux of CO_2 in the river downstream the dam was intermediate relative
585	to rivers in China (Table $\underline{45}$). For example, the <u>riverine</u> CO ₂ emission rate in the river-
586	downstream the Danjiangkou Reservoir was 8 times higher than that in the main
587	channel of the Yangtze (ca.14 mmol/ m^2/d), while it was much lower with respect to
588	the river reach downstream the dams in the Maotiao River (ca. 489 $\text{mmol/m}^2/\text{d}$) and
589	the Xijiang (ca. 274 mmol/ m^2/d). When compared to the world rivers, the estimated
590	CO ₂ emission flux per unit area was much lower than those in tropic rivers (e.g.,
591	Amazon) or river stretches below tropical dams, while was intermediate between
592	those of temperate rivers and comparable to the global average (e.g., 147 mmol/ m^2/d).
593	Similar to other reservoirs in China, downstream waters had quite high flux of
594	CO ₂ (cf. Yu et al., 2008; Wang et al., 2011). This could be explained as follows:
595	turbines for hydroelectricity generation are located in the deep water areas, and this
596	deep water with prevailing respiration property shows very high dissolved CO ₂
597	concentration due to low permeability light and thermocline in particular. For example,
598	CO_2 flux in the reservoir downstream was 13 fold that from reservoir surface in the
599	Danjiangkou, and this could reach as high as 15 for Hongjiadu (Yu et al., 2008) and
600	33 for Hongfeng (Wang et al., 2011) (see Table <u>45</u>). This suggested deep water
601	releases via turbines is an important sources of atmospheric CO ₂ (cf. Kemenes et al.,
602	2011).

603

604 5. Conclusion

605	CO_2 outgassing flux across water-air interface in the Danjiangkou Reservoir was					
606	1/13 lower than the flux from the river downstream the dam. Average CO ₂ flux and					
607	annual CO ₂ emission from the Reservoir were <u>respectively</u> 9 mmol/m ² /d and 3.4×10^9					
608	mol C/yr , respectively . CO ₂ flux from the Danjiangkou Reservoir was near the lower					
609	end of the ranges from hydroelectric reservoirs in China, clearly lower than other					
610	global estimates for reservoirs (e.g., St Louis et al., 2000; McCully, 2006;					
611	Aufdenkampe et al., 2011) and natural lakes (Barros et al., 2011), while similar to					
612	global average for temperate hydroelectric reservoirs estimated by Barros et al.					
613	(2011).					
614	Substantially monthly and spatial variations in pCO_2 and CO_2 flux demonstrated					
615	the dominant control of rainfall events particularly in the monsoon seasons, while					
616	biologic CO ₂ uptake through aquatic photosynthesis dominated the spatial					
617	distributions in the reservoir area. The much higher CO_2 flux in the river downstream					
618	the Reservoir was due to deep water releasing for power generation. Similar to other					
619	hydroelectric reservoirs in China, reservoir surface waters were generally					
620	supersaturated with CO_2 relative to atmosphere, while lower values of pCO_2 than the					
621	atmospheric level of CO ₂ often occurred in the concentrated rainfall months and dry					
622	season. We concluded remarkably spatiotemporal variability in p CO ₂ and CO ₂ fluxes					
623	from China's reservoirs are urgently included for a substantial revision of global					
624	estimate of carbon emission, and water discharge from reservoirs should deserve extra					
625	attention for assessment of reservoirs' source and sink effects on atmospheric CO ₂ .					

627 Acknowledgement

- 628 The research is funded by the National Natural Science Foundation of China (No.
- 629 31100347, and No. 31130010), Youth Innovation Promotion Association, the Chinese
- 630 Academy of Sciences, China.

References

632	Abril G, Guerin F, Richard S, Delmas R, Galy-Lacaux C, Gosse P, et al. Carbon
633	dioxide and methane emissions and the carbon budget of a 10-year old tropical
634	reservoir (Petit Saut, French Guiana). Global Biogeochem Cycles 2005;19:GB4007.
635	doi:10.1029/2005GB002457.
636	Alin, S.R., Fátima, Rasera.M., Salimon, C.I, Richey, J.E., Krusche, A.V., Holtgrieve,
637	G.W., and Snidvongs, A.: Physical controls on carbon dioxide transfer velocity and
638	flux in low-gradient river systems and implications for regional carbon budgets, J.
639	Geophysical Research, 116, G01009, 2011.
640	Amiotte Suchet, P., Probst, J.L., and Ludwig, W.: Worldwide distribution of
641	continental rock lithology: Implications for the atmospheric/soil CO ₂ uptake by
642	continental weathering and alkalinity river transport to the oceans, Global
643	Biogeochemical Cycles, 17, 1038, 2003.
644	Aucour, A.M., Sheppard, S.M.F., Guyomar, O., and Wattelet, J.: Use of ¹³ C to trace
645	origin and cycling of inorganic carbon in the Rh ône River system, Chemical
646	Geology, 159, 87-105, 1999.
647	Aufdenkampe, A.K., Mayorga, E., Raymond, P.A., Melack, J.M., Doney, S.C., Alin,
648	S.R., Aalto, R.E., and Yoo, K.: Riverine coupling of biogeochemical cycles between
649	land, oceans, and atmosphere, Front Ecol Environ, 9, 53-60, 2011
650	Barros, N., Cole, J.J., Tranvik, L.J., Prairie, Y.T., Bastviken, D., Huszar, V.L.M., del
651	Giorgio, P., and Roland, F.: Carbon emission from hydroelectric reservoirs linked to

reservoir age and latitude, Nature Geoscience, 4, 593-596, 2011.

- 653 Bastviken, D., Tranvik, L.J., Downing, J.A., Crill, P.M., and Enrich-Prast, A.:
- Freshwater Methane Emissions Offset the Continental Carbon Sink, Science, 331,
- 655 50, 2011.
- 656 Butman, D., and Raymond, P.A.: Significant efflux of carbon dioxide from streams
- and rivers in the United States, Nature Geoscience, 4, 839-842, 2011.
- 658 Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A., and
- Tranvik, L. J.: The boundless carbon cycle, Nat. Geosci., 2, 598-600, 2009.
- 660 Chanudet V, Descloux S, Harby A, Sundt H, Hansen BH, Brakstad O, Ser ça D, Guerin
- 661 <u>F. Gross CO2 and CH4 emissions from the Nam Ngum and Nam Leuk sub-tropical</u>
- 662 reservoirs in Lao PDR. Sci Total Environ., 409, 5382-91, 2011.
- 663 Chen, H., Wu, Y.Y., Yuan, X.Z., Gao, Y.S., Wu, N., and Zhu, D.: Methane emissions
- from newly created marshes in the drawdown area of the Three Gorges Reservoir,
- Journal of geophysical research 114, D18301, 2009.
- 666 Chen, H., Yuan, X.Z., Chen, Z.L., Wu Y.Y, Liu, X.S., Zhu, D., Wu, N, Zhu, Q., Peng,
- 667 C.H., and Li, W.Z.: Methane emissions from the surface of the Three Gorges
- 668 Reservoir, Journal of Geophysical Research 116, D21306, 2011.
- 669 Chen, H., Zhu, Q., Peng, C.H., Wu, N., Wang, Y.F., Fang, X.Q., Hong, J., Xiang, W.H.,
- 670 Chang, J., Deng, X.W., and Yu, G.R.: Methane emissions from rice paddies natural
- 671 wetlands, lakes in china: synthesis new estimate, Global Change Biology, 19, 19-32,
- 672 2013.
- 673 CSEPB (Chinese State Environment Protection Bureau).: Water and Wastewater
- 674 Monitoring Analysis Methods (fourth edn) Chinese Environment Science Press,

675 Beijing, China, 2002, (in Chinese).

676	Cole, J.J., and Caraco, N.F.: Atmospheric exchange of carbon dioxide in a low-wind
677	oligotrophic lake measured by the addition of SF6, Limnology and Oceanography,
678	43, 647-656, 1998.
679	Cole, J.J., and Caraco, N.F.: Carbon in catchments: connecting terrestrial carbon

- losses with aquatic metabolism, Marine and Freshwater Research, 52, 101-110,
 2001.
- 682 Cole, J.J, Caraco, N.F., and Peierls, B.L: Can phytoplankton maintain a positive
- carbon balance in a turbid, freshwater, tidal estuary, Limnol Oceanogr, 37,
- 684 1608-1617, 1992.
- 685 Cole, J.J., Prairie, Y.T., Caraco, N.F., McDowell, W.H., Tranvik, L.J., Striegl, R.G.,
- 686 Duarte, C.M., Kortelainen, P., Downing, J.A., Middelburg, J.J., and Melack, J.:
- 687 Plumbing the global carbon cycle: Integrating Inland Waters into the terrestrial
- 688 carbon budget, Ecosystems, 10, 171-184, 2007.
- 689 Delmas R, Galy-Lacaux C, Richard S. Emissions of greenhouse gases from the
- 690 tropical hydroelectric reservoir of Petit Saut (French Guiana) compared with
- 691 emissions from thermal alternatives. Global Biogeochem Cycles
- 692 <u>2001;15:993-1003.</u>
- 693 Dubois, K.D., Lee, D., and Veizer, J.: Isotopic constraints on alkalinity, dissolved
- 694 organic carbon, and atmospheric carbon dioxide fluxes in the Mississippi River, J.
- 695 Geophys. Res. 115, G02018, 2010.
- 696 Dos Santos, M.A., Rosa, L.P., Sikar, B., Sikar, E., and Dos Santos, E.O.: Gross

- 697 greenhouse gas fluxes from hydro-power reservoir compared to thermo-power
- 698 plants, Energy Policy, 34, 481-488, 2006.
- 699 Fearnside, P.M.: Hydroelectric dams in the Brazilian Amazon as sources of
- 700 greenhouse gases, Environ Conserv, 22, 7-19, 1995.
- 701 Fearnside, P.M.: Do hydroelectric dams mitigate global warming? The case of
- 702 Brazil's CuruA-una Dam, Mitig Adapt Strat Glob Change, 10, 675-691, 2005.
- 703 Fearnside, P. M., and Pueyo, S.: Greenhouse-gas emissions from tropical dams.
- 704 Nature Climate Change, 2, 382-384, 2012.
- 705 Frost, T., and Upstill-Goddard, R.C.: Meteorological controls of gas exchange at a
- 706 small English lake. Limnol. Oceanogr., 47, 1165-1174, 2002.
- Giles. J.: Methane quashes green credentials of hydropower, Nature, 444, 524-525,
- 708 2006.

- 709 Guerin, F., and Abril, G: Significance of pelagic aerobic methane oxidation in the
- 710 methane and carbon budget of a tropical reservoir, Journal of Geophysical Research,
- 711 112, G03006, 2007.

Syst, 66:161-72, 2007.

- 712 Guerin, F., Abril, G., Richard, S., Burban, B., Reynouard, C., Seyler, P., and Delmas,
- 713 R.: Methane and carbon dioxide emissions from tropical reservoirs: Significance of
- downstream rivers, Geophysical Research Letters, 33, L21407, 2006.
- 715 <u>Gu érin F, Abril G, Ser ça D, Delon C, Richard S, Delmas R, et al. Gas transfer</u>
- 716 velocities of CO₂ and CH₄ in a tropical reservoir and its river downstream. J Mar

带格式的: 下标 带格式的: 下标

718 H die, J.F, Hillaire-Marcel, C., and Rondeau, B.: Seasonal changes in the sources and

719 fluxes of dissolved inorganic carbon through the St. Lawrence River-isotopic and

720 chemical constraint, Chem Geol, 186,117-138, 2002

- 721 Ho, D.T., Bliven, L.F., Wanninkhof, R., and Schlosser, P: The effect of rain on
- air-water gas exchange, Tellus Ser B-Chem Phys Meteorol, 49, 149-158, 1997.
- 723 Hope, D., Dawson, J.J.C., Cresser, M.S., and Billett, M.F.: A method for measuring
- free CO_2 in upland streamwater using headspace analysis, Journal of Hydrology,
- 725 166, 1-14, 1995.
- 726 Hunt, C.W., Salisbury, J.E., and Vandemark, D.: Contribution of non-carbonate anions
- to total alkalinity and overestimation of pCO₂ in New England and New Brunswick
- rivers, Biogeosciences, 8, 3069-3076, 2011.
- 729 Huttunen, J.T., V äs änen, T.S., Hellsten, S.K., Heikkinen, M., Nyk änen, H., Jungner, H.,
- 730 Niskanen, A., Virtanen, M.O., Lindqvist, O.V., Nenonen, O.S., Martikainen, P.J:
- 731 Fluxes of CH₄, CO₂, and N₂O in hydroelectric reservoirs Lokka and Porttipahta in
- the northern boreal zone in Finland, Global Biogeochemical Cycles, 16, 1003,
- 733 2002.
- 734 Kemenes, M., Forsberg, B.R., and Melack, J.M.: Methane release below a tropical
- hydroelectric dam, Geophysical Research Letters, 34, L12809, 2007.
- 736 Kemenes, M., Forsberg, B.R., and Melack, J.M.: CO₂ emissions from a tropical
- 737 hydroelectric reservoir (Balbina, Brazil), Journal of Geophysical Research, 116,
- 738 G03004, 2011.
- 739 Lewis, E., and Wallace, D.W.R.: Program Developed for CO₂ System Calculations.
- 740 ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge

741	National Laboratory,	U.S. De	partment of Energy,	Oak Ridge,	Tennessee,	1998
-----	----------------------	---------	---------------------	------------	------------	------

- 742 Li, S.Y., Gu, S., Liu, W., Han, H., and Zhang, Q.: Water quality in relation to the land
- use and land cover in the Upper Han River basin, China, Catena, 75, 216-222,
- 744 2008a.
- Li, S.Y., Xu, Z., Cheng, X., and Zhang, Q.: Dissolved trace elements and heavy
- metals in the Danjiangkou Reservoir, China, Environmental geology, 55, 977-983,
 2008b
- Li, S.Y., and Zhang, Q.: Geochemistry of the upper Han River basin, China, 1: Spatial
- 749 distribution of major ion compositions and their controlling factors, Applied
- 750 Geochemistry, 23, 3535-3544, 2008.
- 751 Li, S.Y., and Zhang, Q.: Geochemistry of the upper Han River basin, China. 2:
- 752 Seasonal variations in major ion compositions and contribution of precipitation
- chemistry to the dissolved load, Journal of Hazardous Materials, 170, 605-611,
- 754 2009.
- Li, S.Y., Cheng, X., Xu, Z., and Zhang, Q.: Spatial and temporal patterns of the water
- quality in the Danjiangkou Reservoir, China, Hydrological Sciences Journal, 54,
- 757 124-134, 2009a.
- Li, S.Y, Liu, W., Gu, S., Cheng, X., Xu, Z, and Zhang, Q.: Spatio-temporal dynamics
- of nutrients in the upper Han River basin, China, Journal of Hazardous Materials,
- 760 162, 1340-1346, 2009b.
- Li, S.Y., Xu, Z., Wang, H., Wang, J., and Zhang, Q.: Geochemistry of the upper Han
- 762 River basin, China. 3: Anthropogenic inputs and chemical weathering to the
- dissolved load, Chemical Geology, 264, 89-95, 2009c.
- 764 Li, S.Y., and Zhang, Q.: Major ion chemistry and weathering processes of the
- 765 Danjiangkou Reservoir, China, Hydrological Sciences Journal, 55, 1385-1395,
- 766 2010.
- ⁷⁶⁷ Li, S.Y., and Lu, X.X.: Uncertainties of carbon emission from hydroelectric reservoirs,
- 768 Nat Hazards, 62, 1343-1345, 2012.
- 769 Li, S.Y., Lu, X.X., He, M., Zhou, Y., Li, L., and Ziegler, A.D.: Daily CO₂ partial
- pressure and CO₂ outgassing in the upper Yangtze River basin: A case study of the
- Longchuan River, China, Journal of Hydrology, 466-467, 141-150, 2012.
- Li, S.Y., Lu, X.X. and Richard, B.T.: CO₂ partial pressure and CO₂ emission in the
 Lower Mekong River, Journal of Hydrology, 504, 40-56, 2013a.
- 774 Li S.Y., Xia X., Tan X., and Zhang Q.: Effects of catchment and riparian landscape
- setting on water chemistry and seasonal evolution of water quality in the Upper
- 776 Han River Basin, China, PLoS ONE 8, e53163, 1-14, 2013<u>b</u>.
- 1777 Lima, I., Ramos, F., Bambace, L., and Rosa, R.: Methane Emissions from Large Dams
- as Renewable Energy Resources: A Developing Nation Perspective, Mitigation and
- Adaptation Strategies for Global Change, 13,193-206, 2008.
- 780 Lu, D.K, Yu, H.X, Ma, C.X, and Huang, P.W.: The correlation analysis between CO₂
- at the water-air interface and environment factors in the Nihe Reservoir, Wetland
- 782 Science & Management, 6, 44-48, 2010 (in Chinese with English abstract).
- 783 Mei, H.Y., Wang, F.S., Yao, C.Z., and Wang, B.L.: Diffusion Flux of Partial Pressure
- of Dissolved Carbon Dioxide in Wan'an Reservoir in Spring, Environmental

带格式的:下标

带格式的: 下标

- 785 Science, 32, 58-63, 2011 (in Chinese with English abstract).
- 786 McCully, P.: Fizzy science: Loosening the Hydro Industry's Grip on Reservoir
- 787 Greenhouse Gas Emissions Research, (International Rivers Network), 2006.
- 788 Neal, C., House, W.A., and Down, K.: An assessment of excess carbon dioxide partial
- 789 pressures in natural waters based on pH and alkalinity measurements, The science
- 790 of the total environment, 210/211, 173-185, 1998a.
- 791 Neal, C., House, W.A., Jarvie, H.P., and Eatherall, A.: The significance of dissolved
- carbon dioxide in major lowland rivers entering the North Sea, The science of the
- 793 total environment, 210/211, 187-203, 1998b.
- 794 Qiu, J.: Chinese dam may be a methane menace [online], Nature, 29 Sept.,
- 795 doi:10.1038/news.2009.1962, 2009.
- 796 Raymond, P.A., Caraco, N.F., and Cole, J.J.: Carbon dioxide concentration and
- atmospheric flux in the Hudson River, Estuaries, 20, 381-390, 1997.
- 798 Raymond, P.A., and Cole, J.J.: Gas exchange in rivers and estuaries: choosing a gas
- 799 transfer velocity, Estuaries, 24, 312–317, 2001.
- 800 Redfield, A. C.: The biological control of chemical factors in the environment,
- 801 American Scientist, 46, 205-221, 1958.
- 802 Richey, J.E., Melack, J.M., Aufdenkampe, A.K., Ballester, V.M., and Hess, L.L.:
- 803 Outgassing from Amazonian rivers and wetlands as a large tropical source of
- atmospheric CO₂, Nature, 416, 617-620, 2002.
- 805 Roland F, Vidal LO, Pachero FS, Barros NO, Assireu A, Ometto JPHB, et al.
- 806 <u>Variability of carbon dioxide flux from tropical (Cerrado) hydroelectric reservoirs.</u>

807 <u>Aquat Sci 2010;72:283–93.</u>

- 808 Rosa, L.P., dos Santos, M.A., Matvienko, B., dos Santos, E.O., and Sikar, E.:
- 809 Greenhouse gas emissions from hydroelectric reservoirs in tropical regions,
- 810 Climatic Change, 66, 9-21, 2004.
- 811 Saito, L., Johnson, B.M., Bartholow, J., and Hanna, R.B.: Assessing ecosystem effects
- of reservoir operations using food web-energy transfer and water quality models,
- 813 Ecosystems, 4, 105-125, 2001.
- 814 Sarma, V. V. S. S., Gupta S.N.M., Babu P.V.R., Acharya T., Harikrishnachari N.,
- 815 Vishnuvardhan K., Rao N.S., Reddy N.P.C., Sarma V.V., Sadhuram Y., Murty
- 816 T.V.R., and Kumar M.D.: Influence of river discharge on plankton metabolic rates
- 817 in the tropical monsoon driven Godavari estuary, India, Estuarine Coastal Shelf Sci.,
- 818 85, 515-524, 2009.
- 819 Sarma, V.V.S.S., Kumar, N.A., Prasad, V.R., Venkataramana, V., Appalanaidu, S.,
- 820 Sridevi, B., Kumar, B.S.K., Bharati, M.D., Subbaiah, C.V., Acharyya, T., Rao, G.D.,
- 821 Viswanadham, R., Gawade. L., Manjary, D.T., Kumar, P.P., Rajeev, K., Reddy,
- 822 N.P.C., Sarma, V.V., Kumar, M.D., Sadhuram, Y., Murty, T.V.R.: High CO₂
- 823 emissions from the tropical Godavari estuary (India) associated with monsoon river
- discharges. Geophysical research letters 38, L08601, 2011.
- 825 St. Louis, V.L., Kelly, C.A., Duchemin, E., Rudd, J.W.M., and Rosenberg, D.M.:
- 826 Reservoir surface as sources of greenhouse gases to the atmosphere: a global
- estimate, BioScience, 50, 766-775, 2000.
- 828 Telmer, K., and Veizer, J.: Carbon fluxes, pCO₂ and substrate weathering in a large

- 829 northern river basin, Canada: carbon isotope perspectives, Chemical Geology, 159,
- 61-86, 1999.
- 831 Teodoru, C.R., del Giorgio, P.A., Prairie, Y.T., and Camire, M.: Patterns in pCO₂ in
- 832 boreal streams and rivers of northern Quebec, Canada, Global Biogeochemical
- 833 Cycles, 23, GB2012, 2009.
- 834 Tranvik, L.J., Downing, J.A., and Cotner, J.B. et al.: Lakes and reservoirs as
- regulators of carbon cycling and climate, Limnol. Oceanogr., 54, 2298-2314, 2009.
- 836 <u>Vachon, D., Prairie, Y.T., a anD Cole, J.J.: The relationship between near-surface</u>
- 837 <u>turbulence and gas transfer velocity in freshwater systems and its implications for</u>
- 838 <u>floating chamber measurements of gas exchange. Limnol. Oceanogr., 55</u>
 839 1723-1732, 2010.
- 840 Wang, F.S., Wang, B.L., Liu, C.Q., Wang, Y.C., Guan, J., Liu, X.L., and Yu, X.L.:
- 841 Carbon dioxide emission from surface water in cascade reservoirs-river system on
- the Maotiao River, southwest of China, Atmospheric Environment, 45, 3827-3834,
- 843 2011.
- 844 Wang, F., Wang, Y., Zhang, J., Xu, H., and Wei, X.: Human impact on the historical
- change of CO₂ degassing flux in River Changjiang, Geochem. Trans., 8, 7, 2007.
- 846 Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean, J.
- 847 Geophys. Res., 97, 7373-7382, 1992.
- 848 Yang, C., Telmer, K., and Veizer, J.: Chemical dynamics of the "St. Lawrence"
- riverine system: δ^{18} OH₂O, δ^{13} CDIC, δ^{34} Ssulfate and dissolved 13 C/ 86 Sr, Geochim.
- 850 Cosmochim Acta, 60, 851-866, 1996.

	带格式的: 字体:(默认) Roman,小四,字体颜色: 语(美国)	Times 黑色,	New 英
	带格式的: 字体:(默认) Roman,小四,字体颜色: 语(美国)	Times 黑色,	New 英
	带格式的: 字体:(默认) Roman,小四,字体颜色: 语(美国)	Times 黑色,	New 英
Í	带格式的: 字体:(默认) Roman,字体颜色:黑色,	Times 英语(New 美国)

带格式的:字体:(默认) Times New Roman 字体颜色:黑色,英语(美国

- 851 Yang, L., Lu, F., Wang, X.K., Duan, X.N., Song, W.Z., Sun, B.F., Chen, S., Zhang,
- 852 Q.Q., Hou, P.Q., Zheng, F.X., Zhang, Y., Zhou, X.P., Zhou, Y.J., and Ouyang, Z.Y.:
- 853 Surface methane emissions from different land use types during various water
- 854 levels in three major drawdown areas of the Three Gorges Reservoir. Journal of
- 855 Geophysical Research-Atmospheres 117, D10109, 2012.
- 856 Yang, M., Li, H.L., Lei, T., Zhou, Y., Lu, C., Li, L., Lei, G.C., Wang, J.S., and Lu,
- 857 X.G.: Spatial-temporal characteristics of methane emission flux and its influence
- factors at Minyun Reservoir in Beijing, Wetland Science, 9, 191-197, 2011 (in
- 859 Chinese with English abstract).
- 860 Yao, C.C., Wang, F.S., Wu, Y.Y., and Xu, H.: The vernal distribution of dissolved
- carbon dioxide (pCO₂) in the Xin'anjiang reservoir, Journal of Earth Environment,
- 862 1, 150-156, 2010 (in Chinese with English abstract).
- 863 Yao, G.R., Gao, Q. Z., Wang, Z.G., Huang, X.K., He, T., Zhang, Y.L., Jiao, S., and
- 864 Ding, J.: Dynamics of CO₂ partial pressure and CO₂ outgassing in the lower reaches
- of the Xijiang River, a subtropical monsoon river in China, Sci. Total Environ., 376,
- 866 255-266, 2007.
- 867 Yu, Y.X., Liu, C.Q., Wang, F.S., Wang, B.L., Wang, S.L., and Liu, F.: Spatiotemporal
- 868 characteristics and diffusion flux of partial pressure of dissolved carbon dioxide
- 869 (pCO₂) in Hongjiadu reservoir, Chinese Journal of Ecology, 27, 1193-1199, 2008
- 870 (in Chinese with English abstract).
- Zhai, W.D., Dai, M.H., and Guo, X.H, Carbonate system and CO₂-degassing fluxes in the inner estuary of Changjiang (Yangtze) River, China. Mar. Chem., 107, 342–356,

873 2007.

- 874 Zhang, S.R., Lu, X.X., Higgitt, D.L., Chen, C.T.A., Sun, H.G., and Han, J.T, Water
- 875 chemistry of the Zhujiang (Pearl River): natural processes and anthropogenic
- 876 influences, J. Geophys. Res., 112, F01011, 2007.
- 877 Zhao, D.Z., Tan, D.B., Wang, Z.H., and Li, Z.: Research on exchange law of CO₂ at
- 878 water-air interface of Shuibuya Reservoir, Yangtze River, 8, 65-70, 2012 (in
- 879 Chinese with English abstract).
- 880 Zhao, Y., Wu, B.F., and Zeng, Y.: Spatial and temporal patterns of greenhouse gas
- emissions from Three Gorges Reservoir of China, Biogeosciences, 10, 1219-1230,
- 882 2013.
- Zeng, F.W., and Masiello, C.A.: Sources of CO₂ evasion from two subtropical rivers
 in North America. Biogeochemistry, 100, 211-225, 2010.
- 885 Zheng, H., Zhao, X.J., Zhao, T.Q., Chen, F.L., Xu, W.H., Duan, X.N., Wang, X.K.,
- and Ouyang, Z.Y.: Spatial-temporal variations of methane emissions from the Ertan
- hydroelectric reservoir in southwest China, Hydrol. Process., 25, 1391-1396, 2011.

888 Figure legends

- **Fig. 1.** Locations of eight sampling sites in the Danjiangkou Reservoir, China (DJK1,
- B90 DJK2, D1 and DJK3 are located in the Dan Reservoir zone, DJK4 and D2 in the Han
- 891 Reservoir zone, and D3 and DJK5 in the upstream and downstream of the dam,
- respectively. D1, D2 and D3 were added from 2007 afterward).
- 893 **Fig. 2.** Daily air temperature (°C) and rainfall (mm) in the upstream of the
- 894 Danjiangkou Reservoir, China (Ankang station as an example, Ankang station is a
- 895 <u>most important station closest to the Reservoir; Data from NOAA).</u>
- 896 **Fig. <u>32</u>**. Monthly DIC species illustrated by box-whiskers plots in the Danjiangkou
- 897 Reservoir, China (The lower and upper boundary of a box represent the first (Q1) and
- the third quartile (Q3), respectively. The black and the red lines within the box
- represent the median and mean of the data set, respectively).
- 900 **Fig. <u>43</u>**. Monthly DIC species in the river downstream the Danjiangkou Dam, China.
- 901 **Fig. 54.** Spatial variability in DIC species in the Danjiangkou Reservoir, China.
- 902 (box-whiskers plots, the black and red lines, lower and upper edges, bars and dots in
- 903 or outside the boxes represent median and mean values, 25th and 75th, 5th and 95th,
- and <5th and >95th percentiles of all data, respectively).
- 905 **Fig. <u>65</u>**. Monthly (a) and spatial (b) variations of CO_2 diffusion fluxes in the
- 906 Danjiangkou Reservoir, China.
- 907 **Fig. 6.** Daily (a) and monthly (b) air temperature (°C) and rainfall (mm) in the
- 908 upstream of the Danjiangkou Reservoir, China (Ankang station as an example,
- 909 Ankang station is a most important station closest to the Reservoir; Data from-

- 910 NOAA).
- 911 **Fig. 7.** <u>Ancillary water quality parameters in the Danjiangkou Reservoir, China (unit in mg/l</u>
- 912 except ORP in mV, Chl-a in µg/l). The error bars represent standard deviations. Daily air-
- 913 temperature (°C), rainfall (mm) and pCO₂ (µatm) in the year 2005 of Ankang station.
- 914 **Fig. 8.** Scatter plots between pCO₂ and some key water chemicals in the Danjiangkou
- 915 Reservoir, China (Spearman's rho coefficients for pCO₂ and all the
- 916 hydrogeochemical variables were tabulated in Table S2).

	Drainage-	Height of	Normal-	Total-	Water-	Time of	Installed-	Power-	Hydropower-	◀ 带格式的:两端对齐
	area	dam	water level	volume	surface area	construction	capacity	density	capacity	
	km ²	m	m	billion m³	km ²		M W	W/m^2	10⁸ kw.h∕yr	
1968-2013	95200	162	157	17.45	745	1968	900	1.21	4 5	
2014 -	95200	176.6	172	29.05	1050	2014				
afterward										

Table 1. The main features of the Danjiangkou Reservoir, China.

	T	ive stati	51105 01	monun	y variao		II(C),	pri an	i aikain	inty (pi	A 11		anjiang	Kou Ke	servon,
	+					рн					Alka	imity			
	N	Mean	S. D.	Min.	Max.	N	Mean	S. D.	Min.	Max.	N	Mean	S. D.	Min.	Max.
Nov.2004	5	16.84	0.58-	15.84	17.24	5	8.22	0.08-	8.14	8.34	5	2440 -	219 -	2200	2600
Jan. 2005	5	9.19	0.64	8.08 -	9.65	5	8.28	0.07	8.20	8.37 -	5	2360-	207	2200	2700
Apr.2005	5	12.44	3.64	7.96 -	16.72	5	8.42	0.07	<u>8.29</u>	8.47	5	2600-	524	2200	3500
Jun.2005	5	27.75	4.33-	20.16	30.52	5	8.52	0.35-	7.92	8.85 -	5	2409-	291 -	1900	2643
Aug.2005	5	24.49	0.95-	23.00	25.34	5	7.98	0.13-	7.81	8.13 -	5	2180-	192	1900	2400
Nov.2005	5	18.26	0.43 -	17.73	18.65	5	7.91	0.06-	7.81	7.96 -	5	2280-	286 -	1900	2600
Apr.2006	5	15.30	2.54	11.06	17.46	5	8.26	0.10-	8.09-	8.38	5	2432 -	489 -	2080	3280
Jul.2006	5	27.89	3.86-	21.00	29.99	5	8.28	0.50-	7.64	8.70	5	2192 -	4 85 -	1520	2880
May 2007	8	24.82	0.85-	23.54	26.53	8	8.19 -	0.10-	7.98	8.35 -	8	2520-	363 -	2080	3280
Nov.2007	8	14.94	1.78	12.00	17.00										
Jul.2008	8	29.10	1.35-	25.86	29.99	8	8.01 -	0.38-	7.21	8.37 -	8	1937 -	345 -	1616	2644
Nov.2008	8	12.03	0.66-	11.27	12.87	8	8.01	0.41	7.45	8.63	8	3241 -	332 -	2920	3968
Apr.2009	8	15.32	1.51	11.68	16.26	8	8.08	0.15	7.82	8.26	8	2489-	384 -	2206	3422
Aug.2009	8	27.36	1.46	23.97	28.47	8	8.64	0.28	7.99	8.91	8	2037	222	1814	2359
Nov.2009	8	16.87	0.20 -	16.56	17.10	8	7.81	0.18	7.39	7.95	8	2354 -	151	2160	2576
Jan.2010	7	9.00-	0.35	8.48	9.49	7	8.65	0.09-	<u>8.53</u>	8.75	7	2354 -	166 -	2120	2560
Apr.2010	8	14.67	1.38	11.98	16.46	8	8.44	0.21	7.97	8.62	8	2409-	226	2000	2680
Aug.2010											8	1795	4 56 -	1200	2360
Nov.2010											8	2475 -	92	2280	2600
Mar.2011											8	2407	257	2104	2736
May 2011	8	20.84	0.79-	19.19	21.53	8	8.14	0.14	7.99-	8.34	8	2717 -	226 -	2440	3000
Total	119	18.75	6.65-	7.96	30.52	111	8.22	0.33-	7.21	8.91	135	2385 -	425	1200	3968

Table 2. Descriptive statistics of monthly variability in T (°C), pH and alkalinity (µmol/l) of the Danjiangkou Reservoir, China.

S.D. Standard deviation; Min. Minimum; Max. Maximum.

_	(带格式的:	两端对齐	
	C			
		带格式的:	两端对齐,	无孤行控制
		带格式的:	两端对齐,	无孤行控制
		带格式的:	两端对齐,	无孤行控制
	(带格式的:	两端对齐,	无孤行控制
-	(带格式的:	两端对齐,	无孤行控制
-	(带格式的:	两端对齐,	无孤行控制
_	(带格式的:	两端对齐,	无孤行控制
-	(带格式的:	两端对齐,	无孤行控制
-	(带格式的:	两端对齐,	无孤行控制
_	(带格式的:	两端对齐,	无孤行控制
_	(带格式的:	两端对齐,	无孤行控制
_	(带格式的:	两端对齐,	无孤行控制
_	(带格式的:	两端对齐,	无孤行控制
	(带格式的:	两端对齐,	无孤行控制
-	(带格式的:	两端对齐,	无孤行控制
-	(带格式的:	两端对齐,	无孤行控制
_	(带格式的:	两端对齐,	无孤行控制
	(带格式的:	两端对齐,	无孤行控制
-	(带格式的:	两端对齐,	无孤行控制
		带格式的:	两端对齐,	无孤行控制
-	(带格式的:	两端对齐,	无孤行控制
	(带格式的:	两端对齐,	无孤行控制
	(带格式的:	两端对齐,	无孤行控制
1		带格式的:	两端对齐,	无孤行控制
	(带格式的:	两端对齐	

N Mean S. D. Min. Max. N Max. N Mean S. D. Min. Max. Max. Max. Max. Max. Max. <				Ŧ	₽				рН	H <u>Alkalinity</u>					4	带格式的:	两端对齐,	无孤行招				
Dan Reservoir DJK1 17 20.45 6.49 9.26 30.52 16 8.15 0.27 7.76 8.62 19 2736 437 2000 3500 ##ath: mild DJK2 18 19.11 6.95 8.67 29.61 17 8.29 0.27 7.86 8.74 20 2473 292 2020 3360 ##ath: mild D3 10 18.97 6.96 8.85 29.53 9 8.26 0.36 7.68 8.79 12 2475 338 1960 3080 ##ath: mild DJK3 18 18.77 7.25 8.08 29.53 17 8.26 0.34 7.45 8.75 20 2444 284 1946 3120 ##ath: mild <				N	Mean	S. D.	Min.	Max.	N	Mean	S. D.	Min.	Max.	N	Mean	S. D.	Min.	Max.	4	带格式的:	两端对齐,	无孤行招
DJK2 18 19.11 6.95 8.67 29.61 17 8.29 0.27 7.86 8.74 20 2473 292 2020 3360 ##ath: mildle D3 10 18.97 6.96 8.85 29.53 9 8.26 0.36 7.68 8.79 12 2475 338 1960 3080 ##ath: mildle DJK3 18 18.77 7.25 8.08 29.53 17 8.26 0.34 7.45 8.75 20 2444 284 1946 3120 ##ath: mildle Han Reservoir DJK4 18 19.14 6.90 9.08 30.38 17 8.28 0.32 7.81 8.85 20 2117 390 1200 2960 ##ath: mildle Dam D3 10 18.61 6.85 9.18 29.91 9 8.28 0.35 7.78 8.82 12 21234 424 1280 2920 ##ath: mildle Dam D3 10 18.61 6.85 9.18 29.91 9 8.	DJK 1	Dan Reservoir	DJK1	17	20.45	6.49	9.26	30.52	16	8.15	0.27 	7.76	8.62	19	2736	437	2000	3500	4	带格式的:	两端对齐,	无孤行招
D3 10 18.97 6.96 8.85 29.53 9 8.26 0.36 7.68 8.79 12 2475 338 1960 3080 ##A式h: 两端对 DJK3 18 18.77 7.25 8.08 29.53 17 8.26 0.34 7.45 8.75 20 2444 284 1946 3120 ##A式h: 两端对 Han Reservoir DJK4 18 19.14 6.90 9.08 30.38 17 8.26 0.32 7.81 8.85 20 2117 390 1200 2960 ##A式h: 两端对 D2 10 18.68 6.88 9.23 29.66 9 8.31 0.34 7.80 8.91 12 2134 424 1280 2920 ##A式h: 两端对 Dam D3 10 18.61 6.85 9.18 29.91 9 8.28 0.35 7.78 8.82 12 2222 509 1320 3320 ##A式h: 两端对 River downstream Dam DJK5 18 16.39 5.82 7.96 25.86 17 8	DJK2		DJK2	18	19.11	6.95-	8.67	29.61	17	<u>8.29</u>	0.27	7.86	8.74	20	2473 -	292	2020	3360	4	带格式的:	两端对齐,	无孤行招
DJK3 18 18.77 7.25 8.08 29.53 17 8.26 0.34 7.45 8.75 20 2444 284 1946 3120 ##ath: 两端对 Han Reservoir DJK4 18 19.14 6.90 9.08 30.38 17 8.28 0.32 7.81 8.85 20 2117 390 1200 2960 ##ath: 两端对 D2 10 18.68 6.88 9.23 29.66 9 8.31 0.34 7.80 8.91 12 2134 424 1280 2920 ##ath: 两端对 Dam D3 10 18.61 6.85 9.18 29.91 9 8.28 0.35 7.78 8.82 12 2222 509 1320 3320 ##ath: mäxt River downstream Dam DJK5 18 16.39 5.82 7.96 25.86 17 8.01 0.38 7.21 8.64 20 2367 428 1951 3968 ##ath: mäxt	D3		D3	10	18.97	6.96-	8.85	29.53	9	8.26	0.36-	7.68	<u>8.79</u>	12	2475 -	338	1960	3080	4	带格式的:	两端对齐,	无孤行招
Han Reservoir DJK4 18 19.14 6.90 9.08 30.38 17 8.28 0.32 7.81 8.85 20 2117 390 1200 2960 ###式的: 两端对 D2 10 18.68 6.88 9.23 29.66 9 8.31 0.34 7.80 8.91 12 2134 424 1280 2920 ###式的: 两端对 Dam D3 10 18.61 6.85 9.18 29.91 9 8.28 0.35 7.78 8.82 12 2222 509 1320 3320 ###式的: 两端对 River downstream Dam DJK5 18 16.39 5.82 7.96 25.86 17 8.01 0.38 7.21 8.64 20 2367 428 1951 3968 ###式的: 两端对	DJK		DJK3	18	18.77	7.25	8.08	29.53	17	8.26	0.34-	7.45	8.75	20	2 444-	284	1946	3120	4	带格式的:	两端对齐,	无孤行招
D2 10 18.68 6.88 9.23 29.66 9 8.31 0.34 7.80 8.91 12 2134 424 1280 2920 構株式的: 两端对 Dam D3 10 18.61 6.85 9.18 29.91 9 8.28 0.35 7.78 8.82 12 2222 509 1320 3320 構株式的: 两端对 River downstream Dam DJK5 18 16.39 5.82 7.96 25.86 17 8.01 0.38 7.21 8.64 20 2367 428 1951 3968 ###式的: 两端对	DJK/	Han Reservoir	DJK 4	18	19.14	6.90-	9.08	30.38	17	8.28	0.32-	7.81	8.85	20	2117-	390 -	1200	2960	4	带格式的:	两端对齐,	无孤行招
Dam D3 10 18.61 6.85 9.18 29.91 9 8.28 0.35 7.78 8.82 12 2222 509 1320 3320 ###式的: 两端对 River downstream Dam DJK5 18 16.39 5.82 7.96 25.86 17 8.01 0.38 7.21 8.64 20 2367 428 1951 3968 ###式的: 两端对 ###式的: 西川 0.22 0.22 7.21 8.64 20 2367 428 1951 3968 ###式的: 两端对	D2		D2	10	18.68	6.88-	9.23	29.66	9	8.31	0.34-	7.80	8.91	12	2134 -	424-	1280	2920	4	带格式的:	两端对齐,	无孤行招
River downstream Dam DJK5 18 16.39 5.82 7.96 25.86 17 8.01 0.38 7.21 8.64 20 2367 428 1951 3968 ◆ #格式的 : 两端对	D3	Dam	D3	10	18.61	6.85-	9.18	29.91	9	8.28	0.35-	7.78	8.82	12	2222	509	1320	3320	4	带格式的:	两端对齐,	无孤行招
	Dam DJK	River downstream Dam	DJK5	18	16.39	5.82	7.96	25.86	17	8.01	0.38-	7.21	8.64	20	2367 -	428	1951	3968	4	带格式的:	两端对齐,	无孤行招
10tal 119 18.75 6.65 7.96 30.52 111 8.22 0.33 7.21 8.91 135 2385 425 1200 3968 4 而格式的:网络利	Total		Total	119	18.75	6.65-	7.96	30.52	111	8.22	0.33-	7.21	8.91 -	135	2385-	425	1200	3968	4	带格式的:	两端对齐,	无孤行招

Table 3. Descriptive statistics of spatial variability in T, pH and alkalinity of the Danjiangkou Reservoir, China (T in °C, Alkalinity in µmol/l).-

S.D. Standard deviation; Min. Minimum; Max. Maximum.

47

带格式的:两端对齐

(a)											
	(a) Month						(b) Space				
		Sum of Squares	df	Mean Square	F	₽	Sum of Squares	df	Mean Square	F	P
Ŧ	Between Groups	4 902	17	288	92.99	0.00	155	7	22	0.49	0.84
pH	Between Groups	7	16	θ	7.52	0.00	4	7	θ	1.49	0.18
<u>Alkalinity</u>	Between Groups	13139931	19	691575	7.17	0.00	5184811	7	740687	4 .9 4	0.00
DIC	Between Groups	12346199	16	771637	7.88	0.00	4 311564	7	615938	3.68	0.00
pCO ₂	Between Groups	17957436	16	1122340	2.80	0.00	5381767	7	768824	1.58	0.15
HCO3-	Between Groups	13884313	16	867770	8.95	0.00	4193418	7	599060	3.28	0.00
CO_3^2	Between Groups	4 79575	16	29973	8.98	0.00	46508	7	66 44	0.92	0.50
CO 2	Between Groups	35614	16	2226	3.45	0.00	7679	7	1097	1.28	0.27

Table 4. ANOVA for T, pH and alkalinity in month (a) and space (b) of the Danjiangkou Reservoir, China.

带格式的:两端对齐

	带格式的:	两端对齐,无孤行控制
	带格式的:	无孤行控制
\cdot	带格式的:	两端对齐, 无孤行控制
	带格式的:	两端对齐, 无孤行控制
	带格式的:	两端对齐, 无孤行控制
▲	带格式的:	两端对齐, 无孤行控制
•	带格式的:	两端对齐, 无孤行控制
•	带格式的:	两端对齐, 无孤行控制
	带格式的:	两端对齐, 无孤行控制
-	带格式的:	两端对齐

1	Table 5. Flux of CO ₂ from the surface of rivers and reservoirs.

Downstream the Hongjiadu Reservoir

Name	Sites	Climate	FCO2-mmol/m ² /d	References	调金石 缩近,无孤行往间,调金干文马 西文文字的间距,调整中文与数字的间 距
Reservoirs				•	带格式的: 两端对齐,无孤行控制
Danjiangkou	China	Subtropical	9	This study	带格式的: 两端对齐,无孤行控制
Three Gorges Reservoir	China	Subtropical	96	Zhao et al., 2013	带格式的:两端对齐,无孤行控制
Three Gorges Reservoir (Xiangxi River)	China	Subtropical	4 2	Zhao et al., 2011	
Hongfeng	China	Subtropical	45	Wang et al., 2011	带格式的: 两端对齐,无孤行控制
Baihua	China	Subtropical	24	Wang et al., 2011	带格式的: 两端对齐,无孤行控制
Xiuwen	China	Subtropical	47	Wang et al., 2011	带格式的: 两端对齐,无孤行控制
Hongyan	China	Subtropical	22.4	Wang et al., 2011	带格式的: 两端对齐,无孤行控制
Hongjiadu	China	Subtropical	6.2	Yu et al., 2008	带格式的: 两端对齐,无孤行控制
Nihe-	China	Subtropical	14.5	Lu et al., 2010	带格式的: 两端对齐,无孤行控制
Wan'an	China	Subtropical	12.8	Mei at al., 2011	带格式的: 两端对齐,无孤行控制
Xin'anjiang	China	Subtropical	7	Yao et al., 2010	带格式的: 两端对齐,无孤行控制
Shuibuya-	China	Subtropical	18	Zhao et al., 2012	带格式的: 两端对齐,无孤行控制
Shasta		Temperate	28.3	Soumis et al., 2004	带格式的: 两端对齐,无孤行控制
Day Lake		Temperate	15.9	St. Louis et al., 2000	带格式的: 两端对齐,无孤行控制
Wallula		Temperate	-7.9	Soumis et al., 2004	带格式的: 两端对齐,无孤行控制
New Melones		Temperate	-27	Soumis et al., 2004	带格式的: 两端对齐,无孤行控制
Dworkshak		Temperate	-27.3	Soumis et al., 2004	带格式的: 两端对齐,无孤行控制
Arrow-Upper		Boreal	23.6	Tremblay et al., 2005	带格式的: 两端对齐,无孤行控制
La Grande 3		Boreal	38.8	Tremblay et al., 2005	带格式的: 两端对齐,无孤行控制
Lokka		Boreal	34.6	Huttunen et al., 2002	带格式的: 两端对齐,无孤行控制
Petit Saut		Tropic	133	Guerin et al., 2006	带格式的: 两端对齐,无孤行控制
Balbina		Tropic	76	Guerin et al., 2006	带格式的: 两端对齐,无孤行控制
Balbina		Tropic	314.7	Kemenes et al., 2007, 2011	带格式的: 两端对齐,无孤行控制
Samuel		Tropic	976	Guerin et al., 2006	带格式的: 两端对齐,无孤行控制
Tucurui		Tropic	308.3	St. Louis et al., 2000	带格式的: 两端对齐,无孤行控制
Tucurui		Tropic	181.8	Rosa et al., 2004	带格式的: 两端对齐,无孤行控制
					#終, おい, 西端 対 ふ 王 孤 行 控 制
Global Reservoirs		Temperate	31.8	St Louis et al., 2000	带格式的:两端对齐,无孤行控制
Global Reservoirs		Temperate	12	McCully, 2006	带格式的:两端对齐,无孤行控制
Global Reservoirs		Temperate	8.8	Barros et al., 2011	带格式的:两端对齐,无孤行控制
Global Reservoirs		Temperate	18.3	Aufdenkampe et al., 2011	带格式的: 两端对齐,无孤行控制
Global hydropower reservoirs			32.2	Barros et al., 2011	带格式的: 两端对齐,无孤行控制
Global artificial reservoirs			4 1.5	Barros et al., 2011	带格式的: 两端对齐,无孤行控制
Natural lakes			28.8	Barros et al., 2011	带格式的: 两端对齐,无孤行控制
					带格式的:两端对齐 无孤行控制
Rivers					带格式的:两端对齐,无孤行控制
River downstream the		614	110		带格式的:两端对齐,无孤行控制
Dangjiangkou Reservoir-		Subtropical	119	1 ms study	
Downstream the dams in the Maotiao-		Subtropical	4 89	Wang et al., 2011	带格式的: 两端对齐,无孤行控制
Upstream the Wan'an Reservoir		Subtropical	210	Mei et al., 2011	带格式的: 两端对齐,无孤行控制

Mei et al., 2011 Yu et al., 2008

Subtropical 92.5

4	带格式的:	两端对齐,	无孤行控制
•(带格式的:	两端对齐,	无孤行控制

带格式的:两端对齐,定义网格后自动

.

Xijiang		Subtropical	274	Yao et al., 2007	•	带格式的:两端对齐,无孤行控制					
Changjiang		Subtropical	14.2	Wang et al., 2007	•	带格式的:两端对齐,无孤行控制					
Maotiao River in the Changjiang		Subtropical	362	Wang et al., 2011	•	带格式的:两端对齐,无孤行控制					
Longchuanjiang in the Changjiang		Subtropical	74	Li et al., 2012	•	带格式的:两端对齐,无孤行控制					
Amazon	Brazil	Tropic	189	Richey et al., 2002	•	带格式的: 两端对齐,无孤行控制					
Amazon	Brazil	Tropic	345.2	Alin et al., 2011	•	带格式的:两端对齐,无孤行控制					
St.Lawrence	Canada	Temperate	78.1-294.5	Helli et al., 2001	•	带格式的:两端对齐,无孤行控制					
Ottawa	Canada	Temperate	80.8	Telmer and Veizer, 1999	•	带格式的:两端对齐,无孤行控制					
Hudson	USA	Temperate	15.9-37	Raymond et al., 1997	•	带格式的: 两端对齐,无孤行控制					
Mississippi		Temperate	269.9	Dubois et al., 2010	•	带格式的: 两端对齐,无孤行控制					
USA rivers			202.7-915.1	Butman and Raymond, 2011	•	带格式的:两端对齐,无孤行控制					
York River		Warm	22.7	Raymond and Bauer, 2000	•	带格式的: 两端对齐,无孤行控制					
Yukon		Boreal	171.2	Striegl et al., 2012	•	带格式的: 两端对齐,无孤行控制					
Global rivers			146.8	Cole et al., 2007	•	带格式的:两端对齐,无孤行控制					
* 带格式的 : 两端对齐, 定义网格后自动 调整右缩进, 行距: 单倍行距, 无孤行 控制, 调整中文与西文文字的间距, 调整中文与西文文字的间距, 调											

water of 357627 km² from Bastviken et al. (2011).

带格式的:两端对齐

	Drainage	Height of	Normal	Total	Water	Time of	Installed	Power	Hydropower
	area	dam	water level	volume	surface area	construction	capacity	density	capacity
	km ²	m	m	billion m ³	km ²		MW	W/m^2	10 ⁸ kw.h/yr
1968-2013	95200	162	157	17.45	745	1968	900	1.21	45
2014	95200	176.6	172	29.05	1050	2014			
afterward									

 Table 1. The main features of the Danjiangkou Reservoir, China.

	Ŧ					pH					Alka	linity			
	N	Mean	S. D.	Min.	Max.	N	Mean	S. D.	Min.	Max.	N	Mean	S. D.	Min.	Max.
Nov.2004	5	16.84	0.58-	15.84	17.24	5	8.22 -	0.08-	8.14	8.34	5	2440-	219	2200	2600
Jan. 2005	5	9.19	0.64	8.08	9.65	5	8.28	0.07	8.20	8.37	5	2360-	207	2200	2700
Apr.2005	5	12.44	3.64	7.96	16.72	5	8.42	0.07	<u>8.29</u>	8.47	5	2600-	524	2200	3500
Jun.2005	5	27.75	4 .33 -	20.16	30.52	5	8.52	0.35 -	7.92	8.85	5	2409 -	291 -	1900	2643
Aug.2005	5	24.49	0.95-	23.00	25.34	5	7.98	0.13 	7.81	8.13 -	5	2180-	192	1900	2400
Nov.2005	5	18.26	0.43	17.73	18.65	5	7.91	0.06-	7.81	7.96	5	2280-	286 -	1900	2600
Apr.2006	5	15.30	2.54	11.06	17.46	5	8.26 -	0.10-	8.09	8.38	5	2432 -	4 89	2080	3280
Jul.2006	5	27.89	3.86-	21.00	29.99	5	8.28	0.50-	7.64	8.70	5	2192-	4 85 -	1520	2880
May 2007	8	24.82	0.85 -	23.54	26.53	8	8.19	0.10-	7.98	8.35 -	8	2520-	363 -	2080	3280
Nov.2007	8	14.94	1.78	12.00	17.00										
Jul.2008	8	29.10	1.35	25.86	29.99	8	8.01 -	0.38-	7.21	8.37	8	1937 -	345 -	1616	2644
Nov.2008	8	12.03	0.66-	11.27	12.87	8	8.01	0.41	7.45	8.63 -	8	3241	332 -	2920	3968
Apr.2009	8	15.32	1.51	11.68	16.26	8	8.08	0.15	7.82	8.26	8	2489 -	384 -	2206	3422
Aug.2009	8	27.36	1.46	23.97	28.47	8	8.64	0.28 -	7.99	8.91	8	2037 -	222	1814	2359
Nov.2009	8	16.87	0.20 -	16.56	17.10	8	7.81	0.18	7.39	7.95	8	2354 -	151	2160	2576
Jan.2010	7	9.00	0.35 -	8.48	9.49	7	8.65 -	0.09	8.53 -	8.75	7	2354 -	166 -	2120	2560
Apr.2010	8	14.67	1.38	11.98	16.46	8	8.44	0.21	7.97 -	8.62	8	2409 -	226	2000	2680
Aug.2010											8	1795	4 56 -	1200	2360
Nov.2010											8	2475 -	92 -	2280	2600
Mar.2011											8	2407	257 -	2104	2736
May 2011	8	20.84	0.79 -	19.19	21.53	8	8.14 -	0.14	7.99	8.34	8	2717 -	226 -	2440	3000
Total	119	18.75	6.65	7.96	30.52	111	8.22	0.33-	7.21	8.91	135	2385-	425	1200	3968

Table 2. Descriptive statistics of monthly variability in T (°C), pH and alkalinity (µmol/l) of the Danjiangkou Reservoir, China.

S.D. Standard deviation; Min. Minimum; Max. Maximum.

		Ŧ					ъH					Alka	linity			
		N	Mean	S. D.	Min.	Max.	N	Mean	S. D.	Min.	Max.	N	Mean	S. D.	Min.	Max.
Dan Reservoir	DJK1	17	20.45	6.49-	9.26	30.52	16	8.15	0.27	7.76	8.62	19	2736 -	437	2000	3500
	DJK2	18	19.11	6.95 -	8.67	29.61	17	<u>8.29</u>	0.27	7.86	8.74	20	2473 	292	2020	3360
	D3	10	18.97	6.96-	8.85	29.53	9	8.26	0.36-	7.68	<u>8.79</u>	12	2475	338 -	1960	3080
	DJK3	18	18.77	7.25	8.08	29.53	17	8.26	0.34 -	7.45	8.75	20	2 444-	284 -	1946	3120
Han Reservoir	DJK 4	18	19.14	6.90-	9.08	30.38	17	8.28	0.32	7.81	8.85	20	2117 	390 -	1200	2960
	D2	10	18.68	6.88-	<u>9.23</u>	29.66	9	8.31	0.34 -	7.80	8.91	12	2134	424-	1280	2920
Dam	D3	10	18.61	6.85 -	<u>9.18</u>	29.91	9	<u>8.28</u>	0.35 -	7.78	<u>8.82</u>	12	2222	509 -	1320	3320
River downstream Dam	DJK5	18	16.39	5.82	7.96	25.86	17	8.01	0.38-	7.21	8.64	20	2367	4<u>28</u> –	1951	3968
	Total	119	18.75	6.65-	7.96	30.52	111	8.22	0.33-	7.21	8.91 -	135	2385 -	425	1200	3968

Table 3. Descriptive statistics of spatial variability in T, pH and alkalinity of the Danjiangkou Reservoir, China (T in °C, Alkalinity in µmol/l).-

S.D. Standard deviation; Min. Minimum; Max. Maximum.

	(a) Month						(b) Space				
		Sum of Squares	df	Mean Square	F	р	Sum of Squares	df	Mean Square	F	р
Т	Between Groups	4902	17	288	92.99	0.00	155	7	22	0.49	0.84
pН	Between Groups	7	16	0	7.52	0.00	1	7	0	1.49	0.18
Alkalinity	Between Groups	13139931	19	691575	7.17	0.00	5184811	7	740687	4.94	0.00
DIC	Between Groups	12346199	16	771637	7.88	0.00	4311564	7	615938	3.68	0.00
pCO_2	Between Groups	17957436	16	1122340	2.80	0.00	5381767	7	768824	1.58	0.15
HCO ₃ ⁻	Between Groups	13884313	16	867770	8.95	0.00	4193418	7	599060	3.28	0.00
CO_{3}^{2-}	Between Groups	479575	16	29973	8.98	0.00	46508	7	6644	0.92	0.50
CO_2	Between Groups	35614	16	2226	3.45	0.00	7679	7	1097	1.28	0.27

Table 24. ANOVA for T, pH and alkalinity in month (a) and space (b) of the Danjiangkou Reservoir, China.(a)

Table 3.	Pearson R coefficients	between pC	D_2 and	water chemical	l parameters	for each	season	and each	station in th	ie Danjiangk	ou Reservoir,
China.			_								

	Han Re	es.					Dan Re	<u>es.</u>					<u>Dam</u>			<u>River b</u>	elow D	<u>am</u>			
	Dry			<u>Wet</u>			Dry			<u>Wet</u>						<u>Dry</u>			<u>Wet</u>		
	<u>R</u>	<u>p</u>	<u>N</u>	<u>R</u>	p	<u>N</u>	<u>R</u>	<u>p</u>	<u>N</u>	<u>R</u>	<u>p</u>	<u>N</u>	<u>R</u>	p	<u>N</u>	<u>R</u>	p	N	<u>R</u>	<u>q</u>	N
E	<u>-0.76</u>	<u>0.03</u>	<u>8</u>	<u>0.56</u>	<u>0.15</u>	<u>8</u>	<u>0.10</u>	<u>0.73</u>	<u>15</u>	<u>0.09</u>	<u>0.75</u>	<u>16</u>	<u>0.65</u>	<u>0.08</u>	<u>8</u>	<u>0.67</u>	<u>0.33</u>	<u>4</u>	<u>0.63</u>	<u>0.38</u>	<u>4</u>
<u>CI</u>	<u>0.12</u>	<u>0.72</u>	<u>12</u>	<u>-0.32</u>	<u>0.30</u>	<u>12</u>	<u>0.28</u>	<u>0.16</u>	<u>27</u>	<u>-0.04</u>	<u>0.85</u>	<u>28</u>	<u>-0.48</u>	<u>0.23</u>	<u>8</u>	<u>0.17</u>	<u>0.69</u>	<u>8</u>	<u>0.91</u>	<u>0.00</u>	<u>8</u>
<u>SO4</u> 2-	<u>-0.50</u>	<u>0.10</u>	<u>12</u>	<u>-0.47</u>	<u>0.12</u>	<u>12</u>	<u>0.06</u>	<u>0.78</u>	<u>27</u>	<u>-0.04</u>	<u>0.82</u>	<u>28</u>	<u>-0.29</u>	<u>0.49</u>	<u>8</u>	<u>-0.30</u>	<u>0.46</u>	<u>8</u>	<u>-0.03</u>	<u>0.95</u>	<u>8</u>
<u>Na</u>	<u>0.30</u>	<u>0.30</u>	<u>14</u>	<u>-0.29</u>	<u>0.35</u>	<u>12</u>	<u>0.19</u>	<u>0.31</u>	<u>31</u>	<u>-0.19</u>	<u>0.34</u>	<u>28</u>	<u>-0.27</u>	<u>0.49</u>	<u>9</u>	<u>0.35</u>	<u>0.36</u>	<u>9</u>	<u>0.77</u>	<u>0.02</u>	<u>8</u>
<u>K</u>	<u>0.20</u>	<u>0.51</u>	<u>14</u>	<u>0.43</u>	<u>0.17</u>	<u>12</u>	<u>-0.13</u>	<u>0.49</u>	<u>31</u>	<u>0.09</u>	<u>0.64</u>	<u>28</u>	<u>0.03</u>	<u>0.94</u>	<u>9</u>	<u>0.07</u>	<u>0.85</u>	<u>9</u>	<u>0.61</u>	<u>0.11</u>	<u>8</u>
<u>Ca</u>	<u>0.32</u>	<u>0.26</u>	<u>14</u>	<u>0.36</u>	<u>0.26</u>	<u>12</u>	<u>0.46</u>	<u>0.01</u>	<u>31</u>	<u>0.14</u>	<u>0.47</u>	<u>28</u>	<u>-0.14</u>	<u>0.73</u>	<u>9</u>	<u>0.26</u>	<u>0.49</u>	<u>9</u>	<u>0.50</u>	<u>0.21</u>	<u>8</u>
Mg	<u>0.34</u>	<u>0.23</u>	<u>14</u>	<u>0.19</u>	<u>0.56</u>	<u>12</u>	<u>0.58</u>	<u>0.00</u>	<u>31</u>	<u>0.17</u>	<u>0.39</u>	<u>28</u>	<u>-0.29</u>	<u>0.46</u>	<u>9</u>	<u>0.05</u>	<u>0.89</u>	<u>9</u>	<u>0.63</u>	<u>0.10</u>	<u>8</u>
<u>Si</u>	<u>-0.55</u>	<u>0.12</u>	<u>9</u>	<u>0.86</u>	<u>0.00</u>	<u>11</u>	<u>0.33</u>	<u>0.18</u>	<u>18</u>	<u>0.46</u>	<u>0.02</u>	<u>25</u>	<u>0.65</u>	<u>0.08</u>	<u>8</u>	<u>-0.27</u>	<u>0.66</u>	<u>5</u>	<u>0.52</u>	<u>0.23</u>	<u>Z</u>
<u>TSS</u>	<u>0.29</u>	<u>0.36</u>	<u>12</u>	<u>0.14</u>	<u>0.69</u>	<u>10</u>	<u>0.20</u>	<u>0.31</u>	<u>27</u>	<u>0.35</u>	<u>0.10</u>	<u>24</u>	<u>-0.47</u>	<u>0.29</u>	<u>7</u>	<u>0.59</u>	<u>0.12</u>	<u>8</u>	<u>0.22</u>	<u>0.64</u>	<u>Z</u>
<u>Turbidity</u>	<u>0.27</u>	<u>0.35</u>	<u>14</u>	<u>0.15</u>	<u>0.63</u>	<u>12</u>	<u>0.16</u>	<u>0.40</u>	<u>31</u>	<u>0.30</u>	<u>0.12</u>	<u>28</u>	<u>-0.16</u>	<u>0.69</u>	<u>9</u>	<u>-0.29</u>	<u>0.45</u>	<u>9</u>	<u>0.01</u>	<u>0.98</u>	<u>8</u>
<u>COD_{Mn}</u>	<u>-0.12</u>	<u>0.71</u>	<u>12</u>	<u>-0.36</u>	<u>0.25</u>	<u>12</u>	<u>0.21</u>	<u>0.29</u>	<u>27</u>	<u>-0.04</u>	<u>0.83</u>	<u>28</u>	<u>-0.55</u>	<u>0.16</u>	<u>8</u>	<u>0.34</u>	<u>0.40</u>	<u>8</u>	<u>-0.36</u>	<u>0.38</u>	<u>8</u>
BOD5	<u>-0.04</u>	<u>0.98</u>	<u>3</u>	<u>0.94</u>	<u>0.23</u>	<u>3</u>	<u>0.64</u>	<u>0.07</u>	<u>9</u>	<u>0.24</u>	<u>0.54</u>	<u>9</u>				<u>0.82</u>	<u>0.39</u>	<u>3</u>	<u>0.05</u>	<u>0.97</u>	<u>3</u>
DO	<u>0.02</u>	<u>0.96</u>	<u>8</u>	<u>-0.24</u>	<u>0.45</u>	<u>12</u>	<u>-0.25</u>	<u>0.24</u>	<u>23</u>	<u>0.15</u>	<u>0.45</u>	<u>28</u>	<u>0.67</u>	<u>0.15</u>	<u>6</u>	<u>-0.22</u>	<u>0.64</u>	Z	<u>-0.64</u>	<u>0.09</u>	<u>8</u>
<u>DO%</u>	<u>0.41</u>	<u>0.36</u>	<u>7</u>	<u>-0.74</u>	<u>0.01</u>	<u>12</u>	<u>0.33</u>	<u>0.15</u>	<u>20</u>	<u>-0.40</u>	<u>0.03</u>	<u>28</u>	<u>0.10</u>	<u>0.85</u>	<u>6</u>	<u>0.32</u>	<u>0.53</u>	<u>6</u>	<u>-0.73</u>	<u>0.04</u>	<u>8</u>
<u>ORP</u>	<u>-0.33</u>	<u>0.25</u>	<u>14</u>	<u>0.05</u>	<u>0.92</u>	<u>8</u>	<u>-0.24</u>	<u>0.20</u>	<u>31</u>	<u>-0.22</u>	<u>0.36</u>	<u>20</u>	<u>-0.53</u>	<u>0.22</u>	<u>Z</u>	<u>-0.53</u>	<u>0.14</u>	<u>9</u>	<u>-0.27</u>	<u>0.61</u>	<u>6</u>
<u>AmmoniumN</u>	<u>0.62</u>	<u>0.10</u>	<u>8</u>	<u>-0.26</u>	<u>0.47</u>	<u>10</u>	<u>0.75</u>	<u>0.00</u>	<u>20</u>	<u>-0.37</u>	<u>0.07</u>	<u>24</u>	<u>0.01</u>	<u>0.99</u>	<u>5</u>	<u>0.44</u>	<u>0.39</u>	<u>6</u>	<u>-0.40</u>	<u>0.43</u>	<u>6</u>
<u>NitrateN</u>	<u>0.25</u>	<u>0.55</u>	<u>8</u>	<u>-0.42</u>	<u>0.18</u>	<u>12</u>	<u>-0.10</u>	<u>0.66</u>	<u>20</u>	<u>-0.18</u>	<u>0.35</u>	<u>28</u>	<u>-0.47</u>	<u>0.35</u>	<u>6</u>	<u>-0.21</u>	<u>0.66</u>	<u>7</u>	<u>0.96</u>	<u>0.00</u>	<u>6</u>
DIN	<u>0.97</u>	<u>0.03</u>	<u>4</u>	<u>-0.07</u>	<u>0.93</u>	<u>4</u>	<u>0.52</u>	<u>0.09</u>	<u>12</u>	<u>0.02</u>	<u>0.96</u>	<u>12</u>				<u>0.66</u>	<u>0.34</u>	<u>4</u>	-0.34	<u>0.66</u>	<u>4</u>
<u>DN</u>	<u>-0.72</u>	<u>0.05</u>	<u>8</u>	<u>0.14</u>	<u>0.75</u>	<u>8</u>	<u>0.23</u>	<u>0.41</u>	<u>15</u>	<u>-0.30</u>	<u>0.26</u>	<u>16</u>	<u>-0.25</u>	<u>0.55</u>	<u>8</u>	<u>-0.93</u>	<u>0.07</u>	<u>4</u>	<u>-0.63</u>	<u>0.37</u>	<u>4</u>

<u>TN</u>	<u>-0.77</u>	<u>0.03</u>	<u>8</u>	<u>0.31</u>	<u>0.45</u>	<u>8</u>	<u>-0.25</u>	<u>0.37</u>	<u>15</u>	<u>-0.27</u>	<u>0.35</u>	<u>14</u>	<u>-0.39</u>	<u>0.34</u>	<u>8</u>	<u>-0.92</u>	<u>0.08</u>	<u>4</u>	<u>-0.63</u>	<u>0.37</u>	<u>4</u>	
<u>SRP</u>	<u>-0.34</u>	<u>0.41</u>	<u>8</u>	<u>0.44</u>	<u>0.28</u>	<u>8</u>	<u>0.82</u>	<u>0.00</u>	<u>15</u>	<u>-0.20</u>	<u>0.46</u>	<u>16</u>	<u>0.03</u>	<u>0.94</u>	<u>8</u>	<u>0.75</u>	<u>0.25</u>	<u>4</u>	<u>0.67</u>	<u>0.33</u>	<u>4</u>	
<u>DP</u>	<u>-0.38</u>	<u>0.41</u>	<u>Z</u>	<u>-0.48</u>	<u>0.16</u>	<u>10</u>	<u>0.79</u>	<u>0.00</u>	<u>12</u>	<u>-0.51</u>	<u>0.02</u>	<u>20</u>	<u>-0.34</u>	<u>0.41</u>	<u>8</u>	<u>0.80</u>	<u>0.06</u>	<u>6</u>	<u>0.64</u>	<u>0.12</u>	<u>Z</u>	
<u>TP</u>	<u>0.28</u>	<u>0.43</u>	<u>10</u>	<u>0.23</u>	<u>0.58</u>	<u>8</u>	<u>0.32</u>	<u>0.19</u>	<u>19</u>	<u>0.14</u>	<u>0.61</u>	<u>16</u>	<u>-0.01</u>	<u>0.98</u>	<u>9</u>	<u>0.85</u>	<u>0.07</u>	<u>5</u>	<u>0.55</u>	<u>0.45</u>	<u>4</u>	
<u>TOC</u>	<u>0.25</u>	<u>0.55</u>	<u>8</u>	<u>-0.13</u>	<u>0.76</u>	<u>8</u>	<u>0.67</u>	<u>0.01</u>	<u>15</u>	<u>-0.03</u>	<u>0.93</u>	<u>16</u>	<u>0.21</u>	<u>0.63</u>	<u>8</u>	<u>0.97</u>	<u>0.03</u>	<u>4</u>	<u>-0.60</u>	<u>0.40</u>	<u>4</u>	
DOC	<u>0.73</u>	<u>0.04</u>	<u>8</u>	<u>-0.10</u>	<u>0.82</u>	<u>8</u>	<u>0.45</u>	<u>0.09</u>	<u>15</u>	<u>0.29</u>	<u>0.28</u>	<u>16</u>	<u>0.38</u>	<u>0.36</u>	<u>8</u>	<u>0.32</u>	<u>0.68</u>	<u>4</u>	<u>-0.26</u>	<u>0.74</u>	<u>4</u>	
<u>Chl-a</u>	<u>0.13</u>	<u>0.76</u>	<u>8</u>	<u>-0.89</u>	<u>0.00</u>	<u>8</u>	<u>0.34</u>	0.22	15	-0.26	0.35	15	-0.66	0.07	8	0.81	0 19	4	0.71	0.50	2	

Name	Sites	Climate	FCO ₂ mmol/m ² /d	OII'S.	
Reservoirs	bittes	Chinado	100211110211170		
Danijangkou	China	Subtropical	9 (5.8-11.6)	This study	带格式的:字体:(中文)+中文正文
Three Gorges Reservoir	China	Subtropical	96	Zhao et al., 2013	
Three Gorges Reservoir (Xiangxi River)	China	Subtropical	42	Zhao et al., 2011	
Hongfeng	China	Subtropical	15	Wang et al., 2011	
Baihua	China	Subtropical	24	Wang et al., 2011	
Xiuwen	China	Subtropical	47	Wang et al., 2011	
Hongyan	China	Subtropical	22.4	Wang et al., 2011	
Hongjiadu	China	Subtropical	6.2	Yu et al., 2008	
Nihe	China	Subtropical	14.5	Lu et al., 2010	
Wan'an	China	Subtropical	12.8	Mei at al., 2011	
Xin'anjiang	China	Subtropical	7	Yao et al., 2010	
Shuibuya	China	Subtropical	18	Zhao et al., 2012	
Nam Ngum	Laos	Tropic	<u>-16</u>	Chanudet et al., 2011	
Nam Leuk	Laos	Tropic	<u>3.1</u>	Chanudet et al., 2011	
Shasta		Temperate	28.3	Soumis et al., 2004	
Day Lake		Temperate	15.9	St. Louis et al., 2000	
Wallula		Temperate	-7.9	Soumis et al., 2004	
New Melones		Temperate	-27	Soumis et al., 2004	
Dworkshak		Temperate	-27.3	Soumis et al., 2004	
Arrow-Upper		Boreal	23.6	Tremblay et al., 2005	
La Grande 3		Boreal	38.8	Tremblay et al., 2005	
Lokka		Boreal	34.6	Huttunen et al., 2002	
Petit Saut (May 2003)		Tropic	133	Abril et al., 2005; Guerin et al., 2006	
Petit Saut (Dec. 2003)		Tropic	<u>131</u>	Abril et al., 2005; Guerin et al., 2006	
Petit Saut (Mar. 2005)		Tropic	<u>103</u>	Guerin et al., 2006	
Petit Saut (May 2005)		Tropic	<u>102</u>	Guerin et al., 2006	
Balbina		Tropic	76	Guerin et al., 2006	
Balbina		Tropic	314.7	Kemenes et al., 2007, 2011	
Samuel		Tropic	976	Guerin et al., 2006	
Tucurui		Tropic	308.3	St. Louis et al., 2000	
Tucurui		Tropic	181.8	Rosa et al., 2004	
Global Reservoirs		Temperate	31.8	St Louis et al., 2000	
Global Reservoirs		Temperate	12	McCully, 2006	
Global Reservoirs		Temperate	8.8	Barros et al., 2011	
Global Reservoirs		Temperate	18.3	Aufdenkampe et al., 2011	
Global hydropower reservoirs			32.2	Barros et al., 2011	
Global artificial reservoirs			41.5	Barros et al., 2011	
Natural lakes			28.8	Barros et al., 2011	

. \sim c . 1

Rivers

River downstream the				
Dangijangkou Reservoir		Subtropical	119 <u>(79.3-158.7)</u>	This study
Downstream the dams in the Maotiao		Subtropical	489	Wang et al. 2011
Unstream the Wan'an Pasaryoir		Subtropical	210	Mai at al. 2011
		Subtropical	210	We et al. 2009
Downstream the Hongjiadu Reservoir		Subtropical	92.5	ru et al., 2008
Downstream Petit Saut (May 2003)		Tropic	<u>1003</u>	Abril et al., 2005
Downstream Petit Saut (Dec. 2003)		Tropic	<u>928</u>	<u>Abril et al., 2005</u>
Petit Saut (Mar. 2005)		Tropic	<u>802</u>	Guerin et al., 2006
Petit Saut (May 2005)		Tropic	<u>670</u>	Guerin et al., 2006
Xijiang		Subtropical	274	Yao et al., 2007
Changjiang		Subtropical	14.2	Wang et al., 2007
Maotiao River in the Changjiang		Subtropical	362	Wang et al., 2011
Longchuanjiang in the Changjiang		Subtropical	74	Li et al., 2012
Lower Mekong River		Tropic	<u>195</u>	Li et al., 2013a4
Amazon	Brazil	Tropic	189	Richey et al., 2002
Amazon	Brazil	Tropic	345.2	Alin et al., 2011
St.Lawrence	Canada	Temperate	78.1-294.5	Helli et al., 2001
Ottawa	Canada	Temperate	80.8	Telmer and Veizer, 1999
Hudson	USA	Temperate	15.9-37	Raymond et al., 1997
Mississippi		Temperate	269.9	Dubois et al., 2010
USA rivers			202.7-915.1	Butman and Raymond, 2011
York River		Warm	22.7	Raymond and Bauer, 2000
Yukon		Boreal	171.2	Striegl et al., 2012
Global rivers			146.8	Cole et al., 2007

^aCarbon emission as CO₂ of 0.23 Pg/yr from Cole et al. (2007), river water surface water of 357627 km² from Bastviken et al. (2011).

域代码已更改

ORP in mV, ChI-a in µg/I). The error bars represent standard deviations.

带格式的:字体:(默认)+西文正 文,五号

带格式的: 两端对齐

Fig. <u>8</u>7.

Supplements

Year	Month	Variables	Sites			
			Dan Reservoir	Han Reservoir	Site close dam	River downstream dam
2004	24 Nov.	A+B	DJK1-3	DJK4		DJK5
2005	17 Jan., 8 Apr., 30 Jun., 24 Aug., 13 Nov.	A+B	DJK1-3	DJK4		DJK5
2006	8 Apr., 3 Jul	A+B	DJK1-3	DJK4		DJK5
2007	31 May, 16 Nov.	A+C	DJK1, DJK2, D1, DJK3	DJK4, D2	D3	DJK5
2008	31 Jul., 30 Nov.	A+C	DJK1, DJK2, D1, DJK3	DJK4, D2	D3	DJK5
2009	23 Apr., 11 Aug., 5 Nov.	A+C	DJK1, DJK2, D1, DJK3	DJK4, D2	D3	DJK5
2010	20 Jan., 23 Apr., 20 Aug., 30 Nov.	A+C	DJK1, DJK2, D1, DJK3	DJK4, D2	D3	DJK5
2011	12 Mar., 31 May	A+C	DJK1, DJK2, D1, DJK3	DJK4, D2	D3	DJK5

Table S1. Detailed introduction for sampling in the Danjiangkou Reservoir, China.

5 samples for individual survey were collected during 2004-2006, while 8 samples for individual survey during 2007-2011. There were three replicates for each sampling, thus a total of 432 samples were collected while 144 water samples were determined.

Water chemical properties:

A-T, pH, Alkalinity, F-, Cl, SO₄, Na, K, Ca, Mg, <u>D</u>Si, TSS, Turbidity, DO%, ORP (oxidation reduction potential), COD_{Mn}, NH₄-N, NO₃-N, DP B- BOD 带格式的: 下标

C-SRP, TP, TOC, DOC, TDN, DIN, Chl-a

	<u>T</u>					<u>pH</u>					<u>Alka</u>	<u>linity</u>			
	N	<u>Mean</u>	<u>S. D.</u>	<u>Min.</u>	<u>Max.</u>	<u>N</u>	<u>Mean</u>	<u>S. D.</u>	<u>Min.</u>	<u>Max.</u>	<u>N</u>	<u>Mean</u>	<u>S. D.</u>	<u>Min.</u>	<u>Max.</u>
<u>Nov.2004</u>	<u>5</u>	<u>16.84</u>	<u>0.58</u>	<u>15.84</u>	<u>17.24</u>	<u>5</u>	8.22	0.08	<u>8.14</u>	<u>8.34</u>	<u>5</u>	<u>2440</u>	<u>219</u>	<u>2200</u>	<u>2600</u>
Jan. 2005	<u>5</u>	<u>9.19</u>	<u>0.64</u>	8.08	9.65	<u>5</u>	8.28	0.07	<u>8.20</u>	<u>8.37</u>	<u>5</u>	2360	<u>207</u>	<u>2200</u>	<u>2700</u>
<u>Apr.2005</u>	<u>5</u>	<u>12.44</u>	3.64	7.96	<u>16.72</u>	<u>5</u>	8.42	0.07	<u>8.29</u>	<u>8.47</u>	<u>5</u>	2600	<u>524</u>	<u>2200</u>	<u>3500</u>
Jun.2005	<u>5</u>	<u>27.75</u>	4.33	<u>20.16</u>	<u>30.52</u>	<u>5</u>	8.52	0.35	7.92	8.85	<u>5</u>	<u>2409</u>	<u>291</u>	<u>1900</u>	<u>2643</u>
<u>Aug.2005</u>	<u>5</u>	<u>24.49</u>	<u>0.95</u>	23.00	<u>25.34</u>	<u>5</u>	7.98	0.13	7.81	8.13	<u>5</u>	<u>2180</u>	<u>192</u>	<u>1900</u>	<u>2400</u>
<u>Nov.2005</u>	<u>5</u>	<u>18.26</u>	0.43	<u>17.73</u>	<u>18.65</u>	<u>5</u>	7.91	0.06	7.81	7.96	<u>5</u>	2280	286	<u>1900</u>	<u>2600</u>
<u>Apr.2006</u>	<u>5</u>	<u>15.30</u>	2.54	<u>11.06</u>	<u>17.46</u>	<u>5</u>	8.26	0.10	<u>8.09</u>	8.38	<u>5</u>	<u>2432</u>	<u>489</u>	<u>2080</u>	<u>3280</u>
Jul.2006	<u>5</u>	<u>27.89</u>	3.86	21.00	<u>29.99</u>	<u>5</u>	8.28	0.50	7.64	<u>8.70</u>	<u>5</u>	<u>2192</u>	<u>485</u>	<u>1520</u>	<u>2880</u>
<u>May 2007</u>	<u>8</u>	<u>24.82</u>	0.85	<u>23.54</u>	<u>26.53</u>	<u>8</u>	<u>8.19</u>	0.10	7.98	8.35	<u>8</u>	2520	<u>363</u>	<u>2080</u>	<u>3280</u>
<u>Nov.2007</u>	<u>8</u>	<u>14.94</u>	<u>1.78</u>	<u>12.00</u>	<u>17.00</u>										
Jul.2008	<u>8</u>	<u>29.10</u>	1.35	<u>25.86</u>	<u>29.99</u>	<u>8</u>	<u>8.01</u>	<u>0.38</u>	7.21	<u>8.37</u>	<u>8</u>	<u>1937</u>	<u>345</u>	<u>1616</u>	<u>2644</u>
<u>Nov.2008</u>	<u>8</u>	<u>12.03</u>	0.66	<u>11.27</u>	<u>12.87</u>	<u>8</u>	<u>8.01</u>	<u>0.41</u>	<u>7.45</u>	<u>8.63</u>	<u>8</u>	<u>3241</u>	<u>332</u>	<u>2920</u>	<u>3968</u>
<u>Apr.2009</u>	<u>8</u>	<u>15.32</u>	1.51	<u>11.68</u>	<u>16.26</u>	<u>8</u>	8.08	0.15	7.82	8.26	<u>8</u>	<u>2489</u>	<u>384</u>	<u>2206</u>	<u>3422</u>
Aug.2009	<u>8</u>	<u>27.36</u>	1.46	<u>23.97</u>	<u>28.47</u>	<u>8</u>	8.64	0.28	<u>7.99</u>	<u>8.91</u>	<u>8</u>	2037	222	<u>1814</u>	<u>2359</u>
<u>Nov.2009</u>	<u>8</u>	<u>16.87</u>	0.20	<u>16.56</u>	<u>17.10</u>	<u>8</u>	7.81	0.18	7.39	7.95	<u>8</u>	2354	<u>151</u>	<u>2160</u>	<u>2576</u>
Jan.2010	<u>7</u>	9.00	0.35	8.48	<u>9.49</u>	<u>7</u>	8.65	0.09	<u>8.53</u>	8.75	<u>7</u>	2354	166	<u>2120</u>	<u>2560</u>
<u>Apr.2010</u>	<u>8</u>	<u>14.67</u>	1.38	<u>11.98</u>	<u>16.46</u>	<u>8</u>	8.44	0.21	<u>7.97</u>	8.62	<u>8</u>	<u>2409</u>	226	<u>2000</u>	<u>2680</u>
<u>Aug.2010</u>											<u>8</u>	<u>1795</u>	<u>456</u>	<u>1200</u>	<u>2360</u>
<u>Nov.2010</u>											<u>8</u>	<u>2475</u>	<u>92</u>	<u>2280</u>	<u>2600</u>
Mar.2011											<u>8</u>	<u>2407</u>	<u>257</u>	<u>2104</u>	<u>2736</u>
<u>May 2011</u>	<u>8</u>	<u>20.84</u>	<u>0.79</u>	<u>19.19</u>	<u>21.53</u>	<u>8</u>	<u>8.14</u>	<u>0.14</u>	<u>7.99</u>	<u>8.34</u>	<u>8</u>	<u>2717</u>	226	<u>2440</u>	<u>3000</u>
<u>Total</u>	<u>119</u>	<u>18.75</u>	<u>6.65</u>	<u>7.96</u>	<u>30.52</u>	<u>111</u>	<u>8.22</u>	0.33	7.21	<u>8.91</u>	<u>135</u>	<u>2385</u>	<u>425</u>	<u>1200</u>	<u>3968</u>
Nov.2007 Jul.2008 Nov.2008 Apr.2009 Aug.2009 Nov.2009 Jan.2010 Apr.2010 Aug.2010 Mov.2010 Mar.2011 May 2011 Total	<u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>7</u> <u>8</u> <u>8</u> <u>119</u>	<u>14.34</u> <u>29.10</u> <u>12.03</u> <u>15.32</u> <u>27.36</u> <u>16.87</u> <u>9.00</u> <u>14.67</u> <u>20.84</u> <u>18.75</u>	1.76 1.35 0.66 1.51 1.46 0.20 0.35 1.38 0.79 6.65	12:00 25:86 11:27 11:68 23:97 16:56 8:48 11:98 19:19 7:96	<u>17.00</u> <u>29.99</u> <u>12.87</u> <u>16.26</u> <u>28.47</u> <u>17.10</u> <u>9.49</u> <u>16.46</u> <u>21.53</u> <u>30.52</u>	8 8 8 8 7 8 7 8 8 111	8.01 8.01 8.08 8.64 7.81 8.65 8.44 8.14 8.22	0.38 0.41 0.15 0.28 0.18 0.09 0.21 0.21	7.21 7.45 7.82 7.99 7.39 8.53 7.97 7.97	8.37 8.63 8.26 8.91 7.95 8.75 8.62 8.62 8.34 8.91	8 8 8 8 8 7 8 8 8 8 8 8 8 8 8 135	1937 3241 2489 2037 2354 2354 2409 1795 2475 2407 2717 2385	345 332 384 222 151 166 226 456 92 257 226 425	1616 2920 2206 1814 2160 2120 2000 1200 2280 2104 2440 1200	2644 3968 3422 2359 2576 2560 2680 2680 2600 2736 3000 3968

Table S2. Descriptive statistics of monthly variability in T (°C), pH and alkalinity (µmol/l) of the Danjiangkou Reservoir, China.

S.D.-Standard deviation; Min.- Minimum; Max.- Maximum.
		<u>T</u>			<u>pH</u>				Alkalinity							
		N	Mean	<u>S. D.</u>	Min.	<u>Max.</u>	N	Mean	<u>S. D.</u>	Min.	Max.	N	<u>Mean</u>	<u>S. D.</u>	Min.	<u>Max.</u>
<u>Dan Reservoir</u>	<u>DJK1</u>	<u>17</u>	<u>20.45</u>	<u>6.49</u>	<u>9.26</u>	<u>30.52</u>	<u>16</u>	<u>8.15</u>	0.27	<u>7.76</u>	8.62	<u>19</u>	<u>2736</u>	<u>437</u>	<u>2000</u>	<u>3500</u>
	<u>DJK2</u>	<u>18</u>	<u>19.11</u>	<u>6.95</u>	<u>8.67</u>	<u>29.61</u>	<u>17</u>	8.29	0.27	<u>7.86</u>	<u>8.74</u>	<u>20</u>	<u>2473</u>	292	<u>2020</u>	<u>3360</u>
	<u>D3</u>	<u>10</u>	<u>18.97</u>	<u>6.96</u>	<u>8.85</u>	<u>29.53</u>	<u>9</u>	8.26	0.36	7.68	<u>8.79</u>	<u>12</u>	<u>2475</u>	338	<u>1960</u>	<u>3080</u>
	<u>DJK3</u>	<u>18</u>	<u>18.77</u>	7.25	<u>8.08</u>	<u>29.53</u>	<u>17</u>	8.26	0.34	<u>7.45</u>	<u>8.75</u>	<u>20</u>	<u>2444</u>	284	<u>1946</u>	<u>3120</u>
<u>Han Reservoir</u>	<u>DJK4</u>	<u>18</u>	<u>19.14</u>	<u>6.90</u>	<u>9.08</u>	<u>30.38</u>	<u>17</u>	8.28	0.32	<u>7.81</u>	8.85	<u>20</u>	<u>2117</u>	<u>390</u>	<u>1200</u>	<u>2960</u>
	<u>D2</u>	<u>10</u>	<u>18.68</u>	<u>6.88</u>	<u>9.23</u>	<u>29.66</u>	<u>9</u>	8.31	0.34	7.80	<u>8.91</u>	<u>12</u>	<u>2134</u>	424	<u>1280</u>	<u>2920</u>
<u>Dam</u>	<u>D3</u>	<u>10</u>	<u>18.61</u>	<u>6.85</u>	<u>9.18</u>	<u>29.91</u>	<u>9</u>	8.28	0.35	<u>7.78</u>	8.82	<u>12</u>	2222	<u>509</u>	<u>1320</u>	<u>3320</u>
<u>River downstream Dam</u>	<u>DJK5</u>	<u>18</u>	<u>16.39</u>	5.82	<u>7.96</u>	<u>25.86</u>	<u>17</u>	8.01	0.38	7.21	8.64	<u>20</u>	2367	428	<u>1951</u>	<u>3968</u>
	<u>Total</u>	<u>119</u>	<u>18.75</u>	<u>6.65</u>	<u>7.96</u>	<u>30.52</u>	<u>111</u>	8.22	<u>0.33</u>	<u>7.21</u>	<u>8.91</u>	<u>135</u>	<u>2385</u>	<u>425</u>	<u>1200</u>	<u>3968</u>

Table S3. Descriptive statistics of spatial variability in T, pH and alkalinity of the Danjiangkou Reservoir, China (T in °C, Alkalinity in µmol/l).

S.D.-Standard deviation; Min.- Minimum; Max.- Maximum.

_	pCO ₂		
	R-coefficient	р	<u>N</u> n
F	0.353**	0.01	55
Cl	-0.03	0.77	87
SO_4^{2-}	-0.09	0.39	87
Na	-0.05	0.66	94
Κ	0.02	0.83	94
Ca	0.06	0.57	94
Mg	0.15	0.14	94
Si	0.396**	0.00	71
COD	-0.07	0.51	87
BOD ₅	0.25	0.24	24
DO	-0.17	0.15	77
DO%	-0.281*	0.02	73
ORP	-0.248*	0.03	80
Ammonium-N	0.03	0.81	67
Nitrate-N	-0.14	0.23	74
TSS	0.02	0.84	80
Turbidity	0.16	0.14	94
SRP	0.03	0.86	55
TP	0.395**	0.00	62
DP	-0.17	0.20	57
TOC	0.25	0.07	55
DOC	0.416**	0.00	55

Table S<u>4</u>2. Spearman's rho coefficients for pCO_2 and water chemical parameters in the sites of the Danjiangkou Reservoir, China.

TN	-0.314*	0.02	53
DN	-0.09	0.50	55
DIN	0.13	0.49	32
Chl-a	-0.408**	0.00	54

**. Correlation is significant at the 0.01 level (2-tailed).*. Correlation is significant at the 0.05 level (2-tailed).

Fig. S1. T (°C), pH and alkalinity (μmol/l) in the Danjiangkou Reservoir during 2004-2011 (five sampling sites DJK1-DJK5 from left to right during 2004-2006; while eight sites DJK1, DJK2, D1, DJK3, DJK4, D2, D3 and DJK5 from 2007 afterwards)._

Fig. S2. Trophic state index (TSI) and trophic level index (TLI) of the sites in the Danjiangkou Reservoir, China (the letters d and w behind the variables mean dry and wet season).

(c) Sites close to the Dam (limited samples ahead the Dam with negative effect by upper str water discharge).

域代码已更改

