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Author responses to anonymous referee #2)
Referee comments in boldface, author responses in normal typeface.

We thank referee 2 for the careful reading and helpful suggestions. Responses to
specific points are below.

Given that | am the 2nd of 2 referees to upload comments | will limit myself
to things not covered by R1 (I note that | am in complete agreement with his
comments).
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This is an excellent paper overall and a worthy contribution to the corpus of
upscaling Earth System Earth System FLUXNET literature. After minor technical
fixes this is ready for publication. | have a few higher-order comments:

| would prefer a more comprehensive review of upscaling to date. The authors
cite and detail a few studies but there are several that are left off. As examples:
the Jung Nature paper that upscales ET (not strictly a 1:1 correspondence with
C fluxes as here but very much a game changer for FLUXNET-inspired upscaling
wrt visibility). Schwalm et al (2010,2011ab) have done FLUXNET-based global
upscaling of changes in NEP, GPP, and TER that are solely attributable to hydro-
logical intensification and drought. Yuan et al 2010 detail the derivation of the
EC-LUE model. Yang et al 2007 use FLUXNET sites in conjunction with MODIS
and SVM to get at GPP. There are others. These are all worthy contributions that
have advanced this field. While a summary as per the original is certainly too
verbose perhaps a summary sentence (or two) that showcases the depth and
breadth of upscaling approaches would be useful.

Thanks. We have added brief discussions of these studies to the introduction.

I am intrigued why RMSE was chosen as the metric? | am curious if you looked
at how your results would change if you scored fit differently? Note that | am not
suggesting submitting another set of parallel results. But, how sensitive are the
conclusions of your study to the skill metric chosen?

This is a very good question and worthy of extensive further investigation. We think a
better approach for quantifying model fit would be a statistically proper likelihood func-
tion. We chose SSE because the a statistically proper likelihood function would require
integrating likelihood functions for all of the sources of error that contribute to model
error: model structural error, parameterization error, eddy covariance observation er-
ror, etc. These error sources’ distributions may be approximated, yielding a likelihood
function function for each. Reducing that integral to a computationally tractable form is
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difficult and beyond the scope of this study. In the absence of a statistically proper like-
lihood function we chose to use the mathematically simple SSE. This is equivalent to a
maximum likelihood approach if the model errors may be assumed to be independent
and identically distributed (i.i.d). Model errors are not i.i.d. (Ricciuto et al, 2008), but
we have made this simplification in light of the points mentioned above.

We have added the above text to the paper.

As R1 | am intrigued by the 27 vs. 65 split and was very curious as to selection
criteria. But R1 has discussed this already and | have nothing to add. But | would
emphasize the issue’s importance. Consider that you show different maps based
on different parameter sets. How about different maps based on different site
splits?

This is also an excellent point. To summarize our response to referee 1, the 27 cross-
validation sites were initially left out of model parameterization because of data avail-
ability problems. It occurred to us later that these were more useful for cross validation
than for further model parameterization. We agree with referee 1 and referee 2 that a
rigorous cross validation exercise is an important extension of this work, and we are
currently working toward that end.

Did you consider downscaling your driver data, e.g., 16-day MODIS data? You
use 3h data to drive VPRM and there are canned routines for downscaling (for
“imposing” the diurnal cycle).

We agree with reviewer 2 that this would be a worthy line of further inquiry. We did not
explore this path during the analyses presented here.

Wrt Eq. [5], this has minimal skill (r2 = c. 0.3). I'm not sure | have a high degree of
comfort with any map generated based on this equation. | would like some words
on why, given the clear lack of skill of Eq. [5], it has any value wrt uncertainties
as discussed in the original.
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Thanks for this careful consideration of the error variance model. We have added the
following two paragraphs to the discussion of eq 5:

The multiple r? value of 0.289 achieved by eq 5 may at a glance appear relatively low.
However, our ultimate goal in this exercise is a spatial estimate of VPRM NEE uncer-
tainty. In this context it is more important to successfully diagnose the distribution of
error magnitudes than to accurately capture every local rise and fall of the error magni-
tude as a function of its drivers. This is because spatial aggregation of high-resolution
VPRM error diagnoses will smooth out the high-resolution inaccuracies without sac-
rificing the more important regional accuracy. Hilton et al (2013) provides the spatial
error covariances needed to perform this aggregation.

In spite of its r> of 0.289, eq 5 performed well across 27 cross validation sites on two
performance measures: First, 55 of 56 predicted errors (98%) fall within the 95% pre-
diction confidence interval (fig. 13, top panel). Second — and crucially — the distribution
of predicted errors matches the distribution of observed errors (fig. 13, bottom panel)
at the cross-validation sites. This suggests that the distribution of diagnosed VPRM
NEE error magnitudes is consistent with observations.

In addition, by virtue of diagnosing the difference between modeled NEE and observed
NEE, the VPRM errors estimated by eq 5 include all error sources that contribute to
VPRM error. That said, there are error sources that are not included in the regression
model drivers, such as VPRM structural error or land surface classification error, al-
though these are integrated into the final error estimate because eq. 5 seeks to predict
the difference between observed and modeled NEE. The 70% of the observed VPRM
error variance that eq 5 does not explain is caused by these types of drivers along with
random error. As mentioned in section 2.5, in the absence of a statistically rigorous
joint likelihood function we feel that the statistical model of equation 5 is a useful first
step toward uncertainty quantification.

Use NEP and NOT NEE. NEE is the integrated vertical exchange of CO2.
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FLUXNET does not measure this (so you can’t upscale this C term either).
FLUXNET gets at CO2 exchange as the disequilibrium between GPP and TER
only. The processes that are part of NEE (e.g., aquatic evasion, disturbance
emission [fLUC or fire flux as examples] and product decay) are not “seen” by
FLUXNET at all. Put another way, you cannot compare your NEE values to some-
thing that comes from an inversion framework. So | find this misleading, NEP is
what FLUXNET does well, not NEE.

We respectfully disagree with referee 2 on this point. All processes occurring beneath
an eddy covariance tower including disturbance emissions and aquatic evasion, when
present, are integrated into the net flux measured by the tower. Thus an eddy covari-
ance tower observes the NEE from its footprint, not NEP. It is perhaps true that eddy
covariance towers are usually sited to exclude some of these influences (e.g. aquatic
evasion). That said, several of the towers used in this study (CA-NS2, CA-NS3, CA-
NS4, CA-NS5, CA-NS6, CA-NS7) were specifically aimed at quantifying net ecosystem
exchange of CO, during burn recovery (Goulden et al 2006), though not fire emissions
themselves. The upscaled VPRM net fluxes presented here are as representative as
the eddy covariance tower sites used to parameterize them allow. For these reasons
we believe that the shortcomings of the upscaled VPRM in diagnosing some of the pro-
cesses mentioned here are better classified as model structural error than by changing
NEE to NEP throughout the text.

We also follow the terminology used by past Fluxnet upscaling studies (e.g. Xiao et al
(2008), Jung et al (2011), Sun et al (2011)) and define the terminology. We acknowl-
edge that the terminology is important, but think that we are not out of bounds with past
literature and logic in saying that these towers observe NEE.

Figures: What does black represent? This is not detailed/explained.

Thank you for pointing this out. We did not produce calculations for these regions. In
figures 7, 8,9, 10, 11, 12 and 14 the black regions are outside of the study domain. In
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figure 15 the black regions were not calculated because the figure highlights features
in the Southeastern USA. We have added text to captions of figures 7, 8, 9, 10, 11, 12,
14, and 15 to clarify this.

Pg 13770: wrt "Once again, instead of concluding that respiration is causing the
mixed forests of the southeastern USA to release on the order of 150 g Cm-2
yr—1 to the atmosphere, the explanations discussed in Sect. 3.3 seem more
plausible.” Could you parenthetically include what Sect 3.3 stated? This would
help the reader.

Thanks. We have added a parenthetical summary of section 3.3 to the text.
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