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Abstract

Southern Ocean organic carbon export plays an important role in the global carbon cycle, yet
its basin-scale climatology and variability are uncertain due to limited coverage of in situ
observations. In this study, a neural network approach based on the self-organizing map (SOM)
is adopted to construct weekly gridded (1°x1°) maps of organic carbon export for the Southern
Ocean from 1998 to 2009. The SOM is trained with in situ measurements of O,/Ar-derived net
community production (NCP) that are tightly linked to the carbon export in the mixed layer on
timescales of 1-2 weeks, and six potential NCP predictors: photosynthetically available radiation
(PAR), particulate organic carbon (POC), chlorophyll (Chl), sea surface temperature (SST), sea
surface height (SSH), and mixed layer depth (MLD). This non-parametric approach is based
entirely on the observed statistical relationships between NCP and the predictors, and therefore is

strongly constrained by observations.

A thorough cross-validation yields three retained NCP predictors, Chl, PAR, and MLD. Our
constructed NCP is further validated by good agreement with previously published independent
in situ derived NCP of weekly or longer temporal resolution through real-time and climatological
comparisons at various sampling sites. The resulting November—March NCP climatology
reveals a pronounced zonal band of high NCP roughly following the Subtropical Front in the
Atlantic, Indian and western Pacific sectors, and turns southeastward shortly after the dateline.
Other regions of elevated NCP include the upwelling zones off Chile and Namibia, Patagonian
Shelf, Antarctic coast, and areas surrounding the Islands of Kerguelen, South Georgia, and
Crozet. This basin-scale NCP climatology closely resembles that of the satellite POC field and
observed air-sea CO, flux. The long-term mean area-integrated NCP south of 50°S from our
dataset, 17.9 mmol C m'zd'l, falls within the range of 8.3—24 mmol C m2d™" from other model
estimates. A broad agreement is found in the basin-wide NCP climatology among various
models but with significant spatial variations, particularly in the Patagonian Shelf. Our approach
provides a comprehensive view of the Southern Ocean NCP climatology and a potential

opportunity to further investigate interannual and intraseasonal variability.
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1. Introduction

The Southern Ocean plays an important role in the global carbon cycle. The current annual
global ocean uptake of atmospheric carbon dioxide (CO,) is about 2 petagrams (Pg) of carbon,
half of which is taken up by the vast Southern Ocean south of 30°S [Takahashi et al., 2012].
Atmospheric CO, absorbed by the ocean can be transferred from the surface to the deep ocean
via various physical, chemical and biological mechanisms associated with the solubility and

biological pumps [Volk and Hoffert, 1985; Carlson et al., 2010].

Biological carbon export from the ocean surface is a function of various processes, including
net community production (NCP), which reflects the metabolic balance between gross primary
production (GPP) and community respiration [Codispoti et al., 1986; Minas et al., 1986]. It
describes the net rate at which CO; is transformed to particulate and dissolved organic carbon
(POC and DOC). For the present study, we use NCP estimates derived from in situ
measurements of the elemental ratio of O,/Ar. The O,/Ar method measures biological O,
supersaturation in the mixed layer [Craig and Hayward, 1987], and yields NCP estimates over
the O, residence timescale (1-2 weeks) [Reuer et al., 2007; Cassar et al., 2007, 2009, 2011]. On
this timescale, the NCP derived from this method is tightly linked to the export of organic carbon
from the mixed layer at steady state, under the assumptions that both vertical mixing of O,-
depleted waters from below and accumulation of POC and DOC in the mixed layer are
negligible [Cassar et al., 2009, 2011; Jonsson et al., 2013]. Although we use NCP and carbon
export production interchangeably in this study, it should be noted that under some
circumstances, the assumption of steady-state is violated [Hamme et al., 2012; Jonsson et al.,

2013].

While in situ O,/Ar measurements shed new light on the NCP distribution and variability, the
Southern Ocean remains seriously undersampled. The difficulty in obtaining a large-scale
picture of the carbon export owes to the unavailability of direct satellite measurements. In
addition, NCP is highly variable in space and time and cannot be derived from linear
interpolation between in sifu measurements. Field experiments also reveal that the plankton
ecosystem and CO, flux variability are not dominated by just one single mechanism but by a

confluence of several processes that shift in relative importance over time and space [Banse,
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1996; Abbott et al., 2000, 2001; Cassar et al., 2011; Tortell et al., 2012], which are difficult to

capture in biogeochemical models.

An alternative strategy is to use a data-driven modeling approach. We may achieve a more
comprehensive characterization of temporal and spatial variability of NCP by examining the
statistical relationships between NCP and physical as well as biogeochemical properties that
potentially have impacts on carbon export. In addition to mixed layer depth (MLD) and light
(i.e., photosynthetically available radiation (PAR)) [Cassar et al., 2011], POC, Chl, sea surface
temperature (SST), and sea surface height (SSH) are likely important factors regulating or
correlated with NCP in the Southern Ocean. POC production is the dominant form of NCP in
the Southern Ocean [Ogawa et al., 1999; Wiebinga and de Baar, 1998; Kaehler et al., 1997,
Hansell and Carlson, 1998; Sweeney et al., 2000; Schlitzer, 2002; Ishii et al., 2002; Allison et al.,
2010], and Chl concentration is commonly used to estimate net primary production (NPP) from
satellites [Behrenfeld and Falkowsky, 1997; Moore and Abbott, 2000; Campbell et al., 2002;
Carr et al., 2006; Bissinger et al., 2008; Friedrichs et al., 2009; Saba et al., 2011; Friedland et
al., 2012; Nevison et al., 2012; Olonscheck et al., 2013]. SST has been used to derive export and
export efficiency based on the relationship with NPP and through its influence on heterotrophic
activity [Laws et al., 2000; Laws 2004; Laws et al., 2011]. SSH yields information on oceanic
eddies, fronts, and nutrient transport that are crucial to spatial variation of biological activity

[Abbott et al., 2000, 2001; Glorioso et al., 2005; Kahru et al., 2007; Gruber et al., 2011].

Advances in remote sensing and statistical algorithms now permit satellite data-driven
modeling of NCP. Satellite-borne sensors have accumulated records for a decade or longer of
PAR, POC, Chl, SST, and SSH of sufficient resolution and coverage in space and time.
Southern Ocean MLD products became available in recent years from Argo float profiles [Wong
2005; Sallée et al., 2006; Schneider and Bravo, 2006; Dong et al., 2008] as well as from high
resolution ocean general circulation models (OGCMs) [Aoki et al., 2007a; Sterl et al., 2012]. In
this study, we combine the in situ NCP measurements from 60 crossings spanning more than a
decade with gridded datasets of NCP predictors, PAR, POC, Chl, SST, SSH, and MLD, to
generate weekly, gridded maps of NCP estimates over the Southern Ocean from 1998 through
2009. We generate these NCP predictions through the use of self-organizing map (SOM)

analysis, a type of clustering approach that has arisen in the field of artificial neural networks
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[Kohonen, 2001]. SOM analysis has gained in popularity in the atmospheric and ocean sciences
over the past decade, with applications in categorizing atmospheric teleconnection patterns
[Reusch et al., 2005; Johnson et al., 2008; Johnson and Feldstein, 2010; Johnson, 2013], and in
generating maps of pCO; for the North Atlantic [Friedrich and Oschlies, 2009; Telszewski et al.,
2009] and for the global ocean [Sasse et al., 2013].

In the present application, we follow the general approach of Friedrich and Oschlies [2009]
and Telszewski et al. [2009], whereby we use the SOM with the combined purpose of cluster
analysis and nonlinear, nonparametric regression between a set of predictors and NCP. Under
this approach, which we describe more thoroughly in section 3, we allow the data to determine
the potentially complex relationships between the predictors and NCP. Thus, the predictor/NCP
relationships are unconstrained by any pre-conceived, uncertain functional forms and are
determined entirely from the observed data, which contrasts previous studies of Southern Ocean
NCP. Nevertheless, we find that our estimates of NCP agree broadly with previous estimates
while also providing additional information on temporal and spatial variability. The remainder
of the paper is organized as follows. In section 2 we describe the data used in the study. Section
3 provides a description of the SOM methodology for generating weekly NCP maps and for
calculating error estimates. In section 4 we present our results, noting some of the most salient

features from the constructed NCP dataset. Section 5 provides a discussion and conclusions.
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2. Data

We make extensive use of gridded data products and cruise measurements in the Southern
Ocean domain poleward of 20°S and for the period between 1998 and 2009. The gridded and

research cruise data are described below.

2.1. Gridded predictor data

We consider six gridded data products, PAR, POC, Chl, SST SSH, and MLD, as potential
predictors of NCP for use in the SOM analysis and for the generation of weekly NCP maps, as

described more thoroughly in section 3.

We utilize satellite PAR and POC from the Moderate Resolution Imaging Spectroradiometer
flown on the Aqua satellite (MODIS-Aqua) 8-day mean 9 km for the period 10 July 2002-30
December 2009. The weekly averaged Chl are constructed from the daily 9-km maps of Sea-
viewing Wide Field-of-view Sensor (SeaWiFS), version 5.2 for the period 7 January 1998-26
December 2007 [O’Reilly et al., 1998]. For SST, we use NOAA Optimum Interpolation 0.25°
Daily SST Blended with Advanced Very High Resolution Radiometer (AVHRR) and AMSR
version 2 data (OI SST) [Reynolds et al., 2007] for the period 7 January 1998—19 August 2009.
The weekly SSH anomaly maps are obtained from the Archiving, Validation and Interpretation
of Satellite Oceanographic Data (AVISO) on about a 1/3° x 1/3° grid [Ducet et al., 2000] from 7
January 1998 to 22 July 2009. To determine the absolute SSH, we added the AVISO SSH
anomaly to the sea level climatology of Niiler and Maximenko [Niiler et al., 2003; Maximenko et
al., 2009]. We choose this particular SSH climatology because it has high spatial resolution
[Sokolov and Rintoul, 2007].

Because the coverage of Argo float profiles is not homogenous [Akoi et al., 2007a], and the
available gridded Argo data are either of coarser resolutions or shorter time periods
(http://www.argo.ucsd.edu/Gridded_fields.html), we choose the MLD of the high resolution
OGCM for the Earth Simulator (OFES) [Masumoto et al., 2004; Sasaki et al., 2006, 2008]. The

OFES is an eddy-resolving quasi-global (75°N —75°S) ocean model based on the Geophysical
Fluid Dynamics Laboratory Modular Ocean Model version 3 (GFDL MOM3) with 0.1°
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horizontal resolution and 54 vertical levels. It provides MLD at 0.1-degree spatial resolution
every three days. The model captures realistic upper ocean dynamics, including eddies and heat
balance [Sasaki and Nonaka, 2006; Taguchi et al., 2007; Scott et al., 2008; Zhuang et al., 2010;
Yoshida et al., 2010; Sasaki et al., 2011; Chang et al., 2012], and has been used to investigate the
Southern Ocean dynamical variability [Aoki et al., 2007a, 2007b, 2010; Sasaki and Schneider,
2008; Thompson et al., 2010; Thompson and Richards, 2011]. In the present study, we use the
MLD from the OFES simulation forced by the QuikSCAT satellite wind field from 28 July 1999
to 28 October 2009.

For the interpolation of the predictor data to the daily ship track locations, all gridded data
are first interpolated to daily resolution. Although we interpolate all predictor data to the daily
ship tracks, sub-weekly variability is missing from those predictors of original temporal
resolutions of 7-8 days. For the generation of weekly NCP maps, all gridded predictor data are
interpolated to a common 1° x 1° latitude-longitude grid poleward of 20°S at weekly temporal

resolution.

2.2. Research cruise data

In the SOM analysis described below, the predictand of interest is an estimate of NCP from
an extensive set of published data obtained from 41 research cruises in the Southern Ocean
between 1999 and 2009 [Reuer et al., 2007; Cassar et al., 2007, 2011]. Figure 1a shows our ship
tracks with time of the cruises color-coded in months. We see that the ship tracks mainly cover
regions of high chlorophyll (see Figure 2¢) during the growing season between November and
March. The histogram of the ship track NCP distribution is shown in Figure 1b. From visual
inspection, we also exclude spuriously large NCP outliers exceeding 180 mmol C m?d™. Figure
Ic provides a detailed distribution of NCP below the outlier threshold. For all available ship
track data, which are sampled unevenly in time, we calculate the daily mean NCP, latitude, and
longitude. We then linearly interpolate all available daily gridded predictor data to the ship track
locations. Negative NCP values are possibly due to net heterotrophy or measurements
contaminated by the upwelling of oxygen-undersaturated water. Because we are unable to
estimate this potential bias, we exclude all days with negative NCP values prior to the SOM

analysis. Overall, we retain 401 days of ship track data for the SOM analysis. All NCP and
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predictor data are standardized for the SOM analysis. Owing to the skewness of the NCP, Chl,
MLD and POC data, we perform a loglO transformation to these variables prior to the
standardization. As a result, the SOM analysis is applied to all predictor and predictand data that

have approximately Gaussian distributions with a mean of zero and a standard deviation of one.

In this study, the growing season is defined as November through March. Unless otherwise
noted, all units are converted to mmol C m?d™’ for carbon export by division with a molar

photosynthetic quotient for NCP of 1.4 O,/CO; [Laws, 1991].
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3. Methodology

We construct weekly 1° x 1° NCP maps between 1998 and 2009 over the Southern Ocean by
calculating NCP from weekly maps of up to six of the gridded predictor variables described in
the previous section. For these calculations, we assume that NCP has a potentially complex,

nonlinear relationship with these six predictors:
NCP = f{PAR, POC, Chl, SST, SSH, MLD) (1)

We understand that some of the predictors are not independent, and the information provided
by these predictors might be redundant. However, in consideration of variable predictor data
availability, as discussed below, such information overlap would be useful in compensation of
missing predictors. In order to approximate this functional relationship, we use an artificial
neural network approach, self-organizing maps (SOMs), similar to that used by Friedrich and
Oschlies [2009] and Telszewski et al. [2009] for generating maps of the North Atlantic pCO,.
The method of self-organizing maps combines elements of cluster analysis with nonlinear,
nonparametric regression [Kohonen, 2001]. This particular approach is advantageous for the
present purpose because the methodology does not assume a pre-defined functional form
between predictor and predictand; rather, the methodology relies on an unsupervised learning
procedure whereby the potentially complex predictor/predictand relationships are determined
entirely by the data used to construct the SOM through a process called training. In addition, the
methodology readily handles one or more missing predictors when generating NCP maps, which
is a useful property given the limited coverage of satellite predictor data over the Southern Ocean
for some periods. The approach used here differs from previous SOM studies [Friedrich and
Oschlies, 2009; Telszewski et al., 2009] in that we perform a thorough validation analysis to
determine an optimal combination of SOM parameters and predictors and to provide estimates of
error for weekly NCP predictions. Below we include a brief description of the SOM
methodology and descriptions of the procedures for generating NCP maps and calculating error
estimates. Additional discussion is found in the Supplementary Methods section of the
supporting material, and a more thorough description of the SOM methodology can be found in

the appendix of Johnson et al. [2008].
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3.1. Self-organizing map methodology and NCP dataset construction

In the present application, the SOM is trained with the seven-dimensional (six predictors and
the predictand, NCP) daily ship track data, where each daily observation is treated as a seven-
dimensional data vector. The NCP mapping is accomplished in two steps: (1) SOM training with
ship track data to determine the predictor/NCP clusters, and (2) assignment of weekly gridded
predictor data to the best-matching SOM clusters and the concomitant assignment of the
associated cluster NCP values to the corresponding grid. The first step generates K clusters,
where the user specifies the number K, that describe prototypical combinations of predictor and
NCP values (the method for determining K is described below in section 3.2). In the second
stage, for each grid and week the available predictor data are combined into a data vector of up
to six dimensions; then this data vector is mapped to the best-matching SOM cluster on the basis
of minimum Euclidean distance. The NCP value associated with that best-matching cluster,
which is determined in step 1, is then assigned to that particular grid and week. This process is

repeated for each available grid and week to construct weekly NCP maps.

As mentioned above, the SOM approach has the advantage of readily handling data even
when one or more predictors are missing during both the training and NCP mapping stages. Due
to limitations of satellite data coverage and differences in the starting and ending dates of the
predictor datasets, most ship track days and weekly grids have at least one missing predictor
value. In particular, the large cloud cover over the Southern Ocean, which typically exceeds
70% south of 40°S during the growing season [Warren et al., 1988], significantly impairs
satellite retrieval of POC and Chl. Table 1 shows the availability of each variable in both the
ship track data used to train the SOM and the gridded weekly data used to construct the NCP
maps. Some variables such as SST, MLD, and SSH have good spatial and temporal coverage,
whereas others are more sparse. Even though POC and Chl are among those of the lower data
availability, an improvement is apparent from their relatively high coverage of 40-60%, in
contrast to the large cloud cover (> 70% on average), which is a result of interpolation of the
predictor data (7- or 8-day 1° x 1°) onto daily ship track locations as well as the weekly grids.
Overall, only approximately 30% of all ship track days have all six predictor values available.
For cases when one or more predictor values are missing, the SOM algorithm finds the best-

matching clusters on the basis of minimum Euclidean distance, just as in the usual case, except

10



243
244
245
246
247
248

249

250
251
252
253
254
255
256
257
258
259
260
261

262
263
264
265
266
267
268
269
270

that all dimensions corresponding to missing data are ignored. In the process of assigning NCP
values to the weekly gridded data, the cluster dimension corresponding to NCP is ignored in
every case of cluster assignment because NCP is excluded from the predictor data. The NCP
value of the best-matching cluster is then assigned to the corresponding grid. Thus, this
particular application of SOM analysis essentially represents a method of imputation for missing

data.

3.2. SOM parameter determination and error estimation

Each SOM analysis requires a number of specifications to be chosen prior to the analysis
such as the type of neighborhood function, type of lattice (usually hexagonal or rectangular),
number of rows and columns in the lattice (with the total number of neurons equal to the number
of rows multiplied by the number of columns), and the final neighborhood radius, which
describes how connected the neurons are to their neighbors in the lattice at the end of training.
The readers are referred to Liu et al. [2006] for a description of the neighborhood function and
lattice. In practice, the performance of the SOM analysis tends to be most sensitive to the chosen
number of neurons and to the final neighborhood radius. If the number of neurons (i.e., clusters)
is too large and/or the final neighborhood radius is too small, then the clusters may be fit too
closely to the training data, and the statistical model may be overfit for NCP prediction. In
contrast, if the number of neurons is too small and/or the final neighborhood radius is too large,

then the statistical model may not capture the range of NCP variability accurately.

In order to determine an appropriate number of neurons, final neighborhood radius, and
predictor combination, we consider several factors, including predictor availability, prior
knowledge of Southern Ocean NCP, and a set of cross-validation tests. For the cross-validation
tests, we specify K and the final neighborhood radius, partition the NCP and predictor data into
training and validation sets, train the SOM with the training set, and then evaluate NCP
predictions with respect to the withheld validation data. We evaluate a large number of SOM
parameter combinations by calculating the mean absolute error (MAE), root—mean-square error
(RMSE), and mean fractional error (MFE) of the predicted NCP. A more thorough description

of the cross-validation tests is found in the Supplementary Methods of the supporting material.

11
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Several predictor/parameter combinations emerge as candidates for the NCP construction
from the cross-validation tests with their errors on the lower end of the estimates (in mmol C m”
*d"): MAE ~ 5.3-9, RMSE ~ 8.4-13, MFE ~ 27-51%. However, because these error estimates
only apply to the ship track NCP of limited spatial coverage over the Southern Ocean, we also
consider additional criteria based on prior expectations of NCP variability. We examine the
temporal evolution of the monthly, area-integrated NCP south of 40°S as well as south of 50°S,
and the spatial distribution of NCP climatology for the growing season. Although the true
temporal evolution of the area-integrated NCP south of 40°S and 50°S is uncertain, a decline in
NCP is expected as the season comes to an end. Therefore, we exclude the candidates that show
an increase of NCP from February to March. The rest of the candidate NCP constructions show
similar climatological features, except for a few that produce unexpectedly high mean NCP in
regions of relative minima in both POC and Chl. Because these regions are outside the ship
track coverage, we believe the unexpected high NCP estimates to be the result of overfitting to
the ship tracks, which target high NCP regions. Consequently, we exclude these candidate NCP
constructions. Ultimately, we choose the NCP construction based on a SOM with 12 rows, 8
columns (i.e., 96 total neurons), a final neighborhood radius of 1, and three predictors (Chl, PAR,
MLD) because this combination exemplifies low mean errors with the weekly MAE = 8 mmol C
m'zd'l, RMSE = 12 mmol C m>d™ and MFE = 48%, and a reasonable climatological NCP that is

broadly consistent with previous studies, as described more thoroughly in Section 4.

We emphasize that this choice of predictor set does not mean that the other predictors are
unimportant for NCP variability; rather, the combination of redundancy of predictor information
(e.g., positive correlations among POC, Chl and SSH) and variations in data availability suggest
that these other predictors do not add sufficient independent information to improve NCP
predictions on weekly timescales. Interestingly, as we discuss further below, the NCP
climatology has a stronger relationship with the POC than Chl climatology even though POC is
not included in the final SOM analysis. This strong correspondence between mean NCP and
POC despite the omission of POC as a final predictor should only strengthen the conclusion that

POC plays a pivotal role in the spatial variability of NCP in the Southern Ocean.

12
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3.3. Bootstrap NCP dataset constructions

In addition to measurement error and random NCP variability unaccounted by the predictors,
which are captured in the error estimates in section 3.2, another important source of error for the
long-term mean is the limited data coverage used to construct the SOM. Because we are
constructing a gridded NCP dataset over a large domain based on a limited number of research
cruise measurements, a small number of measurements may have a disproportionate influence on
the regional NCP constructions. To provide a quantitative measure of how this limitation
impacts the uncertainty in the NCP climatology constructions, we use a bootstrap approach to
construct 100 additional NCP datasets. From these 100 datasets, the NCP climatology variance
for a particular location provides an indication of the sensitivity of the NCP estimates to this

particular, limited ship track dataset used to train the SOM.

For each of these 100 bootstrap NCP datasets, we perform the NCP construction in the same
way as described above but with one distinction: the SOM is trained with resampled ship track
data. The resampling procedure, which follows conventional bootstrap procedures, is performed
as follows. A bootstrap ship track dataset is constructed by randomly selecting research cruise
numbers from 1 through 41 with replacement, and then placing the ship track data from the
randomly chosen cruise number into the bootstrap dataset. This process of randomly choosing
cruise numbers and placing the corresponding data into the bootstrap ship track dataset is
repeated until the bootstrap ship track dataset has the same number of daily NCP and predictor
observations as in the original ship track dataset. The SOM is then trained on the bootstrap ship
track data with the same parameter and predictor combination as discussed above, and then the

bootstrap NCP dataset is constructed based on this modified SOM.

13
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4. Results

In this section, the basin-scale features in the constructed NCP dataset are first described. In
the absence of the basin-scale NCP observation, we compare the spatial pattern of the
constructed NCP with the satellite-measured POC and Chl, because the former accounts for
80—90% of NCP in the Southern Ocean [Hansell and Carson 1998; Allison et al., 2010], and the
latter is often used to derive phytoplankton biomass and NPP. Secondly, we examine the
regional values of constructed NCP by comparison with those reported in the literature. We also
include the 95% bootstrap confidence intervals and seasonal standard deviation to indicate the
uncertainty and temporal variability, respectively. For comparison with the in situ data that are
not on our data grids, a 1°-2° spatial average is taken of the constructed NCP surrounding the
point of observation. We note that exact agreement is not expected, given that the in situ derived
NCP used for comparison were obtained by various methods that access different temporal and
spatial scales of carbon export and that sometimes include different processes. Because our data
are resolved on weekly timescales, we only perform comparisons with measurements of weekly

or longer temporal resolution.

Thirdly, we show a dominant basin-scale NCP distribution emerged from various models,
with discussion of the discrepancies. In addition, because the biological pump is one of the main
mechanisms that drive atmospheric CO; into the ocean [e.g., Volk and Hoffert, 1985; Carlson et
al., 2010] we compare our NCP to the observed air-sea CO, flux of the Southern Ocean. To
convert from annual means to daily range, we assume that the growing season varies from 90 to
120 days [Heywood and Whitaker, 1984; Sweeny et al., 2000; Reuer et al., 2007; Racault et al.,
2012] because of the large spatial and temporal variability in its duration for the Southern Ocean
[Lizotte, et al., 2001; Racault et al., 2012; Borrione and Schlitzer 2013]. The total area south of
50°S is approximated to be 45.7x10°%km* [Moore and Abbot, 2000].

4.1. Southern Ocean NCP climatology

Figure 2a shows the spatial distribution of 12-year growing season NCP climatology

(1998-2009), superimposed with the major Southern Ocean fronts [Orsi et al., 1995]. An

14
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elongated zonal band of high NCP (> 22 mmol C m”d") is seen approximately following the
Subtropical Front (STF ~ 40°S), where macronutrient-rich subantarctic water converges with the
macronutrient-poor subtropical water [Takahashi et al., 2012]. Tt stretches from the southwest
Atlantic, across the south Indian Ocean to the western South Pacific, then splits with the STF
east of the dateline around 170°W, and turns southeastward to about 120°W. A sharp NCP
gradient exists north of the front, with very low NCP throughout most of the subtropics except
near large landmasses. Elevated NCP (= 20 mmol C m™d") is seen along the Southern
Boundary (SBdy), the southernmost limit of the Antarctica Circumpolar Circulation (ACC), and
along the Antarctic coast, including the Ross Sea and Amundsen Sea, where strong CO,; sinks
have recently been observed [Arrigo et al., 2008; Tortell et al., 2012]. Between the STF and
SBdy, we also see high NCP (> 25 mmol C m™“d™") in the complex region off the southeastern
South America between the Rio de la Plata and the Falkland Island, including the Patagonian
Shelf and Brazil-Malvinas Confluence (BMC) zone, and in the vicinity of the Crozet Islands
(48°E—60°E, 42°S—49°S), Kerguelen Island (67°E-95°E, 45°S—55°S), and South Georgia
(34°W—-42°W, 50°S—55°S).

As discussed in the previous section, one of the limitations of this study is the limited
availability and spatial coverage of NCP observations used in the SOM analysis for generalizing
the relationships between NCP and each of the predictors. As a quantitative indication of how
this limitation may impact the constructed NCP climatology, Figure 3 shows the standard
deviation, G, Of the growing season mean NCP from the one hundred bootstrap NCP datasets
(Section 3.3), superimposed with the locations of each ship track. Largest uncertainties (Gpoor ~
6—7 mmol C m™d™) are found over the Patagonian Shelf, where ship track coverage is lacking.
In regions of dense ship track coverage, the uncertainty is generally lower (Gpyor < 3 mmol C m”
2d"). The regions of high NCP bootstrap climatology standard deviation provide an indication of
where targeted measurements in future studies may help to reduce the uncertainty of Southern

Ocean NCP estimates.

The climatologies of POC (2002—-2009) and Chl (1998—-2007) are shown in Figure 2b and
Figure 2c for comparison. Chl is in log scale due to its strong positive skewness. Overall, the

regions of high mean NCP (Figure 2a) correspond well with regions of high mean POC and Chl.
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The area-weighted, centered pattern correlation coefficients are 0.66 and 0.33 for climatological
NCP versus POC and versus log;o(Chl), respectively. On the basis of these pattern correlations,
the climatological POC and Chl fields are able to explain, in a linear sense, 44% and 11% of the
climatological NCP field, respectively. However, the temporal correlation between NCP and
POC and logjp Chl in the daily ship track data are only 0.20 and 0.23, respectively, which
suggests that POC and Chl alone only explain a small percentage of the NCP variability on daily
and shorter timescales. The low correlation between NCP and Chl on shorter timescales is
consistent with Reuer et al. [2007]. Despite this weak linear relationship in the ship track data,

we seem to be able to tease out a clear link in the Southern Ocean climatology.

4.2. Regional NCP evaluation

In the following, we compare the regional NCP between the constructed data and
independent in situ estimates available in the literature. For the NCP values reported for the
period prior to our data availability, we provide the climatological values from our data at the
sites and calendar days of the measurements. For those reported for the period overlapping our

data period (1998—-2009), we carry out a real-time comparison.

First we compare our NCP climatology with that off the southeast coast of the South Island
of New Zealand, derived from the Munida time series (171.5°E 45.85°S) using a BC-based
diagnostic box model [Brix et al., 2013]. Their reported NCP climatology, 14.6—22.3 mmol C
m™>d’, is in strong agreement with our constructed climatology of 22.1 mmol C m™d™, with a
95% bootstrap confidence interval of 16.7-25.2 mmol C m™d™, for the identical time period of
mid October—March 1998—2009. Table 2 shows the area-integrated NCP south of 50°S from
various models and their corresponding periods. The 12-year climatology (1998-2009) of our
constructed NCP is 17.9 mmol C m™>d™ with the 95% bootstrap confidence interval of 13.9-21.4
mmol C m'zd'l, whereas the values of other studies range from 8.3 to 24 mmol C m'zd'l, most of

which are encompassed by the 95% bootstrap confidence interval.

In the Indian and Pacific sectors of the Southern Ocean, spanning from 1976 through 1997,
most of the in situ derived NCP are reasonably close to our values, given the uncertainty of the

climatology as given by the bootstrap interval and the temporal variability as given by the
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seasonal standard deviation (Table 3.1). One exception is the high-end values over the southern
and southwestern Ross Sea, derived using a seasonal DIC budget approach by Sweeney et al.
[2000]. These regions are mostly located south of 75°S (Regions I and II in Sweeney et al.
[2000]). The reason why our model may underestimate the NCP in the region may be due to the
poor coverage of the predictors. The predictor, MLD, covers only quasi-global domain with the
southern boundary at 75°S. The other two predictors, Chl and PAR, have only less than 60%
coverage in the area during the growing season. In Table 3.2, we examine the Atlantic sector.
Because the in situ derived NCP are collected during the period 1998-2009, we provide the real-
time NCP from our dataset for comparison. Our values agree well with previously reported
values. For example, both our study and previous measurements determine relatively low NCP
values near the Atlantic Polar Frontal Zone (PFZ) during March of 2008 (middle rows) but much
higher values around 37 mmol C m™d™" in the Atlantic-India sector in December of 2006 (bottom

TOW).

Originating from upstream shallow sediments, iron carried by ocean currents can fuel
productivity in the waters downstream, leading to phytoplankton blooms. Such an island mass
effect has been recorded near the Islands of Kerguelen, South Georgia, and Crozet [Bakker et al.,
2007; Jouandet et al., 2008; Jones et al., 2012]. Here we determine if our NCP data reproduce
the island mass effect. Both upstream (outside the bloom) and downstream (inside the bloom)
values are listed in Table 3.3 Our data capture the upstream and downstream differences in all
three island regions. The downstream (inside the bloom) values, however, are smaller than those
reported for the Kerguelen Island and South Georgia, possibly due in part to area averaging over

a coarse grid in our dataset.

4.3  Basin-scale climatology comparison
4.3.1. Model comparison

Figures 4 and 5b show the basin-scale export rate estimates from two different models, one
based on inverse modeling (GCM fitting to observation) [Schlitzer 2002], and the other from a
satellite NPP-export model calibrated to atmospheric O,/N, measurements [Nevison et al.,

2012]. Because only the January climatology is available from Nevison et al. [2012], we include
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our January map in Figure 5a for comparison. We see that the spatial patterns in these two
models are in broad agreement with the climatology of our data (Figs 2a and 5a), including
regions of high carbon export along the zonal band between 40°S and 60°S, in the coastal
upwelling zones off Chile and Namibia, as well as on the Patagonian Shelf. The main difference
between the present study (Figure 2a) and the inverse modeling result of Schlitzer [2002] (Figure
4) is that in the latter, the climatology is smoother, the zonal band of high export rate is displaced
more to the south, and the high export region off the coast of Chile is more spread out. The
broader and smoother features in Schlitzer [2002] are likely due to the coarser spatial resolutions

available at the time of the study.

The two January climatologies generally differ by less than 10 mmol C m™d™ throughout the
Southern Ocean, except a large discrepancy greater than 100 mmol C m2d! over the Patagonian
Shelf (Figure 5c). Closer inspection reveals a wide range of NCP values in this region among
models: 28—30 mmol C m™2d™ in our J anuary map (Figure 5a), 150—400 mmol C m™d in that of
Nevison et al. [2012] (Figure 5b), 40—140 mmol C m>d!in Westberry et al. [2012] (not shown),
and 50-60 mmol C m™>d" in Schlitzer’s annual mean [2002] (Figure 4). High daily NCP of
70-90 mmol C m™d"' has been measured over periods of 3—4 days in this region [Schloss et al.,
2007], although it is unclear if such high values over short time periods are representative of the

monthly climatology.

The Patagonian Shelf region is known to exhibit highly variable biological activity owing to
its uncertain relationships between phytoplankton communities and NCP [Schloss et al., 2007],
complicated bathymetry, complex ocean dynamics [Bianchi et al., 2005; Romero et al., 2006;
Rivas, 2006; Garcia et al., 2008], and multiple sources of iron, including atmospheric dust
[Erickson et al., 2003; Gasso et al., 2010; Signorini et al., 2009; Boyd et al., 2012] and ocean
upwelling, sediment resuspension, and shelf transport [Garcia et al., 2008; Signorini et al., 2009;
Fainter et al., 2010]. However, the scarcity of in situ measurements of longer timescales has
hindered the progress in establishing a reliable regional climatology and has made model

validation challenging.
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4.3.2. Air-sea CO; flux

We now compare our NCP with the air-sea CO, flux obtained from the monthly
climatological maps of Takahashi et al. [2009] for the growing season. In Figure 6a, a zonal
band of high CO, flux is seen between 40°S and 60°S, similar to the zonal belt of CO, flux
reported for the February climatology [Takahashi et al., 2012]. Albeit with a much coarser
resolution (5° lon x 4° lat), the pattern of high CO; flux is in good agreement with the high NCP
band (see Figure 2a), outlined by the contour of NCP = 16 mmol C m™d” in Figure 6a. The
small CO, flux compared with NCP could result from CO; outgassing due to warming during the

growing season, dampening the biologically-driven CO, uptake [Takahashi et al., 2012].

Figure 6b shows the monthly mean of the area-integrated NCP, CO, flux, and SST south of
50°S from October to March. The NCP starts to increase steadily from 0.6 Pg C yr”' in October
until it reaches a peak around 1 Pg C yr' in December, with a gentle decline from January to
March. Similarly, the CO, flux changes from 0.2 Pg C yr™' out of the ocean in October to 0.2 Pg
C yr' into the ocean in December, peaks at 0.4-0.5 Pg C yr'' in January and February, lagging
the NCP peak by 1-2 month, and declines thereafter. We see that the large difference between
the CO; flux and NCP seems coincident with the fast increase in SST from October to January.
This difference becomes smaller as the SST increase slows down from January to March.
Overall, this large imbalance in the early growing season is suggestive of the dominance of the

warming-induced CO; outgassing, but further investigation is warranted.
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5. Discussion and conclusions

In this study we have described the methodology and general features of a 1998—-2009
Southern Ocean NCP dataset constructed through a neural network approach. This effort
represents the first attempt to construct such a dataset over the Southern Ocean or any large basin
entirely on the basis of observed relationships between NCP measurements and NCP predictors.
This approach is based on a self-organizing map analysis that assumes no parametric functional
form between NCP and the predictors. Overall, we find that our constructed NCP dataset is in
good agreement with previously published independent in situ derived NCP values of weekly or
longer temporal resolution through real-time as well as climatological comparisons at different
sampling sites (Tables 2-3). One exception is the region south of 75°S, where the predictor

coverage is poor (Section 4.2).

The growing season climatology of our constructed NCP reveals a pronounced zonal band of
high NCP that approximately follows the STF between 40°S and 60°S in the Atlantic, Indian and
western Pacific sectors, and turns southeastward shortly after the dateline (Figure 2a). Other
regions of elevated NCP include area along the SBdy and Antarctic coast, the complex region of
Patagonian Shelf and BMC zone, as well as the coastal upwelling zones off Chile and Namibia.
This elongated zonal band resembles the observed air-sea CO, flux (Figure 6a). The CO, flux is
generally smaller than the NCP in early growing season (Figure 6b). This difference may result
from the rapid temperature increase in the upper ocean during this period, which reduces the CO,
solubility and possibly results in CO, outgassing partially countering the NCP-driven CO, uptake
(section 4.3.2). However, additional investigation into this hypothesis is necessary in future

studies.

The NCP climatological pattern is generally consistent with the expected NCP climatology
based on the inverse model of Schlitzer [2002] (Figure 4) and the carbon export model of
Nevison et al. [2012] (Figure 5b) with significant regional variations. The largest discrepancy
appears in the Patagonian Shelf, where the estimated climatology ranges from 30 to 400 mmol C
m?d’ among models (section 4.3.1). Additional field campaigns targeting NCP measurements

in this region would help to reduce this uncertainty.
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The similarity in the climatological spatial distributions of NCP, POC and Chl is readily seen
but with notable differences, as evidenced by the pattern correlations of 0.33 and 0.66 between
NCP versus log;o(Chl) and NCP versus POC respectively (Figure 2, Section 4.1). The low
correlation between NCP and Chl may be due to the nonlinear relationship between Chl and
phytoplankton biomass, as the Chl concentration depends on both phytoplankton biomass and
cellular pigmentation, which adjusts to growth conditions [Geider et al., 1996, 1997, 1998;
Behrenfeld and Boss, 2003; Brown et al., 2003; Le Bouteiller et al., 2003; Behrenfeld et al.,
2005; Armstrong, 2006; Schultz, 2008; Westberry et al., 2008; Wang et al., 2009]. Another
possibility is that the standard ocean-color to Chl algorithm is not well calibrated for the
Southern Ocean, as shown in recent studies [Mitchell and Kahru, 2009; Kahru and Mitchell,
2010; Johnson et al., 2013].

The fact that the NCP and POC climatologies bear stronger resemblance is consistent with
the previous findings that POC production is the largest contributor to NCP in the Southern
Ocean [Ogawa et al., 1999; Wiebinga and de Baar, 1998; Kaehler et al., 1997; Hansell and
Carlson, 1998; Sweeney et al., 2000; Schlitzer, 2002; Ishii et al., 2002; Allison et al., 2010]. We
elaborate further by multiplying POC with MLD to arrive at a quantity we define as POC
inventory (mmol C m™), and then by comparing POC inventory with NCP in Figure 7a. We use
the monthly, 3°x3° bin-averaged MLD product (2002—2009) derived from the Argo float profiles
based on a temperature criterion [Kara et al., 2000] for this calculation
(http://apdrc.soest.hawaii.edu/). We see that the overall pattern of POC inventory is similar to
the NCP distribution.

Although the NCP and POC climatologies correspond well, some spatial variations of the
POC-NCP relationship are evident. Such variations may result from true physical differences in
the POC-NCP relationships and/or to errors related to the NCP estimates and satellite-derived
POC estimates [Gardner et al., 2003; Stramski et al., 2008]. To explore further, we show in
Figure 7b the scatter plot of NCP against POC, sorted by latitude bands, for each of the Southern
Ocean grid points. This figure demonstrates that although there is a positive correlation between
NCP and POC, the relationship appears not to be a simple linear relationship, with variations
across different latitude bands. For example, the relationship between POC and NCP appears to

be stronger for lower mean POC values at lower latitudes but weaker at higher latitudes
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poleward of 60°S. If this variation is not due to measurement artifacts, this plot suggests that

there may be some regions with high mean POC but relatively low NCP, and vice versa.

Another possibility, however, is that there may be errors in the ship track NCP estimates in
some regions characterized by strong vertical mixing of O,-undersaturated waters to the surface,
as pointed out by Reuer et al. [2007]. Although we excluded all negative NCP estimates from
the SOM analysis, which correspond to regions of upwelled, O,-undersaturated water, it is
possible that this vertical mixing effect still remains in some non-excluded, positive estimates of
NCP if the biological productivity of O, is strong enough. When this effect occurs, some of the
low NCP/high POC regions may have a negative bias from O;-undersaturated upwelled water.
Future investigations into these particular regions are needed to determine to what degree this
anomalous low NCP/high POC behavior represents a physical process, a bias, or some

combination of the two.

Strong correspondence between POC and NCP in the Southern Ocean on longer timescales
suggests that as satellite POC observation becomes available for a longer time period, it can
provide a direct view of carbon export variability with a reasonable amount of uncertainty.
However, on shorter timescales, the correspondence between NCP and POC is weaker, as
evidenced by the correlation of 0.20 in the daily ship track data (section 4.1) and pattern
correlations of less than 0.5 in the monthly snapshots (supplementary material). In addition, a
major obstacle in monitoring POC variability from satellite is cloud cover, as the Southern
Hemisphere belt (between 30°S and 65°S) is among the cloudiest regions on the planet [Haynes
et al., 2011]. Therefore, evaluation of NCP variability across a range of timescales requires

consideration of the relationships between NCP and multiple variables, as in the present dataset.

Although these results suggest promise in providing insight into Southern Ocean NCP mean
state and variability, substantial uncertainty in the NCP construction remains. On weekly
timescales, uncertainty due to NCP variance unexplained by the predictors likely dominates, as
we estimated a MAE and RMSE of 6.76 and 11.4 mmol C m™~ d™', respectively, based on the ship
track data. For longer time averages, i.e. seasonal to decadal, errors in NCP measurements and

limitations in ship track coverage likely dominate the uncertainty. As discussed above, efforts to
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remove possible biases related to the vertical mixing of O,-undersaturated water would reduce

NCP measurement errors.

Regarding the latter source of uncertainty, additional field campaigns to measure Southern
Ocean NCP, particularly in several data sparse regions, possibly would lead to improved NCP
constructions. Through a bootstrap approach to constructing several overlapping NCP datasets,
we have quantified the variance in NCP climatology owing to the limitations of ship track
coverage. This analysis has identified several regions where bootstrap climatology variance is
high but the number of NCP observations is low or zero (see Figure 3). This finding suggests
that targeted measurements in these particular regions may help to constrain the relationships
between NCP and each of the predictors, thus resulting in reduced uncertainty in the Southern

Ocean NCP climatology and variability.

Notwithstanding these limitations, the dataset we present provides a new opportunity to
investigate large-scale variability of NCP and its connections to the Southern Ocean carbon cycle
in ways previously not possible in an observation-based dataset. A recent study suggests that a
global algorithm for determining NCP may not capture regional NCP differences effectively [Li
and Cassar, 2013]. The variable relationships between ocean color, Chl concentration, and
depth-integrated productivity in different ocean regions [Campbell et al., 2002; Emerson et al.,
2008] have challenged the NPP models, with particular difficulty, for example, in regions of
extreme Chl [Carr et al., 2006] and coastal waters [Saba et al., 2011]. Our data-driven approach
may provide guidance to help correct for biases in the NPP models. Our constructed dataset also
may offer the opportunity to investigate interannual NCP variability, even if only for a period of
a little more than a decade (see supporting material for a preliminary example). As more NCP
measurements and validation data become available, this dataset shall be continually refined,

with the hope that applications expand as errors are reduced.
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Figure 2. Growing season (November—March) climatologies (in color) of (a) NCP (mmol C m’
2d™") for 1998-2009, (b) POC (mmol C m™) for 2002-2009, and (c) log;o Chl (mg m™) for 1998-
2007. The major Southern Ocean fronts [Orsi et al., 1995] are superimposed (from the north):
the Subtropical Front (STF), the Subantarctic Front (SAF), the Polar Front (PF), and the
Southern Boundary (SBdy).
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Figure 6. Comparison with air-sea CO, flux (a) November—March climatology of air-sea CO,
flux [Takahashi et al., 2009] (mmol C m'zd'l, in color) superimposed with the contour of NCP =
16 mmol C m™d™". (b) Evolution of monthly mean area-integrated (>50°S) NCP (red), CO, flux
(blue), and SST (green) from October to March. The left y-axis corresponds with the NCP and
CO; (Pg/yr) and the right y-axis corresponds with SST (°C). Note that the air-sea CO, flux is
defined positive into the ocean.
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1 Table 1. Availability percentage of predictor variables in the ship track and weekly gridded data used to generate NCP maps.

Variable Ship track availability (%) Weekly gridded map availability (%)
SST 97.8 97.0
Chi 42.1 59.9
POC 62.6 40.4
PAR 81.3 45.9
MLD 97.8 83.7
SSH 85.3 78.9




Table 2. Comparison of area-integrated NCP for the Southern Ocean south of 50°S.

NCP (mmol C m?2d?)

Reference Method Period Previous studies This study (95% Cl)*
NCAR CMIP5 coupled carbon-
Moore et al. [2013] ] . . 1990s 12-15
climate simulation
Carbon-based NPP model and
Westberry et al. [2012] empirical relationships of in vitro 2004 8.3
PVR®
Nevison et al. [2012] VGPM NPP and export model 1998-2007 12-24 17.9 (13.9-21.4)
POC export from empirical 1998-2009
Dunne et al. [2007] equation based on in situ 1998-2004 11-14
observation
Nutrient drawdown based on
Pollard et al. [2006] . long-term 17-22
Ekman flux divergence
Schlitzer [2002] 3D inverse model steady-state 15-20

1 95% bootstrap confidence interval.

’ PVR: photosynthesis versus respiration.



1

Table 3.1. Climatological comparison of independent in situ NCP measurements and the constructed NCP.

Reference Method

Location Time

NCP (mmol C m?d?)

Previous This study
study Climatology ()" (95% Cl)?
Indian sector
Minas & Minas Mass balance based on o o o Aug/Sep—Feb/Mar N 3
(1992] nutrient drawdown (65°F 40°—62°S) 6761977 17 18 (+12) (15-24)
Ishii et al. [1998] ~ Se3sonal ADIC (30°-40°E 67°—68.2°S) 14-17 Feb 1993 14-19 19 (+10) (7.5-21)
(temporal difference)

(47.5°-48.8°E 66°-66.5°S) 19 Feb 1993 22-29 20 (+11) (11-24)
(49.1°-67.8°E 65°-65.7°S) 26—28 Feb 1993 13-17 13(+9.8) (7.6—22)

(70.6°~77.5°E 67°-69°S) 28 Feb—1 Mar 1993 24-32 26 (+10) (15-37)

Indian & Pacific sectors

(80°—150°E 63°-65°S) 4-13 Mar 1993 20-27 20(+11) (6.8-27)

Rubin et al. [1998] seasonal ADIC [vertical 110°-171°E 67°-70°S Winter-late Feb/mid 6.5-24 18 (+12) (13-21)°
' gradient) (110" —70°%) Mar 1992, 1994 ' -

Ishii et al. 12002 Seasonal ADIC o o o 19 Dec 1994-21 Jan 55 98 16 (+12) (11-21

shii et al. | ] (temporal difference) (140°E 64°-65.5°S) 1995 .5— (£12) (11-21)
Ross Sea
i Mid Oct 1996—Mid
Sweeny et al. [2000] Seasonal ADIC (vertical (163°—186°F 74°—78°S) 29-64 25 (+10) (16-34)

gradient)

Feb 1997

! seasonal standard deviation.
2 95% bootstrap confidence interval.
3

November-March mean.



1 Table 3.2. Real-time comparison of independent in situ NCP measurements and the constructed NCP.

NCP (mmol C m2d™)

Reference Method Location Time Previous This study
studies (95% CI)*
Scotia Sea
] ) o o 20 Nov—31 Dec
Shim et al. [2006] nutrient drawdown (52°W 57°-60°S) 5001 24-29 26 (20-46)
Atlantic sector
Hamme etal. (37°-38°W 50°-51°9) 2-9 Mar 2008 11-22  8.4(0.9-36)
2/ AT
[2012] 9-14 Mar 2008 5-13.8 7.6 (1.9-37)
Mooreetal.  Mass balance based 370 3001y 50570 9-14Mar2008  32-67  7.6(1.9-37))
[2011] on ADIC and O,
Atlantic-Indian sector
Based on mixed
i 1 28 Nov—30 Dec
Boutin & Merlivat (16.4°—21.2°F 46.8°~47.8°) 30-51 37 (15-51)

layer budget on

[2009] diurnal time scale

2006

1 95% bootstrap confidence interval.



1

Table 3.3. Real-time comparison of island mass effect.

NCP (mmol C m?d™)

Reference Method Time Location —
revious . o/ ~nl
study This study (95% Cl)
Kerguelen
Jouandet et al. [2008] seasonal ADIC Nov 2004—Feb 2005 Inside bloom (72°E 50.5°S) 49-98 44 (21-57)
(vertical gradient)
Outside bloom (78°E 52°5) 17-26 18 (12-40)
South Georgia
Jones et al. [2012] seasonal ADIC Nov 2007—Feb 2008 Bloom (39°—40°W 52°S) 43 32 (20-40)
(vertical gradient)
HNLC (42°W 56°—57°S) 12 18 (16—36)
Crozet
ADIC in the upper 8 Nov 2004—-16 Jan o o o o
Bakker et al. [2007] 100m 2005 Bloom (47°—52°E 43°—45.5°S) 33-45 32 (20-40)
HNLC (47.8°-49°E 51.5°-52.9°S)  16_19 15 (13-30)

1 95% bootstrap confidence interval.
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Supporting Material to Neural network-based estimates of Southern Ocean
net community production from in-situ O,/Ar and satellite observation: A

methodological study

S1. Supplementary Methods

S1.1 General Desription

The SOM methodology partitions a potentially large, high-dimensional dataset into a smaller
number of representative clusters. In contrast with conventional cluster analysis, these SOM
clusters, each of which is associated with a component called a node or neuron, become
topologically ordered on a lower-dimensional, typically two-dimensional, lattice so that similar
clusters are located close together in the lattice and dissimilar clusters are located farther apart.
This topological ordering occurs through the use of a neighborhood function, which acts like a
kernel density smoother among a neighborhood of neurons within this low-dimensional lattice.
As a result, neighboring neurons within this lattice influence each other to produce smoothly
varying clusters that represent the multi-dimensional distribution function of the data used to

construct the SOM.

Our approach of determining predictor/predictand SOM clusters is quite similar to that of
Telszewski et al. [2009] except for one main difference: we incorporate the predictand into the
SOM analysis rather than labeling each neuron with an associated NCP value after the SOM has
been trained. Thus we combine the first two steps of map generation from Telszewski et al.
[2009] into a single step. We choose this alternative approach so that the neighborhood function,
which smoothes the clusters in the data space, may operate on the NCP as well as the predictor

data.

Because the SOM training is limited to the ship track data, one of the main requirements for a
successful NCP dataset construction is that the range of predictor values in the ship track data
should approximately span the predictor range in the gridded data used to generate the Southern
Ocean mapping [Kohonen, 2001; Telszewski et al., 2009]. To assess the reasonableness of the
range spanned by the training data, we calculate the percentage of gridded predictor data that

falls outside of the range of the training data for each of the three retained predictors, Chl, PAR,

1
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and MLD. For Chl, approximately 4.4% of the gridded values fall below the ship track
minimum (0.04 mg m'3), and 2.0% exceed the ship track maximum (1.56 mg m'3). For PAR,
5.2% of the gridded values fall below the ship track minimum (9.63 pE m2 s, and 1.3%
exceed the ship track maximum (59.5 uE m™ s™). For MLD, only 0.3% of the gridded values
fall below the ship track minimum (3.5 m), and 0.3% exceed the ship track maximum (595 m).
In summary, the range of the predictor values in the ship tracks appears to be fairly
representative of that of the Southern Ocean overall during the period of interest, with well over
90% of the gridded values falling within the range of the ship track values. These calculations
add support to the appropriateness of using the ship track data to generate a broad Southern
Ocean mapping. However, we do note that a higher percentage of gridded predictors fall below
the ship track minimum for Chl and PAR, which suggests that there may be at least a slight NCP

prediction bias in regions of very low Chl and/or PAR.

As discussed in the main text, the parameters for which the SOM likely is most sensitive are
the total number of neurons (i.e., the product of the number of rows and columns in the SOM)
and the final neighborhood radius. For that reason, we vary each of those parameters in the
cross-validations discussed below. For the sake of completeness, we mention here the other
parameter choices used in our study (see Liu et al. [2006] and Johnson et al. [2008] for a
description of these parameters). We use a rectangular lattice and a Gaussian neighborhood
function. The neighborhood function uses an initial radius of 4, which gradually shrinks to the
final radius of 1. The “rough” training phase uses 20 iterations of the batch algorithm, which is

followed by 500 iterations during the fine-tuning phase.

S1.2 Cross-validations

To determine a set of candidate predictor and parameter combinations, we first perform a set
of cross-validation tests in the following manner. We identify 39 weeks in the ship track
database that have at least five days of NCP data within a seven-day period and then divide these
39 weeks into five validation segments (eight weeks each segment except one with seven
weeks).  We next perform a five-fold cross-validation for many predictor/parameter
combinations, whereby we train the SOM with all ship track data excluding the validation
segments and evaluate the prediction of weekly mean NCP for the validation segments in five

separate iterations. To minimize the possibility that the data in the validation and training



59
60
61

62
63
64
65
66
67
68

69

70
71
72
73
74
75
76
77
78
79
80
81
82
83

84
85
86
87

samples are highly correlated and thus leading to over-confident NCP predictions, we add the
condition that the data from any particular ship track cannot be split between training and

validation samples. We calculate the MAE, RMSE, and MFE of the predicted NCP.

For the SOM parameter combinations we evaluate the following values for the number of
rows and columns: 1-6, 8, 10, 12, 14, 18, and 24. We also vary the final neighborhood radius
from zero to five. With 12 possible values for the number of rows and columns and six values
for the final neighborhood radius, we test 864 possible SOM parameter combinations. In
addition, we test all 63 possible predictor combinations to give a total of 54,432 cross-validation
tests. We record the parameter combination with the minimum MAE, RMSE, and MFE for each

of the 63 predictor combinations.

S2. Interannual NCP variability

To explore the potential use of our constructed dataset to study interannual NCP variability,
we present snapshots of November NCP for 2003 and 2004 in Figures Sla and S1b. These
results should be interpreted with caution because we have not yet assessed the uncertainty in
interannual predictions. In both figures, two large patches of high NCP are seen over southwest
Atlantic in the Brazil-Malvinas Confluence zone as well as in the region near southeast Australia
and New Zealand, which are marked with blue squares in Figure S1. Our constructed dataset
predicts variations between these two years in the two regions. The Australia-New Zealand
patch (140°E—170°W, 35°S—46°S) exhibits a distinct southeastward extension in 2003 (Figure
Sla), whereas it is zonally confined in 2004 (Figure S1b). Over the Brazil-Malvinas patch
(65°W—45°W, 35°S—46°S), the area-averaged NCP decreases from 37 to 27 mmol C m™d™ from
2003 to 2004. The November maps of POC (Figures S2a, b) and Chl (not shown) also show
similar variations for the same years, which support the physical basis for these NCP changes.
The pattern correlation between NCP and POC (log;o(Chl)) are 0.48 (0.42) and 0.47 (0.39) for
2003 and 2004, respectively.

These large-scale variations in biological productivity plausibly may relate to dominant
modes of the ocean-atmosphere interaction and the associated atmospheric teleconnections, as
well as ocean current variability. For example, possible contributors include the change from

neutral ENSO to El Nino conditions between 2003 and 2004 [Yu et al., 2012], and the
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pronounced southward shift of the Brazil Current front from the continental shelf observed in
2003 [Goni et al., 2011]. However, more in depth analysis of the mechanisms of variability is

reserved for future studies.

One may question whether the constructed NCP dataset can capture intraseasonal and
interannual variability, given the fairly weak relationship between daily NCP and POC/Chl in the
ship track observations, as reported in the main text, the temporal correlation between daily NCP
and POC/log;o(Chl) is only 0.20/0.23. Because the residence time of POC and NCP integration
time are of similar magnitude, 1-2 weeks in the surface ocean, and POC is the dominant form of
NCP in the Southern Ocean, the low correlation between POC and NCP on daily timescales
suggests sub-weekly transient processes and/or measurement errors that weaken the POC/NCP

relationship.

The weak correlation between NCP and Chl is similar to the value of 0.33 reported in Reuer
et al. [2007], although Reuer et al. [2007] consider area averages in three discrete zones for each
of 23 transits rather than discrete points along the ship tracks. However, a substantially
improved correlation of 0.62 is achieved in Reuer et al. [2007] between the in situ NCP and
NPP, calculated using the VGPM (Vertically Generalized Productivity Model) of Behrenfeld and
Falkowski [1997] that accounts for additional predictors (e.g., Chl, SST, and PAR). Given that
our SOM-based approach includes additional biogeochemical and physical properties, aside from
Chl that is also incorporated in the VGPM NPP estimates of Reuer et al. [2007], that our results
are constrained by in sifu observations, and that we find good agreement with previously
reported independent, in situ NCP measurements (Tables 3.2 and 3.3) through real-time
comparisons, we expect that our reconstruction explains a larger fraction of NCP variance on
intraseasonal and interannual timescales than indicated by the low POC and Chl correlations.
Additional validation tests are required to assess the reliability of the predicted interannual and

possibly intraseasonal NCP variability, and relation to plausible physical mechanisms.

Reference

Behrenfeld, M. J., and P. G. Falkowski (1997), Photosynthetic rates derived from satellite-based
chlorophyll concentration, Limnol. Oceanogr., 42, 1-20.



117
118

119
120
121

122
123
124

125
126

127

Goni, G.J., F. Bringas, and P.N. DiNezio (2011), Observed low frequency variability of the
Brazil Current front, J. Geophys. Res., 116, doi:10.1029/2011JC007198.

Reuer, M. K., B. A. Barnett, M. L. Bender, P. G. Falkowski, and M. B. Hendricks (2007), New
estimates of Southern Ocean biological production rates from O,/Ar ratios and the triple
isotope composition of O,, Deep-Sea Res., Part I, 54, 951-974.

Telszewski, M., et al. (2009), Estimating the monthly pCO, distribution in the North Atlantic
using a self-organizing neural network, Biogeosciences, 6, 1405-1421, doi 10.5194/bg-6-
1405-20009.

Yu, J.-Y., Y. Zou, S.T. Kim, and T. Lee (2012), The changing impact of El Nifio on US winter
temperatures, Geophys. Res. Lett., 39, doi:10.1029/2012GL052483.



150F 180 1500 120W  90OW 60W 30W
6 12 18 24 30 36 42 48

150 180  150W  120W  9OW BOW 30w 0
127  Figure S 1. November NCP (mmol C m*d™) for (a) 2003, and (b) 2004. The blue squares mark
128  the two regions discussed in the supporting text.
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