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Abstract �	�

Southern Ocean organic carbon export plays an important role in the global carbon cycle, yet �
�

its basin-scale climatology and variability are uncertain due to limited coverage of in situ ���

observations.  In this study, a neural network approach based on the self-organizing map (SOM) ���

is adopted to construct weekly gridded (1
o
×1

o
) maps of organic carbon export for the Southern ���

Ocean from 1998 to 2009.  The SOM is trained with in situ measurements of O2/Ar-derived net ���

community production (NCP) that are tightly linked to the carbon export in the mixed layer on ���

timescales of 1−2 weeks, and six potential NCP predictors: photosynthetically available radiation ���

(PAR), particulate organic carbon (POC), chlorophyll (Chl), sea surface temperature (SST), sea ���

surface height (SSH), and mixed layer depth (MLD).  This non-parametric approach is based ���

entirely on the observed statistical relationships between NCP and the predictors, and therefore is �	�

strongly constrained by observations. �
�

A thorough cross-validation yields three retained NCP predictors, Chl, PAR, and MLD.  Our ���

constructed NCP is further validated by good agreement with previously published independent ���

in situ derived NCP of weekly or longer temporal resolution through real-time and climatological ���

comparisons at various sampling sites.  The resulting November−March NCP climatology ���

reveals a pronounced zonal band of high NCP roughly following the Subtropical Front in the ���

Atlantic, Indian and western Pacific sectors, and turns southeastward shortly after the dateline.  ���

Other regions of elevated NCP include the upwelling zones off Chile and Namibia, Patagonian ���

Shelf, Antarctic coast, and areas surrounding the Islands of Kerguelen, South Georgia, and ���

Crozet.  This basin-scale NCP climatology closely resembles that of the satellite POC field and �	�

observed air-sea CO2 flux.  The long-term mean area-integrated NCP south of 50
o
S from our �
�

dataset, 17.9 mmol C m
-2

d
-1

, falls within the range of 8.3−24 mmol C m
-2

d
-1

 from other model ���

estimates.  A broad agreement is found in the basin-wide NCP climatology among various ���

models but with significant spatial variations, particularly in the Patagonian Shelf.  Our approach ���

provides a comprehensive view of the Southern Ocean NCP climatology and a potential ���

opportunity to further investigate interannual and intraseasonal variability.   ���

���
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1. Introduction ���

The Southern Ocean plays an important role in the global carbon cycle.  The current annual ���

global ocean uptake of atmospheric carbon dioxide (CO2) is about 2 petagrams (Pg) of carbon, ���

half of which is taken up by the vast Southern Ocean south of 30
o
S [Takahashi et al., 2012].  �	�

Atmospheric CO2 absorbed by the ocean can be transferred from the surface to the deep ocean �
�

via various physical, chemical and biological mechanisms associated with the solubility and ���

biological pumps [Volk and Hoffert, 1985; Carlson et al., 2010].   ���

Biological carbon export from the ocean surface is a function of various processes, including ���

net community production (NCP), which reflects the metabolic balance between gross primary ���

production (GPP) and community respiration [Codispoti et al., 1986; Minas et al., 1986].  It ���

describes the net rate at which CO2 is transformed to particulate and dissolved organic carbon ���

(POC and DOC).  For the present study, we use NCP estimates derived from in situ ���

measurements of the elemental ratio of O2/Ar.  The O2/Ar method measures biological O2 ���

supersaturation in the mixed layer [Craig and Hayward, 1987], and yields NCP estimates over �	�

the O2 residence timescale (1−2 weeks) [Reuer et al., 2007; Cassar et al., 2007, 2009, 2011].  On �
�

this timescale, the NCP derived from this method is tightly linked to the export of organic carbon ���

from the mixed layer at steady state, under the assumptions that both vertical mixing of O2-���

depleted waters from below and accumulation of POC and DOC in the mixed layer are ���

negligible [Cassar et al., 2009, 2011; Jonsson et al., 2013].  Although we use NCP and carbon ���

export production interchangeably in this study, it should be noted that under some ���

circumstances, the assumption of steady-state is violated [Hamme et al., 2012; Jonsson et al., ���

2013]. ���

While in situ O2/Ar measurements shed new light on the NCP distribution and variability, the ���

Southern Ocean remains seriously undersampled.  The difficulty in obtaining a large-scale �	�

picture of the carbon export owes to the unavailability of direct satellite measurements.  In �
�

addition, NCP is highly variable in space and time and cannot be derived from linear ���

interpolation between in situ measurements.  Field experiments also reveal that the plankton ���

ecosystem and CO2 flux variability are not dominated by just one single mechanism but by a ���

confluence of several processes that shift in relative importance over time and space [Banse, ���
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1996; Abbott et al., 2000, 2001; Cassar et al., 2011; Tortell et al., 2012], which are difficult to ���

capture in biogeochemical models.   ���

An alternative strategy is to use a data-driven modeling approach.  We may achieve a more ���

comprehensive characterization of temporal and spatial variability of NCP by examining the ���

statistical relationships between NCP and physical as well as biogeochemical properties that �	�

potentially have impacts on carbon export.  In addition to mixed layer depth (MLD) and light �
�

(i.e., photosynthetically available radiation (PAR)) [Cassar et al., 2011], POC, Chl, sea surface 	��

temperature (SST), and sea surface height (SSH) are likely important factors regulating or 	��

correlated with NCP in the Southern Ocean.  POC production is the dominant form of NCP in 	��

the Southern Ocean [Ogawa et al., 1999; Wiebinga and de Baar, 1998; Kaehler et al., 1997; 	��

Hansell and Carlson, 1998; Sweeney et al., 2000; Schlitzer, 2002; Ishii et al., 2002; Allison et al., 	��

2010], and Chl concentration is commonly used to estimate net primary production (NPP) from 	��

satellites [Behrenfeld and Falkowsky, 1997; Moore and Abbott, 2000; Campbell et al., 2002; 	��

Carr et al., 2006; Bissinger et al., 2008; Friedrichs et al., 2009; Saba et al., 2011; Friedland et 	��

al., 2012; Nevison et al., 2012; Olonscheck et al., 2013].  SST has been used to derive export and 		�

export efficiency based on the relationship with NPP and through its influence on heterotrophic 	
�

activity [Laws et al., 2000; Laws 2004; Laws et al., 2011].  SSH yields information on oceanic 
��

eddies, fronts, and nutrient transport that are crucial to spatial variation of biological activity 
��

[Abbott et al., 2000, 2001; Glorioso et al., 2005; Kahru et al., 2007; Gruber et al., 2011]. 
��

Advances in remote sensing and statistical algorithms now permit satellite data-driven 
��

modeling of NCP.  Satellite-borne sensors have accumulated records for a decade or longer of 
��

PAR, POC, Chl, SST, and SSH of sufficient resolution and coverage in space and time.  
��

Southern Ocean MLD products became available in recent years from Argo float profiles [Wong 
��

2005; Sallée et al., 2006; Schneider and Bravo, 2006; Dong et al., 2008] as well as from high 
��

resolution ocean general circulation models (OGCMs) [Aoki et al., 2007a; Sterl et al., 2012].  In 
	�

this study, we combine the in situ NCP measurements from 60 crossings spanning more than a 

�

decade with gridded datasets of NCP predictors, PAR, POC, Chl, SST, SSH, and MLD, to ����

generate weekly, gridded maps of NCP estimates over the Southern Ocean from 1998 through ����

2009.  We generate these NCP predictions through the use of self-organizing map (SOM) ����

analysis, a type of clustering approach that has arisen in the field of artificial neural networks ����



� �

[Kohonen, 2001].  SOM analysis has gained in popularity in the atmospheric and ocean sciences ����

over the past decade, with applications in categorizing atmospheric teleconnection patterns ����

[Reusch et al., 2005; Johnson et al., 2008; Johnson and Feldstein, 2010; Johnson, 2013], and in ����

generating maps of pCO2 for the North Atlantic [Friedrich and Oschlies, 2009; Telszewski et al., ����

2009] and for the global ocean [Sasse et al., 2013].   ��	�

In the present application, we follow the general approach of Friedrich and Oschlies [2009] ��
�

and Telszewski et al. [2009], whereby we use the SOM with the combined purpose of cluster ����

analysis and nonlinear, nonparametric regression between a set of predictors and NCP.  Under ����

this approach, which we describe more thoroughly in section 3, we allow the data to determine ����

the potentially complex relationships between the predictors and NCP.  Thus, the predictor/NCP ����

relationships are unconstrained by any pre-conceived, uncertain functional forms and are ����

determined entirely from the observed data, which contrasts previous studies of Southern Ocean ����

NCP.  Nevertheless, we find that our estimates of NCP agree broadly with previous estimates ����

while also providing additional information on temporal and spatial variability.  The remainder ����

of the paper is organized as follows.  In section 2 we describe the data used in the study.  Section ��	�

3 provides a description of the SOM methodology for generating weekly NCP maps and for ��
�

calculating error estimates.  In section 4 we present our results, noting some of the most salient ����

features from the constructed NCP dataset.  Section 5 provides a discussion and conclusions.   ����

����
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2. Data ����

We make extensive use of gridded data products and cruise measurements in the Southern ����

Ocean domain poleward of 20
o
S and for the period between 1998 and 2009.  The gridded and ����

research cruise data are described below.   ����

2.1. Gridded predictor data ����

We consider six gridded data products, PAR, POC, Chl, SST SSH, and MLD, as potential ����

predictors of NCP for use in the SOM analysis and for the generation of weekly NCP maps, as ��	�

described more thoroughly in section 3.   ��
�

We utilize satellite PAR and POC from the Moderate Resolution Imaging Spectroradiometer ����

flown on the Aqua satellite (MODIS-Aqua) 8-day mean 9 km for the period 10 July 2002−30 ����

December 2009.  The weekly averaged Chl are constructed from the daily 9-km maps of Sea-����

viewing Wide Field-of-view Sensor (SeaWiFS), version 5.2 for the period 7 January 1998−26 ����

December 2007 [O’Reilly et al., 1998].  For SST, we use NOAA Optimum Interpolation 0.25
o
 ����

Daily SST  Blended with Advanced Very High Resolution Radiometer (AVHRR) and AMSR ����

version 2 data (OI SST) [Reynolds et al., 2007] for the period 7 January 1998−19 August 2009.  ����

The weekly SSH anomaly maps are obtained from the Archiving, Validation and Interpretation ����

of Satellite Oceanographic Data (AVISO) on about a 1/3
o
 × 1/3

o
 grid [Ducet et al., 2000] from 7 ��	�

January 1998 to 22 July 2009.  To determine the absolute SSH, we added the AVISO SSH ��
�

anomaly to the sea level climatology of Niiler and Maximenko [Niiler et al., 2003; Maximenko et ����

al., 2009].  We choose this particular SSH climatology because it has high spatial resolution ����

[Sokolov and Rintoul, 2007].   ����

Because the coverage of Argo float profiles is not homogenous [Akoi et al., 2007a], and the ����

available gridded Argo data are either of coarser resolutions or shorter time periods ����

(http://www.argo.ucsd.edu/Gridded_fields.html), we choose the MLD of the high resolution ����

OGCM for the Earth Simulator (OFES) [Masumoto et al., 2004; Sasaki et al., 2006, 2008].  The ����

OFES is an eddy-resolving quasi-global (75
o
N −75

o
S) ocean model based on the Geophysical ����

Fluid Dynamics Laboratory Modular Ocean Model version 3 (GFDL MOM3) with 0.1
o
 ��	�
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horizontal resolution and 54 vertical levels.  It provides MLD at 0.1-degree spatial resolution ��
�

every three days.  The model captures realistic upper ocean dynamics, including eddies and heat ����

balance [Sasaki and Nonaka, 2006; Taguchi et al., 2007; Scott et al., 2008; Zhuang et al., 2010; ����

Yoshida et al., 2010; Sasaki et al., 2011; Chang et al., 2012], and has been used to investigate the ����

Southern Ocean dynamical variability [Aoki et al., 2007a, 2007b, 2010; Sasaki and Schneider, ����

2008; Thompson et al., 2010; Thompson and Richards, 2011].  In the present study, we use the ����

MLD from the OFES simulation forced by the QuikSCAT satellite wind field from 28 July 1999 ����

to 28 October 2009.   ����

For the interpolation of the predictor data to the daily ship track locations, all gridded data ����

are first interpolated to daily resolution.  Although we interpolate all predictor data to the daily ��	�

ship tracks, sub-weekly variability is missing from those predictors of original temporal ��
�

resolutions of 7-8 days.  For the generation of weekly NCP maps, all gridded predictor data are ����

interpolated to a common 1
o
 x 1

o
 latitude-longitude grid poleward of 20

o
S at weekly temporal ����

resolution.   ����

2.2. Research cruise data ����

In the SOM analysis described below, the predictand of interest is an estimate of NCP from ����

an extensive set of published data obtained from 41 research cruises in the Southern Ocean ����

between 1999 and 2009 [Reuer et al., 2007; Cassar et al., 2007, 2011].  Figure 1a shows our ship ����

tracks with time of the cruises color-coded in months.  We see that the ship tracks mainly cover ����

regions of high chlorophyll (see Figure 2c) during the growing season between November and ��	�

March.  The histogram of the ship track NCP distribution is shown in Figure 1b.  From visual ��
�

inspection, we also exclude spuriously large NCP outliers exceeding 180 mmol C m
-2

d
-1

.  Figure ����

1c provides a detailed distribution of NCP below the outlier threshold.  For all available ship ����

track data, which are sampled unevenly in time, we calculate the daily mean NCP, latitude, and ����

longitude.  We then linearly interpolate all available daily gridded predictor data to the ship track ����

locations.  Negative NCP values are possibly due to net heterotrophy or measurements ����

contaminated by the upwelling of oxygen-undersaturated water.  Because we are unable to ����

estimate this potential bias, we exclude all days with negative NCP values prior to the SOM ����

analysis.  Overall, we retain 401 days of ship track data for the SOM analysis.  All NCP and ����



� 	

predictor data are standardized for the SOM analysis.  Owing to the skewness of the NCP, Chl, ��	�

MLD and POC data, we perform a log10 transformation to these variables prior to the ��
�

standardization.  As a result, the SOM analysis is applied to all predictor and predictand data that �	��

have approximately Gaussian distributions with a mean of zero and a standard deviation of one.   �	��

In this study, the growing season is defined as November through March.  Unless otherwise �	��

noted, all units are converted to mmol C m
-2

d
-1

 for carbon export by division with a molar �	��

photosynthetic quotient for NCP of 1.4 O2/CO2 [Laws, 1991]. �	��

�	��
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3. Methodology �	��

We construct weekly 1
o
 × 1

o
 NCP maps between 1998 and 2009 over the Southern Ocean by �	��

calculating NCP from weekly maps of up to six of the gridded predictor variables described in �	��

the previous section.  For these calculations, we assume that NCP has a potentially complex, �		�

nonlinear relationship with these six predictors: �	
�

NCP = f(PAR, POC, Chl, SST, SSH, MLD)  (1) �
��

We understand that some of the predictors are not independent, and the information provided �
��

by these predictors might be redundant.  However, in consideration of variable predictor data �
��

availability, as discussed below, such information overlap would be useful in compensation of �
��

missing predictors.  In order to approximate this functional relationship, we use an artificial �
��

neural network approach, self-organizing maps (SOMs), similar to that used by Friedrich and �
��

Oschlies [2009] and Telszewski et al. [2009] for generating maps of the North Atlantic pCO2.  �
��

The method of self-organizing maps combines elements of cluster analysis with nonlinear, �
��

nonparametric regression [Kohonen, 2001].  This particular approach is advantageous for the �
	�

present purpose because the methodology does not assume a pre-defined functional form �

�

between predictor and predictand; rather, the methodology relies on an unsupervised learning ����

procedure whereby the potentially complex predictor/predictand relationships are determined ����

entirely by the data used to construct the SOM through a process called training.  In addition, the ����

methodology readily handles one or more missing predictors when generating NCP maps, which ����

is a useful property given the limited coverage of satellite predictor data over the Southern Ocean ����

for some periods.  The approach used here differs from previous SOM studies [Friedrich and ����

Oschlies, 2009; Telszewski et al., 2009] in that we perform a thorough validation analysis to ����

determine an optimal combination of SOM parameters and predictors and to provide estimates of ����

error for weekly NCP predictions.  Below we include a brief description of the SOM ��	�

methodology and descriptions of the procedures for generating NCP maps and calculating error ��
�

estimates.  Additional discussion is found in the Supplementary Methods section of the ����

supporting material, and a more thorough description of the SOM methodology can be found in ����

the appendix of Johnson et al. [2008].   ����
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3.1. Self-organizing map methodology and NCP dataset construction ����

In the present application, the SOM is trained with the seven-dimensional (six predictors and ����

the predictand, NCP) daily ship track data, where each daily observation is treated as a seven-����

dimensional data vector.  The NCP mapping is accomplished in two steps: (1) SOM training with ����

ship track data to determine the predictor/NCP clusters, and (2) assignment of weekly gridded ����

predictor data to the best-matching SOM clusters and the concomitant assignment of the ��	�

associated cluster NCP values to the corresponding grid.  The first step generates K clusters, ��
�

where the user specifies the number K, that describe prototypical combinations of predictor and ����

NCP values (the method for determining K is described below in section 3.2).  In the second ����

stage, for each grid and week the available predictor data are combined into a data vector of up ����

to six dimensions; then this data vector is mapped to the best-matching SOM cluster on the basis ����

of minimum Euclidean distance.  The NCP value associated with that best-matching cluster, ����

which is determined in step 1, is then assigned to that particular grid and week.  This process is ����

repeated for each available grid and week to construct weekly NCP maps.   ����

As mentioned above, the SOM approach has the advantage of readily handling data even ����

when one or more predictors are missing during both the training and NCP mapping stages.  Due ��	�

to limitations of satellite data coverage and differences in the starting and ending dates of the ��
�

predictor datasets, most ship track days and weekly grids have at least one missing predictor ����

value.  In particular, the large cloud cover over the Southern Ocean, which typically exceeds ����

70% south of 40
o
S during the growing season [Warren et al., 1988], significantly impairs ����

satellite retrieval of POC and Chl.  Table 1 shows the availability of each variable in both the ����

ship track data used to train the SOM and the gridded weekly data used to construct the NCP ����

maps.  Some variables such as SST, MLD, and SSH have good spatial and temporal coverage, ����

whereas others are more sparse.  Even though POC and Chl are among those of the lower data ����

availability, an improvement is apparent from their relatively high coverage of 40−60%, in ����

contrast to the large cloud cover (> 70% on average), which is a result of interpolation of the ��	�

predictor data (7- or 8-day 1
o
 × 1

o
) onto daily ship track locations as well as the weekly grids.  ��
�

Overall, only approximately 30% of all ship track days have all six predictor values available.  ����

For cases when one or more predictor values are missing, the SOM algorithm finds the best-����

matching clusters on the basis of minimum Euclidean distance, just as in the usual case, except ����
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that all dimensions corresponding to missing data are ignored.  In the process of assigning NCP ����

values to the weekly gridded data, the cluster dimension corresponding to NCP is ignored in ����

every case of cluster assignment because NCP is excluded from the predictor data.  The NCP ����

value of the best-matching cluster is then assigned to the corresponding grid.  Thus, this ����

particular application of SOM analysis essentially represents a method of imputation for missing ����

data. ��	�

3.2. SOM parameter determination and error estimation ��
�

Each SOM analysis requires a number of specifications to be chosen prior to the analysis ����

such as the type of neighborhood function, type of lattice (usually hexagonal or rectangular), ����

number of rows and columns in the lattice (with the total number of neurons equal to the number ����

of rows multiplied by the number of columns), and the final neighborhood radius, which ����

describes how connected the neurons are to their neighbors in the lattice at the end of training.  ����

The readers are referred to Liu et al. [2006] for a description of the neighborhood function and ����

lattice.  In practice, the performance of the SOM analysis tends to be most sensitive to the chosen ����

number of neurons and to the final neighborhood radius.  If the number of neurons (i.e., clusters) ����

is too large and/or the final neighborhood radius is too small, then the clusters may be fit too ��	�

closely to the training data, and the statistical model may be overfit for NCP prediction.  In ��
�

contrast, if the number of neurons is too small and/or the final neighborhood radius is too large, ����

then the statistical model may not capture the range of NCP variability accurately. ����

In order to determine an appropriate number of neurons, final neighborhood radius, and ����

predictor combination, we consider several factors, including predictor availability, prior ����

knowledge of Southern Ocean NCP, and a set of cross-validation tests.  For the cross-validation ����

tests, we specify K and the final neighborhood radius, partition the NCP and predictor data into ����

training and validation sets, train the SOM with the training set, and then evaluate NCP ����

predictions with respect to the withheld validation data.  We evaluate a large number of SOM ����

parameter combinations by calculating the mean absolute error (MAE), root–mean-square error ��	�

(RMSE), and mean fractional error (MFE) of the predicted NCP.  A more thorough description ��
�

of the cross-validation tests is found in the Supplementary Methods of the supporting material.   ����
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Several predictor/parameter combinations emerge as candidates for the NCP construction ����

from the cross-validation tests with their errors on the lower end of the estimates (in mmol C m
-

����

2
d

-1
): MAE ∼ 5.3−9, RMSE ∼ 8.4−13, MFE ∼ 27−51%.  However, because these error estimates ����

only apply to the ship track NCP of limited spatial coverage over the Southern Ocean, we also ����

consider additional criteria based on prior expectations of NCP variability.  We examine the ����

temporal evolution of the monthly, area-integrated NCP south of 40
o
S as well as south of 50

o
S, ����

and the spatial distribution of NCP climatology for the growing season.  Although the true ����

temporal evolution of the area-integrated NCP south of 40
o
S and 50

o
S is uncertain, a decline in ��	�

NCP is expected as the season comes to an end.  Therefore, we exclude the candidates that show ��
�

an increase of NCP from February to March.  The rest of the candidate NCP constructions show �	��

similar climatological features, except for a few that produce unexpectedly high mean NCP in �	��

regions of relative minima in both POC and Chl.  Because these regions are outside the ship �	��

track coverage, we believe the unexpected high NCP estimates to be the result of overfitting to �	��

the ship tracks, which target high NCP regions.  Consequently, we exclude these candidate NCP �	��

constructions.  Ultimately, we choose the NCP construction based on a SOM with 12 rows, 8 �	��

columns (i.e., 96 total neurons), a final neighborhood radius of 1, and three predictors (Chl, PAR, �	��

MLD) because this combination exemplifies low mean errors with the weekly MAE = 8 mmol C �	��

m
-2

d
-1

, RMSE = 12 mmol C m
-2

d
-1

 and MFE = 48%, and a reasonable climatological NCP that is �		�

broadly consistent with previous studies, as described more thoroughly in Section 4.   �	
�

We emphasize that this choice of predictor set does not mean that the other predictors are �
��

unimportant for NCP variability; rather, the combination of redundancy of predictor information �
��

(e.g., positive correlations among POC, Chl and SSH) and variations in data availability suggest �
��

that these other predictors do not add sufficient independent information to improve NCP �
��

predictions on weekly timescales.  Interestingly, as we discuss further below, the NCP �
��

climatology has a stronger relationship with the POC than Chl climatology even though POC is �
��

not included in the final SOM analysis.  This strong correspondence between mean NCP and �
��

POC despite the omission of POC as a final predictor should only strengthen the conclusion that �
��

POC plays a pivotal role in the spatial variability of NCP in the Southern Ocean.   �
	�
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3.3. Bootstrap NCP dataset constructions �

�

In addition to measurement error and random NCP variability unaccounted by the predictors, ����

which are captured in the error estimates in section 3.2, another important source of error for the ����

long-term mean is the limited data coverage used to construct the SOM.  Because we are ����

constructing a gridded NCP dataset over a large domain based on a limited number of research ����

cruise measurements, a small number of measurements may have a disproportionate influence on ����

the regional NCP constructions.  To provide a quantitative measure of how this limitation ����

impacts the uncertainty in the NCP climatology constructions, we use a bootstrap approach to ����

construct 100 additional NCP datasets.  From these 100 datasets, the NCP climatology variance ����

for a particular location provides an indication of the sensitivity of the NCP estimates to this ��	�

particular, limited ship track dataset used to train the SOM.   ��
�

For each of these 100 bootstrap NCP datasets, we perform the NCP construction in the same ����

way as described above but with one distinction: the SOM is trained with resampled ship track ����

data.  The resampling procedure, which follows conventional bootstrap procedures, is performed ����

as follows.  A bootstrap ship track dataset is constructed by randomly selecting research cruise ����

numbers from 1 through 41 with replacement, and then placing the ship track data from the ����

randomly chosen cruise number into the bootstrap dataset.  This process of randomly choosing ����

cruise numbers and placing the corresponding data into the bootstrap ship track dataset is ����

repeated until the bootstrap ship track dataset has the same number of daily NCP and predictor ����

observations as in the original ship track dataset.  The SOM is then trained on the bootstrap ship ��	�

track data with the same parameter and predictor combination as discussed above, and then the ��
�

bootstrap NCP dataset is constructed based on this modified SOM.   ����

����



� ���

4. Results ����

In this section, the basin-scale features in the constructed NCP dataset are first described.  In ����

the absence of the basin-scale NCP observation, we compare the spatial pattern of the ����

constructed NCP with the satellite-measured POC and Chl, because the former accounts for ����

80−90% of NCP in the Southern Ocean [Hansell and Carson 1998; Allison et al., 2010], and the ����

latter is often used to derive phytoplankton biomass and NPP.  Secondly, we examine the ����

regional values of constructed NCP by comparison with those reported in the literature.  We also ����

include the 95% bootstrap confidence intervals and seasonal standard deviation to indicate the ��	�

uncertainty and temporal variability, respectively.  For comparison with the in situ data that are ��
�

not on our data grids, a 1
o
−2

o
 spatial average is taken of the constructed NCP surrounding the ����

point of observation.  We note that exact agreement is not expected, given that the in situ derived ����

NCP used for comparison were obtained by various methods that access different temporal and ����

spatial scales of carbon export and that sometimes include different processes.  Because our data ����

are resolved on weekly timescales, we only perform comparisons with measurements of weekly ����

or longer temporal resolution.   ����

Thirdly, we show a dominant basin-scale NCP distribution emerged from various models, ����

with discussion of the discrepancies.  In addition, because the biological pump is one of the main ����

mechanisms that drive atmospheric CO2 into the ocean [e.g., Volk and Hoffert, 1985; Carlson et ��	�

al., 2010] we compare our NCP to the observed air-sea CO2 flux of the Southern Ocean.  To ��
�

convert from annual means to daily range, we assume that the growing season varies from 90 to ����

120 days [Heywood and Whitaker, 1984; Sweeny et al., 2000; Reuer et al., 2007; Racault et al., ����

2012] because of the large spatial and temporal variability in its duration for the Southern Ocean ����

[Lizotte, et al., 2001; Racault et al., 2012; Borrione and Schlitzer 2013].  The total area south of ����

50
o
S is approximated to be 45.7×10

6
km

2
 [Moore and Abbot, 2000]. ����

4.1. Southern Ocean NCP climatology ����

Figure 2a shows the spatial distribution of 12-year growing season NCP climatology ����

(1998−2009), superimposed with the major Southern Ocean fronts [Orsi et al., 1995].  An ����



� ���

elongated zonal band of high NCP (> 22 mmol C m
-2

d
-1

) is seen approximately following the ��	�

Subtropical Front (STF ~ 40
o
S), where macronutrient-rich subantarctic water converges with the ��
�

macronutrient-poor subtropical water [Takahashi et al., 2012].  It stretches from the southwest ����

Atlantic, across the south Indian Ocean to the western South Pacific, then splits with the STF ����

east of the dateline around 170
o
W, and turns southeastward to about 120

o
W.  A sharp NCP ����

gradient exists north of the front, with very low NCP throughout most of the subtropics except ����

near large landmasses.  Elevated NCP (≥ 20 mmol C m
-2

d
-1

) is seen along the Southern ����

Boundary (SBdy), the southernmost limit of the Antarctica Circumpolar Circulation (ACC), and ����

along the Antarctic coast, including the Ross Sea and Amundsen Sea, where strong CO2 sinks ����

have recently been observed [Arrigo et al., 2008; Tortell et al., 2012].  Between the STF and ����

SBdy, we also see high NCP (> 25 mmol C m
-2

d
-1

) in the complex region off the southeastern ��	�

South America between the Río de la Plata and the Falkland Island, including the Patagonian ��
�

Shelf and Brazil-Malvinas Confluence (BMC) zone, and in the vicinity of the Crozet Islands ����

(48
o
E−60

o
E, 42

o
S−49

o
S), Kerguelen Island (67

o
E−95

o
E, 45

o
S−55

o
S), and South Georgia ����

(34
o
W−42

o
W, 50

o
S−55

o
S).   ����

As discussed in the previous section, one of the limitations of this study is the limited ����

availability and spatial coverage of NCP observations used in the SOM analysis for generalizing ����

the relationships between NCP and each of the predictors.  As a quantitative indication of how ����

this limitation may impact the constructed NCP climatology, Figure 3 shows the standard ����

deviation, σboot, of the growing season mean NCP from the one hundred bootstrap NCP datasets ����

(Section 3.3), superimposed with the locations of each ship track.  Largest uncertainties (σboot ∼ ��	�

6−7 mmol C m
-2

d
-1

) are found over the Patagonian Shelf, where ship track coverage is lacking.  ��
�

In regions of dense ship track coverage, the uncertainty is generally lower (σboot < 3 mmol C m
-

����

2
d

-1
).  The regions of high NCP bootstrap climatology standard deviation provide an indication of ����

where targeted measurements in future studies may help to reduce the uncertainty of Southern ����

Ocean NCP estimates.�������

The climatologies of POC (2002−2009) and Chl (1998−2007) are shown in Figure 2b and ����

Figure 2c for comparison.  Chl is in log scale due to its strong positive skewness.  Overall, the ����

regions of high mean NCP (Figure 2a) correspond well with regions of high mean POC and Chl.  ����
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The area-weighted, centered pattern correlation coefficients are 0.66 and 0.33 for climatological ����

NCP versus POC and versus log10(Chl), respectively.  On the basis of these pattern correlations, ��	�

the climatological POC and Chl fields are able to explain, in a linear sense, 44% and 11% of the ��
�

climatological NCP field, respectively.  However, the temporal correlation between NCP and �	��

POC and log10 Chl in the daily ship track data are only 0.20 and 0.23, respectively, which �	��

suggests that POC and Chl alone only explain a small percentage of the NCP variability on daily �	��

and shorter timescales.  The low correlation between NCP and Chl on shorter timescales is �	��

consistent with Reuer et al. [2007].  Despite this weak linear relationship in the ship track data, �	��

we seem to be able to tease out a clear link in the Southern Ocean climatology.   �	��

4.2. Regional NCP evaluation  �	��

In the following, we compare the regional NCP between the constructed data and �	��

independent in situ estimates available in the literature.  For the NCP values reported for the �		�

period prior to our data availability, we provide the climatological values from our data at the �	
�

sites and calendar days of the measurements.  For those reported for the period overlapping our �
��

data period (1998−2009), we carry out a real-time comparison.   �
��

First we compare our NCP climatology with that off the southeast coast of the South Island �
��

of New Zealand, derived from the Munida time series (171.5
o
E 45.85

o
S) using a 

13
C-based �
��

diagnostic box model [Brix et al., 2013].  Their reported NCP climatology, 14.6−22.3  mmol C �
��

m
-2

d
-1

, is in strong agreement with our constructed climatology of 22.1 mmol C m
-2

d
-1

, with a �
��

95% bootstrap confidence interval of 16.7−25.2 mmol C m
-2

d
-1

, for the identical time period of �
��

mid October−March 1998−2009.  Table 2 shows the area-integrated NCP south of 50
o
S from �
��

various models and their corresponding periods.  The 12-year climatology (1998−2009) of our �
	�

constructed NCP is 17.9 mmol C m
-2

d
-1

 with the 95% bootstrap confidence interval of 13.9−21.4 �

�

mmol C m
-2

d
-1

, whereas the values of other studies range from 8.3 to 24 mmol C m
-2

d
-1

, most of ����

which are encompassed by the 95% bootstrap confidence interval.   ����

In the Indian and Pacific sectors of the Southern Ocean, spanning from 1976 through 1997, ����

most of the in situ derived NCP are reasonably close to our values, given the uncertainty of the ����

climatology as given by the bootstrap interval and the temporal variability as given by the ����
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seasonal standard deviation (Table 3.1).  One exception is the high-end values over the southern ����

and southwestern Ross Sea, derived using a seasonal DIC budget approach by Sweeney et al. ����

[2000].  These regions are mostly located south of 75
o
S (Regions I and II in Sweeney et al. ����

[2000]).  The reason why our model may underestimate the NCP in the region may be due to the ��	�

poor coverage of the predictors.  The predictor, MLD, covers only quasi-global domain with the ��
�

southern boundary at 75
o
S.  The other two predictors, Chl and PAR, have only less than 60% ����

coverage in the area during the growing season.  In Table 3.2, we examine the Atlantic sector.  ����

Because the in situ derived NCP are collected during the period 1998−2009, we provide the real-����

time NCP from our dataset for comparison.  Our values agree well with previously reported ����

values.  For example, both our study and previous measurements determine relatively low NCP ����

values near the Atlantic Polar Frontal Zone (PFZ) during March of 2008 (middle rows) but much ����

higher values around 37 mmol C m
-2

d
-1

 in the Atlantic-India sector in December of 2006 (bottom ����

row).   ����

Originating from upstream shallow sediments, iron carried by ocean currents can fuel ��	�

productivity in the waters downstream, leading to phytoplankton blooms.  Such an island mass ��
�

effect has been recorded near the Islands of Kerguelen, South Georgia, and Crozet [Bakker et al., ����

2007; Jouandet et al., 2008; Jones et al., 2012].  Here we determine if our NCP data reproduce ����

the island mass effect.  Both upstream (outside the bloom) and downstream (inside the bloom) ����

values are listed in Table 3.3 Our data capture the upstream and downstream differences in all ����

three island regions.  The downstream (inside the bloom) values, however, are smaller than those ����

reported for the Kerguelen Island and South Georgia, possibly due in part to area averaging over ����

a coarse grid in our dataset.   ����

4.3 Basin-scale climatology comparison ����

4.3.1. Model comparison ��	�

Figures 4 and 5b show the basin-scale export rate estimates from two different models, one ��
�

based on inverse modeling (GCM fitting to observation) [Schlitzer 2002], and the other from a ����

satellite NPP-export model calibrated to atmospheric O2/N2 measurements  [Nevison et al., ����

2012].  Because only the January climatology is available from Nevison et al. [2012], we include ����
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our January map in Figure 5a for comparison.  We see that the spatial patterns in these two ����

models are in broad agreement with the climatology of our data (Figs 2a and 5a), including ����

regions of high carbon export along the zonal band between 40
o
S and 60

o
S, in the coastal ����

upwelling zones off Chile and Namibia, as well as on the Patagonian Shelf.  The main difference ����

between the present study (Figure 2a) and the inverse modeling result of Schlitzer [2002] (Figure ����

4) is that in the latter, the climatology is smoother, the zonal band of high export rate is displaced ��	�

more to the south, and the high export region off the coast of Chile is more spread out.  The ��
�

broader and smoother features in Schlitzer [2002] are likely due to the coarser spatial resolutions ����

available at the time of the study.   ����

The two January climatologies generally differ by less than 10 mmol C m
-2

d
-1

 throughout the ����

Southern Ocean, except a large discrepancy greater than 100 mmol C m
-2

d
-1

 over the Patagonian ����

Shelf (Figure 5c).  Closer inspection reveals a wide range of NCP values in this region among ����

models: 28−30 mmol C m
-2

d
-1

 in our January map (Figure 5a), 150−400 mmol C m
-2

d
-1

 in that of ����

Nevison et al. [2012] (Figure 5b), 40−140 mmol C m
-2

d
-1

 in Westberry et al. [2012] (not shown), ����

and 50−60 mmol C m
-2

d
-1

 in Schlitzer’s annual mean [2002] (Figure 4).  High daily NCP of ����

70−90 mmol C m
-2

d
-1

 has been measured over periods of 3−4 days in this region [Schloss et al., ��	�

2007], although it is unclear if such high values over short time periods are representative of the ��
�

monthly climatology.�������

The Patagonian Shelf region is known to exhibit highly variable biological activity owing to ����

its uncertain relationships between phytoplankton communities and NCP [Schloss et al., 2007], ����

complicated bathymetry, complex ocean dynamics [Bianchi et al., 2005; Romero et al., 2006; ����

Rivas, 2006; Garcia et al., 2008], and multiple sources of iron, including atmospheric dust ����

[Erickson et al., 2003; Gassó et al., 2010; Signorini et al., 2009; Boyd et al., 2012] and ocean ����

upwelling, sediment resuspension, and shelf transport [Garcia et al., 2008; Signorini et al., 2009; ����

Painter et al., 2010].  However, the scarcity of in situ measurements of longer timescales has ����

hindered the progress in establishing a reliable regional climatology and has made model ��	�

validation challenging.   ��
�
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4.3.2. Air-sea CO2 flux ����

We now compare our NCP with the air-sea CO2 flux obtained from the monthly ����

climatological maps of Takahashi et al. [2009] for the growing season.  In Figure 6a, a zonal ����

band of high CO2 flux is seen between 40
o
S and 60

o
S, similar to the zonal belt of CO2 flux ����

reported for the February climatology [Takahashi et al., 2012].  Albeit with a much coarser ����

resolution (5
o
 lon × 4

o
 lat), the pattern of high CO2 flux is in good agreement with the high NCP ����

band (see Figure 2a), outlined by the contour of NCP = 16 mmol C m
-2

d
-1

 in Figure 6a.  The ����

small CO2 flux compared with NCP could result from CO2 outgassing due to warming during the ����

growing season, dampening the biologically-driven CO2 uptake [Takahashi et al., 2012].�����	�

Figure 6b shows the monthly mean of the area-integrated NCP, CO2 flux, and SST south of ��
�

50
o
S from October to March.  The NCP starts to increase steadily from 0.6 Pg C yr

-1
 in October ����

until it reaches a peak around 1 Pg C yr
-1

 in December, with a gentle decline from January to ����

March.  Similarly, the CO2 flux changes from 0.2 Pg C yr
-1

 out of the ocean in October to 0.2 Pg ����

C yr
-1

 into the ocean in December, peaks at 0.4−0.5 Pg C yr
-1

 in January and February, lagging ����

the NCP peak by 1−2 month, and declines thereafter.  We see that the large difference between ����

the CO2 flux and NCP seems coincident with the fast increase in SST from October to January.  ����

This difference becomes smaller as the SST increase slows down from January to March.  ����

Overall, this large imbalance in the early growing season is suggestive of the dominance of the ����

warming-induced CO2 outgassing, but further investigation is warranted. ��	�

��
�
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5. Discussion and conclusions ��
�

In this study we have described the methodology and general features of a 1998−2009 �	��

Southern Ocean NCP dataset constructed through a neural network approach.  This effort �	��

represents the first attempt to construct such a dataset over the Southern Ocean or any large basin �	��

entirely on the basis of observed relationships between NCP measurements and NCP predictors.  �	��

This approach is based on a self-organizing map analysis that assumes no parametric functional �	��

form between NCP and the predictors.  Overall, we find that our constructed NCP dataset is in �	��

good agreement with previously published independent in situ derived NCP values of weekly or �	��

longer temporal resolution through real-time as well as climatological comparisons at different �	��

sampling sites (Tables 2−3).  One exception is the region south of 75
o
S, where the predictor �		�

coverage is poor (Section 4.2).   �	
�

The growing season climatology of our constructed NCP reveals a pronounced zonal band of �
��

high NCP that approximately follows the STF between 40
o
S and 60

o
S in the Atlantic, Indian and �
��

western Pacific sectors, and turns southeastward shortly after the dateline (Figure 2a).  Other �
��

regions of elevated NCP include area along the SBdy and Antarctic coast, the complex region of �
��

Patagonian Shelf and BMC zone, as well as the coastal upwelling zones off Chile and Namibia.  �
��

This elongated zonal band resembles the observed air-sea CO2 flux (Figure 6a).  The CO2 flux is �
��

generally smaller than the NCP in early growing season (Figure 6b).  This difference may result �
��

from the rapid temperature increase in the upper ocean during this period, which reduces the CO2 �
��

solubility and possibly results in CO2 outgassing partially countering the NCP-driven CO2 uptake �
	�

(section 4.3.2).  However, additional investigation into this hypothesis is necessary in future �

�

studies. ����

The NCP climatological pattern is generally consistent with the expected NCP climatology ����

based on the inverse model of Schlitzer [2002] (Figure 4) and the carbon export model of ����

Nevison et al. [2012] (Figure 5b) with significant regional variations.  The largest discrepancy ����

appears in the Patagonian Shelf, where the estimated climatology ranges from 30 to 400 mmol C ����

m
-2

 d
-1

 among models (section 4.3.1).  Additional field campaigns targeting NCP measurements ����

in this region would help to reduce this uncertainty. ����
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The similarity in the climatological spatial distributions of NCP, POC and Chl is readily seen ����

but with notable differences, as evidenced by the pattern correlations of 0.33 and 0.66 between ��	�

NCP versus log10(Chl) and NCP versus POC respectively (Figure 2, Section 4.1).  The low ��
�

correlation between NCP and Chl may be due to the nonlinear relationship between Chl and ����

phytoplankton biomass, as the Chl concentration depends on both phytoplankton biomass and ����

cellular pigmentation, which adjusts to growth conditions [Geider et al., 1996, 1997, 1998; ����

Behrenfeld and Boss, 2003; Brown et al., 2003; Le Bouteiller et al., 2003; Behrenfeld et al., ����

2005; Armstrong, 2006; Schultz, 2008; Westberry et al., 2008; Wang et al., 2009].  Another ����

possibility is that the standard ocean-color to Chl algorithm is not well calibrated for the ����

Southern Ocean, as shown in recent studies [Mitchell and Kahru, 2009; Kahru and Mitchell, ����

2010; Johnson et al., 2013]. ����

The fact that the NCP and POC climatologies bear stronger resemblance is consistent with ��	�

the previous findings that POC production is the largest contributor to NCP in the Southern ��
�

Ocean [Ogawa et al., 1999; Wiebinga and de Baar, 1998; Kaehler et al., 1997; Hansell and ����

Carlson, 1998; Sweeney et al., 2000; Schlitzer, 2002; Ishii et al., 2002; Allison et al., 2010].  We ����

elaborate further by multiplying POC with MLD to arrive at a quantity we define as POC ����

inventory (mmol C m
-2

), and then by comparing POC inventory with NCP in Figure 7a.  We use ����

the monthly, 3
o
×3

o
 bin-averaged MLD product (2002−2009) derived from the Argo float profiles ����

based on a temperature criterion [Kara et al., 2000] for this calculation ����

(http://apdrc.soest.hawaii.edu/).  We see that the overall pattern of POC inventory is similar to ����

the NCP distribution.   ����

Although the NCP and POC climatologies correspond well, some spatial variations of the ��	�

POC-NCP relationship are evident.  Such variations may result from true physical differences in ��
�

the POC-NCP relationships and/or to errors related to the NCP estimates and satellite-derived ����

POC estimates [Gardner et al., 2003; Stramski et al., 2008].  To explore further, we show in ����

Figure 7b the scatter plot of NCP against POC, sorted by latitude bands, for each of the Southern ����

Ocean grid points.  This figure demonstrates that although there is a positive correlation between ����

NCP and POC, the relationship appears not to be a simple linear relationship, with variations ����

across different latitude bands.  For example, the relationship between POC and NCP appears to ����

be stronger for lower mean POC values at lower latitudes but weaker at higher latitudes ����
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poleward of 60
o
S.  If this variation is not due to measurement artifacts, this plot suggests that ����

there may be some regions with high mean POC but relatively low NCP, and vice versa.   ��	�

Another possibility, however, is that there may be errors in the ship track NCP estimates in ��
�

some regions characterized by strong vertical mixing of O2-undersaturated waters to the surface, ����

as pointed out by Reuer et al. [2007].  Although we excluded all negative NCP estimates from ����

the SOM analysis, which correspond to regions of upwelled, O2-undersaturated water, it is ����

possible that this vertical mixing effect still remains in some non-excluded, positive estimates of ����

NCP if the biological productivity of O2 is strong enough.  When this effect occurs, some of the ����

low NCP/high POC regions may have a negative bias from O2-undersaturated upwelled water.  ����

Future investigations into these particular regions are needed to determine to what degree this ����

anomalous low NCP/high POC behavior represents a physical process, a bias, or some ����

combination of the two.   ��	�

Strong correspondence between POC and NCP in the Southern Ocean on longer timescales ��
�

suggests that as satellite POC observation becomes available for a longer time period, it can ����

provide a direct view of carbon export variability with a reasonable amount of uncertainty.  ����

However, on shorter timescales, the correspondence between NCP and POC is weaker, as ����

evidenced by the correlation of 0.20 in the daily ship track data (section 4.1) and pattern ����

correlations of less than 0.5 in the monthly snapshots (supplementary material).  In addition, a ����

major obstacle in monitoring POC variability from satellite is cloud cover, as the Southern ����

Hemisphere belt (between 30
o
S and 65

o
S) is among the cloudiest regions on the planet [Haynes ����

et al., 2011].  Therefore, evaluation of NCP variability across a range of timescales requires ����

consideration of the relationships between NCP and multiple variables, as in the present dataset. ��	�

Although these results suggest promise in providing insight into Southern Ocean NCP mean ��
�

state and variability, substantial uncertainty in the NCP construction remains.  On weekly ����

timescales, uncertainty due to NCP variance unexplained by the predictors likely dominates, as ����

we estimated a MAE and RMSE of 6.76 and 11.4 mmol C m
-2

 d
-1

, respectively, based on the ship ����

track data.  For longer time averages, i.e. seasonal to decadal, errors in NCP measurements and ����

limitations in ship track coverage likely dominate the uncertainty.  As discussed above, efforts to ����
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remove possible biases related to the vertical mixing of O2-undersaturated water would reduce ����

NCP measurement errors. ����

Regarding the latter source of uncertainty, additional field campaigns to measure Southern ����

Ocean NCP, particularly in several data sparse regions, possibly would lead to improved NCP ��	�

constructions.  Through a bootstrap approach to constructing several overlapping NCP datasets, ��
�

we have quantified the variance in NCP climatology owing to the limitations of ship track ����

coverage.  This analysis has identified several regions where bootstrap climatology variance is ����

high but the number of NCP observations is low or zero (see Figure 3).  This finding suggests ����

that targeted measurements in these particular regions may help to constrain the relationships ����

between NCP and each of the predictors, thus resulting in reduced uncertainty in the Southern ����

Ocean NCP climatology and variability. ����

Notwithstanding these limitations, the dataset we present provides a new opportunity to ����

investigate large-scale variability of NCP and its connections to the Southern Ocean carbon cycle ����

in ways previously not possible in an observation-based dataset.  A recent study suggests that a ��	�

global algorithm for determining NCP may not capture regional NCP differences effectively [Li ��
�

and Cassar, 2013].  The variable relationships between ocean color, Chl concentration, and �	��

depth-integrated productivity in different ocean regions [Campbell et al., 2002; Emerson et al., �	��

2008] have challenged the NPP models, with particular difficulty, for example, in regions of �	��

extreme Chl [Carr et al., 2006] and coastal waters [Saba et al., 2011].  Our data-driven approach �	��

may provide guidance to help correct for biases in the NPP models.  Our constructed dataset also �	��

may offer the opportunity to investigate interannual NCP variability, even if only for a period of �	��

a little more than a decade (see supporting material for a preliminary example).  As more NCP �	��

measurements and validation data become available, this dataset shall be continually refined, �	��

with the hope that applications expand as errors are reduced.   �		�
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Center of the IPRC for providing the Niller and Maximenko SSH climatology ����

(http://apdrc.soest.hawaii.edu/datadoc/mdot.php), and production of ARGO MLD data ����

(http://apdrc.soest.hawaii.edu/dods/public_data/Argo_Products); Japan Agency for Marine-Earth ����

Science and Technology (JAMSTEC) for providing the OFES MLD data ����

(http://www.jamstec.go.jp/esc/ofes/eng/); and Lamont-Doherty Earth Observatory (LDEO) for ��	�

providing the air-sea CO2 flux (http://cdiac.ornl.gov/oceans/LDEO_Underway_Database/).  The ��
�

SOM constructed NCP from 1998−2009 reported in this study will be available at ����

http://etta.renci.duke.edu/moncp/c/moncp.html.   ����
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Figure�1. (a) The ship tracks of the in situ NCP measurements used in this study.  The time of 
	��

the research cruises is color-coded in months.  (b) The histogram of the ship track NCP 
	��

distribution.  The red dashed line marks NCP = 180 mmol C m
-2

d
-1

.  (c) Detailed distribution of 
	��

NCP below the outlier threshold.  
	��
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Figure 2. Growing season (November−March) climatologies (in color) of (a) NCP (mmol C m
-


	��

2
d

-1
) for 1998-2009, (b) POC (mmol C m

-3
) for 2002-2009, and (c) log10 Chl (mg m

-3
) for 1998-
		�

2007.  The major Southern Ocean fronts [Orsi et al., 1995] are superimposed (from the north): 
	
�

the Subtropical Front (STF), the Subantarctic Front (SAF), the Polar Front (PF), and the 

��

Southern Boundary (SBdy).   

��
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Figure 3. Standard deviation of the growing season mean NCP from the 100 bootstrap NCP 

��

datasets (σboot) (mmol C m
-2

d
-1

, in color) superimposed with the locations of each ship track 

��

(black lines).  

��
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Figure 4. Long-term mean annual POC export of Schlitzer [2002] (mmol C m
-2

d
-1

).   

��



��



� ���

 

��

Figure 5. January NCP climatologies: (a) Our constructed NCP (1998-2009); (b) Nevison et al. 

	�

[2012] (1998-2007); (c) Difference between two climatologies [(b) – (a)].  (Unit: mmol C m
-2

d
-




�

1
). Note that the contour intervals change from 5 and 10 in (b) and (c), respectively, to 50 mmol �����

C m
-2

d
-1

 for contour values greater than 100 mmol C m
-2

d
-1

 to accommodate the large values on �����

the high ends.   �����

�����
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����
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Figure 6. Comparison with air-sea CO2 flux (a) November−March climatology of air-sea CO2 �����

flux [Takahashi et al., 2009] (mmol C m
-2

d
-1

, in color) superimposed with the contour of NCP = �����

16 mmol C m
-2

d
-1

.  (b) Evolution of monthly mean area-integrated (>50
o
S) NCP (red), CO2 flux �����

(blue), and SST (green) from October to March.  The left y-axis corresponds with the NCP and ���	�

CO2 (Pg/yr) and the right y-axis corresponds with SST (
o
C).  Note that the air-sea CO2 flux is ���
�

defined positive into the ocean.   �����

�����

����



� ���

 �����

Figure 7. (a) November−March climatology of POC inventory, defined as POC × MLD (mmol �����

C m
-2

, in color), superimposed with the contour of NCP = 16 mmol C m
-2

d
-1

.  (b) The Scatter �����

plot of NCP (mmol C m
-2

d
-1

, y-axis) against POC (mmol C m
-3

, x-axis), sorted by latitudinal �����

bands (color). �����
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Supporting Material to Neural network-based estimates of Southern Ocean ��

net community production from in-situ O2/Ar and satellite observation: A ��

methodological study ��

S1. Supplementary Methods ��

S1.1 General Desription ��

The SOM methodology partitions a potentially large, high-dimensional dataset into a smaller ��

number of representative clusters.  In contrast with conventional cluster analysis, these SOM ��

clusters, each of which is associated with a component called a node or neuron, become 	�

topologically ordered on a lower-dimensional, typically two-dimensional, lattice so that similar 
�

clusters are located close together in the lattice and dissimilar clusters are located farther apart.  ���

This topological ordering occurs through the use of a neighborhood function, which acts like a ���

kernel density smoother among a neighborhood of neurons within this low-dimensional lattice.  ���

As a result, neighboring neurons within this lattice influence each other to produce smoothly ���

varying clusters that represent the multi-dimensional distribution function of the data used to ���

construct the SOM.   ���

Our approach of determining predictor/predictand SOM clusters is quite similar to that of ���

Telszewski et al. [2009] except for one main difference: we incorporate the predictand into the ���

SOM analysis rather than labeling each neuron with an associated NCP value after the SOM has �	�

been trained.  Thus we combine the first two steps of map generation from Telszewski et al. �
�

[2009] into a single step.  We choose this alternative approach so that the neighborhood function, ���

which smoothes the clusters in the data space, may operate on the NCP as well as the predictor ���

data. ���

Because the SOM training is limited to the ship track data, one of the main requirements for a ���

successful NCP dataset construction is that the range of predictor values in the ship track data ���

should approximately span the predictor range in the gridded data used to generate the Southern ���

Ocean mapping [Kohonen, 2001; Telszewski et al., 2009].  To assess the reasonableness of the ���

range spanned by the training data, we calculate the percentage of gridded predictor data that ���

falls outside of the range of the training data for each of the three retained predictors, Chl, PAR, �	�



� �

and MLD.  For Chl, approximately 4.4% of the gridded values fall below the ship track �
�

minimum (0.04 mg m
-3

), and 2.0% exceed the ship track maximum (1.56 mg m
-3

).  For PAR, ���

5.2% of the gridded values fall below the ship track minimum (9.63 �E m
−2

 s
−1

), and 1.3% ���

exceed the ship track maximum (59.5 �E m
−2

 s
−1

).  For MLD, only 0.3% of the gridded values ���

fall below the ship track minimum (3.5 m), and 0.3% exceed the ship track maximum (595 m).  ���

In summary, the range of the predictor values in the ship tracks appears to be fairly ���

representative of that of the Southern Ocean overall during the period of interest, with well over ���

90% of the gridded values falling within the range of the ship track values.  These calculations ���

add support to the appropriateness of using the ship track data to generate a broad Southern ���

Ocean mapping.  However, we do note that a higher percentage of gridded predictors fall below �	�

the ship track minimum for Chl and PAR, which suggests that there may be at least a slight NCP �
�

prediction bias in regions of very low Chl and/or PAR.   ���

As discussed in the main text, the parameters for which the SOM likely is most sensitive are ���

the total number of neurons (i.e., the product of the number of rows and columns in the SOM) ���

and the final neighborhood radius.  For that reason, we vary each of those parameters in the ���

cross-validations discussed below.  For the sake of completeness, we mention here the other ���

parameter choices used in our study (see Liu et al. [2006] and Johnson et al. [2008] for a ���

description of these parameters).  We use a rectangular lattice and a Gaussian neighborhood ���

function.  The neighborhood function uses an initial radius of 4, which gradually shrinks to the ���

final radius of 1.  The “rough” training phase uses 20 iterations of the batch algorithm, which is �	�

followed by 500 iterations during the fine-tuning phase.     �
�

S1.2 Cross-validations  ���

To determine a set of candidate predictor and parameter combinations, we first perform a set ���

of cross-validation tests in the following manner.  We identify 39 weeks in the ship track ���

database that have at least five days of NCP data within a seven-day period and then divide these ���

39 weeks into five validation segments (eight weeks each segment except one with seven ���

weeks).  We next perform a five-fold cross-validation for many predictor/parameter ���

combinations, whereby we train the SOM with all ship track data excluding the validation ���

segments and evaluate the prediction of weekly mean NCP for the validation segments in five ���

separate iterations.  To minimize the possibility that the data in the validation and training �	�



� �

samples are highly correlated and thus leading to over-confident NCP predictions, we add the �
�

condition that the data from any particular ship track cannot be split between training and ���

validation samples.  We calculate the MAE, RMSE, and MFE of the predicted NCP.   ���

For the SOM parameter combinations we evaluate the following values for the number of ���

rows and columns: 1-6, 8, 10, 12, 14, 18, and 24.  We also vary the final neighborhood radius ���

from zero to five.  With 12 possible values for the number of rows and columns and six values ���

for the final neighborhood radius, we test 864 possible SOM parameter combinations.  In ���

addition, we test all 63 possible predictor combinations to give a total of 54,432 cross-validation ���

tests.  We record the parameter combination with the minimum MAE, RMSE, and MFE for each ���

of the 63 predictor combinations. �	�

S2. Interannual NCP variability �
�

To explore the potential use of our constructed dataset to study interannual NCP variability, ���

we present snapshots of November NCP for 2003 and 2004 in Figures S1a and S1b.  These ���

results should be interpreted with caution because we have not yet assessed the uncertainty in ���

interannual predictions.  In both figures, two large patches of high NCP are seen over southwest ���

Atlantic in the Brazil-Malvinas Confluence zone as well as in the region near southeast Australia ���

and New Zealand, which are marked with blue squares in Figure S1.  Our constructed dataset ���

predicts variations between these two years in the two regions.  The Australia-New Zealand ���

patch (140
o
E−170

o
W, 35

o
S−46

o
S) exhibits a distinct southeastward extension in 2003 (Figure ���

S1a), whereas it is zonally confined in 2004 (Figure S1b).  Over the Brazil-Malvinas patch �	�

(65
o
W−45

o
W, 35

o
S−46

o
S), the area-averaged NCP decreases from 37 to 27 mmol C m

-2
d

-1
 from �
�

2003 to 2004.  The November maps of POC (Figures S2a, b) and Chl (not shown) also show 	��

similar variations for the same years, which support the physical basis for these NCP changes.  	��

The pattern correlation between NCP and POC (log10(Chl)) are 0.48 (0.42) and 0.47 (0.39) for 	��

2003 and 2004, respectively.   	��

These large-scale variations in biological productivity plausibly may relate to dominant 	��

modes of the ocean-atmosphere interaction and the associated atmospheric teleconnections, as 	��

well as ocean current variability.  For example, possible contributors include the change from 	��

neutral ENSO to El Nino conditions between 2003 and 2004 [Yu et al., 2012], and the 	��



� �

pronounced southward shift of the Brazil Current front from the continental shelf observed in 		�

2003 [Goni et al., 2011].  However, more in depth analysis of the mechanisms of variability is 	
�

reserved for future studies. 
��

One may question whether the constructed NCP dataset can capture intraseasonal and 
��

interannual variability, given the fairly weak relationship between daily NCP and POC/Chl in the 
��

ship track observations, as reported in the main text, the temporal correlation between daily NCP 
��

and POC/log10(Chl) is only 0.20/0.23.  Because the residence time of POC and NCP integration 
��

time are of similar magnitude, 1−2 weeks in the surface ocean, and POC is the dominant form of 
��

NCP in the Southern Ocean, the low correlation between POC and NCP on daily timescales 
��

suggests sub-weekly transient processes and/or measurement errors that weaken the POC/NCP 
��

relationship.   
	�

The weak correlation between NCP and Chl is similar to the value of 0.33 reported in Reuer 

�

et al. [2007], although Reuer et al. [2007] consider area averages in three discrete zones for each ����

of 23 transits rather than discrete points along the ship tracks.  However, a substantially ����

improved correlation of 0.62 is achieved in Reuer et al. [2007] between the in situ NCP and ����

NPP, calculated using the VGPM (Vertically Generalized Productivity Model) of Behrenfeld and ����

Falkowski [1997] that accounts for additional predictors (e.g., Chl, SST, and PAR).  Given that ����

our SOM-based approach includes additional biogeochemical and physical properties, aside from ����

Chl that is also incorporated in the VGPM NPP estimates of Reuer et al. [2007], that our results ����

are constrained by in situ observations, and that we find good agreement with previously ����

reported independent, in situ NCP measurements (Tables 3.2 and 3.3) through real-time ��	�

comparisons, we expect that our reconstruction explains a larger fraction of NCP variance on ��
�

intraseasonal and interannual timescales than indicated by the low POC and Chl correlations.  ����

Additional validation tests are required to assess the reliability of the predicted interannual and ����

possibly intraseasonal NCP variability, and relation to plausible physical mechanisms.   ����
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Figure S 1. November NCP (mmol C m
2
d

-1
) for (a) 2003, and (b) 2004.  The blue squares mark ����

the two regions discussed in the supporting text. ��	�
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�
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�����
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Figure S 2 As in Figure S1 but for POC (mmol C m
-3

). ��
�
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