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Abstract

For the detection of climate change, not only the magnitude of a trend signal is of significance.
An essential issue is the time period required by the trend to be detectable in the first place. An
illustrative measure for this is Time of Emergence (ToE), i.e., the point in time when a signal fi-
nally emerges from the background noise of natural variability. We investigate the ToE of trend
signals in different biogeochemical and physical surface variables utilizing a multi-model en-
semble comprising simulations of 17

:::::
Earth

:::::::
System

:::::::
Models

:::::::
(ESMs)ESMs. We find that signals

in ocean biogeochemical variables emerge on much shorter timescales than the physical vari-
able sea surface temperature (SST). The ToE patterns of pCO2 and pH are spatially very similar
to DIC, yet the trends emerge much faster – after roughly 12 yr for the majority of the global
ocean area, compared to between 10–30 yr for DIC.

:::::
ToE

:::
are

:::::
with

:
and 45–90 yr

::::
even

::::::
larger

for SST. In general, the background noise is of higher importance in determining ToE than the
strength of the trend signal. In areas with high natural variability, even strong trends both in the
physical climate and carbon cycle system are masked by variability over decadal timescales.
In contrast to the trend, natural variability is affected by the seasonal cycle. This has important
implications for observations, since it implies that intra-annual variability could question the
representativeness of irregularly seasonal sampled measurements for the entire year and, thus,
the interpretation of observed trends.

1 Introduction

Since the beginning of the industrialization, the climate system has undergone substantial
changes.

:::::::::::
Responsible

:::
for

:::::
these

:::::::
changes

::
is

:::
the

:
CO2 Reasons are large amounts of carbon dioxide

emitted by mankind through combustion of fossil fuels, land-use change and industrial pro-
cesses (e.g., Hegerl et al., 2007) which have brought the global carbon cycle out of steady
state. The carbon cycle and the physical climate system strongly interact with each other (Joos
et al., 1999), as illustrated by the manifold impacts of climate change on the global oceans.
In addition to sea-level rise and ocean warming (e.g., Hegerl et al., 2007; Levermann et al.,
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2013; Dutkiewicz et al., 2013), we observe and model carbon-cycle related ocean acidification
(Steinacher et al., 2009) and deoxygenation (Frölicher et al., 2009; Keeling et al., 2010). Conse-
quently a sound knowledge of the joint processes is a necessity not only for the correct detection
of past and present trends, but also for robust projections of the future. Still, it remains a chal-
lenge to identify clear external forcing signals. An important issue is the presence of internal
variability, which has the potential to enhance or mask forced trends in the atmosphere, land, or
ocean (e.g., Latif et al., 1997; ?; Frölicher et al., 2009; Dolman et al., 2010; Keller et al., 2012).
For instance, McKinley et al. (2011) stated that carbon dioxide trends in the North Atlantic
require 25 yr to exceed the range of decadal-scale variability. The correct assessment of trends
is complicated in the ocean. Especially for the carbon cycle, observational data is scarce and
limited in both time and space. Accordingly, models are often the only possibility to investigate

:::::
trends

::::
and

::::::::::
variability processes on respective temporal and spatial scales.

The detection of forced trends in the climate or carbon cycle system is a signal-to-noise
problem (see e.g., Santer et al., 2011, and references therein). For a successful detection, the
signal has to be of a magnitude that durably exceeds the envelope of background variability.
One possible way to quantify this is the estimation of the Time of Emergence (ToE) of a signal,
i.e., the point in time at which S/N , the ratio between signal S (= trend) and noise N (=
background variability) exceeds a certain threshold.

The ToE method has been applied to a number of physical variables such as surface air tem-
perature (Karoly and Wu, 2005; Diffenbaugh and Scherer, 2011; Mahlstein et al., 2011, 2012;
Hawkins and Sutton, 2012; Mora et al., 2013) and precipitation (Giorgi and Bi, 2009), the com-
bination of these two variables as indicator of future climate change hotspots (Diffenbaugh and
Giorgi, 2012), or the imminent shift of climate regions (Mahlstein et al., 2013). A common ap-
proach to estimate ToE is the comparison of modeled noise (usually the standard deviation of an
unforced control simulation) and observed (Karoly and Wu, 2005) or modeled (Mahlstein et al.,
2011; Hawkins and Sutton, 2012) trends. Other approaches derive both signal and noise from
the same observational time series (Mahlstein et al., 2011, 2012) or forced model simulation
(Giorgi and Bi, 2009; Diffenbaugh and Scherer, 2011; Diffenbaugh and Giorgi, 2012; Mora
et al., 2013).

3
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In ocean biogeochemistry, the
::::
ToE

:
method is not prevalent. Ilyina et al. (2009) and Ily-

ina and Zeebe (2012) applied a global biogeochemistry ocean model in combination with an
observation-derived detection threshold to investigate the effect of imminent ocean acidifica-
tion on carbonate dissolution. Compared to present-day, they detected trends in surface total
alkalinity (TA) by 2040 and 2070, respectively. Friedrich et al. (2012) used three Earth Sys-
tem Models (ESMs) to detect anthropogenic trends in ocean acidification, thereby the noise is
defined as the amplitude of the pre-industrial annual cycle. They concluded that, by 2010, an-
thropogenic trends in the saturation state of aragonite (ΩA) are already detectable in many parts
of the global surface ocean. An exception is the eastern equatorial Pacific, which is strongly
influenced by high ENSO-related natural variability. In line with these results and based on
a CMIP5 model ensemble, Mora et al. (2013) projected that global mean pH

:::::::
exceeds

:
leaves

the noise of historical variability by 2008 (±3 yr). Hereby,
::::
they

:::::::
defined

::::
the

:::::
noise

:
the noise

is defined as the amplitude of the minimum and maximum values of the historical simulation
(1860–2005). Based on an eddy-resolving regional ocean model, Hauri et al. (2013) investi-
gated pH and ΩA in the California Current System. For present-day, they found that trends in
both variables are already detectable

::::
with

:::::::
respect

:
in relation to preindustrial variability levels.

Here, we utilize a model ensemble of 17 ESMs to investigate the ToE of trends in surface
ocean biogeochemistry. For maximum comparability with the available observations, we focus
on three frequently measured carbon cycle variables, dissolved inorganic carbon (DIC), pCO2

and pH, and sea-surface temperature (SST). In the next section, models and ToE method are
introduced. In the result section, we first present the multi-model mean of the ideal case with
respect to observations, complete seasonal data coverage. Secondly, the impact of seasonality
is addressed based on two models. Finally, conclusions are given.

2 Methods

This study is based on an “ensemble of opportunity” comprising 17
:::::
Earth

:::::::
System

:::::::
Modelsearth

system models: NCAR CESM1 (?), five models from the OCMIP5 framework, NCAR CCSM3-
BEC (Collins et al., 2006), NCAR CSM1.4-carbon (Doney et al., 2006), BCCR BCM-C (Ass-
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mann et al., 2010), IPSL-CM4 (Aumont et al., 2003) and COSMOS (Jungclaus et al., 2006),
and eleven CMIP5 models (Taylor et al., 2011), CanESM2 (Christian et al., 2010), GFDL-
ESM2M (Dunne et al., 2012), HadGEM2-CC and HadGEM2-ES (Palmer and Totterdell, 2001),
IPSL-CM5A-LR, IPSL-CM5A-MR and IPSL-CM5B-LR (Séférian et al., 2013), MIROC-ESM
(Watanabe et al., 2011), MPI-ESM-LR and MPI-ESM-MR (Ilyina et al., 2013), and NorESM1-
ME (Tjiputra et al., 2013).

We use historical simulations covering the years 1870–1999 with annual resolution; for com-
parability, all model output is regridded to a 1◦× 1◦ grid. ToE is defined as

ToE = (2×N)/S
::::::::::::::::

:::::
where

:
for an individual grid cell is specified as the point in time when the signal-to-noise ratio

S/N > 2, i.e., the moment when the trend signal S
:
is
::::

the
:::::
trend

::::
and

:
exceeds two times the

background variability N
:
a
::::::::
measure

:::
for

::::::::::
variability.

. The ensemble mean of ToE is computed from the ToE of individual models, and not from the
ensemble mean of S and N . Note that the presented ensemble mean patterns, i.e., the averages
of all 17 models, are not necessarily physically consistent.

:::
For

:::::
each

::::
grid

:::::
cell,

::
S

::
is
::::::::

defined
::
as

::::
the

:::::
linear

::::::
trend

::::
(per

:::::
year)

:::::
over

:::
the

:::::::
period

:::::::::::
1970–1999.

::
A

::::::::
different

:::::::::
approach

::
is

:::
the

::::::::::::
computation

:::
of

:::
the

:::::
trend

:::
by

:::::::::
applying

::
a

::::::::::
smoothing

::::::
spline

:::
on

:::
the

::::
time

::::::
series;

::::
test

::::::::::::
calculations

:::
for

:::::::::::
1970–1999

:::::
yield

:::::::::::
comparable

:::::::
results.

:::::::
Figure

::
1

:::::::::::
exemplarily

:::::::::
illustrates

:::
the

::::
two

:::::::::::
approaches

::::
and

::::
the

:::::
good

::::::::::
agreement

:::::::::
between

:::::
them

::::::
based

:::
on

::::
the

::::::
model

::::::
NCAR

::::::::
CESM1.

::::
We

::::
note

::::
that

:::
by

:::::::::
applying

:::
the

::::::
linear

:::::
trend

:::::
from

:::
the

:::::
1970

:::
to

:::::
1999

::::::
period

::::
also

::
in

:::
the

:::::::
future,

::::
any

::::::::
changes

:::
in

::::::
trends

:::
are

::::
not

:::::::::
explicitly

::::::::::
accounted

::::
for.

::::::::
Changes

:::
in

:::::
trend

::::
are

:::::
likely

::
to

:::::::
remain

:::::::::
relatively

::::::
small

::
in

::::
the

::::
next

::::
few

:::::::::
decades,

:::
but

::::::
trends

:::::
will

:::::
differ

::::::::::::
considerably

:::::::
between

:::::::::::::::::
business-as-usual

::::
and

:::::::::
stringent

::::::::::
mitigation

:::::::::
scenarios

::::
by

::::
the

::::
end

:::
of

::::
this

::::::::
century

:::::::::::::::::::::::::::::::::::::::
(e.g., Steinacher et al., 2009; , 2013; , 2013).

::::
For

:::
N ,

:::
the

::::::::
standard

::::::::
deviation

:::::
(sdv)

::::
over

::::
the

:::::
entire

::::::::::
simulation,

:::::::::::
1870–1999,

::
is

:::::
used.

::::
Prior

:::
to

:::
this

::::
last

::::
step,

:::
the

::::
data

::
is
:::::::::
detrended

::::
via

:
a
::::::
spline

::::::::
approach

(
::::::
cut-off

::::::
period:

::::::
40 yr; Enting, 1987).

:::
For

::::::::::
illustration

::::::::::
purposes,

:::
we

::::::::
calculate

:::::
ToE

:::
for

:::::
DIC

::
at

::
a
::::::::
location

::
in

::::
the

::::::::::
subtropical

::::::
North

::::::
Pacific

::::
(see

::::
also

::::
Fig.

::::
1).

:::
By

::::::::
inserting

:::
the

::::::::::
respective

::::::
values

:::
for

::
S
::::::

(0.94
:::::
mmol

:::::::::
m−3/yr)

:::
and

:::
N

5
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:::::
(7.24

:::::
mmol

:::::::
m−3),

:::
we

::::::
obtain

:::::::::::::::::::::::::
(2× 7.24)/0.94 = 15.4yr,

::::
i.e.,

::
a

::::::::
(rounded

::::
up)

::::
ToE

:::
of

:::
16

::::
yrs.

:::
The

:::::::::
ensemble

::::::
mean

::
of

::::
ToE

::
is
::::::::::

computed
:::::
from

:::
the

::::
ToE

:::
of

:::::::::
individual

::::::::
models,

:::
and

::::
not

:::::
from

:::
the

::::::::
ensemble

::::::
mean

::
of

::
S

::::
and

:::
N .

:::::
Note

::::
that

:::
the

:::::::::
presented

:::::::::
ensemble

:::::
mean

::::::::
patterns,

::::
i.e.,

:::
the

::::::::
averages

::
of

:::
all

::
17

::::::::
models,

:::
are

:::
not

:::::::::::
necessarily

:::::::::
physically

::::::::::
consistent.

::::
ToE

::
is

::
a

::::::::
measure

:::
for

:::
the

:::::
point

:::
in

::::
time

::::::
when

:::
the

:::::
trend

::::::
signal

::::::::::
(S×ToE)

::::::::
exceeds

::::
two

:::::
times

:::
the

:::::::::::
background

:::::::::
variability

:::
N ,

::::
i.e.,

:::
the

::::::::::::
approximate

::
95%

:::::::::
confidence

::::::::
interval

::
of

:::
the

:::::::::::
background

:::::::::
variability.

:::::
The

::::::
choice

:::
of

::::
the

:::::::::
detection

:::::::::
threshold

::::::
differs

::::::::
between

::::::::
studies,

:::::
other

:::::::::::
approaches

:::
are

::::
e.g.

:::
one

::::
sdv

:::
of

::::::::
seasonal

::
or

:::::::
annual

::::::
means

:
(Hawkins and Sutton, 2012)

:
,
::::::::::::::::
observation-based

:::::::::
thresholds

:
(Ilyina et al., 2009; Ilyina and Zeebe, 2012)

::
or

::::
the

::::::
range

:::
of

:::
the

:::::::::::::
pre-industrial

::::::
annual

:::::
cycle

:
(Friedrich et al., 2012).

::::::
Here,

:::
we

::::
use

:::
the

::::::
rather

::::::::::::
conservative

::::::
value

::
of

::::
two

::::
sdv

::
of

::::::::::
interannual

::::::::::
variability.

::::
For

:
a
:::::::::
threshold

::
of

::::
one

::::
sdv

::::
ToE

::::::
would

::
be

:::::
half,

:::::::::::
accordingly.

:::
By

::::::::::
calculating

:::
S

:::::
over

::
a

:::::
time

::::::
period

:::
of

:::
30

:::::::
years,

:::
we

::::
can

:::
to

::
a
:::::::
certain

:::::::
degree

::::
rule

::::
out

::::::::::
interference

:::
of

:::::::::::::
low-frequency

::::::::::
variability

::
in

:::
the

:::::::::
detection

::
of

:::
the

:::::
trend

:
(see e.g., McKinley et al.,

2011)
:
.
::
A

::::
ToE

::
of

:::::
only

:
a
::::
few

::::::::
decades,

::
as

:::
we

::::
find

::
it

:::::::::
especially

:::
for

:::
the

:::::
three

:::::::
carbon

:::::
cycle

::::::::
variables

::::
(see

::::
Sec.

:::::
3.1),

::
is

:::::
thus

:
a
:::::::

strong
::::::::
indicator

::::
for

:::
the

:::::::::::
significance

:::
of

::::
the

:::::::::
respective

::::::
trend.

:::::
This

::
is

:::::::::
confirmed

:::
by

:
a
::::::::::::

significance
:::
test

::
(t
:::::

test,
::
5%

:::::
level)

::
of

::::
the

:::::
trend

:::
of

:::
the

::::::::::
underlying

:::
30

::::
year

:::::
time

:::::
series

::::
(not

::::::::
shown):

::::
For

:::
all

:::
17

::::::::
models,

:::
all

::::::
trends

::
in

::::
pH

:::
are

:::::::::::
significant.

::::
The

::::::
trends

:::
in

::
pCO2

:::
are

::::
also

::::::::::
significant,

::::
yet

::::
with

:::::::::
localized

:::::::::::
insignificant

::::::::::
exceptions

:::
in

:::
the

:::::::::
Southern

::::::
Ocean

:::::::
(BCCR

::::::::
BCM-C,

::::::::::::::::
IPSL-CM5A-MR)

::::
and

:::
the

:::::::::
upwelling

::::::
region

:::
off

:::::
Peru

::::
and

:::::
Chile

:::::::::::
(CanESM2).

:::::::
Trends

::
in

::::
DIC

:::
are

::::::::::
significant

::
in

:::::
large

:::::
parts

::
of

:::
the

::::::
global

:::::::
oceans,

::::::::::
exceptions

:::
are

::::
the

::::
high

::::::::
latitudes

::::
and

:::
the

:::::::::
equatorial

:::::::
Pacific.

:::::::::::
Statistically

:::::::::
significant

::::::
trends

::
in

:::::
SST

:::
are

::::
less

::::::::::
widespread

::::
and

:::::::::::::
corresponding

:::::::
regional

::::::
results

::::
are

::::::
highly

::::::::::::::::
model-dependent.

:

In using these definitions, we assume that (i) the trend from 1970–1999 is linear, (ii) the
:::
sdv

standard deviation is constant over time and, by using annual averages, (iii) that trends and
:::
sdv

standard deviation patterns are comparable for annual, seasonal or monthly data. To verify (i),
the global trends of surface DIC and SST for the period 1970–1999 are investigated. For all
models, we find that trends in global surface DIC can be

::::::::::
represented

:
very well approximated by

a linear function. SST shows larger inter-annual variability, yet likewise with a linear underlying
trend. For (ii), we investigate

:::
the

:::::::::
detrended

::::
data

::::::::::::
(1870–1999)

::
of

:
DIC and SST of

::
all

:::
17

:::::::
models

6
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::::
(not

:::::::
shown).

::::
The

:::::::::::
comparison

:::
of

::::
sdv

:::::
fields

::::::::::
calculated

:::
for

::::
the

::::
first

::::
and

::::::
second

:::
65

::::
yrs

:::
(F

::::
test,

:
5%

::::
level)

::::::::::
illustrates

:::
that

:::::::::::
differences

::::
only

::::::
occur

::::
very

:::::::::
localized,

::::::::::::
consequently

:
the five OCMIP5

models . Four non-overlapping 30 yr time slices are compared with each other. Only one out of
five models, BCCR BCM-C, shows noteworthy differences in the standard deviation among the
four time intervals. However, since these occur only localized in the Southern Ocean, we suggest
that this assumption is confirmed. Assumption (iii) can be confirmed for the trend patterns.
The standard deviations, however, differ considerably in magnitude – we address this issue in
Sect. 3.2.

3 Results and discussion

In the ocean, observations are scarce and often limited in time, e.g., to specific seasons. We ad-
dress this by splitting our analysis in two parts. First, the complete model ensemble is used to in-
vestigate the “best case” with respect to observations, complete annual data coverage (Sect. 3.1).
In a second step and based on two individual models, the focus is on the months January and
July to estimate the impact of seasonality (Sect. 3.2).

3.1 ToE – ensemble mean

Figure 2 shows the ensemble mean ToE patterns of dissolved inorganic carbon (DIC), pCO2,
pH and sea-surface temperature (SST), all variables on surface level. For the ensemble mean,
ToE was first calculated for all models separately and then averaged. We find that trend signals
in the three carbon cycle variables emerge on much shorter timescales than the physical climate
variable SST. The ToE pattern of SST is very noisy, varying typically between 45 and 90 yr.
The exception are areas around the equator in the Atlantic, Indian and western Pacific Ocean,
with values of

::::::
approx.

::::
35≈ 35 yr. A large coherent area with ToE> 80 yr can be found in

the (eastern) equatorial Pacific. The trend in DIC appears in large parts of the global oceans
after approx. 10–30 yr, higher values are found at high latitudes, especially the Arctic Ocean
(≈ 50 yr), and localized in the equatorial Pacific (up to ≈ 70 yr).

::::
ToE The trend signals of pCO2

7
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and pH show a very similar pattern. However, the trends emerge much faster for pCO2 and pH
than for DIC – after ≈ 12 yr for the majority of the global ocean area, 14–18 yr in the Arctic
Ocean and ≈ 20 yr in the equatorial Pacific.

:
A

::::::
likely

::::::
reason

:::
of

:::::
these

:::::::::
different

:::::::::
timescales

:::
of

::::
DIC

::::
and

:::::
pH/pCO2 ::

are
:::::::::
nonlinear

:::::::::
processes

:::
in

::::::
ocean

:::::::::
chemistry

:::::::::
described

:::
by

:::
the

::::::
buffer

::::::
factor

(or Revelle factor; ?)
:
,
::::::
which

:::::
result

:::
in

:::::::::
increases

::
of

::
pCO2 ::

of
:::::::
approx.

:::
10

::::::
times

:::
the

::::::::::
magnitude

::
of

:::
the

:::::::::::::
corresponding

::::::::
relative

::::::::
increases

:::
in

:::::
DIC. In contrast to DIC, relatively high ToE values

are found for both pCO2 and pH in the Southern Ocean and in the upwelling region off Peru
and Chile (both regions, localized > 30 yr). Taking past changes since the beginning of the
industrialization into account, the low ToE values especially for pCO2 and pH indicate that
anthropogenic trends are already detectable in large parts of the global surface oceans. This is
in agreement with Mora et al. (2013) for pH and Friedrich et al. (2012) concerning the saturation
state of aragonite (ΩA), another measure for ocean acidification.

A direct evaluation of ToE is difficult, if not impossible, due to the lack of suitable obser-
vations. However, it is feasible for the underlying fields signal S and noise N (Fig. 3). These
two variables are of added value since they allow to determine the importance of S and N
for the resulting ToE fields. The top row of Fig. 3 shows S, the trend/decade over the years
1970–1999, the second row illustrates N , the standard deviation of the (detrended) years 1870–
1999.

::
To

::::::::
evaluate For the evaluation of these patterns, we compiled a number of observations

:
(in Table 1). These time series remarkably illustrate the importance of natural variability. The
Bermuda Time Series Station (BATS), located near Bermuda in the North Atlantic, and Station
ALOHA, the site of the US JGOFS Hawaii Ocean Time series program (HOT) located in the
central North Pacific, contribute trends over multiple yet overlapping time periods. It is striking
how a different start (BATS) or end (ALOHA) year can

::::::
change

::::
the

:::::
trend

::::::::::
estimation

:
imprint

on the trend of a time series. At ALOHA, trends of DIC and SST even switch from negative
to positive and vice versa, depending on the time period. This issue is addressed in a recent
study by Fay and McKinley (2013).

:::::
These

:::::::
authors

:::::::::::
investigated

::::::
trends

::
in

:::::::
surface

::::::
ocean

::
pCO2

:::::::::::::
measurements

:::::::
between

:::::
1981

::::
and

:::::
2010

:::
for

::::::
periods

:::
of

:
4
:::::
years

:::
to

::
up

::
to

:::
30

::::::
years.

:::::
They

:::::
found

:
They

conclude that, on
::::::
shorter

:
decadal timescales, trends of surface pCO2 are sensitive to variabil-

ity presumably linked to climatic oscillations and, consequently,
::::
may

:::::
vary

::::::::
between

::::::::
different

8
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:::::::
periods.

:::::::::::::
Consequently,

::::
this

::::::
caveat

::::
has

::
to

:::
be

:::::
taken

::::
into

::::::::
account

:::::
when

::::::::::
comparing

::::::::
modeled

::::
and

::::::::
observed

::::::
trends

::::
over

:::::::::
relatively

::::
short

:::::
time

:::::::
periods.

::::
Fay

::::
and

:::::::::
McKinley

::::
also

::::
find

:::
that

::::
the

::::::::
influence

::
of

:::::::
climatic

:::::::::::
oscillations

:::::
fades

::::::
when

:::::::
analysis

:::::::
periods

::::
are

:::::::
between

:::
25

::
to

:::
30

::::::
years,

::::
e.g.

::
as

:::::
used

::
in

:::
this

::::::
study

::
to

:::::::::
determine

:::::::
trends.

:::
We

:::::
note

:::
that

::
a
::::::
direct

::::::::::
comparison

:::
of

:::
the

:::::
trend

:::::::
signals

:::::::::
computed

::
by

::::
Fay

::::
and

:::::::::
McKinley

:::::
with

:::
our

:::::
trend

::::::
signal

::
is

:::::::::
hampered

:::
by

:::
the

::::
fact

::::
that

:::
Fay

::::
and

::::::::::
McKinley

:::
use

::::::::
relatively

::::::
sparse

::::::::::::
observational

:::::
data

::
to

:::::::::
determine

:::::::
trends. the chosen time period. This influence,

however, gets weaker when time series are longer.
Consequently, a comparison of modeled and observed trends has to be undertaken with cau-

tion. For DIC,
:::::::
features

:
the ensemble mean trend pattern reasonably captures the observations.

Features like a stronger trend at BATS compared to ESTOC are captured by the ensem-
ble mean. Overall, however, the models slightly underestimate the observed trends by up to
5 mmolm−3yr−1. For pCO2, both model mean and observations show robust positive trends
for large parts of the global oceans. Yet, the ensemble locally underestimates the observed
trends, e.g. at station ALOHA (with respect to 1988–2002: 10 ppmv). For pH, the models cap-
ture the general trend, i.e. prevalent ocean acidification. Both models and observations illustrate
this with comparable negative values. For SST, the model ensemble shows widespread posi-
tive trends, the exception is a localized area in the Southern Pacific. The observed trends span
a wide range from positive to negative, due to natural variability as discussed above. A com-
parison of the positive observed values with the ensemble indicates that models and observed
time series are in the same range of magnitude. Further, we utilize the SST fields of the re-
analysis dataset HadISST1 (Rayner et al., 2003). Based on annual means, we calculate trend
and standard deviation over the period 1970–1999 (not shown). The ensemble mean trend pat-
tern captures the main features of the reanalysis, comparably strong trends in the equatorial
and North Pacific, and the North Atlantic. However, the modeled trends are slightly lower and
in general more homogeneous. The reanalysis shows a stronger gradient between regions with
strong and very weak trends. Further, the reanalysis shows negative trends in the Pacific from
20 to 40◦ N which are not present in the ensemble mean. Globally, we find a pattern correlation
r between model ensemble and reanalysis of 0.44 (90

::
−: 20◦ S: 0.56; 20◦ S

::
−: 20◦ N: 0.36; and

20
:
−: 90◦ N: 0.68). Concerning standard deviation, the picture is similar. Both

::::::::
ensemble

:
model

9
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mean and reanalysis capture the main variability features such as the ENSO region or parts of
the North Atlantic. However, again the ensemble mean is more homogeneous. The reanalysis
indicates very low inter-annual variability in the high latitudes, especially the Southern Ocean,
which is not the case for the model ensemble. We find a global pattern correlation r of 0.88
(90

::
−: 20◦ S: 0.82; 20◦ S

::
−: 20◦ N: 0.81; and 20

::
−: 90◦ N: 0.89).

To evaluate N , we can verify the presence of main characteristics of natural variability. One
prominent feature is El Niño-Southern Oscillation (ENSO; Fiedler, 2002), located in the equa-
torial Pacific. This climate mode, the most important factor concerning natural variability in the
climate system on global scales, is known to have substantial impact on the ocean carbon cycle
in the affected area (e.g., Le Quéré et al., 2010; Wanninkhof et al., 2013) and the global air–
sea CO2 flux in general (Siegenthaler, 1990; McKinley et al., 2004). We find clear

::::::::::
indications

indicators of ENSO in the sdv patterns of SST, DIC and pCO2, and a weak signal for pH. An-
other area of high natural variability is the North Atlantic which is influenced by modes like the
North Atlantic Oscillation (NAO; Hurrell and Deser, 2009) or changes in the Atlantic Merid-
ional Overturning Circulation (AMOC; Carton and Häkkinen, 2011), both known for

::::::::
affecting

having an influence on the ocean carbon cycle (e.g., Keller et al., 2012; Perez et al., 2013).
A further region with high variability in the ocean carbon system is the Southern Ocean (see
e.g., Bacastow, 1976; Marinov et al., 2006; Lovenduski et al., 2007; Le Quéré et al., 2007; Res-
plandy et al., 2013b), where we find a corresponding signal in the ensemble sdv pCO2 pattern.

In order to estimate the importance of trend and natural variability in shaping the spatial
patterns of ToE, we compare patterns in S and N with the resulting ToE. For DIC, some areas
of high ToE values such as the Arctic Ocean and the eastern equatorial Pacific are characterized
by anti-correlated high variability levels and low trends. In the western equatorial Pacific, high
ToE are due to high variability alone,

::
as

:
S shows

:::::::
medium

:
normal levels. The opposite is the

case in the North Pacific, where high ToE is caused by weak trend signals. The ToE pattern
of pCO2 seems to be dominated by N , supported by anti-correlated low S on local scales in
the Southern Ocean.

::
N

:
The standard deviation of pH is relatively homogeneous, with elevated

variability levels in the Arctic Ocean, the Southern Ocean and, locally, the eastern equatorial
Pacific. These areas imprint on the ToE pattern, yet S seems to be more important. For the

10
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carbon cycle variables, S and N are found to be anti-correlated in some regions. The opposite
is the case for SST, which shows both high trends and variability in the equatorial Pacific,
the North Pacific

:
,
:
and parts of the North Atlantic. The associated high ToE values illustrate

the dominance of N , which masks the strong trends in these areas. In the equatorial parts of
Atlantic, western Pacific and Indian Ocean, the absence of strong variability allows S to govern
the ToE field. In conclusion, we see that in areas with high natural variability, even strong trends
both in the physical climate and carbon cycle system are masked over decadal timescales.

When working with a model ensemble, it is important to consider the inter-model spread
(IMS).

:
It

:
First, it is an indicator for the robustness of the results. Further, it illustrates where

and when the models diverge and is thus a measure for uncertainty. Figure 3 shows the stan-
dard deviation across all 17 models of S (IMSS), N (IMSN ) and ToE (IMSToE). The four IMSS

fields show related patterns, with high IMS in the Southern Ocean (all four variables), the Arctic
Ocean (DIC and, weaker, pH and pCO2) and the North Atlantic (SST). The IMSN field of SST
mirrors the pattern of IMSS in the North Atlantic, the same is true for DIC in the subtropical
Pacific and the eastern Arctic Ocean. IMSN of pH indicates a large-scale zonal structure and
shows, together with pCO2, high IMS in the upwelling region off Peru and Chile. The IMSToE
field of DIC resembles the pattern for N , with high IMS in the Arctic and the equatorial Pacific
Ocean. IMSToE of pH and pCO2 are much alike, with large IMS localized in the Arctic and
Southern Ocean and the eastern equatorial Pacific. IMSToE of SST is very noisy, however with
generally lower values around the equator. Possible reasons for the model spread in the South-
ern Ocean include the inadequate representation of bottom-water formation processes in many
CMIP5 models (Heuzé et al., 2013) and a systematic wind bias inherent to many models, which
impacts physical processes like Antarctic Circumpolar Current and Southern-Ocean water mass
formation and, consequently, the ocean carbon cycle (Swart and Fyfe, 2012). In areas with high
natural variability such as the equatorial Pacific or the North Atlantic, IMS might arise from
differences in time and space of the representation of climate modes such as ENSO or NAO
(e.g., Keller et al., 2012). Another possible factor is the model resolution, especially in areas
dominated by local processes such as coastal upwelling.

11



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

3.2 Impact
::
of

:
seasonality

For six out of 17 models, we have monthly data available. These are NCAR CESM1 (the com-
plete simulation, 1850–2005), NCAR CCSM3-BEC and NCAR CSM1.4-carbon (25 yr, 1985–
2009), and BCCR BCM-C, IPSL-CM4 and COSMOS (30 yr, 1980–2009). A comparison based
on annual averages of the complete 130 yr and the monthly data (NCAR CESM1: 1975–2004)
provides very similar results. Accordingly, we assume that time periods of 25 and 30 yr are
sufficient to capture main variability features and that results based on this data are robust. As
mentioned in Sect. 2, we find that the trend patterns of all four variables are indeed compara-
ble for the different time scales. The fields of standard deviation, however, differ. The regions
mainly affected by intra-annual variability are the high latitudes. For DIC, as an example, the
monthly averages over the time series display a clear seasonal cycle for four out of six mod-
els (NCAR CESM1, CCSM3-BEC, NCAR CSM1.4-carbon and COSMOS) while others show
comparably homogeneous patterns throughout the year (BCCR BCM-C, IPSL-CM4). For both
pH and pCO2 we find seasonal signals for the models NCAR CESM1, COSMOS and IPSL-
CM4 and, more limited to the Southern Ocean, BCCR BCM-C. SST shows a strong seasonal
cycle in all six models. To illustrate (i) the differences between the models and (ii) to give
an estimate of the importance of the seasonal cycle, we show results for DIC of two models.
These are NCAR CESM1, a model with distinct seasonal cycle, and IPSL-CM4, a model with
comparably small intra-annual variability.

Figures 4 and 5 show S, N and ToE of surface DIC for the models NCAR CESM1 and IPSL-
CM4, respectively. The fields are calculated using the same 30 yr of monthly data (NCAR:
1975–2004, IPSL: 1980–2009), however with different temporal resolutions: annual averages
(#30, row 1), monthly averages, incl. full seasonal cycle (#360, row 2), January only (#30, row
3) and July only (#30, row 4). For case two (monthly averages), an alternative approach would
be to define N as the full range of the seasonal cycle. In doing so, it is possible to make a clear
distinction between inter- and intra-annual variability. However, we focus on the combination
of both since it is closer to what we find in reality. For both models, S is comparable concern-
ing magnitude and spatial patterns in all four cases. One exception is the area around (IPSL)

12



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

or east of (CESM) Australia, which shows strong trends in the annual averages. A comparison
of the cases “Annual” and “Monthly” illustrates the expected loss of variability due to tempo-
ral averaging, especially in this case with the seasonal cycle still present in the monthly data.
Consistent with the ensemble mean, the two “Annual” N fields show variability hot-spots in
the equatorial Pacific and, locally, the Arctic Ocean. When the seasonal cycle comes into play,
general variability is increased substantially by a factor up to 4 and more. On a spatial scale,
“Monthly” captures the main features of “Annual”. Additional areas with high variability, i.e.
regions with pronounced seasonal cycle, are the North Atlantic, the western North Pacific and
the Southern Ocean, especially Drake Passage and Scotia Sea. Further, we look at January and
July, as representatives of northern summer and winter. When focusing on single months, the
seasonal cycle

:::
has

:::
no

:
is of negligible relevance for the magnitude of N . Consequently the re-

sult are N fields slightly higher than in the “Annual” case,
::::::
reason

::
is
::::
the the latter due to the

absence of averaging-based losses
::
in

:::
the

::::::::::::
January/July

:::::
cases. One important difference between

the models remains. The January and July fields of IPSL are much alike. In contrast to this, and
representative for the majority of the models, for NCAR, variability in the high latitudes on both
hemispheres is much higher in the respective summer season. For both models and in agreement
with the ensemble mean, ToE fields are tightly linked to N . The differences between seasons
in the NCAR model are caused by the mentioned seasonal signal of intra-annual variability.
To simplify the comparison, Fig. 6 shows ToE “Annual” (row 1) and, for “Monthly” (row 2),
“January” (row 3) and “July” (row 4), the offset relative to this case (e.g. row 2: ToEMonthly–
ToEAnnual). ToE “Monthly” of both models shows the expected substantially later ToE as the
“Annual” case. “January/July” show comparable (±10 yr) ToE to the “Annual” case in large
parts of the global oceans, especially in the low and middle latitudes. However, the NCAR
model shows large deviations (up to ±60 yr and more) in the high latitudes, the equatorial Pa-
cific, the Indian Ocean and, more localized, in other areas. This has important implications for
observations. The (partial) resemblance of the “January/July”

:::::::
patterns

:::
are

:::::::
similar

::
in

:::::
parts

:::
of

:::
the

::::::
global

:::::::
oceans.

:::::
This

::::::::
indicates

:::::
that,

::
at

:::::
these

:::::::::
locations,

:
fields indicates thatstatements based

on irregularly sampled data are valid representatives for the whole year. This indeed seems to
be the case in parts of the global oceans. In large areas, however, intra-annual variability might

13
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interfere such a generalization. An illustrative example is the slow-down of the AMOC, which
was suggested by Bryden et al. (2005) based on five cross sections in the North Atlantic. These
snap-shot measurements were distributed over the seasons in such a way that they embraced
the full range of the seasonal cycle, and the observed slow-down was later attributed mainly to
“aliasing due to seasonal anomalies” (Kanzow et al., 2010).

4 Conclusions

Here, we investigate the
::::
Time

:::
of

:::::::::::
Emergence

:::::
(ToE)

:
ToE of trends in the surface ocean car-

bon cycle utilizing an ensemble of 17 state-of-the-art
:::::
ESMs.

:::::
The

::::
ToE

:::
is

:::
the

:::::
time

::::::::
required

::::
until

::
a

::::::::
sustained

:::::
trend

::::::::
exceeds

:
a
::::::::::
variability

:::::::::
threshold

:::::
(here

:::
two

::::::::
standard

::::::::::
deviation).

::::::
Thus,

::::
ToE

:::::::
depends

:::
on

:::::::
reliable

:::::::::
estimates

::
of

:::::
both

:::::
trend

:::
and

::::::::::
variability.

::::
For

::::::::
example,

:::
an

:::::::::::::::
underestimation

::
of

:::
the

:::::::::
variability

::
in

:::
the

::::::
model

::::::::::
compared

::
to

:::
the

::::
real

:::::
ocean

::::::
would

::::
bias

::::
ToE

::::::::
towards

::::
low

::::::
values.

::::
Yet,

:::
the

:::::
study

::::::
shows

::::
that

:::
the

:::::::::
ensemble

:::::
mean

:::::
trend

:
earth system models. The ensemble mean trends

and standard deviation patterns are in reasonable agreement with comparable observations and
reanalysis datasets, which supports the robustness of the presented results.

::::
ToE

::
of

::::
pH

::::
and

:
pCO2 :::

has
::::::
rather

::::
low

::::::
values

::::::::
(around

:::
10 yr

:
)
:::
in

:::::
many

:::::::
regions

:::
of

:::
the

:::::::
surface

::::::
ocean.

::
It

::
is,

:::::::::
however,

:::::::::
generally

:::::::
difficult

::
if

:::
not

:::::::::::
impossible

::
to

:::::::
reliably

::::::::::
determine

:::::::::
variability

::::
and

:::::::::
long-term

:::::
trends

:::
in

:::
the

::::::
surface

::::::
ocean

:::::
from

::::
data

::::
that

::::::
extend

::::
over

:::::
such

:
a
:::::
short

::::::
period

:::::
only.

::::::
Trends

::
in

:::::::
surface

::::::
ocean

::::::::
variables

::::
can

:::::
vary

:::::::::::
significantly

::::::::
between

:::::::::
different

:::::::
10-year

:::::::
periods

::::
and

:::::
even

::::::
reverse

::::
sign

:::::
(see

::::
Fig.

:
1
::::
and

::::
Tab.

:::
1,

::::::::
ALOHA

::::
data

:::
for

:::
an

:::::::::::
illustration).

:::
As

::
a

::::::::::::
consequence,

::::::
model

::::
data,

:::
or

::::::::::::::
measurements,

::::
over

::
a
::::::
longer

:::::::
period

:::
are

:::::::
needed

:::
to

:::::::
reliably

::::::::::
determine

:::::::::::::
anthropogenic

:::::
trends

:
(Fay and McKinley, 2013)

:::
and

:::
the

:::::
ToE.

::::::
Here,

::::::
trends

:::
and

::::::::::
variability

:::
are

:::::::::
estimated

:::::
from

::
30

::::::
years

:::::
(1970

:::
to

::::::
1999)

::::
and

::::
130

:::::
years

:::
of

::::::
model

:::::
data,

::::::::::::
respectively.

::::
The

::::::
choice

:::
of

::
a

:::::::
30-year

::::::
period

:::::::::
minimizes

::::
the

::::::::
influence

:::
of

:::::::
climate

::::::
modes

:::::
such

::
as

::::::
NAO,

::::::
ENSO

:::
or

:::::::
AMOC

:::
on

::::::
trends

::
as

::::::::::::
demonstrated

:::
by

:
Fay and McKinley (2013)

::
for

:::::::
surface

::::::
ocean

::
pCO2 :::::::::::::

measurements,
::::::
while

::
at

:::
the

:::::
same

::::
time

:::
the

:::::
1970

::
to

:::::
2000

::::::
period

::::
still

::::::::
provides

:::
an

:::::::::::
approximate

::::::::
measure

::
of

::::
the

::::::
current

::::
and

::::::::::
near-future

:::::::::::::
anthropogenic

:::::
trend

::
in

:::
the

:::::::
surface

::::::
ocean.

::::
The

::::
ToE

::
is

:::::::::
indicative

:::
for

:::
the

::::
time

::::::::
required

14
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:::
for

:::
the

:::::::::::::
anthropogenic

:::::
trend

::
to

:::::
leave

::::
the

:::::::::
variability

:::::
band,

::::
but

::
it

::::::
should

:::
not

:::
be

::::::::
confused

:::::
with

:::
the

::::::
period

:::::::
required

:::
to

:::::
detect

::::
this

:::::
trend

::
in

:::::::::::::
observational

::
or

::::::
model

:::::
data.

We find that trend signals in ocean biogeochemical variables emerge on much shorter
timescales than the physical climate variable SST. ToE fields of pCO2 and pH are spatially
very similar to DIC, yet emerge much faster – after ≈ 12 yr for the majority of the global ocean
area, compared to ≈ 10–30 yr for DIC. Assuming that natural variability is constant over time,
we suggest that possible stronger future trends would emerge accordingly faster. We find that,
in general, the standard deviation is of higher importance in determining ToE than the strength
of the linear trend. In areas with high natural variability, even strong trends both in the physical
climate and carbon cycle system are masked by variability over decadal timescales. This ex-
plains inconsistencies in trends based on time series of insufficient length to overcome natural
variability, and illustrates the necessity for long-term observations.

Considering past changes since the beginning of the industrialization, the fast emergence of
trend signals implies that anthropogenic trends in the surface ocean carbon cycle are already
detectable in large parts of the global oceans. This finding is even more relevant

:
as

:
when we

take into account that the highest rates of ocean acidification are measured (Bates, 2012; Dore
et al., 2009) and modeled (Resplandy et al., 2013a) in subsurface waters.

A further finding of the study is that, in contrast to the trend, the standard deviation is affected
by the seasonal cycle. This has important implications for the use of sparse observations.

::
In

:::::
some

:::::
parts

::
of

::::
the

::::::
global

:::::::
oceans,

:::::
there

::::
are We find hints that statements based on irregularly

seasonal sampled data might be representative for the whole yearin parts of the global oceans.
In large areas, however, intra-annual variability might interfere such a generalization.

The study clearly illustrates the need of more long-term measurements with sufficient sea-
sonal data coverage.

::::
DIC

::
is
::

a
:::::
very

:::::::::
important

::::::::
variable

::::
and

:::::::
crucial

:::
for

::::
our

:::::::::::::
understanding

:::
of

:::::::::
processes.

::::
For

:::
the

::::
sole

:::::::::
detection

::
of

:::::::
trends,

::::::::
however,

::
pCO2 :::

and
:::
pH

:::::
seem

::
to

:::
be

::
a

:::::
better

:::::::
choice.

:::::::
Further, These observations are not only necessary for the correct detection of trends and natural
variability. Independent data sets are also key for the robust forcing and evaluation of climate
models which are, since observations are still scarce, the measure of choice for many research
questions.
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Table 1. Observed trends/year of dissolved inorganic carbon (DIC; mmol m−3), pCO2 (ppmv or µatm),
total pH and sea-surface temperature (SST; ◦C), all variables on surface level. Note that we include only
directly measured, i.e. not salinity-normalized DIC.

Region and years DIC pCO2 pH SST

North Atlantic
1983–2011 (BATS)a 1.53± 0.12 1.62± 0.21 −0.0016± 0.0022 −0.0075± 0.021
1988–2011 (BATS)b 1.51± 0.08 2.13± 0.16 −0.0022± 0.0002 −0.011± 0.002
1995–2004 (ESTOC)c 0.41± 0.12 1.55± 0.43 −0.0017± 0.0004 0.002± 0.019
1985–2008 (Iceland)d 1.44± 0.23 – −0.002± 0.005 –

North Pacific
1973–2005 (Line P)e – 1.36± 0.16 – –
1992–2008 (KNOT)f 1.3± 0.3 – – 0.039± 0.021
1994–2008g – 1.54± 0.33 −0.020± 0.007 –

Pacific (near Hawaii)
1988–1996 (ALOHA)h −0.24± 0.46 1.4± 0.2 – 0.02± 0.02
1988–2002 (ALOHA)h 2.64± 0.25 2.5± 0.1 – −0.02± 0.01
1988–2007 (ALOHA)i – 1.88± 0.16 −0.0019± 0.0002 0.026± 0.016

Equatorial Pacific
1974–2004 (Niño 3.4)j – 1.13± 0.31 – −0.01± 0.02
1974–2004 (WPWP)j – 1.91± 0.22 – 0.05± 0.01

Southern Ocean
1991–2007 (Indian Ocean)k – 2.11± 0.07 – −0.11± 0.03
1995–2008 (Indian/Pacific)l 1.0± 0.6 2.2± 0.2 – 0.01± 0.06
1998–2010 (Pacific)m 0.43± 1.17 1.1± 0.4 – −0.06± 0.02
2001–2008 (Atlantic)l 0.2± 0.3 0.2± 1.0 – 0.11± 0.12

a Bates et al. (2012), b Bates (2012), c Santana-Casiano et al. (2007), d Olafsson et al. (2009), e Wong et al. (2010), f Wakita et al.
(2010), g Ishii et al. (2011), h Keeling et al. (2004), i Dore et al. (2009), j Feely et al. (2006), k Metzl (2009), l Lenton et al. (2013), m

Brix et al. (2013).
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Fig. 1. NCAR CESM1: annual time series (light blue), corresponding smoothing spline (dark blue),
and linear trend (red) of dissolved inorganic carbon (DIC; mmol m−3) at 22◦ N, 158◦ W, the proximate
location of the Hawaii Ocean Time-series (HOT; Keeling et al., 2004). The grey bar represents

:::
two

:::::
times

the standard deviation of the detrended time series (i.e., annual-spline). The spline is calculated with
a cut-off period of 40 yr. The linear trend is based on the years 1970–1999 of annual, as indicated by
the grey vertical lines. The intersect between the red vertical line and the upper border of the grey bar
(x = 2015) shows when the trend leaves the envelope of background variability and, from then on, is
detectable. Consequently, the ToE at this location is 16 yr (2015–1999).
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Fig. 2. ToE (years) of dissolved inorganic carbon (DIC; mmolm−3), pCO2 (ppmv), total pH
:
, and sea-

surface temperature (SST; ◦C). Ensemble mean, all variables on surface level. Note the different scales
for DIC/SST and pCO2/pH.
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Fig. 3. Trend/decade (S), standard deviation (N ) and, as measures for the inter-model spread (IMS),
standard deviations of S (IMSS), N (IMSN ),

:
and ToE (IMSToE) of dissolved inorganic carbon (DIC;

mmolm−3), pCO2 (ppmv), total pH
:
, and sea-surface temperature (SST; ◦C).
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Fig. 4. NCAR CESM1: Trend/decade (S), standard deviation (N ) and ToE (years) of dissolved inorganic
carbon (DIC; mmolm−3) for the period 1975–2004. S and N are calculated on basis of annual averages
(#30, row 1), monthly averages, incl. full seasonal cycle (#360, row 2), January only (#30, row 3)

:
, and

July only (#30, row 4).
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Fig. 5. IPSL-CM4: Trend/decade (S), standard deviation (N ) and ToE (years) of dissolved inorganic
carbon (DIC; mmolm−3) for the period 1980–2009. S and N are calculated on basis of annual averages
(#30, row 1), monthly averages, incl. full seasonal cycle (#360, row 2), January only (#30, row 3)

:
, and

July only (#30, row 4).
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Fig. 6. NCAR CESM1 and IPSL-CM4: ToE “Annual” (row 1; same as in Figs. 4/5) and, for the cases
“Monthly” (row 2), “January” (row 3)

:
, and “July” (row 4), the offset relative to this case (e.g. row 2:

ToEMonthly–ToEAnnual).
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