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Abstract. Extreme weather events are likely to occur more
often under climate change and the resulting effects on
ecosystems could lead to a further acceleration of climate
change. But not all extreme weather events lead to extreme
ecosystem response. Here, we focus on hazardous ecosys-
tem behaviour and identify coinciding weather conditions.
We use a simple probabilistic risk assessment based on time
series of ecosystem behaviour and climate conditions. Given
the risk assessment terminology, vulnerability and risk for
the previously defined hazard are estimated on the basis of
observed hazardous ecosystem behaviour.

We apply this approach to extreme responses of terrestrial
ecosystems to drought, defining the hazard as a negative net
biome productivity over a 12-month period. We show an ap-
plication for two selected sites using data for 1981-2010;
and then apply the method to the pan-European scale for the
same period, based on numerical modelling results (LPJmL
for ecosystem behaviour; ERA-Interim data for climate).
Our site-specific results demonstrate the applicability of the
proposed method, using the SPEI index to describe the cli-
mate condition. The site in Spain provides an example of vul-
nerability to drought because the expected value of the SPEI
is 0.4 lower for hazardous than for non-hazardous ecosystem
behaviour. In northern Germany, on the contrary, the site is
not vulnerable to drought because the SPEI expectation val-
ues imply wetter conditions in the hazard case than in the
non-hazard case.

At the pan-European scale, ecosystem vulnerability to
drought is calculated in the Mediterranean and temperate re-
gion, whereas Scandinavian ecosystems are vulnerable under
conditions without water shortages. These first model-based
applications indicate the conceptual advantages of the pro-
posed method by focusing on the identification of critical cli-
mate conditions for which we observe hazardous ecosystem

behaviour in the analysed dataset. Application of the method
to empirical time series and to future climate would be im-
portant next steps to test the approach.

1 Introduction

Climate change is expected to have impacts on the productiv-
ity and stability of ecosystems worldwide. When ecosystem
productivity is reduced, atmospheric CO» concentrations can
be further enhanced and thus reinforce climate change. Es-
pecially extreme weather events (as perceived in Seneviratne
etal., 2012) which are expected to become more frequent and
intense (Field et al., 2012; Coumou and Rahmstorf, 2012),
are likely to severely impact terrestrial ecosystems (Reich-
stein et al., 2013; Zscheischler et al., 2014a).

Drought is the one of the dominant weather extreme events
that already led to large-scale biomass loss over the past
decades in European ecosystem (Ciais et al., 2005) and that
is expected to increase rapidly in magnitude and frequency
with further climate change (Zscheischler et al.,, 2014a).
Many studies investigated the impact of drought on terres-
trial ecosystems including monitoring (e.g. Buentgen et al.,
2011; Ciais et al., 2005), experimental (e.g. Eilmann et al.,
2011; Misson et al., 2011) and model-based research (e.g.
Cherwin and Knapp, 2012). However, not all droughts lead
to extreme ecosystem responses. To disentangle the connec-
tions between extremes in the biosphere and the environ-
ment, Smith (2011) propose a concept that subdivides situ-
ations according to their extremeness both on the physical
and the biological side. Improving our understanding of the
weather conditions under which extreme ecosystem response
occurred is thus an imperative which needs to be advanced in
parallel to further investigating the preconditions that make



ecosystem particular prone to extreme response (Frank et al.,
accepted).

Probabilistic Risk Assessment (PRA), initially developed
in engineering (e.g. Wall, 1969), has frequently been applied
also in ecology (e.g. in population ecology by Diez et al.,
2012; Hope, 2000; Regan et al., 2003; Wilson et al., 2009). In
2013, Van Oijen et al. used PRA successfully to deduce vul-
nerability and risk of European spruce forest from drought
and heatwaves. They quantified the vulnerability as the ex-
pected impact of drought and heatwaves on the carbon stor-
age of the forest, and deduced risk by incorporating the prob-
ability of occurrence. Thus, they defined the extreme weather
event as the hazard, and then investigate the related ecosys-
tem response. Changing the perspective and searching for the
drought conditions under which extreme ecosystem response
occurs, we build on the same concept of PRA, but define
the hazard as the extreme ecosystem response and then iden-
tify the critical weather conditions that co-occurred with the
extreme ecosystem response. In line with Van Oijen et al.
(2013), vulnerability is then quantified by determining the
difference between mean climate conditions provoking ei-
ther hazardous or non-hazardous ecosystem responses, and
risk by incorporating the probability of the hazardous event.

We further adapt this initial ecosystem-focused PRA for
the vulnerability and risk assessment of drought-induced net
biomass loss by specifying response and climate variables,
and apply it at the site and pan-European scale.

Hence, the aims of this study comprise the following

1. developing a PRA that enables us to better understand
the meteorological conditions under which extreme
ecosystem responses occurs, namely loss of biomass
under drought conditions,

2. adapting the PRA for vulnerability and risk from
drought using net biomass loss as a hazard,

3. providing a first illustrative application of the adapted
PRA on the site-scale, and finally

4. applying the methods to estimate the vulnerability and
risk of terrestrial ecosystems to loose biomass and there-
fore turn into a source of carbon dioxide at the Pan-
European scale.

According to these objectives, we first develop a gen-
eral PRA focusing on the ecosystem response to quantify
ecosystem vulnerability and risk from climate conditions by
definig a discrete and ecologically meaningful threshold for
hazardous ecosystem behaviour. We further adapt the gen-
eral PRA to assess vulnerability and risk specifically from
drought. Using modelled ecosystem data for a 30-year pe-
riod, we then apply the adapted PRA to investigate vulner-
ability and risk from drought for two individual sites within
Europe. And finally, we extend the application to ecosystem
at the pan-European scale to identify and quantify vulnera-
bility to drought and associated risk.
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2 General Framework for Probabilistic Risk Assess-
ment (PRA) from the ecosystem perspective

Since impacts of extreme weather on ecosystems are not al-
ways direct and uniform, but can also have indirect and/or
lagged effects (Barbeta et al., 2013; Martin-StPaul et al.,
2013), other measures are required that subsume the vari-
ous ecosystem responses. Single (extreme) events can influ-
ence particular ecosystem pattern or function but allow for
a quick recovery. The question, however, is how ecosystems
may become vulnerable over longer time scales of several
years to decades. We rearrange the approach of Van Oi-
jen et al. (2013), and define hazardous conditions from an
ecosystem perspective to quantify the probability of weather
conditions determining ecosystem vulnerability. To calculate
vulnerability from the ecosystem perspective, we define an
ecosystem variable sys and an environmental variable env
(Fig. 1a). A threshold of the ecosystem variable sys defines
the hazard and divides the data set into hazardous (haz) and
non-hazardous conditions (nonhaz) (Fig. 1b). Ecosystem
vulnerability (Vg) is then determined by conditional prob-
abilities, i.e. the expectation value (E) of env under non-
hazardous and hazardous conditions of sys (Eq. 1, Fig. 1c)

Vi = E(env|sys nonhaz) — E(env|sys haz) (1)

based on conditional expectation values
E(env|o) = /env P(env|o) d env 2)

with probability P of env under the specified condition
o. Ecosystem vulnerability Vg (Eq. 1) in our assessment
is the average deviation of the environmental variable un-
der hazardous ecosystem conditions from values under non-
hazardous ecosystem conditions (Fig. 1d). Vg and risk (Rg)
are therefore expressed in the unit of the environmental vari-
able and describe the deviations in the weather conditions co-
occurring with hazards in the ecosystem. The probability of
the hazard occurrence Py is given by the relative size of the
hazard group, i.e. the number of data points for hazardous
conditions Ny, divided by the total number of values N;
resulting in Py = Np,. /N. The corresponding risk (Rg) is
then defined as the product of the vulnerability of the ecosys-
tem and the hazard probability (Eq. 3, Fig. le),

Rp =Vg-Py 3)

= E(env | sys nonhaz) — E(env)

which can be replaced by the respective expectation val-
ues for hazardous and non-hazardous conditions combining
equations (1) and (2). On the one hand, Ry reflects the usual
perception of risk as the realized vulnerability. On the other
hand, it cannot be interpreted as expected damage since it is
related to the environmental variable and does not express a
property of the ecosystem such as carbon loss.
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Fig. 1. Schematic representation of ecosystem vulnerability and risk determination. a) regarding sys as independent and env as dependent
variable, b) dividing the data set according to the defined hazard for sys into hazardous and non-hazardous subsets, c) calculating expec-
tation values Epq. and Enonhae. of env for the two data subsets, d) determining Vg as the difference of the expectation values (Eq. 1), e)
determining R g as the product of VE and the probability of the hazard occurrence Py (Eq. 3).

In the ecosystem vulnerability approach, high values of Vg
and Rg denote high vulnerability and risk towards the re-
spective environmental variable because the ecosystem haz-
ard (e.g. carbon loss) occurs when env differs consider-
ably from situations when the ecosystem accumulates carbon
(see 5.1). The distance between the expectation values re-
veals the potential impact of env on the ecosystem. It has to
be stressed that the method is not suitable for, and not target-
ing at, the quantification of effects of single extreme events.
By using probability distributions and their expectation val-
ues, the long-term effect of the entire ecosystem in relation
to extremes occurring on climatic time scales is evaluated.

Our approach is completely general in the sense that we
can describe the vulnerability of any ecosystem variable (see
section 2.1), and use any threshold as the criterion for haz-
ardous conditions. It can be applied to measured data as well
as to simulation results from ecosystem models. Whereas an
application to experimental data allows for the evaluation of
the behaviour of the studied ecosystem, the application to
simulation results examines the responses of the model to
climatic drivers. The prerequisite for the application is the
availability of sufficient data points for env and sys so that

probability distributions can be derived. This facilitates the
application to model results and currently limits the scope
for measured data.

2.1 Data sources for environmental variable env

Environmental variables (env) which can be chosen for the
probabilistic risk assessment are monthly values of the Stan-
dardized Precipitation Evapotranspiration Index SPEI (-) but
also monthly values of precipitation, temperature, or consec-
utive dry days with precipitation below 1 mm. The SPEI is
a recent extension of the Standardized Precipitation Index
by the influence of temperature on the potential evapotran-
spiration (Vicente-Serrano et al., 2010) and was calculated
with function spei of R-package SPEI (R Development Core
Team, 2009) with a 3-monthly averaging interval. SPEI val-
ues have an average of 0 and are regarded as an indicator of
drought below -1.0 or water surplus above 1.0.

In our case, we choose S as monthly SPEI values and give
results for other env in appendix A. We use env values from
1981 to 2010 (see 3.1).



2.2 Choice of ecosystem variable sys

To derive the system variable sys, we use results of the
global, dynamic process-based vegetation model LPJmL
(see 3.2). For the analysis, daily meteorological data de-
scribed in section 3.1 are used as forcing data for the sim-
ulations with LPJmL. A detailed protocol of the model set
up is given in 3.3. All processes, including fire, are simu-
lated at a daily resolution in this study, so that extreme con-
ditions contained in the climate input data set will have an
impact on the simulated ecosystem variables. To derive sys,
we select monthly values of net primary production (NPP),
heterotrophic respiration (RH) and burned biomass (BB) (all
given in gC m~2 month~!) from which net biome production
(NBP) is calculated (Eq. 4).

NBP = NPP - RH — BB @)

In order to detect hazardous conditions outside their aver-
age seasonal dynamics and to include lagged effects of the
ecosystem in the months following after the extreme weather
event, a moving time window of 12 months is defined, during
which NBP values were considered. The system variable sys
for month ¢ in the period of m years is chosen as the sum of
NBP over the 12-month moving window including month 1
and the following 11 months (Eq. 5).

i+11
sysi= » NBPj for i€ (1,..,mx12). 5)
k=1

With this definition, sys; integrates over a 12-month period
but does not refer to the calendar year. It eliminates the ef-
fect of seasonal dynamics within NBP, independent of differ-
ences in growing seasons between biomes and regions. The
choice of the moving time-window aims at the consideration
of long-term impacts of weather extremes and the exclusion
of seasonal effects as plants in, e.g., seasonally dry ecosys-
tems are adapted to dry summer months. Moving the one
year-window month by month further accounts for droughts
of varying duration. The env variable SPEI with an averag-
ing interval of 3 months represents a medium-term situation
on the subseasonal scale (Vicente-Serrano et al., 2010, 2012).
The combination with the ecosystem condition over a cycle
of 12 months allows for the identification of responses which
exceed seasonal variations.

We define a hazard as a month ¢ for which the system vari-
able sys; is negative (sys; < 0), i.e. the ecosystem is a net
source of carbon for the following 12-month period. Hence,
the performance of the vegetation model is decisive for the
classification as hazardous or not, but only the sign of the car-
bon balance and not the extent of the reaction. Since the mag-
nitude of the vulnerability and risk values determined by Eqgs.
(1) and (3) result from the average deviation of the meteoro-
logical variables, it does play a role whether the processes in
the model include or react to feedbacks important in drought
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situations, but the exact representation of the magnitude of
the response does not play a role in our approach.

3 Material and Methods

In order to demonstrate the applicability of the concept, we
first calculate ecosystem vulnerability and risk for two sites
in Germany and Spain and secondly quantify Vg and R on
the European scale. For both, we use meteorological data as
environmental variables env (section 2.1) and the results of
a dynamic vegetation model as system variables sys (sec-
tion 2.2) with a spatial resolution of 0.25° x 0.25° across Eu-
rope (~ 17800 grid cells). This approach enables a consistent
analysis since the meteorological data were used as forcing
for the vegetation model and as env. We analyse a current
period (1981 to 2010) and use the European regions defined
by SREX (IPCC, 2012) for regional aggregation (Tab. 1).

Table 1. Coordinates of European geographical zones (latitudes,
longitudes) according to the SREX classification (NEU: North-
ern Europe, CEU: Central Europe, MED: Mediterranean) (IPCC,
2012).

NEU (11) CEU (12) MED (13)
SW  (48°N, 10°W)  (45°N, 10°W) (30°N, 10°W)
NW  (75°N, 10°W)  (48°N, 10°W) (45°N, 10°W)

NE  (75°N, 40°E)
SE (61.32°N, 40°E)

(61.32°N, 40°E)
(45°N, 40°E)

(45°N, 40°E)
(30°N, 40°E)

3.1 Input data

We use WATCH-ERA-Interim daily climate data at 0.25°
0.25° grid cell resolution to the European spatial domain
(29.125° N to 71.375° N and -23.875° E to 45.375° E).
This data set is based on downscaled WATCH climate data
(Weedon et al., 2011) for the years 1901-1978 and extended
to 2010 using downscaled ERA-Interim climate data (Dee
et al., 2011) (see details in Beer et al., 2014). The variables
in the daily climate data set include temperature (minimum
and maximum daily values), precipitation, wind speed, and
longwave and shortwave downward radiation flux. Annual
atmospheric CO2 concentrations for 1901-2010 are based on
data from ice-core records and NOAA atmospheric observa-
tions (Keeling and Whorf, 2005).

3.2 Description of the vegetation model LPJmL

LPJmL simulates carbon and water cycles as well as vegeta-
tion growth dynamics depending on daily climatic conditions
and soil texture. Natural vegetation is represented in LPJmL
at the biome level by nine Plant Functional Types (PFTs)
(Sitch et al., 2003). The model calculates closed balances
of carbon fluxes (gross primary production, auto- and het-
erotrophic respiration) and pools (in leaves, sapwood, heart-
wood, storage organs, roots, litter and soil), as well as wa-
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ter fluxes (interception, evaporation, transpiration, snowmelt,
runoff, discharge) (Gerten et al., 2004; Rost et al., 2008).
Photosynthesis is simulated following the Farquhar model
approach (Farquhar et al., 1980; Farquhar and Von Caem-
merer, 1982). Processes of carbon assimilation and water
consumption are parameterized on the leaf level and scaled to
the ecosystem level. Carbon and water dynamics are closely
linked so that the effects of changing temperatures, declin-
ing water availability and rising CO4 concentrations are ac-
counted for and their net effect can be evaluated (Gerten
et al., 2004, 2007). Physiological and structural plant re-
sponses determine water requirements and consumption.

LPJmL has been used in various studies where the hydro-
logical cycle and the plants reaction to water shortage were
a major factor. In these studies, different affected processes
were investigated including run-off (Haddeland et al., 2011;
Murray et al., 2013), and local carbon fluxes and water flux
dynamics (see comparison with eddy-flux tower measure-
ments for the northern latitudes in Figs. S2 and S3, Schaphoff
et al., 2013). Furthermore, system response to drought stress
of the LPJmL model has been compared to observational data
for the European summer 2003 climate anomaly (Reichstein
et al., 2007). On the European scale, coincidence pattern of
NPP reductions were compared to tree ring data (Rammig
et al., 2015) which revealed a strong sensitivity of the model
to extremely low precipitation.

Thus, when the climate forcing includes prolonged peri-
ods of drought and/or high temperatures, these have direct
effects on carbon assimilation and water stress in the model.
LPJmL simulates physiological processes depending on the
current climate conditions and their history which is reflected
in the composition of the plant community and their carbon
stocks accumulated so far. Hence, the response of the model
to a certain extreme event is not always the same. Biological
mechanisms responding to extreme events include net pri-
mary productivity driven by climate conditions and by atmo-
spheric CO2 concentration which changes the amount of leaf
biomass simulated for each PFT. Under rising atmospheric
CO5 concentrations, stomatal conductance decreases, lead-
ing to higher water-use efficiency which can buffer increas-
ing drought impacts. Another example of physiological adap-
tation is carbon allocation to new roots, which is an adaptive
response to increasing soil water limitations. Unproductive
individuals with a low growth rate are likely to die. The re-
sulting model response is a combination of the climate con-
dition and of the characteristics of the present PFTs. Compe-
tition between PFTs due to differences in their performance
under given climate conditions, can lead to changes in vege-
tation composition as less adapted PFTs can be out-competed
and replaced. Subsequently to changes in vegetation compo-
sition, i.e. changes in the PFT distribution, changes in the
productivity and the respective carbon fluxes can also be
quantified. This applies to long-term climate trends as well
as interannual climate variability, including the impact of ex-
treme events. Therefore, the LPJmL model is indeed capable

of capturing dynamic responses to, e.g., single or consecutive
drought events.

Fire is simulated within the process-based submodule
SPITFIRE (Thonicke et al., 2010). Bedia et al. (2012) em-
phasize the importance of using daily maximum temperature
in fire risk calculation to better capture extreme risk situa-
tions. The Nesterov Index (Nesterov, 1949), used to calcu-
late fire risk in SPITFIRE, considers daily maximum tem-
perature. Given the daily resolution of the input data set, the
model should respond to prolonged drought and heat. Veg-
etation re-growth on burnt areas, simulated by SPITFIRE,
depends on respective tree seedling performance and grass
establishment under given climate conditions and follows the
algorithms as described in the LPJmL model. Biomass burnt
(BB) result from dead and live fuel consumption in surface
fires and from crown scorching (Thonicke et al., 2010) and is
included in the carbon balance NBP (Eq. 4).

The suitability of the LPJmL framework for vegetation and
water studies has been demonstrated by validating simulated
phenology (Bondeau et al., 2007), river discharge (Gerten
et al., 2004; Biemans et al., 2009), soil moisture (Wagner
et al., 2003), evapotranspiration (Sitch et al., 2003; Gerten
et al., 2004) and carbon stored in litter biomass on the ground
for temperate and boreal European ecosystems (Evangeliou
etal., 2015).

3.3 Modelling protocol

For deriving the system variable sys, LPJmL simulations
were performed with natural vegetation. In order to derive
equilibrium fluxes between soil and vegetation, 1000 years
spinup were simulated by using the climatic forcing from
1901 to 1930 in repetitive loops. The transient run from 1901
to 2010 was started by a further spinup period of 30 years.
Climate forcing consisted of the WATCH-ERA-Interim cli-
mate data described in section 3.1. Data for the soil proper-
ties (Sitch et al., 2003) and for lightning, human population
density and human ignition (Thonicke et al., 2010) were re-
gridded from a spatial resolution of 0.5°x 0.5° to 0.25°x
0.25°.

4 Results

4.1 Determination of ecosystem vulnerability and risk
to drought: Two examples at site-scale

For the detailed calculation of ecosystem vulnerability, we
chose two sites in Europe with different climatic conditions.
In site 1 in northern Germany (Fig. 2a) the probability for
a hazardous ecosystem condition (i.e. sys < 0) for the pe-
riod 1981 to 2010 is 0.25, i.e. 80 of 360 data points are in
the hazard group. The expectation value of the chosen env,
the drought index SPEI, is 0.34 for data points with sys < 0
(hazard case) and -0.09 for those with sys > 0 (non-hazard
case). The difference between both sets of SPEI values is
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Fig. 2. Scatterplots of sys variable NBP (g C m~2 a~') against env variable SPEI (dimensionless) with monthly values from 1981 to 2010

for 2 sample grid cells in Europe: a) northern Germany (53.125°N, 11.125°W) and b) Spain (38.375°N, 3.625°E). Vertical lines denote
the threshold value for the hazard and horizontal lines the expectation values for the respective enwv variable in the hazard () and the
non-hazard case (En). Resulting expectation values, Vg and the frequency of data points in both groups are given (dimensionless numbers).
Significance level of the Welch 7 test between both groups is indicated for Vg. c¢) Calculated Vg and Rg values with negative sign for site 1
(vulnerable to wet conditions) and positive for site 2 (vulnerable to drought).
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Fig. 3. Probability distributions of NBP (a) and its contributions NPP (b), Rh (c), and BB (d) (all in gC m~2 a~!) and SPEI values (e) for
sites 1 (left) and 2 (right) (see Fig. 2). Dark shading denotes values in the hazard group, white shading in the non-hazard group.
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significant (p < 0.01) and results in negative Vg and Rg
(Fig. 2c¢). Thus, site 1 is not vulnerable to drought but to wet
conditions. Due to the infrequent hazard occurrence, the cor-
responding risk is low.

In the second site in Spain, the probability for sys < 0 in
the period 1981 to 2010 is much higher (50 %, Fig. 2b). The
expectation value for SPEI values in the hazard group is -0.19
and 0.22 in the non-hazard group. The two sets of SPEI val-
ues are significantly different (p < 0.001). Here, Vg and R
are positive (Fig. 2¢). Site 2 is vulnerable to drought, mean-
ing that carbon losses from the ecosystem occur when SPEI
is 0.4 units lower than in situations when the ecosystem is ac-
cumulating carbon. The corresponding risk value of 0.2 is in
this case lower than the vulnerability of 0.41 (Fig. 2b) and ex-
presses the not fully utilized vulnerability potential because
such extremes occur less often. Therefore, calculated risk
values cannot be related directly to the severity of drought
conditions, but relates ecosystem vulnerability to the hazard
occurrence.

Multiple processes can be responsible for hazardous
NBP. Disentangling the carbon balance components NPP,
Rh and BB under hazardous and non-hazardous conditions
is one way to provide this insight. For site 1 in Ger-
many, the distribution of NBP (Fig. 3a, left) is centered
around 70 gC m~2 a~! with negative values mostly above
-50 gC m~2 a—!. These data points are characterized by low
net primary productivity (NPP, Fig. 3b, left) and high het-
erotrophic respiration (Rh) above 480 gC m~2 a~! (Fig. 3c,
left). Biomass burnt (BB) is low (Fig. 3b, left) and does not
differ between hazard and non-hazard groups. The defined
hazard (negative NBP) is here occurring when SPEI values
are rather high (Fig. 3e, left). In these situations, precipitation
(and therefore, soil moisture) is above average, and radiation
is below average (see area 1 in Fig. B2f,h).

At site 2 in Spain, mostly grasses grow with a low cov-
erage of temperate evergreen trees. Negative NBP (Fig. 3a,
right) is associated with low NPP (Fig. 3b, right), slightly
lower Rh (Fig. 3c, right) and high BB (Fig. 3d, right). In the
hazard case, precipitation is reduced substantially (see area
2 in Fig. B3f) so that NPP is water-limited and fire is often
occurring. The positive Vg value for site 2 reflects the impact
of drought on the NBP.

4.2 Pan-European ecosystem vulnerability and risk to
drought

When applying the ecosystem vulnerability concept to
the pan-European scale under current climate (1981-2010,
Fig. 4a), we find vulnerable ecosystems predominantly in
southern Europe (Vg > 0.6). The border region of Ukraine,
Belarus and Russia is most pronounced with positive Vg val-
ues of more than 0.4. Reduced precipitation and slightly en-
hanced temperatures decrease photosynthesis and increase
heterotrophic respiration in this forest area (area 3 in ap-
pendix B). Vg above 0.4 is also determined in the mountain-

ous regions of Macedonia and Albania. Weather conditions
are extremely variable and lead to an open forest ecosystem.
Reoccurring drought conditions do not allow for an accumu-
lation of carbon in the biosphere and soil respiration enhance
the loss of carbon during hazard occurrence (area 4 in ap-
pendix B). In the boreal zone, Vg is negative meaning that
those ecosystems are not vulnerable to drought. Comparing
the expectation values of the hazard conditions, allows to re-
flect on the realized vulnerability, i.e. the risk Ry for carbon
loss (Eq. 3). The corresponding Ry (Fig. 4b) shows high-
est values in northern Africa (0.4) followed by 0.2 in the
Mediterranean, the Balkan Peninsula and Ukraine.

Having described regions and conditions being vulnera-
ble (positive V), large regions in Europe show vulnerability
values around zero or are even negative. Extensive areas in
the temperate region have Vg values close to zero which are
not significant (areas not marked by dots in Fig. 4a) while in
northern regions even negative values are widespread. We de-
termine the spatial extent of vulnerable areas (positive Vg) in
Europe. For 24 % of the European area, positive Vg values
and significant differences between hazard and non-hazard
groups of data are determined. In the southern region, this
holds for 53 % of the grid cells, whereas this percentage is
smaller for the temperate and the northern regions (Table 2).
Near or below zero Vg values are calculated for 58 % of the
European area (89 % for NEU, 49 % for CEU and 13 % for
MED, SREX regions according to Tab. 1). Here, the ecosys-
tem hazard occurs but can not be ascribed to drought.

Reasons for negative Vg could be (1) the ecosystem haz-
ard is not explained by the selected env variable and a further
env has to be identified, or (2) the range of the expected value
chosen for the analysed env is not appropriate, e.g. high SPEI
values are more damaging for the ecosystem than low values
(see 2.1). Negative Vg values hardly occur in southern Eu-
rope (1 % of the area), but frequently in the temperate (11 %)
and northern (32 %) zones.

When comparing zonal averages of Vg according to the
SREX regions (Tab. 1), ecosystem vulnerability to drought
is high in the Mediterranean region (MED) with 53 % of
the region affected and showing the highest risk compared
to other SREX regions (Tab. 2). Positive Vg values for most
of central Europe (CEU, 20 % affected) indicate widespread
vulnerability to water shortage. Northern Europe (NEU) is
characterized by mostly negative Vg affecting a negligible
part of the region. Here, risk values are also relatively high
because of more frequent hazard occurrence.

5 Discussion
5.1 The concept of ecosystem vulnerability
The proposed method allows for the quantification of the

vulnerability and the associated risk of ecosystems to envi-
ronmental drivers. This is also possible with other methods
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Fig. 4. Ecosystem vulnerability (a) and risk (b) of carbon losses (negative NBP) to SPEI for the period 1981 to 2010. Reddish colors indicate
high vulnerability to drought; significant cells are marked with black dots.

Table 2. Ecosystem vulnerability Vg and risk Rr (mean value £
standard deviation) and percentage of affected area (%) in Europe
and in the SREX regions (Tab. 1) of yearly carbon loss (NBP < 0)
to the enw variable S (-) for significant cells. Bold numbers denote
high positive values (mean value > standard deviation).

Region Ve REg affected area
EU 0.1+03 0.08+0.17 21.5

NEU -0.3+£0.1 -0.144+0.07 1.0

CEU 0.1+03 0.07+0.14 20.1

MED 03+02 0.17+0.09 52.7

(Van Oijen et al., 2013, 2014), but our approach differs in
that hazards are defined ecologically rather than meteorolog-
ically. From our ecosystem perspective, it is not necessary
to assume thresholds for a weather extreme situation such
as extreme temperature or precipitation. Instead the ecosys-
tem vulnerability concept proposed in this paper subsumes
combined or single, immediate or lagged, direct or indirect
effects of weather extremes on ecosystem condition into one
metric (following the concept of Frank et al. (accepted)).

For the perception of the ecosystem hazard it is important
to choose a system variable sys that represents vulnerability
of an ecosystem (e.g. high respiration or low net primary pro-
ductivity). But also the associated threshold for the definition
of the hazard has to be selected with care (e.g. NPP < 0). One
option is to choose a variable for the hazard definition that is
widely accepted and easy to interpret for the ecosystem under
consideration. Both choices, sys and the threshold, should
be made with respect to the goal of the study. Here, we se-
lected carbon release to the atmosphere as the hazard, i.e.
negative net biome production (NBP). This variable is com-
monly used to interpret carbon fluxes of an ecosystem as net
emittor through respiration and disturbances or net accumu-
lator through photosynthesis (Schulze, 2006).

With an ecosystem in equilibrium, emissions equal gains
more or less so that short-term carbon releases do not rep-
resent a hazard to the ecosystem. For ecosystems in transi-
tion, only longer lasting net losses may pose a problem and
are thus suitable for defining hazard. In order to eliminate
the seasonal cycle and thus short-term fluctuations, we take
NBP sums over 12 months (Eq. 5). This identifies situations
where on an annual time scale net carbon losses of an ecosys-
tem to the atmosphere have been larger than net gains. And it
avoids the unwanted detection of vulnerability in regions of
regular seasonal drought where ecosystems are adapted and
usually compensate carbon losses during the vegetation pe-
riod or rainy season. Thus, the chosen time window of 12
months is not related to the life expectancy of the vegetation
or the expected duration of droughts.

An extension of the approach would be the application
to measured data. Nevertheless, scarce data availability for
larger areas (regional to continental scale) is a drawback.
Eddy covariance data for single sites seem to be suitable but
are seldom available for more than 20 years to provide suffi-
cient data points for probability distributions. Data products
on the continental scale would be beneficial and attractive but
not yet existing (Jung et al., 2011). So far, the application of
our concept reveals the reaction of the model LPJmL to cli-
matic conditions which represent our condensed knowledge
about plant processes. Specifically LPJmL is validated thor-
oughly for each of its components, the calculation of vulner-
ability measures from model results on the European scale
provides an important and informative but nevertheless first
step in this context.

With the proposed concept, ecosystem vulnerability can
be integrated into the framework proposed by Ionescu et al.
(2009). For them, three main functions have to be fulfilled.
First, there has to be an entity that is vulnerable, which in
our case is the property of an ecosystem to be a source or a
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sink for carbon. Secondly, a stimulus has to exist to which
the entity is vulnerable, which here is exerted by the climatic
variables. Thirdly, the interaction of entity and stimulus has
to have a notion of worse or better which is given by assign-
ing a hazard to an ecosystem when it is a carbon source. The
perception of Ionescu et al. (2009) of the risk also matches
well to formula Eq. (3), since they define risk as vulnerabil-
ity weighted by the occurrence of the hazard. We go one step
further in that we cannot only distinguish between vulner-
able and non-vulnerable conditions, but quantify it along a
continuum. This opens new ways to interpret ecosystem vul-
nerability in the context of gradual ecological changes and
system behaviour with respect to biogeochemical cycles.

5.2 Context of ecosystem vulnerability

Our concept quantifies the long-term and combined impact
of extreme weather events, and does not evaluate the effects
of single events. By assigning each monthly value of sys
to either the hazard or the non-hazard group, each individ-
ual ecosystem behaviour contributes to the assessment of our
long-term ecosystem vulnerability and risk.

It links to Smith (2011) by directly addressing the be-
haviour of ecosystems and relating it to the meteorological
conditions under which it occurs. Exploring the connection
between hazards and extremes (sensu Smith, 2011), both
concepts define thresholds for hazardous or extreme condi-
tions and both examine the physical and biological spheres
independently. Different to Smith (2011), we apply not a dis-
tributional threshold (referring to extremeness) but a quali-
tative threshold (i.e. ecosystem as a source or sink of car-
bon). Applying the same logic to the environmental driver
env (e.g. like Van Oijen et al., 2013), a meaningful thresh-
old can be set for the environmental variable SPEI of -1 (as
defined for drought in Vicente-Serrano et al., 2010). This al-
lows probabilities to be derived also for the transition of non-
hazardous env events into hazardous and non-hazardous sys
conditions. Following Smith (2011), it is then possible to
quantify the probability of occurrence of all four combina-
tions of the ecosystem variable sys, in our case NBP, and the
environmental variable env, here SPEI (Fig. 5).

We quantified all four combinations for two sites (see
Fig. 2) using the simulated 30-year time series (as described
in section 2). At both sites, hazardous env conditions occur
in 16% of the months but the responses of the ecosystems
differ. At site 1, for which Vg is negative, about 22 % of the
env data belong to the hazard group and less than 3 % of the
data link hazardous sys conditions with hazardous env con-
ditions (Fig. 5 left). At site 2 with positive Vg, about 50 %
of the env time series belong to the hazard group and in
about 11 % of the months, hazardous env conditions coin-
cide with hazardous sys conditions (Fig. 5 right). Under cur-
rent climate conditions, the Mediterranean site experiences
more hazardous (extreme) environmental condition that lead
to carbon release.

This shows how the proposed PRA takes up the concern of
Smith (2011) to include the ecosystem perspective into data
driven probabilistic risk assessment. This way, we are able to
back-up the theoretical concept of Smith (2011) with data at
the continental scale.

5.3 Interpretation of ecosystem vulnerability values

The quantification of ecosystem vulnerability and risk re-
quires some careful interpretation of the obtained values.
First of all, their units are defined by the chosen env and, sec-
ondly, the interpretation of their sign and magnitude depend
on our interpretation of the damaging effect of env. There-
fore, we give both some consideration.

High values of ecosystem vulnerability indicate high vul-
nerability to lose carbon due to drier conditions than usual,
i.e. the SPEI difference during ecosystem hazards is deci-
sive for the vulnerability and not the absolute values of the
drought indicator. This difference reflects the distance be-
tween two average conditions: a) advantageous climatic con-
ditions under which the ecosystem accumulates carbon and,
b) unfavourable climatic conditions under which the defined
hazard is occurring and the ecosystem emits carbon to the
atmosphere. Thus, the higher the difference and therefore
Vg, the higher the distance between favourable meterolog-
ical conditions (non-hazard) and those leading to the ecosys-
tem hazard. Hence, high Vg values express the difference
bewtween environmental conditions to which the ecosystem
is adapted and those conditions under which the ecosystem
emits carbon. An increase in Vg in the future can have two
reasons: conditions are dry more often (low SPEI values) or
become more extreme (extremely low SPEI values). The lat-
ter also means that weather extremes, in our case droughts,
are causing hazardous conditions more often which result in
lower mean values in the hazard group. Hence, the difference
between the hazard and non-hazard groups increases.

The approach does not specifically allow the impact of
single events to be identified but the long-term and gen-
eral occurrence of hazardous events, either being more se-
vere, frequent or lasting longer and more importantly impact
these changes have on ecosystem status, which is interest-
ing from an ecological and management point of view. Ex-
tremes events, such as droughts causing negative NBP, have
been identified for past weather extremes (Ciais et al., 2005;
Reichstein et al., 2007). Such events, which occur during
the investigated 30-year period and lead to vulnerable condi-
tions for the ecosystem’s carbon balance, fall into the hazard
subset of data points. It is possible to identify the position
of these hazard samples in the scatterplot (Fig. 2) and esti-
mate the severity of the corresponding extreme event. How-
ever, the presented ecosystem vulnerability approach evalu-
ates long-term effects that these weather extremes have on
the affected ecosystem. It looks not only at short-term im-
pacts, which occur immediately after the event, but captures
long-term effects determining the capacity of the ecosystem
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Site 1 (53.125°N, 11.125°W)

env 28 sys
drought C source
19
154
non- C sink
sin
drought 62 8
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Site 2 (38.375°N, -3.625°W)

env 10.9 sys
drought C source
394
5
non- C sink
sin
drought 447

Fig. 5. Probabilities (in percent) after Smith (2011) for all four combinations of non-hazardous and hazardous env with hazardous and
non-hazardous sys conditions. Data are the same as in Fig. 2 for site 1 in Germany and site 2 in Spain for the period 1981-2010.

to recover and stabilize. This is an important point as it refers
to the ecosystem’s resilience.

Areas with ecosystem vulnerability values close to zero
are those with similar mean env values in the hazard
and non-hazard group. Thus, ecosystems are not or only
marginally vulnerable to env, in our case drought. The prox-
imity between both average values suggests that within the
considered period any potential causal relationship between
sys and env (in our case droughts causing negative NBP)
did not materialize. The marginality of the impact of env
was additionally evaluated by considering the statistical sig-
nificance of the difference between hazard and non-hazard
group.

Negative ecosystem vulnerability indicates that the
ecosystem is vulnerable (carbon losses do occur) but either
not to the anticipated data range of env (low or high val-
ues) or not to the specified env. In the first situation, drought
is not responsible for the ecosystem’s carbon loss. Here, the
expected value of SPEI for negative NBP (=hazard) is higher
than that for positive NBP, i.e. under non-hazard conditions.
In the second situation, other environmental variables, e.g. P
or T', should be considered and evaluated for their potential
impact on the ecosystem. Since V is based on a probabilistic
approach, its values only indicate potential causalities which
have to be evaluated subsequently.

There are two possibilities of failing Vg determination:
when the hazard does not occur at all in the study period,
i.e. there is no vulnerability, or when there is no data point
in the non-hazard group. The latter case can arise when due
to changing environmental conditions each data point falls
into the hazard group. In order not to misinterpret missing
Vg values, the reason for the calculation failure should be
reported. However, the ecological interpretation for the latter
case is simple: the ecosystem has converted into a contin-

uous carbon source and might undergo rapid and profound
transitions to a new ecosystem state.

An interpretation of Ry values may reflect on the sign
of the calculated value, i.e. whether a damaging effect of
the regarded env can be stated, and on the likelihood of
the quantified vulnerability. The ecosystem vulnerability ap-
proach quantifies weather conditions that caused ecosystems
to become a source of carbon to the atmosphere. The risk can
be lower than the vulnerability when hazardous events occur
less often, i.e. the full vulnerability potential was not utilized.
Similar to other metric or model concepts, the presented ap-
proach reflects the impacts of currently known ecosystem
hazards. For hazards emerging in the future, the ecosystem
vulnerability approach can be adjusted accordingly.

5.4 European pattern of ecosystem vulnerability

Under current climatic conditions, Vg and Rg values can
be calculated at the European scale because hazard occur-
rence in the LPIJmL results is sufficiently frequent. Ecosys-
tems in southern Europe, i.e. in the Mediterranean basin,
and even more so on the Balkan peninsula, in Turkey and
the Ukraine, are known to experience severe drought stress
(Bussotti and Ferretti, 1998; Piovesan et al., 2008; Anav and
Mariotti, 2011). The highest Vg values, though, were cal-
culated for eastern Europe for current conditions. Already
today, ecosystems in these regions lack sufficient water to
compensate for drought stress in order to avoid carbon loss
and fire ignition. Here, increasing attention is directed to the
evaluation of carbon emissions to the atmosphere by fires
(Ulevicius et al., 2010; Barnaba et al., 2011). Zscheischler
et al. (2014a) found most carbon losses in recent observa-
tional data on gross primary production (GPP) to be caused
by drought and fire. It is noteworthy as they could attribute
the majority of carbon loss to few and extreme situations.
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Temperate regions in central and eastern Europe as well
as boreal regions in northern Europe show a against drought
close to zero, most of which are not significant. In these
ecosystems, the hazard occurrence is rare and the difference
between hazardous and non-hazardous conditions is small.
Here, the few periods during which carbon is emitted to the
atmosphere are balanced by periods of carbon uptake so that
the affected ecosystems are not vulnerable to drought under
current climate.

For northern Europe, negative vulnerability values were
calculated for boreal forests as well as tundra ecosystems.
Belgium, the Netherlands, northern Germany and large ar-
eas in Scandinavia fall into this category (Fig. 2a, Fig. 4a
and appendix A). In these regions, moisture supply is higher
than needed. When carbon loss is observed here, vegeta-
tion growth is limited by factors other than drought. These
could be caused either by unfavourable temperature or ra-
diation conditions or an excess supply of water (see exam-
ples in appendix B). Using phyloclimatic plasticity func-
tions, Garcia-Lopez and Allue (2012) conclude that forests
in Scandinavia will benefit from decreasing precipitation and
increasing temperature.

We found the corresponding risk to be negligible un-
der current conditions. Even for the Mediterranean, water
scarcity as expressed with Ry values for SPEI (Fig. 4b) and
precipitation (Fig. A1b) occurs rarely so that the significant
Vg values are reduced.

Although the analysis is untertaken with model results
solely, especially the responses of LPJmL to weather ex-
tremes are well validated. For the European heat wave of
2003, Reichstein et al. (2007) compared model results for
GPP to remote sensing products and found a standard de-
viation between model results and data of less than 25
gC m~2 month~! for the majority of the grid cells. Zscheis-
chler et al. (2014b) investigated extremes in GPP at the global
scale and found LPJmL to be well able to reproduce the ex-
tent and impact of extreme events. Considering the role of
fire for Vg values in southern Europe, an in-depth evaluation
of the fire model is in progress using data from the GFED
data base (Giglio et al., 2010; van der Werf et al., 2010)
and the EFFIS database (EFFIS, 2014) for a joint analysis
of vegetation-fire models.

6 Conclusions

From our ecosystem vulnerability and risk assessment, four
main conclusions can be derived:

1. The quantification of ecosystem vulnerability by
a probability-based concept allows identification of
weather conditions that coincide with hazardous
ecosystem responses.

2. Drought is a major threat to European ecosystems under
current conditions especially in southern Europe.
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3. In ecosystems in northern Europe, hazards in the bio-
sphere occur but they are not related to water shortage
or surplus.

4. About one-fifth of the European area is vulnerable to
drought.

We can subsume ecosystem responses to climate variabil-
ity that have a long-term effect and put its carbon storage
at risk. This can be regarded as an indicator for ecosystem
vulnerability. Whereas Van Oijen et al. (2013) pre-define
weather conditions that form a hazard for the ecosystem, our
ecosystem vulnerability approach quantifies those hazardous
conditions when the ecosystem is loosing carbon over a long
time (the subsequent 12 months). We quantify those haz-
ardous conditions where climate and weather extremes lead
to an extreme, yet hazardous response. This response implies
multiple or lagged to which an ecosystem can be exposed. By
comparing different climate variables leading to hazardous
conditions in the ecosystem, their relative importance to the
overall vulnerability of the ecosystem can be quantified. Ad-
ditionally, the approach allows to identify when and where
the environmental driver under investigation was not respon-
sible for the ecosystem response. This opens a new perspec-
tive for comparing the climate perspective of Van Oijen et al.
(2013) against the ecosystem perspective to evaluate where
both approaches identify climate conditions leading to an ex-
treme response in the ecosystem. It also allows for future in-
vestigation of climate change and the contribution of climate
variability to change ecosystem vulnerability.
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Appendix A

Ecosystem vulnerability and risk to additional
enwv variables

In order to derive a more comprehensive analysis of the haz-
ard occurrence in terrestrial ecosystems, also other environ-
mental variables were considered. Apart from S as monthly
values of the Standardized Precipitation Evapotranspiration
Index SPEI (-), P as monthly precipitation (mm month~1),
T as monthly mean temperature (° C), and C' as monthly
values of CDD (Consecutive Dry Days in days) with precipi-
tation below 1 mm (described in section 3.1). Each meteoro-
logical variable chosen for env has a specific range where it
negatively influences the ecosystem variable sys. For T and
C, high values are expected to be problematic, whereas for
P and S, hazardous conditions of sys are expected at low
values. Since the impact of these variables are qualitatively
different, we need to define a conversion factor ¢ (Eq. A1)

5= { 1 : hazard expectance at low values of env (Al)
—1 : hazard expectance at high values of env

to re-scale the calculated Vg (Eq. 1) such that positive values
always mean vulnerable conditions and calculated Vg from
several env can be compared with each other. In our case, we
define § = 1 for S and P, and 6 = —1 for T and C.

Table Al. Ecosystem vulnerability Vg and risk Rr (mean value
=+ standard deviation) and percentage of affected area (%) in the
SREX regions (Tab. 1) of yearly carbon loss (NBP < 0) to the env
variables SPEI S (-), precipitation P (mm month™1), temperature
T (K), and consecutive dry days C' (days month™!) for significant
cells. Bold numbers denote high positive values (mean value > stan-
dard deviation).

Region env Ve RE area affected
EU S 01+ 03 0.08£0.17 215
NEU S -03+ 0.1 -0.14+0.07 1.0
CEU S 0.1+ 03 0.07+0.14 20.1
MED S 03+ 02 017+£0.09 52.7
EU P -214+104 -2.11+£532 14.8
NEU P 94+ 48 -475+£410 0.0
CEU P -3.6+102 -0.554+4.00 10.5
MED P 974+ 53 487+251 404
EU T 08+ 19 078+0.77 1.5
NEU T 1.0+ 1.7 025+0.76 1.7
CEU T 03+ 22 035+0.76 1.2
MED T 1.1+ 15 0494+077 20
EU C 114+ 64 1.13£381 6.0
NEU C -134+ 03 -0.64+024 0.0
CEU C 044+ 1.8 0324077 35
MED C 48+10.1 2.63+6.17 16.1

Spatial distributions of ecosystem vulnerability and risk
to water shortage (P and C) (Figs. Al and A2) re-
veal similar patterns as to S (compare Fig. 4), but not
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to 7" (Fig. A3). Ecosystem vulnerability to precipitation
(Fig. Ala) map the Mediterranean, the Balkans, eastern
Ukraine and part of southern Russia with Vg values of more
than 10 mm month—!. For these regions, the risk to drought
is approximately 5 mm month~! (Fig. Alb). For southern
and eastern Norway as well as the mountainous regions of
France, Belgium and Switzerland, Vg is mostly negative (be-
low -10 mm month~1!), i.e. not vulnerable to lower precipi-
tation. Due to the rare hazard occurrence, Rp reaches val-
ues below -10 mm month ™~ only in marginal areas in south-
ern Norway. Areas that are vulnerable to low precipitation
have also significant Vg values for consecutive dry days
(Fig. A2a). Hazard occurrence there is connected to more
than 4 additional days without precipitation. Ecosystem vul-
nerability to temperature (7', Fig. A3a) is mostly positive but
only rarely exceeds 1 K. The corresponding risk (Fig. A3b)
is between 0.5 and 1 K and does not show a clear spatial
pattern.

Combining the results for Vg for all env considered, we
can assess areas in which the occurrence of the defined haz-
ard can be connected to environmental drivers. For 55.3 % of
the European area, at least one of the env variables leads to
significant Vg values. Positive Vg values that are significant
are determined at 28 % of the area, negative Vg at 29 %. At
13 % of the area, positive Vg to two different env variables
are calculated and at 3.3 % even for 3 of the env. The latter
holds for parts of inner Turkey, southern Iberian Peninsula,
Greece and the Balkans. At 13.8 % of the area, negative Vg to
two different env are determined and at 3.4 % even for 3 env
variables. This occurs in northern Scandinavia and the Baltic
states. It has to be stated that for 44.7 % of the area none
of the considered env resulted in a significant Vg value. For
these areas, the occurrence of the hazard is not attributable to
an environmental driver so far.

When comparing zonal averages of Vg according to the
SREX regions (Tab. 1), ecosystem vulnerability is most con-
sistent for the mediterranean region MED to water shortage
(Tab. Al). Positive Vg and Rg values in MED were calcu-
lated to drought (S and P) for the majority of grid cells with
a significant difference between the hazard and non-hazard
groups. For this region, Vg mean values are positive for all
env considered. Since higher precipitation and lower tem-
peratures (resulting in lower SPEI values) may coincide with
lower radiation, it is reasonable to evaluate negative Vg to S.
This is the case in eastern France, northern Germany, Estonia
and northern Sweden.

The reaction of the LPJmL model to temperature seems to
be different to that on water related processes. Here, the pat-
tern of Vg and Rg values is less coherent than for S, P or
C. This has to be kept in mind when interpreting the results
presented here. Although LPJmL is validated thoroughly for
the process behaviour on various spatial and temporal scales,
the ecosystem vulnerability and risk determination reflect the
model performance and its ability to capture ecosystem re-
sponses to environmental drivers.
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Fig. Al. Ecosystem vulnerability (a) and risk (b) of carbon losses (negative NBP) to P for the period 1981 to 2010. Reddish colors indicate
high vulnerability to water shortage; significant cells are marked with black dots.

Fig. A2. Ecosystem vulnerability (a) and risk (b) of carbon losses (negative NBP) to C for the period 1981 to 2010. Reddish colors indicate
high vulnerability to drought periods; significant cells are marked with black dots.
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Fig. A3. Ecosystem vulnerability (a) and risk (b) of carbon losses (negative NBP) to 71" for the period 1981 to 2010. Reddish colors indicate
high vulnerability to heat stress; significant cells are marked with black dots.
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Appendix B

Components of carbon fluxes

Fig. B1. Ecosystem vulnerability to S as in Fig. 4a with marked
areas 1 to 4, for which components of carbon fluxes in hazard and
non-hazard group are shown.

Underlying mechanisms leading to significant positive
(and negative) Vg values to S are examined more closely
for 4 regions depicted in Fig. B1. For these regions, the com-
ponents of the carbon flux NBP are depicted and discussed
for the hazard and non-hazard groups of data.

Area 1: Natural vegetation in northern Germany consists
mostly of temperate trees (50% needledleaved evergreens
like pine, 33% broadleaved summergreens like beech and
oak) with a minor contribution of grass vegetation (16%).
In situations with negative NBP (Fig. B2a), the weather is
rainier and shady (higher precipitation and lower radiation,
see Fig. B2f,h) whereas the temperature does not differ be-
tween hazard and non-hazard groups. The rather low radia-
tion reduces NPP (Fig. B2b) given the fact that photosynthe-
sis is also radiation-driven and vegetation growth. Both, the
increase in soil moisture and an increase in the litter pool en-
hance soil respiration (Fig. B2c) and contribute to the loss of
carbon from the biosphere.

Area 2: Natural vegetation in southern Spain is domi-
nated by grasses (68%) and temperate evergreen trees (15%
needleleaved such as pine, 11% broadleaved such as Quer-
cus ilex). In situations with negative NBP (Fig. B3a), pre-
cipitation is low (< 40 mm month~—!) (Fig. B3f), leading to
a fast turnover of NPP into litter and an increase in fire oc-
currence (Fig. B3d). NPP is substantially reduced in the haz-
ard case (Fig. B3b) and biomass burnt substantially increased
(Fig. B3d). Heterotrophic respiration Rh is slightly reduced
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(Fig. B3c) since soil moisture is not sufficient and the exist-
ing litter is reduced by fire. This represents Mediterranean
vegetation which is regularly subject to drought.

Area 3: In the border region of Ukraine, Belarus and Rus-
sia, the forest area is covered by boreal needleleaved ever-
green trees (35%, pines) and broadleaved summergreen trees
(29% temperate trees like beech and oak, 24% boreal species
like birch, poplar or aspen) and with a minor grass compo-
nent (12%). In the hazard case, precipitation is reduced and
temperature elevated in comparison to the non-hazard case
(see Fig. B4f,g) but the range of values are not representing
drought conditions. Soil moisture is sufficient to support het-
erotrophic respiration (increased values for the hazard group,
Fig. B4c). Fires are occurring frequently but with very low
carbon emissions (low biomass burnt, Fig. B4d). The slight
decrease of NPP (Fig. B4b) is associated with a loss of vege-
tation carbon under frequent hazard occurrence. The ecosys-
tems is this region are affected by water shortage and drought
stress.

Area 4: Vegetation in the mountainous region in Mace-
donia and Albania consists mostly of temperate trees (29%
needleleaved evergreen trees like pine, 26% broadleaved
summergreen trees like beech or oak) and to a lesser por-
tion of boreal trees (15% needleleaved evergreen trees like
spruce, 8% broadleaved summergreen trees like birch, poplar
or aspen). Grassy vegetation is simulated for 22 % of the
area. The heterogeneity of the vegetation composition is ac-
companied by very variable weather conditions (Fig. B5e
to h). Hazard conditions for the biosphere differ mainly in
precipitation amounts which are reduced in comparison to
the non-hazard group. When NBP is negative in this area
(Fig. B5a), NPP is low (Fig. BSb) and heterotrophic res-
piration is slightly lower (Fig. B5c). Lower NPP is associ-
ated with a reduction in tree growth (the increment of the
vegetation carbon is negatively correlated with the hazard
occurrence, data not shown). So even relatively high car-
bon fluxes under hazard conditions (NPP between 300 and
600 gC m~—2 a—') cannot be accumulated in the vegetation
because soil respiration is enhanced and the assimilated car-
bon is decomposed quickly. The frequently occurring fires
with moderate intensity between 5 and 50 gC m~2 a~! are
determined in this area in 4 months per year on average. Fires
with higher carbon fluxes are more seldom (in one month per
year on average) but disturb the ecosystems severely enough
to prevent carbon accumulation.
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Fig. B2. Probability distributions for area 1 (see Fig. B1) of (a)
NBP and its contributions (b) NPP, (c) Rh, and (d) BB (all in
gC m~2 a~ 1) as well as monthly values for (e) SPEI (dimension-
less), (f) precipitation (mm month™1), (g) temperature (°C) and (h)
shortwave downward radiation (W m™~2). Dark shading denotes val-
ues in the hazard group, white shading in the non-hazard group.
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Fig. B3. Probability distributions for area 2 (see Fig. B1) of (a)
NBP and its contributions (b) NPP, (c) Rh, and (d) BB (all in
egC m~2 a~ 1) as well as monthly values for (e) SPEI (dimension-
less), (f) precipitation (mm month™1), (g) temperature (°C) and (h)
shortwave downward radiation (W m~2). Dark shadin g denotes val-
ues in the hazard group, white shading in the non-hazard group.
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Fig. B4. Probability distributions for area 3 (see Fig. B1) of (a)
NBP and its contributions (b) NPP, (c) Rh, and (d) BB (all in
gC m~2 a~ 1) as well as monthly values for (¢) SPEI (dimension-
less), (f) precipitation (mm month™1), (g) temperature (°C) and (h)
shortwave downward radiation (W m™~2). Dark shading denotes val-
ues in the hazard group, white shading in the non-hazard group.
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Fig. B5. Probability distributions for area 4 (see Fig. B1) of (a)
NBP and its contributions (b) NPP, (¢) Rh, and (d) BB (all in
egC m~2 a~ 1) as well as monthly values for (e) SPEI (dimension-
less), (f) precipitation (mm month™1), (g) temperature (°C) and (h)
shortwave downward radiation (W m~2). Dark shadin g denotes val-
ues in the hazard group, white shading in the non-hazard group.



