1 Simulation of tree ring-widths with a model for primary production, carbon allocation

- 2 and growth
- 3 G. Li¹, S. P. Harrison^{1, 2}, I. C. Prentice^{1, 3}, D. Falster¹

⁴ ¹ Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia.

⁵ ² School of Archaeology, Geography and Environmental Sciences (SAGES), Reading University, Reading,

6 United Kingdom.

³ AXA Chair of Biosphere and Climate Impacts, Grand Challenges in Ecosytem and the Environment,

8 Department of Life Sciences and Grantham Institute for Climate Change, Imperial College London, Ascot,

9 United Kingdom.

10 Correspondence to: G. Li (guangqi.li@students.mq.edu.au)

11 Abstract

12 We present a simple, generic model of annual tree growth, called 'T'. This model accepts input from a first-13 principles light-use efficiency model (the P model). The P model provides values for Gross Primary 14 Production (GPP) per unit of absorbed photosynthetically active radiation (PAR). Absorbed PAR is estimated 15 from the current leaf area. GPP is allocated to foliage, transport-tissue, and fine root production and 16 respiration, in such a way as to satisfy well-understood dimensional and functional relationships. Our 17 approach thereby integrates two modelling approaches separately developed in the global carbon-cycle and 18 forest-science literature. The T model can represent both ontogenetic effects (impact of ageing) and the 19 effects of environmental variations and trends (climate and CO_2) on growth. Driven by local climate records, 20 the model was applied to simulate ring widths during 1958~2006 for multiple trees of Pinus koraiensis from 21 the Changbai Mountain, northeastern China. Each tree was initialised at its actual diameter at the time when 22 local climate records started. The model produces realistic simulations of the interannual variability in ring 23 width for different age cohorts (young, mature, old). Both the simulations and observations show a significant 24 positive response of tree-ring width to growing-season total photosynthetically active radiation (PAR₀) and 25 the ratio of actual to potential evapotranspiration (α), and a significant negative response to mean annual 26 temperature (MAT). The slopes of the simulated and observed relationships with PAR₀ and α are similar; the 27 negative response to MAT is underestimated by the model. Comparison of simulations with fixed and 28 changing atmospheric CO₂ concentration shows that CO₂ fertilization over the past 50 years is too small to be 29 distinguished in the ring-width data given ontogenetic trends and interannual variability in climate.

30 1 Introduction

31 Forests cover about 30% of the land surface (Bonan, 2008) and are estimated to contain 861±66 PgC (Pan et 32 al., 2011). Inventory-based estimates show that forests have been a persistent carbon sink in recent decades, with a gross uptake of 4.0±0.5 PgCyear⁻¹ and a net uptake of 1.1±0.8 PgCyear⁻¹ between 1990 and 2007 (Pan 33 34 et al., 2011). This is a significant amount in comparison with the amounts of carbon released from fossil fuel burning, cement production and deforestation (9.5±0.8 PgCyear⁻¹ in 2011: Ciais et al., 2013) and thus, forest 35 36 growth has a substantial effect on atmospheric CO₂ concentration and climate (Shevliakova et al., 2013). 37 However, there is considerable geographic variability in the trends in the carbon sink as well as the factors 38 controlling regional trends, and uncertainty about how forest growth and carbon sequestration will be affected 39 by climate change, and climate-driven changes in wildfire (Ciais et al., 2013; Moritz et al., 2013). The 40 changing importance of disturbance, and its influence on forest age, is likely to have a significant impact on 41 the ability of forests to act as carbon sinks. It is generally assumed that stand-level productivity stabilizes or 42 declines with age (Ryan et al., 1997; Caspersen et al., 2011). However, recent analyses have shown that mass 43 growth rate (and hence carbon accumulation) by individual trees increases continuously with tree size 44 (Stephenson et al., 2014), pointing to a need to understand the relationship between individual and stand 45 growth rates. Predictions of future changes in the terrestrial carbon cycle (e.g. Friedlingstein and Prentice, 46 2010) rely on ecosystem models that explicitly represent leaf-level processes such as photosynthesis, but in 47 most cases do not incorporate the response of individual trees. In models that do consider individual tree 48 growth (e.g. ED: Moorcroft et al 2001, Medvigy et al. 2012; LPJ-GUESS: Smith et al., 2001; Claesson and 49 Nycander, 2013), little attention has been paid to evaluating the realism of simulated radial growth. 50 Incorporating the response of individual trees to climate and environmental change within such modelling 51 frameworks should help to provide more realistic estimates of the role of forests in the global carbon cycle.

52 Climate factors, such as temperature and moisture availability during the growing season, are important 53 drivers of tree growth (Harrison et al., 2010). This forms the basis for reconstructing historical climate 54 changes from tree-ring records of annual growth (Fritts, 2012). However, photosynthetically active radiation 55 (PAR) is the principal driver of photosynthesis. Models for primary production that use temperature, not PAR, 56 implicitly rely on the far-from-perfect correlation between temperature and PAR (Wang et al., 2014). PAR 57 can change independently from temperature (through changes in cloudiness affecting PAR or atmospheric 58 circulation changes affecting temperature) and this may help to explain why statistical relationships between 59 tree growth and temperature at some high latitude and high elevation sites appear to breakdown in recent 60 decades (D'Arrigo et al., 2008). CO₂ concentration also has an impact on tree growth, although its magnitude 61 is still controversial: trends in tree growth have been attributed to increasing atmospheric CO₂ concentration 62 in some studies (Wullschleger et al., 2002; Körner, 2006; Huang et al., 2007; Koutavas, 2013) and not others 63 (Miller, 1986; Luo et al., 2004; Reich et al., 2006). To resolve these apparent conflicts, and to understand tree 64 growth processes better, it is necessary to analyse the response of tree growth to multiple factors acting 65 simultaneously, including solar radiation, climate, CO₂, and ontogenetic stage.

66 Modelling is needed for this purpose. Empirical models of annual tree growth and climate variables 67 (temperature and precipitation) have been used to simulate tree radial growth (Fritts, 2012). Process-based 68 bioclimatic models might be preferable, however, because this allows other factors to be taken into account 69 (e.g. the direct impact of CO₂ concentration on photosynthesis) and for non-stationarity in the response to 70 specific climate variables. Vaganov et al. (2006) and Rathgeber et al. (2005) have used bioclimatic variables 71 (temperature, and soil moisture availability) chosen to reflect physiological processes to simulate radial tree 72 growth. The MAIDEN model (Misson, 2004; Misson et al., 2004; see also MAIDENiso: Danis et al., 2012) 73 models the phenological and meteorological controls on NPP and explicitly allocates carbon to different 74 carbon pools (including the stem) on a daily basis using phenological stage-dependent rules. Nevertheless, 75 MAIDEN still requires tuning of several parameters.

76 Simple equations representing functional and geometric relationships can describe carbon allocation by trees 77 and make it possible to model individual tree growth (Yokozawa and Hara, 1995; Givnish, 1988; Falster et al., 78 2011; King, 2011). Such models are built on measurable relationships, such as that between stem diameter 79 and height (Thomas, 1996; Ishii et al., 2000; Falster and Westoby, 2005), and crown area and diameter or 80 height (Duursma et al., 2010) that arise because of functional constraints on growth. The pipe model 81 represents the relationship between sapwood area and leaf area (Shinozaki et al., 1964; Yokozawa and Hara, 82 1995; Mäkelä et al., 2000). The ratio of fine root mass to foliage area provides the linkage between above and 83 below ground tissues (Falster et al., 2011). These functional relationships are expected to be stable through 84 ontogeny, which implies that the fraction of new carbon allocated to different compartments is variable 85 (Lloyd, 1999). In this paper, we combine the two modelling approaches previously developed in the global 86 carbon-cycle (ecophysiology) and forest-science (geometric and carbon allocation) literature to simulate 87 individual tree growth.

88

- 89 2 Methods
- 90 2.1 Model structure and derivation

91 We use a light-use efficiency model (the P model: Wang et al., 2014), driven by growing-season PAR, climate 92 and ambient CO₂ concentration inputs, to simulate gross primary production (GPP). The simulated GPP is 93 used as input to a species-based carbon allocation and functional geometric tree growth model (the T model) 94 to simulate individual tree growth (Fig. 1).

95 2.1.1 The P model

96 The P model is a simple but powerful light-use efficiency and photosynthesis model, which simulates GPP per 97 unit of absorbed PAR from latitude, elevation, temperature, precipitation and fractional cloud cover (Wang et 98 al., 2014). The climate observations used here are monthly temperature, precipitation and fractional cloud 99 cover, which are interpolated to a daily time step for subsequent calculations of the variables that determine100 annual GPP.

- 101 Potential annual *GPP* is the product of the PAR incident on vegetation canopies (PAR_0) , with the maximum
- 102 quantum efficiency of photosynthesis (Φ_0), the fraction of absorbed PAR (*fAPAR*), and the effect of
- 103 photorespiration and substrate limitation at subsaturating [CO₂] represented as a function of the leaf-internal
- 104 [CO₂] (c_i) and the photorespiratory compensation point (Γ^*), as shown in Eq. (1).

105
$$GPP = \Phi_0 \left(PAR_0 \times fAPAR \right) \left(c_i - \Gamma^* \right) / \left(c_i + 2\Gamma^* \right)$$
(1)

- 106 where Φ_0 is set to 0.48 g C/ mol photon, based on a quantum efficiency of 0.05 mol C/ mol photon and a leaf 107 absorptance of 0.8. Daily PAR at the top of the atmosphere is calculated based on solar geometry and is 108 subsequently modified by transmission through the atmosphere, which is dependent on elevation and cloud 109 cover. Annual effective PAR (PAR0) is calculated as the annual sum of daily PAR but taking into account the 110 low-temperature inhibition of photosynthesis and growth, using a linear ramp function to downweight PAR on 111 days with temperatures below 10 °C. Days with temperatures below 0°C do not contribute to PAR0. See 112 Wang et al. (2014) for details. In this application, we first calculated potential GPP with fAPAR set to 1. 113 fAPAR is not an input to the model but is calculated implicitly, from the foliage cover simulated by the T 114 model.
- Leaf-internal [CO₂] is obtained from the ambient [CO₂] via the 'least-cost hypothesis' (Wright et al., 2003;
- 116 Prentice et al., 2014). Wang et al. (2014) provide a continuous prediction of the c_i/c_a ratio as a function of
- 117 environmental aridity, temperature and elevation based on this hypothesis:

118
$$c_i/c_a = 1/(1 + C\sqrt{(\eta\sqrt{D})/K)})$$
 (2)

- 119 where D is the cumulative water deficit over a year (proportional to an annual "effective value" of the vapour 120 pressure deficit: VPD), η is the dynamic viscosity of water, K is the effective Michaelis-Menten coefficient for 121 Rubisco-limited photosynthesis, and C is a constant. The difference between the annual actual and equilibrium 122 evapotranspiration is used as a proxy for D (see Prentice et al., 2013). D is calculated using the daily 123 interpolated temperature, precipitation and cloudiness data. Annual actual evapotranspiration is derived from 124 equilibrium evapotranspiration and precipitation using a simple soil moisture accounting scheme with a daily 125 time step, as described in Gallego-Sala et al. (2010). The temperature dependences of η and K follow Prentice 126 et al. (2014). Both K and η change steeply with temperature: K changes from 196 ppm at 10 °C to 1094 ppm 127 at 30 °C; η decreases from 1.31 mPa s at 10 °C to only 0.798 mPa s at 30 °C.
- 128 The temperature dependence of Γ^* is described by an exponential closely approximating an Arrhenius 129 function (Bernacchi et al., 2003):

(3)

130
$$\Gamma^* = \Gamma^*_{25} \exp(0.0512 \Delta T)$$

131 where Γ^*_{25} is the value of Γ^* at 25 °C (4.331 Pa), and ΔT is the monthly temperature difference from 25 °C.

132 The P model has been shown to simulate well many of the global patterns of annual and maximum monthly 133 terrestrial GPP) by C_3 plants. The simulated seasonal cycle of GPP at different latitudes is supported by 134 analyses of CO_2 flux measurements (Wang et al., 2014).

135 2.1.2 The T model

136 We assume that potential GPP is the first-order driver of tree growth both at stand and individual level. The T 137 model translates potential GPP as simulated by the P model into individual tree growth, which depends on 138 foliage cover within the canopy and the respiration of non-green tissues, carbon allocation to different tissues, 139 and relationships between different dimensions of the tree. Although these relationships are often loosely 140 called "allometries", true allometries (power functions) have the undesirable mathematical property for 141 growth modelling that, if the power is greater than one, the derivative evaluated at the start of growth is zero; 142 if the power is between zero and one, the derivative is infinite. We have therefore avoided the use of power 143 functions, except for geometric relationships where they are unambiguously correct.

144

145 Functional geometric relationship

146 Carbon is allocated to different tissues within the constraint of the basic functional or geometric relationships147 between different dimensions of the tree.

Asymptotic height-diameter trajectories (Thomas, 1996; Ishii et al., 2000; Falster and Westoby, 2005) aremodeled as:

150
$$H = H_m [1 - \exp(-aD/H_m)]$$
 (4)

where *H* is the tree height, *D* is the basal diameter, H_m is the (asymptotic) maximum height, and *a* is the initial slope of the relationship between height and diameter.

153 The model also requires the derivative of this relationship:

154
$$dH/dD = a \exp(-aD/H_m) = a (1 - H/H_m).$$
 (5)

The form of the stem is assumed to be paraboloid (Jonson, 1910; Larsen, 1963). It can be shown (assuming the pipe model) that this form is uniquely consistent with a uniform vertical distribution of foliage area during early growth, i.e. in the absence of heartwood. Here, the total stem mass (W_s) is expressed as a function of Dand H:

159
$$W_s = (\pi/8) \rho_s D^2 H$$
 (6)

160 where ρ_s is the density of the wood, and $(\pi/8) D^2 H$ is the volume of a paraboloid stem.

161 The relationship of diameter increment to stem increment is then given by:

- 162 $dW_s/dt = (\pi/8) \rho_s [D^2 (dH/dD) + 2 DH] dD/dt$ (7)
- 163 The projected crown area (A_c) is estimated from D and H using an empirical relationship:

$$164 \qquad A_c = (\pi c/4a) DH \tag{8}$$

- where c is the initial ratio of crown area to stem cross-sectional area. This relationship was chosen as an intermediate between previously published expressions that relate A_c either to D^2 or H. It is consistent with reported allometric coefficients typically between 1 and 2 for the relationship between A_c and D.
- 168 Crown fraction (f_c) is also derived from H and D. As we assumed the stem to be paraboloid, the stem cross 169 sectional area at height z is :

170
$$A_s(z) = A_s (1 - z/H)$$
 (9)

171 where A_s is the basal area: $A_s = (\pi/4)D^2$. We find the height (z^*) at which the ratio of foliage area (A_f) to stem 172 area at height $z^* (A_s(z^*))$ is the same as the initial ratio of crown area to stem cross-sectional area (c). We 173 obtain crown area (A_c) from:

174
$$A_c = c A_s(z^*) = c A_s (1 - z^*/H).$$
 (10)

175 Combining this with Eq. (8), we obtain $(\pi c/4a) DH = c A_s (1-z^*/H)$, which reduces to:

176
$$f_c = (1 - z^*/H) = H/aD.$$
 (11)

177 The initial slope (*a*) is in principle dependent both on species growth form and on ambient conditions,178 including light availability. Here it is determined directly from observations.

- 179 Carbon allocation
- 180 Actual GPP (P) is obtained from potential GPP (P_0) using Beer's law (Jarvis and Leverenz, 1983):

181
$$P = P_0 A_c (1 - \exp(-kL))$$
 (12)

182 where *k* is the extinction coefficient for PAR, and L is the leaf area index within the crown.

183 Net primary production (NPP) is derived from annual GPP, corrected for foliage respiration (which is set at

184 10% of total GPP, an approximation based on the theory developed by Prentice et al., 2014 and Wang et al.,

185 2014), by further deducting growth respiration and the maintenance respiration of sapwood and fine roots.

186 Growth respiration is assumed to be proportional to NPP, following:

187
$$P_{net} = y(P - R_m) = y \left(P - W \bullet_s r_s - \zeta \sigma W_f r_r\right)$$
(13)

188 where P_{net} is NPP, R_m is the maintenance respiration of stem and fine roots, and y is the 'yield factor' 189 accounting for growth respiration. Total maintenance respiration of non-green parts comprises fine-root respiration ($\zeta \sigma W_f r_r$, where ζ is the ratio of fine-root mass to foliage area, σ is the specific leaf area, W_f is the mass of carbon in foliage ((1/ σ) $L A_c$), and r_r is the specific respiration rate of fine roots), and stem (sapwood) respiration ($W_s r_s$, where W_s is the mass of carbon in sapwood, and r_s is the specific respiration rate of sapwood). W_s can be estimated from A_c through the pipe model:

$$194 \qquad W \bullet_s = L A_c v_H \rho_s H_f \tag{14}$$

where v_H is the Huber value (ratio of sapwood to leaf area; Cruiziat et al., 2002), and H_f is the mean foliage height $H (1 - f_c/2)$. The constraint that the initial sapwood area must be equal to the stem cross-sectional era leads to the following identify: $L c v_H = 1$.

- 198 NPP is allocated to stem increment (dW_s/dt) , foliage increment (dW_f/dt) , fine-root increment $(\zeta \sigma dW_f/dt)$,
- 199 foliage turnover (W_f/τ_f) , where τ_f is the turnover time of foliage), and fine-root turnover $(\zeta \sigma W_f/\tau_f)$, where τ_f is
- 200 the turnover time of fine roots). For simplicity, in common with many models, we do not consider allocation
- to branches and coarse roots separately from allocation to stem:

202
$$P_{net} = dW_s/dt + (1 + \zeta \sigma) \, dW_f/dt + (1/\tau_f + \zeta \sigma/\tau_r) \, W_f.$$
(15)

From Eq. (13) and Eq. (15), the stem increment (dW_s/dt) can now be expressed as:

204
$$dW_{s}/dt = y A_{c} [P_{0}(1 - \exp(-kL)) - \rho_{s}(1 - f_{c}/2) H r_{s}/c - L \zeta r_{r}]$$

205
$$-L (\pi c/4a) [aD (1 - H/H_{m}) + H] (1/\sigma + \zeta) dD/dt - L A_{c}(1/\sigma \tau_{f} + \zeta/\tau_{r})$$
(16)

The annual increment in (dD/dt) and all the other diameter-related indices are simulated by combining Eq. (7) and Eq. (16).

208 2.1.3 Definition of the growing season

209 The season over which GPP is accumulated (i.e. the effective growing season) is defined as running from July 210 in the previous year through to the end of June in the current year. This definition is consistent with the fact 211 that photosynthesis peaks around the time of the summer solstice (Bauerle et al., 2012) and that maximum leaf 212 area occurs shortly after this (Rautiainen et al., 2012). Carbon fixed during the later half of the year (July to 213 December) is therefore either stored or allocated to purposes other then foliage expansion. Observations of 214 tree radial growth show that it can occur before leaf-out (in broadleaved trees) or leaf expansion (in 215 needleleaved trees), thus confirming that some part of this growth is based on starch reserves from the 216 previous year (Michelot et al., 2012). This definition of the effective growing season is also supported by 217 analyses of our data which showed that correlations between simulated and observed tree ring-widths are 218 poorer when the model is driven by GPP during the current calendar year rather than an effective growing 219 season from July through June.

220 2.2 Model application

221 2.2.1 Observations

222 We use site-specific information on climate and tree growth from a relatively low-elevation site (ca 128°02′E, 223 42°20'E, 800 m a.s.l.) in mixed conifer and broadleaf virgin forest in the Changbai Mountains, northeastern 224 China (Bai et al., 2008). This region was chosen because there is no evidence of human influence on the 225 vegetation, and the forests are maintained by natural regeneration. Data on tree height, diameter and crown 226 area were collected for 400 individual Pinus koraiensis trees from thirty-five 20m by 20m sample plots. The 227 400 trees included all individual of this species in the 35 plots, i.e. represent a complete sampling of the 228 variability in growth. Tree height and diameter were measured directly, and crown area measured as the area 229 of projected ground coverage. Tree-ring cores were obtained from 46 of these individuals in 2007. The 230 selected trees were either from the canopy layer or from natural gaps in the forest, and in both cases not 231 overshadowed by nearby individuals in order to minimize the possible effects of competition. An attempt was 232 made to select individuals of different diameters (diameter at breast height from 10 to 70 cm at time of 233 sampling), broadly corresponding to the range of diameters recorded in the original sampling. The 46 trees 234 were of different ages (ranging from < 50 to ca. 200 years at the time of sampling, 2006); subsequent analyses 235 show there is little relationship between age and diameter at breast height. Environmental conditions (e.g. soil 236 depth, light availability) were relatively uniform across the sampling plot. Monthly temperature, precipitation 237 and fractional cloud cover data, from 1958 onwards, were obtained from Songjiang meteorological station 238 (128°15'E, 42°32'E, 591.4 m a.s.l.), which is representative of the regional climate at low elevations in the 239 Changbai Mountains.

240 2.2.2 Derivation of T model parameter values

241 T model parameter values were derived from measurements made at the sampling site or from the literature 242 (Table 1). We estimated the initial slope of the height-diameter relationship (a: 116), the initial ratio of crown 243 area to stem cross-sectional area (c: 390.43), and maximum tree height (H_m : 25.33 m) using nonlinear 244 regression applied to diameter at breast height (D), tree height (H), and crown area (A_c) measurement on all 245 the 400 trees from the sample plots (Fig. 2). We used a value of sapwood density derived from three 246 measurements at the sampling site (Table 1). We used values of leaf area index within the crown (L), specific 247 leaf area (σ), foliage turnover time (τ_f), and fine-root turnover time (τ_r) for *Pinus koriensis* from field studies 248 conducted in northeastern China (Table 1). No species-specific information was available for the PAR 249 extinction coefficient (k), yield factor (y), ratio of fine-root mass to foliage area (ζ), fine-root specific 250 respiration rate $(r_{\rm s})$, or sapwood specific respiration rate $(r_{\rm s})$. We therefore used published values for other 251 species of evergreen needleleaf trees, taken from papers that summarise results from a range of field 252 measurements. Most of the published values for these parameters fall in a relatively narrow range (Table 1). 253 The uncertainty in fine-root specific respiration rate is not given in the original source paper (Yan and Zhao, 254 2007) but the average value is consistent with other studies (e.g. Zogg et al., 1996). The published values for sapwood-specific respiration rate in pines show considerable variability, ranging from 0.5~10, or even 20 nmol/mol/s (Landsberg and Sands, 2010). Analyses (see Sect. 3.1) show that the model is sensitive to the specification of sapwood respiration. We therefore selected the final value for this parameter based on calibration of the simulated mean ring width against observations, constrained by the published range of values for sapwood respiration rate.

260 2.3 Model application

261 We applied the model to simulate the growth of 46 individual Pinus koraiensis trees from the study site 262 between 1958-2006. The 46 trees were of different ages (ranging from <50 to ca 200 years at the time of 263 sampling, 2006) and different diameters (diameter at breast height from 10 to 70 cm at time of sampling). 264 Environmental conditions (e.g. soil depth, light availability) were relatively uniform across the sampling plot. 265 The start date for the simulations was determined by the availability of local climate data. Site latitude, 266 elevation, and observed monthly temperature, precipitation, fraction of cloud cover were used as input for the 267 P model. Each tree was initialised at its actual diameter at 1958, calculated from the measured diameter in 268 2007 and measured radial growth between 1958 and 2007. The model was initially run with a fixed CO_2 269 concentration of 360ppm. To examine the impact of changing atmospheric CO_2 levels on tree growth, we 270 made a second simulation using the observed monthly CO₂ concentration between 1958 and 2006 (310 - 390 271 ppm: NOAA ESRL).

272 2.4 Statistical methods

273 For statistical analyses and comparison with observations, the individual trees were grouped into three 274 cohorts, based on their age in 1958: young (0-49 years), mature (50-99 years), and old (>100 years). 275 Individual trees within each cohort exhibit a range of diameters: young ca 20-37 cm, mature: 9-59 cm, and 276 old: 25-40 cm. These differences in size will affect the expression of ontogeny within each cohort. The mean 277 and standard deviation (SD) of year-by-year diameter growth was calculated for each age cohort from the 278 observations and the simulations. The Pearson correlation coefficient and root mean squared error (RMSE) 279 were used to evaluate the degree of agreement between the observations and simulations. We used generalised 280 linear modelling (GLM: McCullagh, 1984) to analyse the response of tree growth to the major climate factors 281 and age. The GLM approach is helpful for separating the independent influence of individual factors on tree 282 growth, given the inevitable existence of correlations between these factors.

- 283
- 284 3 Results

285 3.1 Simulated ring width versus observation

There are only small differences between different age cohorts in the mean simulated ring width, with a mean value of 1.43 mm for young trees, 1.31 mm for mature trees, and 1.37 for older trees. These values are

comparable to the mean value obtained from the observations (1.48mm, 1.29mm, 1.34mm respectively).
However, the general impact of ageing is evident in the decreasing trend in ring widths between 1958 and
2007 within any one cohort (Fig. 3). The slope is stronger in the observations than in the simulations,
indicating that the model somewhat underestimates the effects of ontogeny.

There is considerable year-to-year variability in tree growth. The simulated interannual variability (standard deviation) in simulated ring width is similar in all the age cohorts (0.265 mm in the young, 0.265 mm in the mature, and 0.264 mm in the old trees). This variability is somewhat less than shown by the observations, where interannual variability is 0.274mm, 0.367mm, 0.245mm respectively in the young, mature and old cohorts. The RMSE is 0.263mm, 0.332mm, and 0.284mm respectively for young, mature and old age cohorts. The correlation between the observed and simulated sequence in each cohort is statistically significant (P = 0.000, 0.001, 0.009 respectively for young, mature and old age cohorts).

Despite the fact that the model reproduces both the mean ring width and the interannual variability in tree growth reasonably well, the range of ring widths simulated for individual trees within any one cohort is much less than the range seen in the observations. This is to be expected, given that individual tree growth is affected by local factors (e.g. spatial variability in soil moisture) and may also be influenced by ecosystem dynamics (e.g. opening up of the canopy through the death of adjacent trees) – effects that are not taken into account in the model.

305 3.2 Parameter sensitivity analysis

To evaluate the sensitivity of the model to specification of individual parameters, we ran a series of simulations in which individual parameter values were increased or decreased by 50% of their reference value. For each of these simulations, the T model was run for 500 years using constant potential GPP (the mean GPP during the period 1958-2006).

310 The model simulates a rapid initial increase in ring width, with peak ring widths occurring after ca 10 years, 311 followed by a gradual and continuous decrease with age (Fig. 4). The model is comparatively insensitive to 312 uncertainties in the specification of fine-root specific respiration rate (r_r) , fine-root turnover time (τ_f) , and 313 specific leaf area (σ), while leaf area index within the crown (L), ratio of fine-root mass to foliage area (ζ) and 314 fine-root turnover time (τ_r) have only a moderate effect on the simulated amplitude of ring width. The largest 315 impacts on the amplitude of the simulated ring width are from initial slope of height-diameter relationship (a), 316 initial ratio of crown area to stem cross-sectional area (c), and sapwood density (ρ_s). Maximum tree height 317 (H_m) and sapwood-specific respiration rate (r_s) have the greatest influence on the shape of the simulated 318 ageing curve. These two parameters also have a large impact on the amplitude of the growth of old trees. The 319 parameters values for a, c, H_m and ρ_s are derived from observations, with uncertainties much less than 50% 320 (Fig. 2). Thus, the sensitivity of the model to these parameters is not important. However, model sensitivity to 321 sapwood respiration (r_s) both in terms of the shape of the ageing curve and the amplitude is of greater 322 concern, given the large range of values in the literature. Although some part of the uncertainty in the 323 specification of sapwood respiration may be due to differences between species, the difficulty of measuring 324 this trait accurately also contributes to the problem. For the final model, we tuned r_s against the ring-width 325 observations. The best match with the observations was obtained with a value 1.4 nmol/mol/s, which is within 326 the range of published values for pines (see summary in Landsberg and Sands, 2010). r_s is the only parameter 327 that was tuned.

328 3.3 Controls on tree growth

The GLM analysis revealed a strong positive relationship between PAR_0 and tree growth, while moisture stress (as measured by α , an estimate of the ratio of actual to potential evapotranspiration) was shown to have a less steep but still positive effect (Fig. 5 and Table 2). The observed partial relationship between mean annual temperature and tree growth is negative. The Changbai Mountains are at the southern end of the distribution of *Pinus koraiensis* in China, which makes it plausible that tree growth would be inhibited during warmer years.

335 The model reproduces these observed relationships between climate factors and tree growth. The slope of the 336 observed positive relationship with α is statistically indistinguishable from the modelled slope, but the 337 observed positive relationship with PAR_0 is weaker, and the negative correlation with mean annual 338 temperature is stronger, in the observations than in the simulations. These differences between observations 339 and simulations could reflect the influence of an additional climate control, related to both PAR₀ and 340 temperature (e.g. cloud cover). The difference between observed and simulated effects of temperature may 341 also be because although simulated growth is inhibited by low temperatures (through the computation of 342 PAR_{0}), the current model does not include any mechanism for inhibition due to heat stress at high air and leaf 343 temperatures.

The GLM analysis also showed that age, as represented by the three age cohorts, has an impact on ring width: young trees have greater ring widths than mature trees, while old trees have somewhat greater ring widths than mature trees. This pattern is seen in both the observations and simulations, although the differences between the young and mature cohorts are slightly greater in the observations.

The overall similarity in the observed and simulated relationships between growth rates and environmental factors confirms that the T model performs realistically. The observed relationships are considerably noisier than the simulated relationships (Fig. 5, Table 2), reflecting the fact that growth rates are affected by smallscale variability in environmental conditions as well as time-varying competition for light.

352 3.4 Simulated CO₂ effect on tree growth

Elevated levels of CO_2 are expected to have a positive impact on tree growth (Hyvönen et al., 2007; Donohue et al., 2013; Hickler et al., 2008; Boucher et al., 2014). This positive response to $[CO_2]$ is seen in the 355 comparison of the fixed $[CO_2]$ and real $[CO_2]$ simulations (Fig. 5). In the first part of the simulation, prior to 356 1980, the actual $[CO_2]$ is lower than the level of 360 ppm used in the fixed $[CO_2]$ experiment: this results in 357 lower growth rates. The 50 ppm difference between the two experiments at the beginning of the simulation 358 results in a difference in ring width of 0.242 mm. After 1980, when the actual [CO₂] was higher than 360 359 ppm, the tree growth in the simulation with realistic $[CO_2]$ is enhanced. The 30 ppm difference at the end of 360 the simulation results in a difference in ring width of 0.101 mm. Overall, the change in [CO₂] between 1958 361 and 2006 results in a positive enhancement of tree growth of ca 0.343 mm/yr. However, this difference is very 362 small compared to the impact of ageing (> 1 mm from observations) or to the differences resulting from the 363 interannual variability of climate (1.212 mm) on tree growth.

364

365 4 Discussion

366 We have shown that radial growth (ring width) can be realistically simulated by coupling a simple generic 367 model of GPP with a model of carbon allocation and functional geometric tree growth with species-specific 368 values. The model is responsive to changes in climate variables, and can account for the impact of changing 369 CO₂ and ontogeny on tree growth. Although several models draw on basic physiological and/or geometric 370 constraints in order to simulate tree-ring indices (Fritts, 2012; Vaganov et al., 2006; Rathgeber et al., 2005; 371 Misson, 2004), and indeed the two approaches have been combined to simulate between-site differences in 372 ecosystem productivity and tree growth (Härkönen et al. 2010; Härkönen et al. 2013), this is the first time to 373 our knowledge that the two approaches have been combined to yield an explicit treatment of individual tree-374 growth processes, tested against an extensive ring-width data set.

375 Our simulations suggest that after a brief but rapid increase for young plants, there is a general and continuous 376 decrease in radial growth with age (Fig. 4). This pattern is apparent in individual tree-ring series, and is 377 evident in the decreasing trend in ring widths shown when the series are grouped into age cohorts (Fig. 3). It is 378 a necessary consequence of the geometric relationship between the stem diameter increment and cross-379 sectional area: more biomass is required to produce the same increase in diameter in thicker, taller trees than 380 thinner, shorter ones. However, we find that ring widths in old trees in our study region are consistently wider 381 than in mature trees, and this property is reproduced in the simulations (Fig. 5). This situation arises because 382 the old trees are on average smaller than the mature trees at the start of the simulation (in 1958). Thus, while 383 the difference between average ring-widths in the mature and old cohorts conforms to the geometric 384 relationship between stem diameter increment and cross-sectional area, it is a response that also reflects 385 differences in the history of tree growth at this site which determined the initial size of the trees in 1958. Lack 386 of climate data prior to 1958 or detailed information about stand dynamics precludes diagnosis of the cause of 387 the growth history differences between mature and old trees.

Studies attempting to isolate the impact of climate variability on tree growth, including attempts to reconstruct historical climate changes using tree-ring series, often describe the impact of ageing as a negative exponential curve (Fritts, 2012). However, our analyses suggest that this is not a good representation of the actual effect of ageing on tree growth, and would result in masking of the impact of climate-induced variability in mature and old trees. The simulated NPP of individual trees always increases with size (or age). This is consistent with the observation that carbon sequestration increases continuously with individual tree size (Stephenson et al., 2014).

395 We have shown that total PAR during the growing season is positively correlated with tree growth at this site. 396 This is not surprising given that PAR is the primary driver of photosynthetic carbon fixation. However, none 397 of the empirical or semi-empirical models of tree growth uses PAR directly as a predictor variable; most use 398 some measure of seasonal or annual temperature as a surrogate. PAR is determined by latitude and cloudiness. 399 Although temperature varies with latitude and cloudiness, it is also influenced by other factors including heat 400 advection. Temperature changes can impact the length of the growing season, and hence have an impact on 401 total growing-season PAR, but this is a trivial effect over recent decades. In fact, we show that mean annual 402 temperature *per se* is negatively correlated with tree growth at this site. Given this decoupling, and the 403 potential that longer-term changes in cloudiness will not necessarily be correlated with changes in temperature 404 (Charman et al., 2013), we strongly advocate the use of growing-season PAR for empirical modelling as well 405 as in process-based modelling.

We found no age-related sensitivity to inter-annual variability in climate: the interannual variability in ring width is virtually identical between age cohorts. The strength of the relationship with individual climate variables is also similar between the three age cohorts. It is generally assumed that juvenile and old trees are at greater risk of mortality from environmental stress than mature trees (e.g. Lines et al., 2010; McDowell et al., 2008). This may be true in the case of extreme events, such as wildfires or windthrow, or pest attack. Our results suggest that although climate variability has an important effect on tree growth it is not an important influence on mortality.

413 We have assumed that the period contributing to growth (i.e. the effective growing season) in any year 414 includes carbon stores generated during the second half of the previous year. The total foliage area determines 415 the radial area of the stem, and once this is achieved NPP is allocated either to fine root production or stored 416 as carbohydrate for use in stem growth in the early part of the subsequent year. This is consistent with 417 observations that radial growth begins before leaf-out (Michelot et al., 2012) and that maximum leaf area is 418 generally achieved by mid-summer (Rautiainen et al., 2012), and the MAIDEN model also allows tree growth 419 to be influenced by a fixed contribution from the previous year's growth (Misson, 2004). Defining the 420 effective growing season as being only the current growth year had no impact on the influence of climate on 421 ring widths, or the shape of the aging curve. It did, however, produce a considerably lower correlation 422 between simulated and observed inter-annual variability in growth. Since tree ring-width reflects the 423 integrated climate over the "effective growing season", reconstructions of climate variables reflect conditions424 during that season, not simply during the current calendar year.

425 The high degree of autocorrelation present in tree-ring series is often seen as a problem requiring pre-426 treatment of the series in order to derive realistic reconstructions of climate variables (e.g. Cook et al., 2012; 427 Anchukaitis et al., 2013; Wiles et al., 2014). However, spatial or temporal autocorrelation is a reflection of the 428 causal mechanism underpinning the observed patterning. Here we postulate that the mechanism that gives rise 429 to the temporal autocorrelation in tree-ring series is the existence of carbon reserves that are created in one 430 year and fuel early growth in the next. If a large reserve of carbon is created in the second half of the growing 431 season, because of favourable conditions, this will offset poor conditions in the following year. However, 432 large reserves may not be necessary if conditions during the subsequent growing year are very favourable. 433 The fact that the relative influence of one year on the next can vary explains why the measured autocorrelation 434 strength in a given tree-ring series varies through time.

435 The T model is sensitive to the values adopted for some parameters, specifically the initial slope of height-436 diameter relationship (a), the initial ratio of crown area to stem cross-sectional area (c), maximum tree height 437 (H_m) , sapwood density (ρ_s) , sapwood specific respiration rate (r_s) , leaf area index within the crown (L), ratio of 438 fine-root mass to foliage area (ζ) and fine-root turnover time (τ_r). Several of these parameters are easily 439 derived from observations (e.g. a, c, H_m , ρ_s , L) and provided that sufficient site-based observations are 440 available should not pose a problem for applications of the model. However, the model is also sensitive to less 441 easily measured parameters, including sapwood respiration, root respiration and the ratio of fine roots to 442 leaves. Estimates of values for root respiration and root mass to foliage area in the literature do not show 443 substantial differences, and we therefore used an average value to parameterize our model. This approach 444 could be used for other applications. We parameterized fine-root turnover rates based on observations on 445 Pinus koriensis from Changbai. While this obviated the need for tuning in the current application, lack of data 446 on fine-root turnover rates in other regions (or for other species) could pose problems for future applications 447 of the model. The model is also highly sensitive to the parameter value used for sapwood respiration and the 448 range of reported values is large (Table 1). Because of this, we derived a value for sapwood respiration by 449 tuning the model to obtain a good representation of average ring width. This is the only parameter that 450 requires tuning in the current version of the T model. Although sapwood respiration is difficult to measure, it 451 would certainly be better if more measurements of sapwood respiration were available, as this would remove 452 the need for model tuning.

Our modelling approach integrates the influence of climate, [CO₂] and ontogeny on individual tree growth. Such a model is useful to explore the response of tree growth to potential future changes in climate, and the impact of changes in tree growth on carbon sequestration. We also envisage that it could also be used to investigate the impact of past climate changes on tree growth. Reconstructions of temperature changes beyond the recent observational period, used as a baseline for the detection of anthropogenic influences on the climate 458 system, are largely derived from statistical reconstructions based on tree-ring series (Jones et al., 1998; Esper 459 et al., 2002; Hegerl et al., 2006; Mann et al., 2008; Ahmed et al., 2013). However, as we show here, 460 temperature is neither the only, nor the most important, influence on tree growth. This may help to explain 461 why correlations between ring-widths and climate at individual sites appear to have broken down in recent 462 decades (the so-called divergence problem: D'Arrigo et al., 2008). The availability of a robust model to 463 investigate tree growth could help to provide better reconstructions of past climate changes (see e.g. Boucher 464 et al., 2014) as well as more plausible projections of the response of tree growth to continuing climate change 465 in the future.

466

467 Acknowledgements.

We thank Wang Han for assistance with the P model. GL is supported by International Postgraduate Research Scholarship at Macquarie University. The work is a contribution to the AXA Chair programme on Biosphere and Climate Impacts and the Imperial College initiative Grand Challenges in Ecosystems and the Environment.

- 472
- 473
- 474 References
- Ahmed, M., Anchukaitis, K. J., Asrat, A., Borgaonkar, H. P., Braida, M., Buckley, B. M., Büntgen, U., Chase, B.
 M., Christie, D. A., and Cook, E. R.: Continental-scale temperature variability during the past two millennia, Nat.
 Geosci., 6, 339-346, doi:10.1038/NGEO1797, 2013.
- Anchukaitis, K. J., D'Arrigo, R. D., Andreu-Hayles, L., Frank, D., Verstege, A., Curtis, A., Buckley, B. M.,
 Jacoby, G. C., and Cook, E. R. Tree-Ring-Reconstructed Summer Temperatures from Northwestern North America
 during the Last Nine Centuries. J. Clim., 26, DOI: 10.1175/JCLI-D-11-00139.1, 3001-3012, 2013.
- Bai, F., Sang, W., Li, G., Liu, R., Chen, L., and Wang, K.: Long-term protection effects of national reserve to forest
 vegetation in 4 decades: biodiversity change analysis of major forest types in Changbai Mountain Nature Reserve,
 China, Sci. China Ser. C, 51, 948-958, 2008.
- Bauerle, W. L., Oren, R., Way, D. A., Qian, S. S., Stoy, P. C., Thornton, P. E., Bowden, J. D., Hoffman, F. M., and Reynolds, R. F.: Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications
- 486 for carbon cycling, P. Natl. Acad. Sci., 109, 8612-8617, doi:10.1073/pnas.1119131109, 2012.
- Bernacchi, C., Pimentel, C., and Long, S.: In vivo temperature response functions of parameters required to model
 RuBP-limited photosynthesis, Plant Cell Environ., 26, 1419-1430, 2003.
- Bonan, G. B.: Forests and climate change: forcings, feedbacks, and the climate benefits of forests, Science, 320,
 1444-1449, doi:10.1126/science.1155121, 2008.
- Boucher, É., Guiot, J., Hatté, C., Daux, V., Danis, P.-A., and Dussouillez, P.: An inverse modeling approach for
 tree-ring-based climate reconstructions under changing atmospheric CO₂ concentrations, Biogeosciences, 11, 32453258, doi:10.5194/bg-11-3245-2014, 2014.
- 494 Caspersen, J. P., Vanderwel, M. C., Cole, W. G., and Purves, D. W.: How stand productivity results from size-and 495 competition-dependent growth and mortality, PLoS One, 6, e28660, 2011.
- Charman, D. J., Beilman, D.W., Blaauw, M., Booth, R.K., Brewer, S., Chambers, F.M., Christen, J.A. Gallego-Sala,
 A., Harrison, S.P., Hughes, P.D.M., Jackson, S.T., Korhola, A., Mauquoy, D., Mitchell, F.J.G., Prentice, I.C., van
- 498 der Linden, M., de Vleeschouwer, F., Yu, Z.C., Alm, J., Bauer, I.E., Corish, Y.M.C., Garneau, M., Hohl, V., Huang,
- 499 Y., Karofeld, E., Le Roux, G., Moschen, R., Nichols, J.E., Nieminen, T., McDonald, G.M., Phadtare, N.R., Rausch,
- 500 N., Shotyk, W., Sillasoo, U., Swindles, G.T., Tuittila, E.S., Ukonmaanaho, L., Väliranta, M., van Bellen, S., van
- 501 Geel, B., Vitt, D.H., Zhao, Y.: Climate-driven changes in peatland carbon accumulation during the last millennium,
- 502 Biogeosciences, 10, 929-944, doi:10.5194/bg-10-929-2013, 2013.
- 503 Chen, G., DAI, L., and ZHOU, L.: Structure of stand and canopy characteristics of disturbed communities of 504 broadleaved Pinus koraiensis forest in Changbai Mountain [J], Chin. J. Ecol., 23, 116-120, 2004.
- 505 Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann,
- 506 M., Jones, C., Quéré, C. L., Myneni, R. B., Piao, S., and Thornton, P.: Carbon and Other Biogeochemical Cycles.
- 507 In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment
- 508 Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K.
- 509 Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)], Cambridge University Press, Cambridge,
- 510 UK and New York, NY, USA, 2013.
- 511 Claesson, J., and Nycander, J.: Combined effect of global warming and increased CO₂-concentration on vegetation

- 512 growth in water-limited conditions, Ecol. Model., 256, 23-30, 2013.
- 513 Cook, E. R., Krusic, P. J., Anchukaitis, K. J., Buckley, B. M., Nakatsuka, T., & Sano, M.: Tree-ring reconstructed
- 514 summer temperature anomalies for temperate East Asia since 800 CE. Clim. Dyn., *41*(11-12), 2957-2972, DOI 10.1007/s00382-012-1611-x, 2012.
- 516 Cruiziat, P., Cochard, H., and Améglio, T.: Hydraulic architecture of trees: main concepts and results, Ann. For. 517 Sci., 59, 723-752, doi: 10.1051/forest:2002060, 2002.
- 518 D'Arrigo, R., Wilson, R., Liepert, B., and Cherubini, P.: On the 'divergence problem' in northern forests: a review 519 of the tree-ring evidence and possible causes, Global Planet. Change, 60, 289-305, 2008.
- 520 Danis, P.-A., Hatté, C., Misson, L., and Guiot, J.: MAIDENiso: a multiproxy biophysical model of tree-ring width 521 and oxygen and carbon isotopes, Can. J. Forest Res., 42, 1697-1713, 2012.
- 522 Donohue, R. J., Roderick, M. L., McVicar, T. R., and Farquhar, G. D.: Impact of CO₂ fertilization on maximum 523 foliage cover across the globe's warm, arid environments, Geophys. Res. Lett., 40, 3031-3035, 524 doi:10.1002/grl.50563, 2013.
- 525 Duursma, R. A., Mäkelä, A., Reid, D. E., Jokela, E. J., Porté, A. J., and Roberts, S. D.: Self-shading affects 526 allometric scaling in trees, Funct. Ecol., 24, 723-730, doi:10.1111/j.1365-2435.2010.01690.x, 2010.
- 527 Esper, J., Cook, E. R., and Schweingruber, F. H.: Low-frequency signals in long tree-ring chronologies for 528 reconstructing past temperature variability, Science, 295, 2250-2253, doi:10.1126/science.1066208, 2002.
- Falster, D. S., and Westoby, M.: Tradeoffs between height growth rate, stem persistence and maximum height
 among plant species in a post-fire succession, Oikos, 111, 57-66, 2005.
- 531 Falster, D. S., Brännström, Å., Dieckmann, U., and Westoby, M.: Influence of four major plant traits on average
- beight, leaf-area cover, net primary productivity, and biomass density in single-species forests: a theoretical
- 533 investigation, J. Ecol., 99, 148-164, doi:10.1111/j.1365-2745.2010.01735.x, 2011.
- Friedlingstein, P., and Prentice, I.: Carbon–climate feedbacks: a review of model and observation based estimates,
 Curr. Opin. Environ. Sustainability, 2, 251-257, 2010.
- 536 Fritts, H. C.: Tree rings and climate, Academic Press, London, 2012.
- Gallego-Sala, A.V., Clark, J.M., House, J.I., Orr, H.G., Prentice, I.P., Smith, P. et al: Bioclimatic envelope model
 of climate change impacts on blanket peatland distribution in Great Britain, Clim Res 45:151–162, 2010.
- 539 Givnish, T. J.: Adaptation to sun and shade: a whole-plant perspective, Funct. Plant Biol., 15, 63-92, 540 doi:10.1071/PP9880063 1988.
- Härkönen, S., Pulkkinen, M., Duursma, R., and Mäkelä, A.: Estimating annual GPP, NPP and stem growth in
 Finland using summary models, Forest. Ecol. Manag., 259, 524-533, 2010
- Härkönen, S., Tokola, T., Packalén, P., Korhonen, L., and Mäkelä, A.: Predicting forest growth based on airborne
 light detection and ranging data, climate data, and a simplified process-based model, Can. J. For. Res., 43, 364-375,
 2013.
- Harrison, S. P., Prentice, I. C., Barboni, D., Kohfeld, K. E., Ni, J., and Sutra, J. P.: Ecophysiological and bioclimatic
 foundations for a global plant functional classification, J. Veg. Sci.I, 21, 300-317, doi:10.1111/j.16541103.2009.01144.x, 2010.
- Hegerl, G. C., Crowley, T. J., Hyde, W. T., and Frame, D. J.: Climate sensitivity constrained by temperature reconstructions over the past seven centuries, Nature, 440, 1029-1032, doi:10.1038/nature04679, 2006.
- 551 Hickler, T., Smith, B., Prentice, I. C., Mjöfors, K., Miller, P., Arneth, A., and Sykes, M. T.: CO₂ fertilization in

- temperate FACE experiments not representative of boreal and tropical forests, Global Change Biol., 14, 1531-1542,
 doi:10.1111/j.1365-2486.2008.01598.x, 2008.
- Huang, J., Bergeron, Y., Denneler, B., Berninger, F., and Tardif, J.: Response of forest trees to increased atmospheric CO₂, Crit. Rev. Plant Sci., 26, 265-283, doi:10.1080/07352680701626978, 2007.
- Huo, H., and Wang, C.: Effects of canopy position and leaf age on photosynthesis and transpiration of Pinus
 koraiensis, Chin. J. Appl. Ecol., 18, 1181-1186, 2007.
- Hyvönen, R., Ågren, G. I., Linder, S., Persson, T., Cotrufo, M. F., Ekblad, A., Freeman, M., Grelle, A., Janssens, I.
 A., and Jarvis, P. G.: The likely impact of elevated [CO₂], nitrogen deposition, increased temperature and
 management on carbon sequestration in temperate and boreal forest ecosystems: a literature review, New Phytol.,
 173, 463-480, doi:10.1111/j.1469-8137.2007.01967.x, 2007.
- Ishii, H., Reynolds, J. H., Ford, E. D., and Shaw, D. C.: Height growth and vertical development of an old-growth
 Pseudotsuga-Tsuga forest in southwestern Washington State, USA, Can. J. Forest Res., 30, 17-24, 2000.
- Jarvis, P. G., and Leverenz, J. W.: Productivity of temperate, deciduous and evergreen forests, in: Physiological
 plant ecology IV, Springer, Berlin Heidelberg, 233-280, 1983.
- Jones, P. D., Briffa, K. R., Barnett, T. P., and Tett, S. F. B.: High-resolution palaeoclimatic records for the last
 millennium: interpretation, integration and comparison with General Circulation Model control-run temperatures,
 Holocene, 8, 455-471, doi:10.1191/095968398667194956, 1998.
- Jonson, T.: Taxatoriska undersokningar am skogstradens form: (1) granens stamform. Skogsvardfor, Tidskrift, 8,
 285-328, 1910.
- 571 King, D. A.: Size-related changes in tree proportions and their potential influence on the course of height growth, 572 in: Size-and age-related changes in tree structure and function, Springer, Netherlands, 165-191, 2011.
- 573 Körner, C.: Plant CO₂ responses: an issue of definition, time and resource supply, New Phytol., 172, 393-411, 2006.
- Koutavas, A.: CO₂ fertilization and enhanced drought resistance in Greek firs from Cephalonia Island, Greece,
 Global Change Biol., 19, 529-539, doi:10.1111/gcb.12053, 2013.
- 576 Landsberg, J. J., and Sands, P.: Physiological ecology of forest production: principles, processes and models,577 Academic Press, 2010.
- 578 Larson, P. R.: Stem form development of forest trees, For. Sci., Monograph 5, 1-42, 1963.
- Lines, E. R., Coomes, D. A., and Purves, D. W.: Influences of forest structure, climate and species composition on
 tree mortality across the eastern US, PLoS One, 5, e13212, doi:10.1371/journal.pone.0013212, 2010.
- 581 Lloyd, J.: The CO₂ dependence of photosynthesis, plant growth responses to elevated CO₂ concentrations and their
- interaction with soil nutrient status, II. Temperate and boreal forest productivity and the combined effects of increasing CO_2 concentrations and increased nitrogen deposition at a global scale, Funct. Ecol., 13, 439-459, 1999.
- Luo, T.: Patterns of net primary productivity for Chinese major forest types and their mathematical models, Doctor
 of Philosophy, Chinese Academy of Sciences, Beijing, 1996.
- 586 Luo, Y., Su, B., Currie, W. S., Dukes, J. S., Finzi, A., Hartwig, U., Hungate, B., McMurtrie, R. E., Oren, R., and
- 587 Parton, W. J.: Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide,
 588 Bioscience, 54, 731-739, 2004.
- 589 Mäkelä, A., Landsberg, J., Ek, A. R., Burk, T. E., Ter-Mikaelian, M., Ågren, G. I., Oliver, C. D., and Puttonen, P.:
- 590 Process-based models for forest ecosystem management: current state of the art and challenges for practical
- 591 implementation, Tree physiol., 20, 289-298, 2000.

- Mann, M. E., Zhang, Z., Hughes, M. K., Bradley, R. S., Miller, S. K., Rutherford, S., and Ni, F.: Proxy-based
 reconstructions of hemispheric and global surface temperature variations over the past two millennia, P. Natl. Acad.
 Sci. USA, 105, 13252-13257, doi:10.1073/pnas.0805721105, 2008.
- 595 McCullagh, P.: Generalized linear models, Eur. J. Oper. Res., 16, 285-292, 1984.
- McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A.,
 and Williams, D. G.: Mechanisms of plant survival and mortality during drought: why do some plants survive while
 others succumb to drought?, New Phytol., 178, 719-739, doi:10.1111/j.1469-8137.2008.02436.x, 2008.
- 599 Medvigy, D., and Moorcroft, P. R.: Predicting ecosystem dynamics at regional scales: an evaluation of a terrestrial 600 biosphere model for the forests of northeastern North America, Philos. T. Roy. Soc. B., 367, 222-235, 2012.
- Michelot, A., Simard, S., Rathgeber, C., Dufrêne, E., and Damesin, C.: Comparing the intra-annual wood formation
 of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and
 non-structural carbohydrate dynamics, Tree physiol., 32, 1033-1045, doi:10.1093/treephys/tps052, 2012.
- 604 Miller, H. G.: Carbon × nutrient interactions the limitations to productivity, Tree physiol., 2, 373-385, 1986.
- Misson, L.: MAIDEN: a model for analyzing ecosystem processes in dendroecology, Can. J. Forest Res., 34, 874887, doi:10.1139/X03-252, 2004.
- Misson, L., Rathgeber, C., & Guiot, J.: Dendroecological analysis of climatic effects on Quercus petraea and Pinus
 halepensis radial growth using the process-based MAIDEN model. Can. J. For. Res. 34: 888–898, doi:
 10.1139/X03-253, 2004.
- Moorcroft, P., Hurtt, G., and Pacala, S. W.: A method for scaling vegetation dynamics: the ecosystem demography
 model (ED), Ecol. Monogr., 71, 557-586, 2001.
- Moritz, M. A., Hurteau, M. D., Suding, K. N., and D'Antonio, C. M.: Bounded ranges of variation as a framework
 for future conservation and fire management, Ann. N. Y. Acad. Sci., 1286, 92-107, doi:10.1111/nyas.12104, 2013.
- Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S.
 L., and Canadell, J. G.: A large and persistent carbon sink in the world's forests, Science, 333, 988-993,
- 616 doi:10.1126/science.1201609, 2011.
- Pierce, L. L., and Running, S. W.: Rapid estimation of coniferous forest leaf area index using a portable integrating
 radiometer, Ecology, 1762-1767, 1988.
- Prentice, I. C., Dong, N., Gleason, S. M., Maire, V., and Wright, I. J.: Balancing the costs of carbon gain and water
 transport: testing a new theoretical framework for plant functional ecology, Ecol. Lett., 17, 82-91,
 doi:10.1111/ele.12211, 2014.
- Rathgeber, C. B., Misson, L., Nicault, A., and Guiot, J.: Bioclimatic model of tree radial growth: application to the
 French Mediterranean Aleppo pine forests, Trees, 19, 162-176, doi:10.1007/s00468-004-0378-z, 2005.
- Rautiainen, M., Heiskanen, J., and Korhonen, L.: Seasonal changes in canopy leaf area index and MODIS
 vegetation products for a boreal forest site in central Finland, Boreal Environ. Res., 17, 72-84, 2012.
- Reich, P. B., Hobbie, S. E., Lee, T., Ellsworth, D. S., West, J. B., Tilman, D., Knops, J. M., Naeem, S., and Trost, J.:
 Nitrogen limitation constrains sustainability of ecosystem response to CO₂, Nature, 440, 922-925, doi:10.1038/nature04486, 2006.
- Shan, J., Tao, D., Wang, M., and Zhao, S.: Fine roots turnover in a broad-leaved Korean pine forest of Changbai
 mountain, Chin. J. Appl. Ecol., 4, 241-245, 1993.
- 631 Shevliakova, E., Stouffer, R. J., Malyshev, S., Krasting, J. P., Hurtt, G. C., and Pacala, S. W.: Historical warming

- reduced due to enhanced land carbon uptake, P. Natl. Acad. Sci. USA, 110, 16730-16735, 2013.
- Shinozaki, K., Yoda, K., Hozumi, K., and Kira, T.: A quantitative analysis of plant form-the pipe model theory: I.
 Basic analyses, Jap. J. Ecol., 14, 97-105, 1964.
- Smith, B., Prentice, I. C., and Sykes, M. T.: Representation of vegetation dynamics in the modelling of terrestrial
 ecosystems: comparing two contrasting approaches within European climate space, Global Ecol. Biogeogr., 10,
 621-637, 2001.
- Stephenson, N. L., Das, A. J., Condit, R., Russo, S. E., Baker, P. J., Beckman, N. G., Coomes, D. A., Lines, E. R.,
 Morris, W. K., and Rüger, N.: Rate of tree carbon accumulation increases continuously with tree size, Nature,
 doi:10.1038/nature12914, 2014.
- Thomas, S. C.: Asymptotic height as a predictor of growth and allometric characteristics in Malaysian rain forest
 trees, Am. J. Bot., 83, 556-556, 1996.
- Vaganov, E. A., Hughes, M. K., and Shashkin, A. V.: Introduction and factors influencing the seasonal growth of
 trees, Springer, Berlin Heidelberg, 2006.
- Wang, H., Prentice, I. C., and Davis, T. W.: Biophysical constraints on gross primary production by the terrestrial
 biosphere, Biogeosciences Discuss., 11, 3209-3240, doi:10.5194/bgd-11-3209-2014, 2014.
- White, M. A., Thornton, P. E., Running, S. W., and Nemani, R. R.: Parameterization and sensitivity analysis of the
 BIOME–BGC terrestrial ecosystem model: net primary production controls, Earth Interact., 4, 1-85, 2000.
- Wiles, G. C., D'Arrigo, R., Barclay, D., Wilson, R. S., Jarvis, S. K., Vargo, L., and Frank, D.: Surface air
 temperature variability reconstructed with tree rings for the Gulf of Alaska over the past 1200 years. The Holocene,
 24, 198-208, 2014.
- Wright, I. J., Reich, P. B., and Westoby, M.: Least-cost input mixtures of water and nitrogen for photosynthesis,Am. Nat., 161, 98-111, 2003.
- Wullschleger, S. D., Tschaplinski, T. J., and Norby, R. J.: Plant water relations at elevated CO₂ implications for water-limited environments, Plant Cell Environ., 25, 319-331, 2002.
- Yan, X., and Zhao, J.: Establishing and validating individual-based carbon budget model FORCCHN of forest
 ecosystems in China, Acta Ecol. Sin., 27, 2684-2694, 2007.
- Yokozawa, M., and Hara, T.: Foliage profile, size structure and stem diameter-plant height relationship in crowded
 plant populations, Ann. Bot.-London, 76, 271-285, 1995.
- Zhang, Y., Xu, M., Chen, H., and Adams, J.: Global pattern of NPP to GPP ratio derived from MODIS data: effects
 of ecosystem type, geographical location and climate, Global Ecol. Biogeogr., 18, 280-290, doi:10.1111/j.1466-
- 662 8238.2008.00442.x, 2009.
- Zogg, G.P., Zak, D.R., Burton, A.J. and Pregitzer, K.S.: Fine root respiration in northern hardwood forests in
 relation to temperature and nitrogen availability. Tree Physiol., 16, 719-725, 1996.

665

- 666
- 667 Table and Figure Captions
- Table 1. Parameter description and the derivation of parameter values.

Table 2. GLM analysis of tree growth response to the climatic factors and age, based on simulations and observations. The dependent variable is mean ring width series (1958 to 2006) for each age cohort (young, mature, old). The independent variables are the growing-season total annual photosynthetically active radiation (PAR), mean annual temperature (MAT), the ratio of actual to potential evapotranspiration (α), with age-cohort treated as a factor.

Figure 1. Model application flow. We combined the simple light-use efficiency and photosynthesis model (P model) with a carbon allocation and functional geometric tree growth model to simulate tree growth (e.g. ring width). The inputs to the P model are latitude, elevation, [CO₂], and monthly temperature, precipitation, and fractional cloud cover. Potential gross primary productivity (GPP), output by the P model, drives the T model, together species-specific parameter values.

Figure 2. Estimation of parameter values for the application of the T model. Diameter at breast height (D), tree height (H), and crown area (A_c) of the 400 trees from the sample plots were used for the estimation of the initial slope of height-diameter relationship (a), and (asymptotic) maximum tree height (H_m) . Relationships among crown area (A_c) diameter at breast height (D) and height (H) (Eq. 7) are used to estimate the initial ratio of crown area to stem cross-sectional area (c).

Figure 3. Comparison between simulations and observations for the three age-cohorts (young: 0-49 year, mature: 50-99 year, and old >100 year). Each tree was initialised at its actual diameter at 1958, calculated from the measured diameter in 2007 and measured radial growth between 1958 and 2007. The black line is the mean of observations within each age-cohort, and grey bars are the standard deviation (SD) of individuals within each age-cohort. The blue line and bars are the mean and standard deviation from the simulations.

Figure 4. Parameter sensitivity analyses for the T model. A constant input of gross primary productivity (GPP) (mean during 1958-2006) was used to drive the T model to simulate tree growth for 500 years following establishment. The black line was obtained with the reference value of each parameter. The effects of an increase (150% of reference value, blue line) and a decrease (50% of reference value, red line) are also shown.

- 693 Figure 5. Tree growth response to climate and tree age: partial residual plots based on the GLM analysis
- 694 (Table 2), obtained using the visreg package in R, are shown.
- Figure 6 CO_2 effect on tree growth. Two runs, one with a fixed 360ppm [CO_2] (blue line), the other with observed monthly [CO_2] (red line), are compared to show the simulated effect of [CO_2] on tree growth during 1958~2006.

Table 1

Parameter	Code	Value	Uncertainty or Range of value from literature	Value source: Observation or Published literature
initial slope of height-diameter relationship (–)	а	116	±4.35	Observation (fig. 2)
initial ratio of crown area to stem cross- sectional area (–)	С	390.43	±11.84	Observation (fig. 2)
maximum tree height (m)	H_m	25.33	±0.71	Observation (fig. 2)
sapwood density (kgC m ⁻³)	$ ho_s$	200	±25	Observation
leaf area index within the crown (-)	L	1.8	1.5~1.96	Chen et al., 2004
specific leaf area (m ² kg ⁻¹ C)	σ	14	13.22~16.82	Huo and Wang, 2007
foliage turnover time (year)	$ au_{f}$	4	-	Luo, 1996
fine-root turnover time (year)	$ au_r$	1.04	-	Shan et al., 1993
PAR extinction coefficient (-)	k	0.5	0.48-0.58	Pierce and Running, 1988
yield factor (-)	у	0.6	0.5~0.7	Zhang et al., 2009
ratio of fine-root mass to foliage area (kgC m ⁻²)	ζ	0.17	±0.198	White et al., 2000
fine-root specific respiration rate (year ⁻¹)	r_r	0.913	-	Yan and Zhao, 2007
sapwood specific respiration rate (year ⁻¹)	r _s	0.044 (1.4 nmol/mol/s)	0.5~10 (20) nmol/mol/s	Landsberg and Sands, 2010

Table 1	2
---------	---

		Intercept (mm)	PAR (mm/kmol photon m ⁻²)	MAT (mm/°C)	α (mm)
Observation	Estimation	-3.123	0.625	-0.180	0.702
	Error	±0.784	±0.093	±0.042	±0.301
	p value	0.004	0.000	0.000	0.021
Simulation	Estimation	-7.139	1.056	-0.078	1.142
	Error	±0.169	±0.020	±0.009	±0.065
	p value	0.000	0.000	0.000	0.000

Figure 1

Figure 4

