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Abstract 23 

Ocean biogeochemistry (OBGC) models span a wide range of complexities from highly 24 

simplified, nutrient-restoring schemes, through nutrient-phytoplankton-zooplankton-25 

detritus (NPZD) models that crudely represent the marine biota, through to models that 26 

represent a broader trophic structure by grouping organisms as plankton functional types 27 

(PFT) based on their biogeochemical role (Dynamic Green Ocean Models) and ecosystem 28 

models which group organisms by ecological function and trait. OBGC models are now 29 

integral components of Earth System Models (ESMs), but they compete for computing 30 

resources with higher resolution dynamical setups and with other components such as 31 

atmospheric chemistry and terrestrial vegetation schemes.  As such, the choice of OBGC in 32 

ESMs needs to balance model complexity and realism alongside relative computing cost. 33 

Here, we present an inter-comparison of six OBGC models that were candidates for 34 

implementation within the next UK Earth System Model (UKESM1). The models cover a 35 

large range of biological complexity (from 7 to 57 tracers) but all include representations of 36 

at least the nitrogen, carbon, alkalinity and oxygen cycles. Each OBGC model was coupled to 37 

the Nucleus for the European Modelling of the Ocean (NEMO) ocean general circulation 38 

model (GCM), and results from physically identical hindcast simulations were compared. 39 

Model skill was evaluated for biogeochemical metrics of global-scale bulk properties using 40 

conventional statistical techniques. The computing cost of each model was also measured in 41 

standardised tests run at two resource levels. No model is shown to consistently outperform 42 

all other models across all metrics. Nonetheless, the simpler models are broadly closer to 43 

observations across a number of fields, and thus offer a high-efficiency option for ESMs that 44 

prioritise high resolution climate dynamics. However, simpler models provide limited insight 45 

into more complex marine biogeochemical processes and ecosystem pathways, and a 46 

parallel approach of low resolution climate dynamics and high complexity biogeochemistry 47 

is desirable in order to provide additional insights into biogeochemistry – climate 48 

interactions.  49 
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1 Introduction 50 

Ocean biogeochemistry is a key part of the Earth System: it regulates the cycles of major 51 

biogeochemical elements and controls the associated feedback processes between the land, 52 

ocean and atmosphere. As a result, changes in ocean biogeochemistry can have important 53 

implications for climate (Reid et al., 2009). Marine ecosystems are indirectly affected by 54 

anthropogenic environmental change (Jackson et al., 2001), particularly through climate-55 

induced changes in physical properties and CO2 -induced ocean acidification. Understanding 56 

and quantifying the response of ocean biogeochemistry to global changes and their 57 

feedbacks with the Earth System is essential to improve our capacity to maintain ecosystem 58 

services this century and beyond. 59 

With the recent publication of the Intergovernmental Panel on Climate Change (IPCC) 5th 60 

Assessment Report (AR5), global efforts are already underway to develop the next 61 

generation of Earth System Models (ESMs) to support climate policy development and any 62 

further IPCC Assessment Report. OBGC coupled to ESMs can help address a series of 63 

overarching scientific questions: How will the ocean contribute to atmospheric trace gas 64 

composition (e.g. CO2, CH4, N2O, DMS) in a changing climate? Are there tipping points in 65 

marine biogeochemistry (e.g. oceanic anoxic events, methane hydrate release) that could be 66 

triggered by a changing climate? Are there interactions between ESM processes and 67 

society’s management of resources (e.g. fisheries, land use, agriculture) in the marine 68 

environment? Furthermore, as ESMs are increasingly being evaluated based on their 69 

capacity to understand past variability (Braconnot et al., 2012), further questions might 70 

include: What controlled variations in atmospheric trace gas concentrations and isotopic 71 

composition over the geological past? 72 

For an anticipated 6th IPCC assessment report it is generally considered that these global-73 

scale questions, with direct implications for climate policies, will again be the main focus of 74 

ocean biogeochemical models within ESMs. In addition, the ESM model archive is 75 

increasingly being used by activities within the Inter-Sectoral Impact Model Intercomparison 76 

Project (http://www.pik-potsdam.de/research/climate-impacts-and-77 

vulnerabilities/research/rd2-cross-cutting-activities/isi-mip/scientific-publications) to 78 

address socioeconomically-directed questions such as: How will climate change affect ocean 79 

primary production (e.g. Bopp et al., 2013), fisheries (Barange et al., 2014; Cheung et al., 80 

2012), and harmful algal and jellyfish blooms (e.g. Codon et al., 2013, Gilbert et al., 2014)? 81 

What is the potential for geoengineering schemes such as ocean fertilisation (Buesseler & 82 

Boyd, 2003) and alkalinity addition (Kheshgi, 1995; Harvey, 2008) to affect the climate 83 

system, and how do they affect the rest of the Earth System?  84 
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Within the UK, the Integrated Global Biogeochemical Modelling Network (iMarNet) project 85 

aims to advance the development of ocean biogeochemical models through collaboration 86 

between existing modelling groups at Plymouth Marine Laboratory (PML), National 87 

Oceanography Centre (NOC), University of East Anglia (UEA) and the Met Office-Hadley 88 

Centre (UKMO).  As part of iMarNet we conducted an intercomparison of 6 current UK 89 

models, to help inform the selection of a baseline OBGC model for the next UK Earth System 90 

Model (UKESM1). This intercomparison focused on model skill at reproducing global-scale 91 

bulk properties - such as nutrient and carbon distributions - that broadly characterise the 92 

activity of marine biota (and, thus, the carbon cycle) in the ocean. To limit the role of errors 93 

originating with modelled physics, all of the examined model simulations were performed 94 

within the same physical ocean GCM, under the same external forcing and following the 95 

same experimental protocol. As all of the models examined have been previously published, 96 

our analysis does not include an assessment of their underlying biological fidelity (i.e. the 97 

extent to which structures, parameterisations and parameter sets of candidate models are a 98 

priori realistic). However, while primarily focused on model skill, the intercomparison also 99 

considers the computational cost of the models in relation to the realism that they offer. 100 

Previous authors have performed biogeochemical model intercomparisons with parallels to 101 

this study (e.g. Friedrichs et al., 2007; Kriest et al., 2010; Steinacher et al., 2010; Popova et 102 

al., 2012). These have differed from this study, and each other, in a number of ways. For 103 

instance, this study is 3D rather than 1D (cf. Friedrichs et al., 2007); global rather than 104 

regional (cf. Popova et al., 2012); uses identical rather than diverse physics (cf. Steinacher et 105 

al., 2010); and spans a more functionally diverse range of biogeochemical models (cf. Kriest 106 

et al., 2010). The latter two factors, in particular, distinguish this study, permitting us to 107 

both formally separate the impact of physics from that of biogeochemical dynamics, and to 108 

do so across a broad range of model complexity from NPZD through to state-of-the-art PFT 109 

models with considerable ecological sophistication. This study is still constrained by the use 110 

of a single ocean circulation, and by a bespoke gradation of model complexity (PlankTOM6 111 

and PlankTOM10 partially inform this). Nonetheless, this study represents an 112 

intercomparison along separate lines to those previously conducted. 113 

 114 

2 Method 115 

2.1 Experimental Design 116 

All participating models made use of a common version (v3.2) of the NEMO physical ocean 117 

general circulation model (Madec, 2008) coupled to the Los Alamos sea-ice model (CICE) 118 

(Hunke and Lipscomb, 2008). This physical framework is configured at approximately 1×1 119 

degree horizontal resolution (ORCA100; 292×362 grid points), with a focusing of resolution 120 
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around the equator to improve the representation of equatorial upwelling. Vertical space is 121 

divided into 75 fixed levels, which increase in thickness with depth, from approximately 1m 122 

at the surface to more than 200m at 6000m. Partial level thicknesses are used in the 123 

specification of seafloor topography to improve the representation of deep water 124 

circulation. Vertical mixing is parameterized using the turbulent kinetic energy scheme of 125 

Gaspar et al., (1990), with modifications made by Madec (2008). To ensure that the 126 

simulations were performed by the different modelling groups using an identical physical 127 

run, a Flexible Configuration Management (FCM) branch of this version of NEMO was 128 

created, and all biogeochemical models were implemented in parallel within this branch and 129 

run separately. 130 

Simulations were initialised at year 1890 from an extant physics-only spin-up (ocean and 131 

sea-ice), to minimise undesirable transient behaviour in ocean circulation.  In terms of ocean 132 

biogeochemistry, all model runs made use of a common dataset of three-dimensional fields 133 

for the initialisation of major tracers.  Nutrients (nitrogen, silicon and phosphorus) and 134 

dissolved oxygen in this dataset were drawn from the World Ocean Atlas 2009 (Garcia et al., 135 

2010a; Garcia et al., 2010b), while dissolved inorganic carbon (DIC) and alkalinity were 136 

drawn from the Global Ocean Data Analysis Project (GLODAP) (Key et al., 2004).  GLODAP 137 

does not include a DIC field that is directly valid for 1890, so a temporally-interpolated field 138 

was produced based on GLODAP's "pre-industrial" (i.e. ~1800) and "1990s" fields of DIC.  As 139 

there is currently no comprehensive spatial dataset of the micronutrient iron, participating 140 

models were permitted to make use of different initial distributions of iron (typically those 141 

routinely used by the models in other settings).  All other biogeochemical fields (e.g. 142 

plankton, particulate or dissolved organic material) were initialised to arbitrary small initial 143 

conditions. 144 

After initialisation at 1890, the models were run for 60 years (1890-1949 inclusive) under 145 

the so-called “normal year” of version 2 forcing for common ocean-ice reference 146 

experiments (CORE2-NYF; Large and Yeager, 2009). Subsequently, the models were run 147 

under transient, interannual forcing from the same dataset (CORE2-IAF) for a further 58 148 

years (1950-2007 inclusive). CORE2 provides observationally derived geographical fields of 149 

downwelling radiation (separate long- and short-wave), precipitation (separate rain and 150 

snow), and surface atmospheric properties (temperature, specific humidity and winds), and 151 

is used in conjunction with bulk formulae to calculate net heat, freshwater and momentum 152 

exchange between the atmosphere and the ocean. 153 

For all models, some degree of tuning occurred prior to this study, albeit in physical 154 

frameworks different (to varying degrees) to that used here. Tuning during this study was 155 

limited or absent between models, but some models, such as HadOCC and MEDUSA, may 156 

have benefitted from being previously tuned within the NEMO framework (although in a 157 
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different version and grid configuration). 158 

Supplementary Figure S7 shows an intercomparison of the common NEMO physics with 159 

observations for several key physical fields.  In terms of SST, NEMO represents observed 160 

patterns well, although simulates a warmer Gulf Stream and noticeably cooler temperatures 161 

in the vicinity of the Labrador Sea.  In conjunction with fresher salinities in the North Atlantic 162 

(results not shown), these differences result in shallower depths of the mixed layer and 163 

pycnocline in this region.  By contrast, in the Southern Ocean both mixed layer depths and 164 

the modelled pycnocline are markedly deeper than in observations.  This latter regional bias 165 

has biogeochemical consequences across all of the models examined here (see later). 166 

2.2 Candidate model structures  167 

The models evaluated within this study vary significantly in biological complexity.  The key 168 

features of the participating models are summarized below: 169 

HadOCC (Palmer & Totterdell, 2001): the Hadley Centre Ocean Carbon Cycle model 170 

(HadOCC) model is a simple NPZD (Nutrient, Phytoplankton, Zooplankton, Detritus) 171 

representation that uses N nutrient as its base currency but with coupled flows of C, 172 

alkalinity and O2. The model was the ocean biogeochemistry component of the UK Met 173 

Office's HadCM3 climate model, and was used for the first ever fully coupled carbon-climate 174 

study (Cox et al., 2000).  175 

Diat-HadOCC (Halloran et al., 2010): is a development of the HadOCC model which includes 176 

two phytoplankton classes (diatoms and “other phytoplankton”) and representations of the 177 

Si and Fe cycles, as well as a dimethyl sulphide (DMS) sub-model. The model is the ocean 178 

biogeochemistry component of HadGEM2-ES (Collins et al., 2011), the UK Met Office's Earth 179 

System model used to run simulations for CMIP5 and the Intergovernmental Panel on 180 

Climate Change (IPCC) 5th Assessment Report (AR5). 181 

MEDUSA-2 (Yool et al., 2011; Yool et al., 2013): Model of Ecosystem Dynamics, nutrient 182 

Utilisation, Sequestration and Acidification (MEDUSA) is an “intermediate complexity” 183 

plankton ecosystem model designed to incorporate sufficient complexity to address key 184 

feedbacks between anthropogenically-driven changes (climate, acidification) and oceanic 185 

biogeochemistry. MEDUSA-2 resolves a size-structured ecosystem of small 186 

(nanophytoplankton and microzooplankton) and large (microphytoplankton and 187 

mesozooplankton) components that explicitly includes the biogeochemical cycles of N, Si 188 

and Fe nutrients as well as the cycles of C, alkalinity and O2. As such, MEDUSA-2 is broadly 189 

similar in structure to Diat-HadOCC, but includes several more recent parameterisations. 190 
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PlankTOM6 & PlankTOM10 (Le Quéré et al., 2005): PlankTOM is a Dynamic Green Ocean 191 

Model that represents lower-trophic level marine ecosystems based on Plankton Functional 192 

Types (PFTs). A hierarchy of PlankTOM models exists that vary in the number of PFTs 193 

resolved. Two members drawn from this stable were used in iMarNet.  PlankTOM6 includes 194 

six PFTs - diatoms, coccolithophores, mixed-phytoplankton, bacteria, protozooplankton and 195 

mesozooplankton - while PlankTOM10 includes an additional four PFTs - Nitrogen-fixers, 196 

Phaeocystis, picophytoplankton and macrozooplankton (Le Quéré et al. 2005; Buitenhuis et 197 

al., 2013). The models include the marine cycles of C, N, O2, P, Si, a simplified Fe cycle, and 198 

three types of detrital organic pools including their ballasting properties and estimates the 199 

air-sea fluxes of CO2, O2, DMS, and N2O. PlankTOM6 and PlankTOM10 were developed by an 200 

international community of ecologists and modellers to quantify the interactions between 201 

climate and marine biogeochemistry, particularly those mediated through CO2. They make 202 

use of extensive synthesis of data for the parameterisation of growth rates of PFTs (e.g. 203 

Buitenhuis et al., 2006; 2010) and for the model evaluation (Buitenhuis et al., 2013).  204 

ERSEM (Baretta et al., 1995; Blackford et al., 2004): European Regional Seas Ecosystem 205 

Model (ERSEM) is a generic lower-trophic level/ model designed to represent the 206 

biogeochemical cycling of C and nutrients as an emergent property of ecosystem 207 

interaction. The ecosystem is subdivided into three functional types: producers 208 

(phytoplankton), decomposers (bacteria) and consumers (zooplankton), and then further 209 

subdivided by trait (size, silica uptake) to create a foodweb. Physiological (ingestion, 210 

respiration, excretion and egestion) and population (growth, migration and mortality) 211 

processes are included in the descriptions of functional group dynamics. Four phytoplankton 212 

(picophytoplankton, nanophytoplankton, diatoms and non-siliceous macrophytoplankton), 213 

three zooplankton (microzooplankton, heterotrophic nanoflagellates and mesozooplankton) 214 

and one bacteria are represented, along with the cycling of C, N, P, Si and O2 through pelagic 215 

(Blackford et al., 2004) and benthic (Blackford, 1997) ecosystems. ERSEM is used for shelf 216 

seas water quality monitoring and climate impact assessment, has been coupled to fisheries 217 

models (e.g. Barange et al., 2014), and is run operationally by the UK Met Office (e.g. 218 

Siddorn et al., 2007).  219 

The intercomparison process required limited changes to model organisation and code, and 220 

models retained disparate parameterisations for several overlapping processes, including 221 

ocean carbonate chemistry and air-sea exchange (HadOCC, Diat-HadOCC – Dickson & Goyet 222 

1994, Nightingale et al., 2000; MEDUSA - Blackford et al., 2007; PlankTOM-6, PlankTOM-10 - 223 

Orr et al., 1999; ERSEM - Artoli et al., 2012). In the case of calcium carbonate (CaCO3) 224 

production, the models utilised a range of different parameterisations.  HadOCC and Diat-225 

HadOCC use a simple empirical relationship that ties CaCO3 production to primary 226 

production.  MEDUSA relates CaCO3 production to export production, with a PIC:POC ratio 227 

(particulate inorganic carbon:particulate organic carbon ratio) dependent on calcite 228 
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saturation state.  In PlankTOM-6 and PlankTOM-10, coccolithophore algae are explicitly 229 

modelled, with a fixed PIC:POC ratio.  ERSEM relates CaCO3 production to export production 230 

driven by nanophytoplankton losses, with a variable PIC:POC ratio dependent on 231 

temperature, nutrient limitation and calcite saturation state.  Meanwhile, CaCO3 dissolution 232 

was a simple exponential function of depth in the HadOCC models, with the other models 233 

modifying similar vertical dissolution with reference to the ambient saturation state of 234 

CaCO3. 235 

 236 

The representation of biogeochemical cycles and biota in each model are summarized in 237 

Tables 1 and 2 respectively. 238 

 239 

2.3 Model evaluation 240 

Assessment against observational datasets was made for a set of bulk ocean biogeochemical 241 

properties that were common across all models: pCO2, alkalinity, dissolved inorganic carbon 242 

(DIC), dissolved inorganic nitrogen (DIN), chlorophyll and primary production.. In all cases, 243 

model results were regridded to the same geographical grid (World Ocean Atlas) and guided 244 

by literature on appropriate skill metrics (e.g. Doney et al., 2009; Stow et al., 2009) model 245 

skill was assessed through statistical techniques such as global surface field standard 246 

deviation and spatial pattern correlation coefficients. In the biogeochemical regions of the 247 

North Atlantic, Equatorial Pacific and Southern Ocean, depth profiles of model outputs were 248 

also assessed against observations within the top 1000m of the water column. 249 

Observational fields used within the model intercomparison are comprised of World Ocean 250 

Atlas 2009 DIN (Garcia et al., 2010a), chlorophyll (O’Reilly et al., 1998) and pCO2 (Takahashi 251 

et al., 2009). Because of its biogeochemical importance, and the diversity in published 252 

estimates, observational primary production is an average of three empirical models: 253 

(Behrenfeld and Falkowski, 1997); (Carr et al., 2006) and (Westberry et al., 2008)- which are 254 

all estimates derived from satellite ocean colour and SST. The observational fields of 255 

chlorophyll and primary production used here represent averages over the 2000-2004 time 256 

period. This same period is used throughout the following analysis as a standard interval 257 

except in the case of DIC and alkalinity, which are analysed over the mean 1990-1999 period 258 

corresponding to the GLODAP  data product. 259 

These fields were selected for several reasons.  Firstly, they are ocean or biogeochemical 260 

bulk properties for which there are global-scale observations. Secondly, these fields broadly 261 
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represent foundational aspects of marine biogeochemical cycles.  For instance, nutrients 262 

play a critical role in regulating the distribution and occurrence of marine plankton, while 263 

phytoplankton photosynthesis represents the vast majority of the primary energy source to 264 

marine ecosystems.  Thirdly, the measurement of these fields is relatively well-defined with 265 

long-established standard methodologies.  Properties that are directly related to biological 266 

entities, for instance biomass abundances, can be less precisely defined, difficult to match 267 

up with modelled quantities, or even absent from some models examined here.  That said, 268 

the observational field of global scale primary production used here has a relatively high 269 

uncertainty because it is drawn from three methodologies which exhibit a large range (cf. 270 

Yool et al., 2013).  Finally the examined properties are those which, if modelled poorly, 271 

legitimately cast doubt over the wider utility of a biogeochemical model in an earth systems 272 

context.  Model results always depart from observations, but systematic disagreement with 273 

these basic observations is strongly suggestive of problems with process representation 274 

within a model. The model comparison focuses on the mean and seasonal cycle. It does not 275 

include evaluation of variability over interannual or longer timescales, in part because of 276 

limited data availability.   277 

3 Results 278 

3.1 Model skill assessment 279 

3.1.1 Surface fields 280 

Figures 1-3 (and Supplementary Figures S1-S3) show annual average fields from each of the 281 

models for a series of ocean properties, together with comparable observational fields. The 282 

figures also include a panel that shows the corresponding model-observation Taylor diagram 283 

(Taylor, 2001).  These illustrate both the correlation between (azimuthal position) and 284 

relative variability (radial axis) of model and observations, such that models more congruent 285 

with observations generally appear closer to the reference marker on the x-axis of the 286 

diagram. As Taylor diagrams do not account for mean field biases (Joliff et al., 2009) these 287 

are provided separately in figure legends. 288 

  289 

Figure 1 shows annual average surface pCO2 fields for both models and observations, with 290 

correlation coefficients ranging from r=0.01 to r=0.68 (Takahashi et al., 2009). In general, 291 

the simpler models (HadOCC, Diat-HadOCC and MEDUSA-2) better capture the global spatial 292 

pattern of pCO2 (r=0.54 to r=0.68), but they overestimate the standard deviation in global 293 

surface pCO2 by up to a factor of 2. This overestimation of the variance in global surface 294 

pCO2 is a result of high modelled pCO2 values in the equatorial Pacific and in particular the 295 
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Eastern equatorial Pacific. In contrast, the more complex models (PlankTOM6, PlankTOM10 296 

and ERSEM) perform considerably worse in terms of capturing global spatial patterns of 297 

surface ocean pCO2. In particular, all three models underestimate the observed high pCO2 298 

values along the equatorial Pacific ocean as well as the high coastal pCO2 values in that 299 

region, opposite to the bias found in simpler models. However, the PlankTOM models 300 

overall show comparable standard deviations in mean global surface pCO2 to that seen in 301 

observations. 302 

The negative pCO2 biases in the equatorial Pacific exhibited by the PlankTOM6, PlankTOM10 303 

and ERSEM models may be explained, at least in part, by the positive biases that these 304 

models show for surface alkalinity in this region (Figure S3).  The models with positive pCO2 305 

biases in the equatorial Pacific (HadOCC, Diat-HadOCC and MEDUSA-2), do not have 306 

negative surface alkalinity biases in this region but values are much closer to observations 307 

(Figure S3). The root of these alkalinity biases lies in variation in PIC production by the 308 

models in this region as discussed in greater detail below. 309 

Figure 2 illustrates model performance for annual average surface dissolved inorganic 310 

nitrogen (DIN) concentrations.  Here, all models capture global patterns relatively well, with 311 

correlation coefficients >0.8, in part because of the initialisation from observations in 1890. 312 

The model with the highest spatial pattern correlation coefficient is ERSEM, although it 313 

slightly underestimates the global variability of DIN. The other models have lower spatial 314 

pattern correlation coefficients and generally overestimate the global variability of DIN. 315 

PlankTOM6 performs below other models, while PlankTOM10 has similar performance as 316 

the simpler models. In general, aside from ERSEM and PlankTOM10, most models show 317 

elevated Pacific DIN, with the simpler models, MEDUSA-2 in particular, exhibiting high 318 

equatorial anomalies. Finally, while ERSEM shows good agreement throughout most of the 319 

world ocean, both the North Atlantic and North Pacific show anomalously low annual 320 

average DIN concentrations. 321 

“Surface DIN concentrations are influenced by both the efficiency of primary production and 322 

the efficiency of remineralisation both of which differ between models. Although we don’t 323 

explore the differences in remineralisation, the models which show positive DIN biases in 324 

the equatorial Pacific (HadOCC, Diat-HadOCC and MEDUSA-2), are generally shown to also 325 

have positive integrated primary production biases in this region (Figure S1). To a lesser 326 

extent the reverse is true of the models with negative DIN biases in the equatorial Pacific 327 

(PlankTOM10 and ERSEM).”  328 

 329 

Figure 3 shows low correlation (r<0.5) for annual surface chlorophyll concentrations for all 330 
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models. The models with the highest correlation coefficients are PlankTOM10 (0.49) 331 

followed by MEDUSA-2 (0.36). All other models have correlation coefficients <0.2. 332 

Anomalously high chlorophyll values in the equatorial Pacific and, especially, the Southern 333 

Ocean significantly elevate the spatial variability of Diat-HadOCC above that of observations 334 

(and all other models). More generally, with the exception of PlankTOM10, all of the models 335 

show some degree of excess chlorophyll in the Southern Ocean, with Diat-HadOCC 336 

exhibiting very high concentrations in this relatively unproductive region.  337 

In addition to the ocean properties shown in Figures 1-3, complementary figures for 338 

alkalinity, DIC and primary production can be found in the supplementary material (Figures 339 

S1-S3). In each case, global annual average fields are shown together with the 340 

corresponding Taylor diagram. 341 

Table 3 shows the correlation coefficients and standard deviations normalised relative to 342 

observations of the models for all six of the ocean properties (five surface fields plus depth-343 

integrated primary production). These are additionally colour-coordinated according to the 344 

rank order of model performance, and the range of correlation coefficients over all of the 345 

models is shown for each field. As already suggested above, model performance varies both 346 

between fields and between models. All models perform consistently and relatively well for 347 

DIN and DIC in part because of the “memory” of initial distributions. Model performance 348 

varies more widely for pCO2 and primary production and varies most widely for chlorophyll, 349 

although it is consistently poor across all models.  350 

Figure 4 summarises the data in Table 3 by showing the distribution of performance 351 

rankings (both correlation coefficients and normalised standard deviations) across the 352 

selected fields for each model, i.e. the number of first, second, etc., rankings for each 353 

model. No model is shown to consistently outperform all other models across all metrics. 354 

Indeed all models perform best in at least one metric, and similarly all models perform 355 

worst in at least one metric. There is little discernable relationship between model 356 

complexity and model performance. Indeed Table 3 shows that for 4 out of 6 fields the best 357 

performing model in terms of correlation coefficients is a simpler model (i.e. HadOCC, Diat-358 

HadOCC or MEDUSA-2) and for 5 out of 6 fields the best performing model in terms of 359 

normalised standard deviations is a more complex model (i.e. PlankTOM6, PlankTOM10 or 360 

ERSEM).  361 

These findings in annual average model performance are found to be consistent when 362 

examined at monthly timescales (Figure 5). 363 

3.1.2 Depth profiles 364 
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While the majority of biological activity in the ocean is concentrated in its surface layers, 365 

biogeochemical fields in the deep ocean have a complex structure created through the 366 

interaction of ocean physics with biologically-mediated processes such as export and 367 

remineralisation. As such, model performance cannot be solely assessed from surface fields 368 

of ocean BGC properties. To examine this, Figures 6 and 7 show the annual average depth 369 

profiles of DIC and alkalinity for three important regions: the North Atlantic (Atlantic 0-370 

60°N), Southern Ocean (≥60°S) and Equatorial Pacific (Pacific Ocean 15°S-15°N).  371 

In Figure 6, all models are shown to capture the DIC profile in the Equatorial Pacific though 372 

HadOCC, Diat-HadOCC and MEDUSA-2 are somewhat closer to observations than ERSEM 373 

and the PlankTOM models. A similar situation is seen in the North Atlantic where the depth 374 

profiles of MEDUSA-2, HadOCC and Diat-HadOCC are closest to observations, although 375 

surface agreement is greater than that at depth. All models are shown to perform relatively 376 

poorly in the Southern Ocean, with much weaker gradients with depth than observations. 377 

HadOCC, Diat-HadOCC and ERSEM show gradients that are marginally closer to that 378 

observed, but all of the models consistently fail to reproduce the observed >100 mmol m-3 379 

surface-1000m increase. As Figure S7 shows, this common problem of vertical homogeneity 380 

between the models is driven by systematic biases in vertical mixing in this region, as well as 381 

known errors in ocean circulation (e.g. Yool et al., 2013).  382 

The annual average depth profiles of alkalinity are shown in Figure 7. In the North Atlantic, 383 

HadOCC and Diat-HadOCC are closer to observations while ERSEM and, particularly, 384 

MEDUSA-2 are further away from observations (but in opposite directions). Again, and for 385 

the same reasons as outlined above, no model performs well at capturing the depth profile 386 

observed in the Southern Ocean. In the Equatorial Pacific all of the models have similar 387 

alkalinity at depth but diverge from observations towards the surface. The near-surface 388 

depth profiles in HadOCC, Diat-HadOCC and MEDUSA-2 are closest to observations in that 389 

region. Alkalinity shows very little variability with depth in the PlankTOM6, PlankTOM10 and 390 

ERSEM models and is higher than observations in near-surface waters (>100 meq m-3). This 391 

excess alkalinity may explain the broadly lower pCO2 values visible in this region in Figure 1. 392 

The source of this bias in surface alkalinity is, at least in part, due to disparity in modelled 393 

CaCO3 production in this region. As Supplementary Figures S8-S10 show, PlankTOM6, 394 

PlankTOM10 and ERSEM export negligible particulate inorganic carbon (PIC; Figure S9) 395 

relative to particulate organic carbon (POC; Figure S8) in this region. This results in low rain 396 

ratios (Figure S10) and the divergence of DIC and alkalinity performance of these models in 397 

this region. The lack of PIC export in these models runs contrary to observations (e.g. Dunne 398 

et al., 2007), but reflects the current difficulty in modelling CaCO3 production – which 399 

HadOCC, Diat-HadOCC and MEDUSA-2 circumvent by simplistic empirical parameterisations. 400 

The depth profiles of DIN and O2 are given in the supplementary material (Figures S4-5).  401 
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 402 

3.2 Computational benchmarking 403 

Computational timing tests (CPU time) were carried out relative to the ocean component of 404 

the HadGEM3 (Hewitt et al., 2011) model (ORCA1.0L75), on standard configurations of 128 405 

and 256 processors on an IBM Power7 machine. As would be intuitively expected, the cost 406 

of candidate ocean biogeochemical models is found to be higher for models with more 407 

tracers regardless of the number of processors used. While there are deviations in both 408 

directions between the models, broadly there is a linear relationship between number of 409 

model tracers and compute cost (Figure S6) reflecting the significant cost of applying 410 

advection and mixing terms to each tracer.  411 

Using ERSEM (the computationally most expensive model) increases computational cost 412 

approximately 6-fold relative to HadOCC when 128 processors are used. This relative 413 

increase in computational cost is reduced to approximately 4.5-fold when 256 processors 414 

are used. PlankTOM10 has the greatest relative reduction (36.6%) in computational cost 415 

when run on 256 processors as opposed to 128, although this model would still increase the 416 

total cost of the ocean component by a factor of 5 relative to a physics-only ocean, 417 

compared to a factor of 1.5 for HadOCC (Table 4). 418 

 419 

4 Discussion 420 

Our model comparison suggests that for global annual average surface fields, global 421 

monthly average surface fields and annual average depth profiles in three oceanographic 422 

regions there is little evidence that increasing the complexity of OBGC models leads to 423 

improvements in the representation of large scale ocean patterns of bulk properties. In 424 

some cases, the comparison suggests that simpler OBGC are closer to observations than 425 

intermediate or complex models for the standard assessment metrics used here. 426 

The biologically simpler models HadOCC, Diat-HadOCC and MEDUSA-2 are shown to have 427 

generally higher global spatial pattern correlation coefficients of pCO2, DIC and alkalinity at 428 

both annual and monthly temporal resolution (Figures 1, 5 and Table 3). The more complex 429 

models PlankTOM6, PlankTOM10 and, in the case of DIC, ERSEM, have annual and monthly 430 

standard deviations that are generally closer to observations than the simplest two models 431 

(HadOCC and Diat-HadOCC). As such, we find no robust relationship between model 432 

complexity and model skill at capturing global scale distributions of surface pCO2, DIC and 433 

alkalinity. The biologically simpler models are shown to generally best capture the depth 434 
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profiles of DIC and alkalinity in the North Atlantic and Equatorial Pacific (Figures 6-7), 435 

possibly because their biological export production can more easily be tuned to maintain 436 

the observed vertical gradients.  437 

There are however ocean biogeochemical fields where models of greater biological 438 

complexity tend to equate to improved model skill.  The annual and monthly global 439 

correlation coefficients of the PlankTOM models are shown to be closest to observations for 440 

chlorophyll and primary production fields (Figures 3 and Table 4). These PlankTOM models 441 

do not consistently produce the annual chlorophyll and primary production field standard 442 

deviations closest to observations (Table 4), however at monthly resolution their field 443 

standard deviations are the most consistent across models (Figure 5). 444 

The comparison of depth profiles shows that despite all models being initialised from the 445 

same observational fields, there is quite a lot of divergence even at depths of less than 446 

1000m. In some cases, such as alkalinity in the Southern Ocean (Figure 7), all models have a 447 

similar systematic bias compared to observations. This is suggestive of the influence of 448 

errors within the physical ocean model. That is, the ocean biogeochemistry may be 449 

influenced to a greater extent by the physical ocean model and hence there is a common 450 

response across models. For other fields such as DIN in the Southern Ocean and Equatorial 451 

Pacific (Figure S5), models have both positive and negative biases compared to observations 452 

suggestive of a greater relative role of the OBGC model than the physical model.  453 

It is clear that more biologically complex models are required to more completely assess the 454 

impacts of environmental change on marine ecosystems. By representing processes that are 455 

not present in simpler models, the more complex models are also able to represent 456 

additional factors such as climatically-active gases (e.g. DMS, N2O). Assessment of such 457 

representations however fell outside the scope of this paper. Models of intermediate 458 

complexity (e.g. Diat-HadOCC and MEDUSA-2) are shown in this inter-comparison to 459 

reproduce large scale ocean biogeochemistry features relatively well, yet minimise 460 

computational cost and have sufficient biological complexity to allow important ESM 461 

questions to be explored, including those that require an explicit iron cycle (e.g. ocean iron 462 

fertilisation).  463 

It should be noted that models implemented within the NEMO physical ocean framework 464 

prior to this inter-comparison project had an advantage over those new to this framework. 465 

This is a somewhat unavoidable consequence of what is also one of this inter-comparison 466 

study’s main strengths, namely that the models were adapted to use the same ocean 467 

physics framework. Specifically, the HadOCC and MEDUSA-2 model developers were familiar 468 

with NEMO v3.2 and had some previous opportunity to tune models. Linked to this is the 469 
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question of how dependent the results were on parameter values. Although model 470 

developers were afforded a limited opportunity to tune parameters, given further time to 471 

tune one would expect improved performance, especially for those models that had not 472 

been previously implemented within NEMO v3.2. 473 

The rationale for the chosen fields of intercomparison was, as stated previously, that they 474 

are common across all models and are key facets of global marine biogeochemistry. It could 475 

however be argued that these bulk fields were insufficient to adequately assess all models 476 

and in particular the most complex models. Further analysis, beyond the scope of this paper 477 

will undertake as thorough an analysis of the biological components as each model will 478 

support.  479 

Finally although computational cost is discussed as a pragmatic driver of OBGC model 480 

selection, it should be noted that computer power is continuously increasing and the 481 

intercomparison results presented here may differ for an alternative spatial resolution 482 

ocean grid requiring greater computational resources. In addition, ongoing efforts to 483 

transport passive ocean tracers on degraded spatial scales (e.g. Levy et al., 2012) have the 484 

potential to result in computational savings that would realistically permit the 485 

implementation of higher complexity OBGC models within ESMs. 486 

5 Conclusions 487 

The 6 ocean biogeochemical models analysed within this inter-comparison cover a large 488 

range of ecosystem complexity (from 7 tracers in HadOCC to 57 in ERSEM), and therefore 489 

result in a range of approximately 5 in computational costs (from increasing the cost of the 490 

physical ocean model by a factor of 2 to a factor of 10). Results suggest little evidence that 491 

higher biological complexity implies better model performance in reproducing observed 492 

global-scale bulk properties of ocean biogeochemistry. 493 

As no model is found to have the highest skill across all metrics and all are most or least 494 

skilful for at least one metric, our results suggest that it is in the interest of the international 495 

climate modelling community to maintain a diverse suite of ocean biogeochemical models.  496 

One priority for the next generation of Earth System Models (CMIP6) is to enhance 497 

model resolution in the hope that it will resolve some of the existing biases in climate 498 

models. This puts pressure on the computing time available for representing biological 499 

complexity. Our results suggest that intermediate complexity models (such as MEDUSA-2 500 

and Diat-HadOCC) offer a good compromise between the representation of biological 501 

complexity (through their inclusion of an iron cycle) and computer time, given their 502 

relatively good performance in reproducing bulk properties. However, intermediate 503 

complexity models are limited in the detail to which they can address climate feedbacks and 504 
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it may be that more complex models can in future provide additional insight, based on 505 

ongoing measurements and data syntheses.  506 

The quest for increasing resolution in ESMs is unlikely to end soon, as the resolution needed 507 

to resolve eddies in the ocean (1/8 degree or less) needs to be achieved before 508 

important improvements in representing climate dynamics are achieved. Most ESMs being 509 

developed for the next CMIP phase will have a grid of 1/2 to 1/4 degree. Even with 510 

increasing computational power and schemes for accelerating transport of passive tracers 511 

(Levy et al., 2012) available, other priorities (e.g. ensemble simulations for risk assessments) 512 

may still make it difficult to prioritise the representation of biogeochemical complexity in 513 

ESMs. In order to achieve scientific progress on important questions of the 514 

interactions between marine biogeochemistry and climate, it is thus important that 515 

lower resolution ESMs that prioritise biogeochemical complexity are maintained and used in 516 

CMIP exercises in parallel to higher resolution models.  517 
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Table 1. Biogeochemical cycles represented in each candidate model. 723 

 724 

 HadOCC Diat-HadOCC MEDUSA-2 PlankTOM6 PlankTOM10 ERSEM 

N ✓ ✓ ✓ ✓ ✓ ✓ 

P     ✓ ✓ 

Si  ✓ ✓ ✓ ✓ ✓ 

Fe  ✓ ✓ ✓ ✓ ✓ 

C ✓ ✓ ✓ ✓ ✓ ✓ 

Alkalinity ✓ ✓ ✓ ✓ ✓ ✓ 

O2 ✓ ✓ ✓ ✓ ✓ ✓ 

 725 

726 



24 
 

Table 2. Composition of the marine ecosystems represented in each candidate model, along 727 

with the total number of biogeochemical tracers (including those detailed in Table 1). 728 

 729 

 

 

 

HadOCC Diat-HadOCC MEDUSA-

2 

PlankTOM6 PlankTOM10 ERSEM 

Generic Phytoplankton ✓ ✓  ✓ ✓  

Diatoms  ✓ ✓ ✓ ✓ ✓ 

Large Phytoplankton      ✓ 

Picophytoplankton   ✓  ✓ ✓ 

Coccolithophores    ✓ ✓ ✓ 

N2 fixers     ✓  

Flagellates      ✓ 

Phaeocystis     ✓  

Generic Zooplankton ✓ ✓     

Microzooplankton   ✓ ✓ ✓ ✓ 

Mesozooplankton   ✓ ✓ ✓ ✓ 

Macrozooplankton     ✓  

Heterotrophic 

Nanoflagellates 
     ✓ 

Picoheterotrophs     ✓ ✓ ✓ 

Tracers 7 13 15 25 39 57 

  730 

  731 
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Table 3.  Model-observation correlation coefficients (R) and standard deviations normalised 732 

by the standard deviation of observations (σ) for all examined annual surface fields and 733 

depth integrated primary productivity. Colours indicate model ranking and are organised 734 

through the worst performing model in red to the best performing model in dark blue 735 

(through orange, yellow, green and light and dark blue). 736 

Model pCO2  DIN Chl.  Alkalinity DIC Primary 
Production 

R σ R σ R σ R σ R σ R σ 

HadOCC 0.68 1.92 0.88 1.20 0.30 0.68 0.91 1.19 0.93 1.18 0.19 0.92 

Diat-
HadOCC 

0.54 1.77 0.90 1.20 0.15 2.65 0.91 1.19 0.93 1.13 0.13 1.51 

MEDUSA-2 0.64 1.56 0.85 1.21 0.36 0.40 0.88 1.14 0.92 1.17 0.64 1.10 

PlankTOM6 0.34 1.03 0.79 1.20 0.32 1.08 0.70 0.88 0.75 0.96 0.47 0.61 

PlankTOM10 0.29 0.94 0.88 1.19 0.50 0.43 0.58 1.16 0.65 1.08 0.53 0.74 

ERSEM 0.01 2.04 0.94 0.95 0.04 0.91 0.84 1.18 0.86 1.07 -0.08 1.12 

Range 0.64 1.09 0.15 0.26 0.46 2.64 0.33 0.31 0.28 0.23 0.72 0.90 

 737 

738 
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Table 4. Computational cost of each candidate model when coupled to the ocean 739 

component of HadGEM3, relative to a physics-only simulation with the same ocean model 740 

(ORCA1.0L75). A cost of 2.0 indicates that adding the biogeochemistry model doubles total 741 

simulation cost. Timings are shown for simulations carried-out on 128 and 256 processors of 742 

an IBM Power7 machine. 743 

 744 

 

Model 

Cost 

(128 processors) 

Cost 

(256 processors) 

HadOCC 1.75 1.48 

Diat-HadOCC 2.36 1.88 

MEDUSA-2 2.73 2.10 

PlankTOM6 5.11 3.52 

PlankTOM10 7.74 4.90 

ERSEM 10.36 6.87 

 745 

 746 

 747 

 748 

 749 

 750 

 751 

 752 

 753 

 754 

 755 

 756 

 757 

 758 

 759 

 760 

 761 
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 762 

Figure 1.  Observational (Takahashi et al., 2009; top left) and modelled annual average 763 

surface ocean pCO2 (µatm) for year 2000. Mean field values: observations 357.7; HadOCC 764 

368.8; Diat-HadOCC 369.2; MEDUSA 368.5; PlankTOM6 349.8; PlankTOM10 349.5; ERSEM 765 

343.0. 766 

 767 
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 768 

Figure 2.  Observational (World Ocean Atlas, 2009; top left) and modelled annual average 769 

surface ocean Dissolved Inorganic Nitrogen (mmol m-3) for the period 2000-2004. Mean field 770 

values: observations 5.24; HadOCC 7.88; Diat-HadOCC 6.33; MEDUSA 10.18; PlankTOM6 771 

9.45; PlankTOM10 7.25; ERSEM 4.58. 772 

 773 
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 774 

Figure 3.  Observational (SeaWiFS; top left) and modelled annual average surface ocean 775 

chlorophyll (mg m-3) for the period 2000-2004. To avoid biasing the plots, observational data 776 

and model output are only shown for regions in which all months were represented at least 777 

once across all of the sampled years. Mean field values: observations 0.215; HadOCC 0.347; 778 

Diat-HadOCC 1.170; MEDUSA 0.346; PlankTOM6 0.312; PlankTOM10 0.160; ERSEM 0.501. 779 

 780 
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 781 

Figure 4.  Frequency distributions of best- to worst-performances for each model, in terms 782 

of correlation coefficients and normalised standard deviations of annual surface fields and 783 

depth integrated primary productivity.  Colours follow those of Table 1.  784 
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 785 

Figure 5. Monthly Taylor plots for pCO2, Dissolved Inorganic Nitrogen (DIN), chlorophyll and 786 

primary production for all models relative to observations. Annual averages are shown in 787 

black. Note that negative correlation coefficients are not shown in the Taylor plot. 788 
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 789 

Figure 6.  Observed (black; GLODAP) and modelled profiles of Dissolved Inorganic Carbon 790 

(mmol C m-3) in the North Atlantic (0°N to 60°N), Southern Ocean (90°S to 60°S) and 791 

Equatorial Pacific (15°S to 15°N). Vertical scaling is logarithmic (log10). 792 
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 793 

Figure 7.  Observed (black; GLODAP) and modelled profiles of alkalinity (meq m-3) in the 794 

North Atlantic (0°N to 60°N), Southern Ocean (90°S to 60°S) and Equatorial Pacific (15°S to 795 

15°N). Vertical scaling is logarithmic (log10). 796 


