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Abstract 13 

Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions.  14 

Potential changes in fire activity under future climate and land use scenarios thus have 15 

important consequences for human and natural systems. Anticipating these consequences 16 

relies first on a realistic model of fire activity (e.g. fire incidence and inter-annual variability) 17 

and second on a model accounting for fire impacts (e.g. mortality and emissions). Key 18 

opportunities remain to develop the capabilities of fire activity models, which include 19 

quantifying the influence of poorly understood fire drivers, modeling the occurrence of 20 

large, multi-day fires - which have major impacts – and evaluating the fire driving 21 

assumptions and parameterization with observation data. Here, we describe the HESFIRE 22 

model, which integrates the influence of weather, vegetation characteristics, and human 23 

activities on fires in a standalone framework, with a particular emphasis on keeping model 24 

assumptions consistent with fire ecology, such as allowing fires to spread over consecutive 25 

days. A subset of the model parameters was calibrated through an optimization procedure 26 

using observation data to enhance our understanding of regional drivers of fire activity and 27 

improve the performance of the model on a global scale. Modeled fire activity showed 28 



 2 

reasonable agreement with observations of burned area, fire seasonality and inter-annual 1 

variability in many regions, including for spatial and temporal domains not included in the 2 

optimization procedure. Significant discrepancies are investigated, most notably regarding 3 

fires in boreal regions, in xeric ecosystems, and fire size distribution. We highlight the 4 

capabilities of HESFIRE and its optimization procedure to analyze the sensitivity of fire 5 

activity, and to provide fire projections in the coupled Human-Earth System at regional and 6 

global scale. These capabilities and their detailed evaluation also provide a solid foundation 7 

for integration within a vegetation model to represent fire impacts on vegetation dynamics 8 

and emissions.  9 

 10 
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1. Introduction 14 

[1] The human population has more than doubled in the past 50 years, expanding the scale and 15 

diversity of changes in the Earth system from anthropogenic activity. The build-up of greenhouse 16 

gases in the atmosphere, as well as the degradation and conversion of natural lands, have major 17 

consequences for future climate, natural ecosystems, and human societies (Parry, 2007; Stocker et al., 18 

2013). The interactions between human and natural systems are complex, yet observational data, 19 

field experiments, and various types of models continue to elucidate key linkages among climate 20 

variability, ecosystem function, and anthropogenic activities. This knowledge is essential to anticipate 21 

potential changes under future conditions and to design adaptation or mitigation strategies that 22 

promote the sustainability of the coupled Human-Earth system.  23 

[2] One of these interactive processes linking human activities and natural ecosystems is fire 24 

(Bowman et al., 2009). Humans exert considerable influence over global fire activity (Le Page et al., 25 

2010a); fire-driven deforestation accounts for an estimated 20% of the increase in atmospheric CO2 26 
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from human activities since preindustrial times (Bowman et al., 2011; van der Werf et al., 2010). Fire 1 

activity depends on a range of drivers covering three major components of the Human-Earth 2 

System: the atmosphere (e.g. weather conditions), the terrestrial biosphere (e.g. fuel loads) and 3 

anthropogenic activities (e.g. land-use fires and fire suppression). The interaction among these 4 

drivers determines global fire activity, as illustrated in 1997-1998 when a strong El Niño led to 5 

extreme fire events around the world (Le Page et al., 2008), including unprecedented fires in 6 

peatlands and forests of Indonesia where human-caused fires emitted an estimated 13 to 40% of the 7 

world’s annual fossil fuel emissions (Page et al., 2002).  8 

[3] Future fire activity and impacts thus depends on the synergistic interactions between these 9 

drivers, and on fire-mediated feedbacks in the Earth system. In boreal regions, recent increases in 10 

fire activity are consistent with warming and drying trends that favor fire occurrence (Gillett et al., 11 

2004; Goetz et al., 2005). Projected increases in fire activity from climate change in other ecosystems 12 

range from a moderate decrease to a 5-fold increase depending on characteristics of the climate 13 

projections and modeling frameworks (e.g. Flannigan et al., 2009; Liu et al., 2010; Soares-Filho et al., 14 

2012). Studies that consider both climatic and anthropogenic drivers highlight the sensitivity of 15 

future fire activity to societal developments, including fire suppression and fire-driven deforestation 16 

of natural ecosystems for agricultural expansion (Cardoso et al., 2003; Keeley and Fotheringham, 17 

2003; Kloster et al., 2012; Le Page et al., 2010b). In return, altered fire activity may amplify or 18 

moderate climate change via global greenhouse gas emissions and local albedo changes (Liu et al., 19 

2013; Randerson et al., 2006). Net changes in carbon emissions from disturbances, including fires, 20 

constitute a major uncertainty for climate change adaptation and mitigation assessments: any 21 

unforeseen increase in greenhouse gas emissions from fire would require an adaptive mitigation 22 

effort to achieve a predefined climate target (Le Page et al., 2013; Running, 2008). 23 
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[4] Modeling changes in fire activity under future climate, policy, and land use scenarios requires 1 

a framework with a broad range of variables (Pechony and Shindell, 2009) and a good understanding 2 

of the influence of these variables for model parameterization. A range of global fire models have 3 

been developed in recent decades, each with a different focus (e.g. Arora and Boer, 2005; Li et al., 4 

2013; Pfeiffer et al., 2013; Prentice et al., 2011; Thonicke et al., 2001, 2010). Among these examples, 5 

SPITFIRE (Thonicke et al., 2010) is a process-based fire model coupled to a vegetation model 6 

explicitly representing many physical properties of fire behavior providing great capabilities 7 

regarding fire spread, fire intensity and fire impacts (damage, mortality, emissions). The model 8 

developed by Li et al. (2013) has a particular emphasis on depicting anthropogenic ignitions, with 9 

good performances regarding global patterns of burned area.  10 

[5] One key prospect to build upon existing work, as mentioned by Thonicke et al. (2010), is to 11 

develop the capability for modeling fire spread over consecutive days. This capability has been 12 

reported in one global fire model focusing on pre-industrial era fires (Pfeiffer et al., 2013). In many 13 

ecosystems, multi-day fires are a major driver of the overall fire activity. In boreal regions, dry-spells 14 

and heat-waves in days and weeks following ignition enable the growth of large fires (Abatzoglou 15 

and Kolden, 2011), and although those burning over 200ha represent a minor fraction of all fires, 16 

they typically account for 90+% of the total area burned (Stocks et al., 2002). In tropical forests, 17 

large-scale climate anomalies allow individual fires to over the course of several weeks, including 18 

areas further away from the forest edge where ignition typically occurs (Morton et al., 2013). Similar 19 

findings have been reported for temperate regions, including in Mediterranean ecosystems (Pereira 20 

et al., 2005; Westerling et al., 2004). Modeling fire-climate interactions therefore requires careful 21 

attention to the duration of fire weather events.  22 
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[6] Another opportunity for fire modeling research is model parameterization and their 1 

evaluation. Many early models had to extrapolate findings from local studies or to simplify key 2 

drivers of fire activity when information of some components was unavailable (e.g. ignitions 3 

independent of anthropogenic activities). Recently, model calibration has been applied to one 4 

(Thonicke et al., 2010) or a few (Li et al., 2013) parameters. Expanding this approach to additional 5 

parameters in a model with realistic assumptions on key aspects of fire ecology could yield relevant 6 

insights on fire drivers. Subsequent model evaluation is essential to assess our confidence in fire 7 

projections, especially regarding fire activity - which global spatio-temporal patterns are relatively 8 

well characterized by observation data (Mouillot et al., 2014) – because depicting patterns of fire 9 

activity and their sensitivity to fire drivers is a pre-requisite to project realistic fire impacts. 10 

Evaluating fire models is challenging when they are embedded within vegetation models however, 11 

because vegetation distribution strongly affects fire dynamics (Scott and Burgan, 2005), and if 12 

inaccurate (e.g. figure 7 in Sitch et al., 2003, figure 2 in Cramer et al., 2001), may lead to unrealistic 13 

fire projections for reasons unrelated to the fire parameterization. 14 

[7] This paper describes the development of the HESFIRE model (Human-Earth System 15 

FIRE), aiming to improve our understanding of current fire activity and our capacity to anticipate its 16 

evolution with future environmental and societal changes. HESFIRE is first developed as a 17 

standalone model, i.e. not integrated within a dynamic vegetation model. The major emphasis of this 18 

research is to outline the model structure and apply an optimization procedure to explore some of 19 

the research opportunities mentioned above. Our analysis has three main objectives: 1) explicit 20 

representation of fire ignition, spread, and termination, with realistic assumptions regarding fire 21 

ecology (e.g. multi-day fires); 2) consideration of atmospheric, terrestrial, and anthropogenic drivers 22 

in order to represent synergistic effects among changes in climate, vegetation, and human activity—23 

key steps towards the implementation of the fire model within Human- and Earth-system models; 24 
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and 3) model optimization and evaluation to improve our understanding of constraints on global fire 1 

activity and to quantify uncertainties of future fire activity projections.  2 

2. Methods 3 

2.1. Model overview 4 

[8] The structure of HESFIRE was designed to satisfy objectives 1 & 2 (realistic assumptions 5 

and ease of integration to vegetation and integrated assessment models), and some of its parameters 6 

were optimized to estimate the quantitative role of poorly understood drivers and to maximize the 7 

agreement between modeled and observed fire regimes (objective 3). The model focuses on fires in 8 

natural ecosystems: deforestation and agricultural fires are dependent on very different dynamics 9 

(controlled spread, pile burning) and thus only considered as a source of ignition for escaped fires.  10 

[9] The model is organized in three parts, with specific drivers for fire ignition, spread, and 11 

termination (Figure 1): 12 

- Fire ignitions. Natural ignitions are a function of cloud-to-ground lightning strikes and a 13 

probability of ignition per strike. Human ignitions reflect agricultural and ecosystem 14 

management as a function of land use density and national Gross Domestic Product (GDP). 15 

- Fire spread. Fire spread rate is a function of weather conditions (relative humidity, 16 

temperature, wind speed), soil moisture, and fuel structure categories (forest, shrub, grass). 17 

- Fire termination. Four factors control the termination of fires: weather conditions, fuel 18 

availability, landscape fragmentation, and fire suppression efforts (a function of land use, 19 

GDP and fire suppressibility). 20 
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[10] To account for the diurnal variability in fire spread and termination (see introduction), every 1 

fire is tracked individually with a 12-hour timestep. The analyses presented in this paper were 2 

conducted with model runs at a resolution of 1-degree. 3 

[11] HESFIRE was coded in Python 2.7 and is freely available at 4 

https://github.com/HESFIRE/model (Note: open source licensing in process at the time of 5 

writing). The optimization procedure is included in the code. 6 

2.2. Model description 7 

[12] The full list of parameters is described in Table 1. The following sections detail the fire 8 

ignition, spread and termination modules. 9 

2.2.1. Fire ignitions 10 

[13] Fires may occur due to natural ignitions (NATign) and human ignitions (LUign): 11 

!!"#$% = !!"#!"# + !!"!"# Eq.  1 

 12 

To introduce some of the stochasticity associated with fires, Nfires represents the expected 13 

realization of a Bernoulli trial (n=1000), and the final number of ignitions is computed following 14 

the actual trial.  15 

2.2.1.1. Natural ignitions 16 

[14] Lightning strikes are the most frequent source of natural ignitions. Lightning ignitions are 17 

highly stochastic because of the localized occurrence of convective storms, variability in the 18 

frequency of cloud-to-ground lightning, and coincident rainfall which can terminate ignited fires 19 
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before substantial spread occurs (see review in Podur et al., 2003). In HESFIRE, natural ignitions 1 

are the product of cloud-to-ground lightning strikes, the probability of ignition from lightning, and 2 

the fractional cover of flammable vegetation in a given grid cell: 3 

!"#!"# = !!"!"#$!!"!×!!"!"#$!×!(1− !!"#$!) Eq.  2 

 4 

Where CGflashes is the number of cloud-to-ground lightning strikes, CGignp is the lightning ignition 5 

probability determined through the optimization procedure (see Sect. 2.3), and Fragn (fragmentation) 6 

the fraction of the grid-cell that cannot sustain a fire (non-natural land or not enough fuel, see later). 7 

2.2.1.2. Anthropogenic ignitions 8 

[15] Humans are the dominant source of fire ignition in most temperate and tropical ecosystems. 9 

Ignitions from human activities include fires for agriculture and ecosystem management, 10 

deforestation for agricultural expansion, accidental fires, and arson. Fire usage varies across 11 

countries, climate zones, and land use practices (Korontzi et al., 2006; Le Page et al., 2010a), and this 12 

diversity of human activity cannot be fully captured with current knowledge and data. However, 13 

wealth is an important driver of fire use in agricultural settings, since fire is typically the least costly 14 

tool to clear natural vegetation, control pests, or increase soil fertility (Laris, 2002; Thrupp et al., 15 

1997). Thus we represent anthropogenic ignitions as a function of land use intensity and national 16 

GDP, where higher fractional land use and lower GDP increase anthropogenic fire ignitions. Similar 17 

to the approach used in the SPITFIRE model (Thonicke et al., 2010), we assume that initial 18 

settlements bring more ignitions relative to additional ones:  19 
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!"#$%& = ! (1− !"#!)!"#!"# !× !"!"#×!!"!×!(1− !"!)!"!"#
!"

!
 Eq.  3 

 1 

where GDPn is the normalized Gross Domestic Product per capita (from 0$ to 60000$), GDPexp the 2 

associated shape parameter, LUign is the number of ignitions per km2 of land use, LU the land use 3 

area in the grid-cell considered, and LUexp the shape parameter controlling the decrease in the 4 

amount of additional ignitions with incremental land use. LUn is the normalized land use fraction of 5 

the grid-cell, from 0 to 0.1 only. Applying a wider normalization range systematically led to very high 6 

values of the optimized parameter LUexp, pointing to a rapid saturation of human ignitions with land 7 

use density. LUign and GDPexp were also determined through our optimization procedure. Eq.  3 8 

conveys the following fire driving mechanisms: 9 

- Human ignitions increase with human occupation of the landscape, but saturate once 10% of 10 

the landscape is occupied. 11 

- Fire use for land use management depends on the regional GDP, with maximum fire use in 12 

the poorest regions, and virtually no fire use at all for regions beyond 60000$/capita. Only 13 

one country (Qatar) has a GDP beyond this range in the data. In the future, more countries 14 

are expected to to have a GDP over 60000$/capita, and thus would not have any human 15 

ignitions (see discussion).  16 

2.2.2. Fire spread 17 

[16] The rate of fire spread is modeled for three broad vegetation types - forest, shrub, and grass 18 

- and varies as a function of relative humidity, soil moisture, temperature, wind speed, and fuel 19 
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structure. Maximum fire spread rates are constrained by observations (Scott and Burgan, 2005): 1 

0.28m/s in forests, 1.12m/s in shrubs, and 2.79m/s in grasses. The actual rate of fire spread Frate for 2 

each vegetation type is then computed: 3 

!!"#$ = !"#!"#$ !× ! 1− !"!
!"!"# × ! 1− !"!

!"!"# × ! 1− !!
!!"# ×!! !  Eq.  4 

 
with Xn as normalized driver, e.g.:   

If RH ≤ RHmin RHn = 0  

If RH ≥ RHmax RHn = 1 Eq.  5 

Else !"! =
!" − !"!"#

!"!"# − !"!"#
 

 

 

 

 4 

Where RHn is the normalized relative humidity, from RHmin=30% to RHmax=80% (adapted from Li 5 

et al., 2012). SWn and Tn are the normalized 0-10cm layer soil moisture (20-35%, used as a proxy for 6 

fuel moisture) and temperature (0°C  - 30°C), as determined by simple data analysis and parameter 7 

value trials (see Table 1 and Figure S1 in supplementary material). RHexp, Swexp and Texp are the 8 

optimized shape parameters controlling the fire-driving relationship. The influence of wind on fire 9 

spread rate, G(W), is computed following the method described in (Li et al., 2012), as a function of 10 

the length-to-breadth (LB) and head-to-back (HB) ratios of a typical elliptical burned area, both of  11 

which depend on wind speed (w).  12 

!" = !1+ 10!×!(1− !!!.!"×!) Eq.  6 

!" = !!" + !!" + (!"
! − 1)!.!

!" − (!"! − 1)!.! Eq.  7 

! ! = !2!× ! !"
(1+ 1/!") !×!0.0455 Eq.  8 
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Within a grid cell, fires are assumed to spread with equal probability to each of the three vegetation 1 

types. Their respective burned area therefore reflects their specific fire spread rates and fraction 2 

within the grid-cell. Given the large size of the model grid cells (1°×1°), fire spread to neighboring 3 

grid-cells is not considered. 4 

2.2.3. Termination 5 

[17] Individual, multi-day fires are modeled from ignition to termination. Fire termination may 6 

occur in 4 ways: weather conditions are no longer favorable to fire spread, the fire is stopped by 7 

landscape fragmentation, by lack of fuel, or suppressed by fire-fighting activities. Each termination 8 

pathway contributes to the overall probability of termination; fire termination is then determined by 9 

the same Bernoulli trial stochastic approach applied to fire ignitions. Fire termination is computed 10 

every 12 hours and may occur before any spread (i.e., right after ignition). 11 

!!"#$%!!! = !!!"#$%!!× !
(1− !"#$!"#$%)!×! 1− !"#$!"#$% !×!!
(1− !!"##!"#$%)!×!!(1− !!"#$ℎ!"!"#$%)

! Eq.  9 

where Nfires is the number of active fires, Fueltermp, Fragtermp, Supptermp and Weathertermp, are the probability 12 

of termination due to each factor.  13 

[18] Weather-related termination occurs when fire spread rate decreases to zero, that is when RH 14 

is 80% or above, soil moisture is 35% or above, or when the temperature drops below freezing.  15 

[19] Fuel load and its impact on termination is a function of the cumulative precipitation prior to 16 

the current time step, as an indicator of water limitation on fuel build-up in arid areas: 17 

!"#$!"#$% = 1− !"#$%&!
!"#$!"# Eq.  10 
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where Precipn is the average precipitation from -15 to -3 months, normalized from 0.5 mm.day-1 1 

(Precipn=1) to 3mm.day-1 (Precipn=0). These were chosen based on the literature (Greenville et al., 2 

2009; Van der Werf et al., 2008; Van Wilgen et al., 2004), and on simple data analysis and parameter 3 

value trials (see Table 1 and Figure S1 in supplementary material). Fuelexp is the shape parameter, 4 

determined through the optimization procedure. Note that when integrated into an ecosystem 5 

model, fuel constraints can be directly inferred from vegetation, litter and soil carbon pools. 6 

[20] Landscape fragmentation is computed as the fraction of the grid-cell that cannot sustain 7 

natural vegetation fires (croplands, urban areas, water bodies, deserts). Burned areas also contribute 8 

to fragmentation, up to 8 months after the fire, thus avoiding repeated burns within the same fire 9 

season, but allowing fuel build-up for the following fire season if enough precipitation occurs (e.g. in 10 

sub-Saharan Africa). 11 

!"#$!"#$% = !"!"!
!"#$!"# Eq.  11 

where Fragn is the fraction of the grid-cell that cannot sustain a fire, normalized from 0% (Fragn=0) 12 

to 100% (Fragn=1). Fragexp is the shape parameter, determined through the optimization procedure.  13 

[21] Fire suppression is modeled as a function of land use (human presence), GDP, and fire 14 

suppressibility. This approach assumes that 1) fire suppression activities are limited in regions with 15 

low GDP, and in remote areas with little land use regardless of GDP (e.g. boreal fires in Canada and 16 

Alaska, bush fires in northern Australia); and 2) the more fire prone the conditions (weather, fuel), 17 

the less effective fire suppression efforts are. These assumptions are embodied in the following 18 

equation: 19 
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!"##!"#$% = (1− (1− !"!
!"#"$!"#)!×!(1− !"#!

!"#!"#))!×!(1− !!"##$%!!&'&(&)*) Eq.  12 

where LUn is the fraction of the grid-cell with land use, normalized from 0 (LUn=0) to 0.1 (LUn=1), 1 

LUSUPexp a shape parameter controlling the increase in suppression effort with land use density, 2 

GDPn is the normalized GDP (from 0 to 60000$/capita), GDPexp the shape parameter, and Fsuppressibility 3 

a proxy for the influence of weather and fuel on easiness of suppression. LUSUPexp and GDPexp are 4 

determined through the optimization procedure. Note that GDPexp has the same value as in Eq. 3 5 

for human ignitions. GDP has a negative relationship on fires through both ignitions and 6 

suppression, leading to an under-constrained optimization if maintaining 2 separate parameters. 7 

Fsuppressibility is dependent on weather conditions and fuel, assuming lower suppressibility with windier, 8 

drier, hotter conditions and with higher fuel load: 9 

!!"##$%!!&'&(&)* = ! 1− !"!
!"!"# × ! 1− !"!

!"!"#  

× ! 1− !!
!!"# ×!! ! !×!!"#$%&!

!"#$!"# ! 
Eq.  13 
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2.3. Model optimization  11 

[22] The 9 optimized parameters (Table 1) are classified in 2 categories:  12 

a. Non-shape parameters (2 out of 9) account for quantitative impacts of fire drivers: 13 

the default number of human ignitions per land use area (LUign), and the probability 14 

that lightning strikes on vegetated areas ignite a fire (CGignp).  15 
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b. Shape parameters (7 out of 9) control the shape of the relationship between a given 1 

driver and fire. For example, relative humidity is assumed to limit fire spread 2 

between 30% and 80%, but the linear or non-linear relationship with relative 3 

humidity between 30% and 80% and fire spread is unclear. To optimize this type of 4 

parameter, the variable was first normalized between 0 (RHmin=30%) and 1 5 

(RHmax=80%). Then the actual impact of RH on fire spread rates was computed 6 

with a shape parameter, RHexp (Eq. 4). 7 

[23] These shape parameters can convey a wide range of potential driving relationships (Figure 8 

2). The exponential function was selected to balance gains in process understanding and costs 9 

associated with computational efforts. We assumed that fires respond monotonically to all optimized 10 

drivers, but acknowledge that more complex fire driving relationships cannot be accounted for here. 11 

Exploring such aspects would require 2 or more parameters per driver, which would lead to 12 

computational speed and convergence problems during optimization. The objective was to infer 13 

general conclusions on otherwise little understood fire drivers, for which single-parameter functions 14 

were well adapted. 15 

[24] We used a Markov Chain Monte Carlo approach based on the Metropolis Algorithm 16 

(Metropolis et al., 1953) to obtain best-fit parameter values. The algorithm generates trial sets of 17 

parameters pseudo-randomly, and compares model outputs with observation data. Each trial set is 18 

either accepted or rejected, and the history of acceptance and rejection guides the generation of 19 

subsequent trial sets. Acceptance occurs if a trial set leads to a better fit than the current 20 

parameterization. To limit the risk of convergence to local optimums, acceptance may also occur if 21 

the trial set does not have a better fit, with decreasing likelihood as the difference with the best fit 22 

increases. Upon acceptance (rejection), the range of possible parameter values is increased 23 
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(decreased) before the next trial set is generated. The algorithm typically explored hundreds to over a 1 

thousand sets of trial parameter values before converging to a best fit (Figure 3).  2 

[25] The optimization metric was defined to minimize classification error across 7 classes of 3 

annual burned fraction (interval boundaries: 0, 1, 5, 10, 20, 35, 50+% of the grid-cell), and to 4 

maximize the correlation with observed inter-annual variability. Within each class, grid-cells are 5 

attributed continuous values based on linear interpolation: a grid-cell with 3% burned fraction is 6 

given the value of 2.5, being in the middle of the 2nd interval boundaries. This classification approach 7 

aims at capturing important changes that would have little weight on the optimization if using direct 8 

burned fraction value. The difference between 3% and 4% in fire-sensitive tropical forests is 9 

probably more relevant to capture than between 33 and 34% in fire-adapted grasslands of northern 10 

Australia. 11 

!"#!"#$% =!           Eq.  14 12 

!"#!"#$%% − !"#!"#$%%
!!

!"#$%&''!! + !− !"#!"##!"$% !"#,!"#!
!"#$%&''!!
! ! 

where MODfclass and OBSclass are the modeled and observed fire classification, and IAVcorrecoef the 13 

correlation coefficients for both time series, for each grid-cell.  14 

[26] The optimization was performed using modeled and observed burned area over 5-years 15 

(2002-2007). Fewer than 2% of all land grid-cells were used for the optimization step; these were 16 

selected manually to represent the broad spectrum of fire regimes and the range of environmental 17 

conditions around the world (e.g. biomes, land use density, fuel gradient in semi-arid regions, GDP, 18 

see Figure S2). No grid-cells were selected from South America, in order to test the model’s ability 19 

to reproduce fire patterns under combinations of drivers it might not have encountered during 20 
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optimization. To evaluate the robustness of the algorithm convergence, we performed 20 1 

optimization runs, each using different grid-cells and years. The algorithm was a very valuable tool 2 

applied repeatedly throughout model development to support its design. In particular, we used it to 3 

test the relevancy of additional fire driving mechanisms by quantifying the gain in the optimization 4 

index, to progressively adapt non-optimized parameters (e.g. input normalization range), and to 5 

compare the performance with different data sources (e.g. alternative land cover datasets).  6 

2.3.1. Model evaluation 7 

[27] We evaluated HESFIRE using satellite-derived estimates of 1) burned area and aggregate 8 

characteristics of regional fire activity over a 13-years timespan (fire incidence, seasonality, inter-9 

annual variability); and 2) the regional distribution of fire size for the year 2005. 10 

[28] Finally, we performed a sensitivity analysis to evaluate the influence of each model parameter 11 

on the averaged annual burned area within the model. For each parameter, the model was run twice, 12 

with the parameter changed to +50% and -50% of its original value while everything else was kept 13 

the same. For each grid-cell, we then extracted the parameter that generated the largest change in 14 

burned area. This approach has been applied in numerous modeling studies (e.g. Potter et al., 2001; 15 

White et al., 2000; Zaehle and Friend, 2010; see Saltelli et al., 2000 for alternatives methods). Results of 16 

the sensitivity analysis were grouped into four classes to map the spatial distribution of parameter 17 

sensitivity: 1) Climate (lightning strike, RH, soil moisture and temperature parameters); 2) Fuel 18 

(precipitation-based proxy); 3) Anthropogenic (ignitions and suppression parameters); 4) 19 

Fragmentation (landscape fragmentation parameter).  20 

2.4. Data 21 

2.4.1. Weather 22 
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[29] We combined two data sources to estimate the spatial and temporal variability in natural 1 

ignitions from lightning. The timing and location of cloud-to-ground lightning strikes is based on 2 

convective precipitation (Allen and Pickering, 2002) using sub-daily convective precipitation data 3 

from NCEP (see below). We then corrected biases in the spatial distribution of lightning strikes 4 

identified by the authors of this method with the observed LIS/OTD climatology (Christian et al., 5 

2003), converted to cloud-to-ground lightning strikes following (Prentice and Mackerras, 1977). 6 

[30] Sub-daily relative humidity, soil moisture, temperature, wind speed and convective 7 

precipitation data were obtained from the NCEP reanalysis-II project (Kanamitsu et al., 2002). For 8 

fuel limitation, we used monthly precipitation data from the Global Precipitation Climatology 9 

Project (GPCP, Adler et al., 2003). All data were interpolated linearly from their original resolution 10 

(2.5-degree for NCEP) to the model 1-degree resolution, and averaged from 6-hourly to 12-hourly.   11 

2.4.2. Land cover 12 

[31] We used the GlobCover version 2.3 land cover map (Bontemps et al., 2011) to estimate the 13 

distribution of natural ecosystems and human land uses at 1-degree resolution. GlobCover data were 14 

re-gridded from the original 300m resolution to 1-degree and reclassified from 22 land cover classes 15 

to the 5 classes used in the model (forests, shrublands, grasslands, croplands/urban, bare 16 

areas/water).  17 

2.4.3. Land use and GDP 18 

[32] Land use density was computed as the sum of crops and urban lands in the GlobCover data. 19 

National GDP was inferred from the 2009 World Factbook (CIA, 2009).  20 

2.4.4. Fire activity 21 
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[33] The Global Fire Emission Database (GFED, version 3, van der Werf et al., 2010) was used 1 

in the optimization procedure as well as to evaluate the representation of fire incidence, seasonality 2 

and inter-annual variability in HESFIRE. The regional distribution of fire was evaluated with 3 

observations from the MODIS MCD45 burned area product (Roy et al., 2008). Note that both of 4 

these products feature substantial uncertainties (Giglio et al., 2010, 2013; Roy et al., 2008). In the 5 

case of burned area from GFED, we consider uncertainties to be roughly 25-50% based on these 6 

papers and on comparison between GFED versions 2, 3 and 4. 7 

3. Results 8 

3.1. Optimization 9 

[34] The parameters inferred by the optimization procedure are consistent with our current 10 

understanding of fire drivers, and provide a quantitative estimate on otherwise poorly constrained 11 

relationships. Their value, variability across the 20 optimization runs and implications for fire 12 

ignition, spread and termination are presented in Figure 4 and Figure 5. In 16 out of the 20 13 

optimization runs performed, the final set of parameters was relatively similar to the final model, and 14 

changes in parameter values were mostly compensative of each other, especially for correlated fire 15 

drivers (e.g. relative humidity and soil moisture). In four cases, the optimization procedure reached 16 

an alternative configuration, with one or several parameters differing from the final parameterization 17 

by a factor greater than five, and were discarded as unsuccessful parameterization, most likely getting 18 

stuck at local optimums. Hereafter, we refer to the remaining 16 models to consider parameter 19 

uncertainty, represented by the black lines in Figure 4 and shaded areas in Figure 5.  20 

[35] For fire ignitions, the probability that lightning strikes on natural vegetation ignite a fire 21 

under fire prone conditions is optimized at 6.8% (uncertainty range [2.8 to 16.6%]), comparable to 22 

the value inferred from the literature used in SPITFIRE (4%, Thonicke et al., 2010). We emphasize, 23 
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however, that this metric is a general probability that does not depict the complex relationship 1 

between cloud-to-ground lightning strikes and fire ignitions (Podur et al., 2003). Regarding 2 

anthropogenic sources, the optimization procedure suggests that the number of human ignitions 3 

saturates at a low landuse fraction, with any additional land use beyond 2-3% of the grid-cell area 4 

having no contribution to ignitions (Figure 5a). The final number of anthropogenic ignitions further 5 

depends on GDP per capita, with a nearly linear relationship Figure 5b. 6 

[36] Regarding fire spread, exponents depicting the role of RH and soil moisture indicate 7 

relatively linear relationships, with significant uncertainty (RHexp = 1.18 [0.52 to 1.29]; SWexp = 1.21 8 

[0.3 to 1.44]) (Figure 5d,e). The relationship with temperature is slightly non-linear (Texp = 1.78 [0.80 9 

to 3.30]), indicating a lower impact of temperature changes towards the higher range of the influence 10 

interval ([0 30°C]). Optimizing the model without the influence of temperature produced relatively 11 

similar performances, except in high-latitude regions where temperature constraints encompass 12 

limits on fire spread (e.g., snow cover). 13 

[37] For fire termination, the anthropogenic influence indicated a rapid saturation of suppression 14 

efforts with land use density (LUSUPexp = 4.08 [1.62 to 7.18]) and maximum suppression at 0.1 15 

fractional land use (Figure 5a). The influence of GDP was approximately linear (GDPexp = 1.28 16 

[0.97 to 2.24]), while the influence of landscape fragmentation was slightly non-linear (FRAGexp = 17 

1.41 [0.83 to 3.02]). The cumulative precipitation proxy for fuel load also indicated a slightly non-18 

linear relationship (FUELexp = 1.72 [1.62 to 3.65]). Climatic factors only operate through condition 19 

thresholds (e.g. relative humidity over 80%) and were thus not optimized. 20 

3.2. Global 1997-2010 run and comparison to observation-derived data 21 
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[38] The modeled and observed average annual burned fractions across the world are illustrated 1 

in Figure 6. In South America, which was not part of the optimization phase, HESFIRE depicts 2 

most spatial patterns as well as the actual incidence of fires, including increased fire activity 3 

associated with the expansion of human activities into the Amazon basin, the competing influence 4 

of the moisture gradient (Le Page et al., 2010b), and fires associated with pastures and grasslands in 5 

northern Venezuela and southern Columbia. In Africa and Australia, HESFIRE generally captures 6 

high fire incidence in grassland areas, although modeled spatial patterns in Africa are more uniform 7 

than observations (probably due to the simple representation of fuel, see sect. 4.1.2). HESFIRE also 8 

reproduces areas of moderate fire incidence in south-eastern Asia, Kazakhstan and south-western 9 

Europe, and identifies strong fire gradients with decreasing fuel load across semi-arid and arid 10 

regions (e.g. in Africa, central Australia), although with some limitation especially at the northern 11 

edge of sub-Saharan Africa where fire incidence is over-estimated. Conversely, HESFIRE performs 12 

poorly in several regions, including the pan-boreal region, at least partly due to a bias in the climate 13 

and soil moisture data (see discussion), as well as Central America, Mexico, the horn of Africa and 14 

some areas of the Middle East where fire incidence is over-estimated. It also under-estimates fire 15 

incidence in Indonesia, where soil moisture remains beyond the fire prone threshold almost all year 16 

long. Fires preferentially occur on areas with degraded forests and drained peatlands in Indonesia 17 

(Page et al., 2002; Van der Werf et al., 2008), which moisture dynamics is not captured in a 2.5-18 

degree resolution dataset. 19 

[39] Aggregated monthly burned area across 14 regions and their respective fire size distribution 20 

are illustrated in Figure 7. The monthly time series provide insights into the performance of 21 

HESFIRE on regional fire incidence, fire seasonality and inter-annual variability. Average burned 22 

area in the main fire incidence regions are in agreement with the GFED database (NHAF, SHAF, 23 
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AUST, SHSA). Seasonality also shows a good agreement, whether regionally or at 1-degree 1 

resolution (not shown). The main seasonality discrepancy occurs in sub-Saharan Africa, where the 2 

model substantially delays the onset and peak of the fire season. Finally, HESFIRE performs 3 

unevenly regarding inter-annual variability, with medium to high correlation to observations in some 4 

tropical and temperate regions, but low or even negative correlation in boreal regions. It reproduces 5 

the El Nino induced anomaly in Indonesia in 1997-1998, but because of the under-estimation of fire 6 

incidence mentioned before, the actual extent of that extreme fire episode is not captured.  7 

[40] Next to each time series, the regional fire size distribution histograms for 2005 suggest the 8 

representation of single fire size in HESFIRE is within the range of observations, and that it depicts 9 

the decreasing fire frequency as a function of fire size. It tends to overestimate the frequency of 10 

large fires and their contribution to the total burned area, however. Fire duration could not be 11 

readily evaluated with the MODIS data, but a map of maximum fire duration is provided in 12 

supplementary material to illustrate this capability (Figure S3). 68% of the 2005 burned area 13 

occurred in fires longer than one day in HESFIRE.  14 

3.3. Model sensitivity 15 

[41] The sensitivity analysis shows the class of the parameter whose altered values (+50% and -16 

50%) led to the largest change in averaged annual burned area at the grid-cell level (Figure 8). In 17 

boreal regions, although HESFIRE does not perform well, fire incidence is mostly sensitive to 18 

weather parameters, and to a lower extent to the fuel load parameter. In humid tropical ecosystems, 19 

HESFIRE is also mostly sensitive to weather parameters, but anthropogenic parameters become 20 

dominant in areas with a substantial dry season and agricultural activities, especially in South 21 

America along the arc of deforestation. In semi-arid areas, the vegetation fuel parameter has the 22 

most influence, including in Mexico, sub-Saharan and southern sub-equatorial Africa, the horn of 23 
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Africa, Australia and Kazakhstan, with consequences for the model performance in these various 1 

regions (see discussion). Finally, HESFIRE is primarily sensitive to the landscape fragmentation 2 

parameter in several regions due to two mechanisms. In regions of high land use density (e.g. India), 3 

fire spread is constantly limited by the fragmentation parameter and fire incidence is low, but can 4 

increase (or diminish further) when altering its value. In regions of low land use density but high fire 5 

incidence due to a very seasonal climatology (e.g. sub-Saharan and northern sub-equatorial Africa), 6 

landscape fragmentation due to previous fires becomes a limiting factor for late-season fires. Finally, 7 

regions of relatively high land use density and fire incidence are probably sensitive to both 8 

mechanisms. Note that a landscape fragmentation is in part due to human activities, adding to the 9 

sensitivity of the model to anthropogenic factors. 10 

4. Discussion 11 

4.1. Model performance and potential improvements 12 

[42]  HESFIRE shows encouraging capabilities, especially given the difficulty of achieving a good 13 

representation of global fire patterns (Bowman et al., 2011; Spessa et al., 2013). It is a first step 14 

towards the 3 objectives stated in introduction. First, the model avoids some assumptions that 15 

would be fundamentally inconsistent with fire ecology (e.g. fire spread limited to a single day). 16 

Second, it includes climatic, anthropogenic and vegetation drivers, and the input variables were 17 

chosen so as to enable integration within dynamic vegetation and integrated assessment models (e.g. 18 

human ignitions dependent on land use instead of population). Third, HESFIRE reproduces 19 

reasonably well many aspects of regional fire activity, including fire incidence and variability in South 20 

America and fire size, both of which were not part of the optimization procedure, and its regional 21 

sensitivity to the 4 parameter classes corresponds to what would be expected based on broad fire 22 

ecology concepts.  23 
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[43] The comparison to results reported by other models – mostly fire incidence – suggests 1 

HESFIRE generally achieves strong performances on spatial patterns (Figure 6 in this paper, figure 2 

3c in Thonicke et al., 2010, figure 2 in Prentice et al., 2011, figure 1 in Kloster et al., 2010), and on 3 

the actual quantification of the average burned area fraction, with a rather infrequent occurrence of 4 

large discrepancies which are susceptible to severely bias impacts on vegetation and carbon 5 

dynamics. Note however that these results are not fully comparable as they are produced from fire-6 

modules embedded within dynamic vegetation models, with potential bias originating from other 7 

parts of the model (e.g. PFT distribution, fuel load). The fire model developed by Li et al. (2012) and 8 

modified to better account for anthropogenic ignitions has similar spatial patterns of averaged 9 

burned area to HESFIRE (figure 9 in Li et al., 2013).  10 

[44] The combination of these characteristics and performance suggests that the modeling and 11 

optimization framework realistically captures the primary fire-driving mechanisms and the specific 12 

magnitude of their influence regionally. It could thus bring relevant insights into future fire activity 13 

under altered environmental conditions, including agricultural expansion and extreme climatic events 14 

(e.g. sustained droughts). There are however a number of issues, as well as key potential 15 

improvements which we discuss in the next sections.  16 

4.1.1.  Fire incidence in boreal regions 17 

[45] HESFIRE under-estimates fire incidence in Boreal regions. This issue has been reported 18 

before by Rupp et al. (2007), whose model projected almost no burned area when driven by the 19 

NCEP data but performed better when driven by other datasets. Serreze and Hurst (2000) found 20 

that summer precipitation is largely over-estimated in NCEP, compromising the whole hydrological 21 

cycle including RH and soil moisture. Alternative datasets may address this issue, either by using 22 
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them as a direct input or to correct the bias in the NCEP data while maintaining its high temporal 1 

resolution and extensive timespan. 2 

[46] HESFIRE might be further limited because it does not represent specific aspects of boreal 3 

fire regimes. In particular, boreal needle-leaf forests are highly flammable and have a vertical 4 

structure favorable to the development of crown fires, which spread faster and can overcome higher 5 

levels of moisture and humidity (Ryan, 2002). Additionally, large boreal fires typically spread over 6 

weeks or months - which can be captured by HESFIRE - but might also remain dormant in a 7 

smoldering phase during fire-averse conditions and re-activate later without any new ignitions 8 

(Sedano and Randerson, 2014). 9 

4.1.2. Fires in semi-arid regions and links to the fuel proxy 10 

[47] Semi-arid ecosystems presented a particular challenge due to the sensitivity of fuel 11 

characteristics to soil, precipitation and potential evapotranspiration conditions, which cannot be 12 

fully captured by the cumulative precipitation proxy. In the final parameterization, HESFIRE is in 13 

good agreement with observations in Australia, southern hemisphere Africa and Kazakhstan, but 14 

over-estimates fire incidence in Mexico, the horn of Africa and semi-desert areas at the border of the 15 

Sahara (Figure 8). Precipitation patterns in these xeric landscapes vary widely. Some semi-desert 16 

regions have low amounts of precipitation year-round (Kazakhstan), while others have short rainy 17 

seasons (sub-Saharan Africa). The optimization procedure favors one set of conditions, leading to 18 

unequal performances across these regions.  19 

[48] Clearly there are other potential factors contributing to this issue, but most of them are likely 20 

related to fuel characteristics. The integration of HESFIRE within a vegetation model (Sect. 4.2.3) 21 

will be important to provide dynamic and process-based estimates of fuel load, fuel structure and 22 
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fuel moisture (see Sect 4.2.3). In parallel, integrating observation-derived estimates of aboveground 1 

biomass (Saatchi et al., 2011) as a fuel-proxy could improve performances while maintaining the 2 

value of a standalone version of HESFIRE. 3 

4.1.3. Representation of anthropogenic ignitions 4 

[49] Modeling the global diversity of fire practices remains a significant challenge. HESFIRE 5 

performs well in regions with a well-established anthropogenic footprint on fire regimes, even 6 

though it is based on a simplistic representation of fire practices and suppression effort by necessity 7 

to obtain a globally consistent initial approach. The timing and frequency of anthropogenic ignitions 8 

are a complex aspect to represent in global models. In sub-Saharan Africa for example, local 9 

populations are known to burn numerous small fires early in the dry season to fragment the 10 

landscape and limit the occurrence of high-intensity late-season fires (Laris, 2002; Le Page et al., 11 

2010a). These fire management practices are not accounted for in HESFIRE, leading to a delayed 12 

fire-peak month (by 1-3 months), and to an over-estimation of the average fire size. Beyond this 13 

specific case, fire practices vary as a function of land use (e.g. agriculture, pastures), of land use 14 

transitions (e.g. deforestation and post-clearing activities Morton et al., 2008), of land management 15 

practices (fire prevention, fire suppression), and can also be due to arson or leisure activities (e.g. 16 

campfire). For agricultural lands, fire practices can be very specific (clearing, pre-sowing, pre- and 17 

post-harvest burns) and last for as little as a week to several months (Le Page et al., 2010a). Finally, 18 

these practices vary at local to global scale according to environmental conditions, the availability of 19 

alternatives to fires (e.g. fertilizer, pest control), national regulations, fire fighting capabilities, etc. 20 

There is not much ground to believe fire practices will closely follow future GDP and land use 21 

trends, but they are part of the equation. Research towards a better representation of broad classes 22 

of fire practices is ongoing (Li et al., 2013), and, as mentioned in other studies, fire driver analysis on 23 
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longer time periods (e.g. with historical reconstruction, Mouillot and Field, 2005) would provide 1 

further guidance. 2 

4.1.4. Representation of fire spread  3 

[50] The evaluation suggests the modeled average fire size is within the observed range, but 4 

HESFIRE tends to overestimate the contribution of large fires, which could be linked to the 5 

representation of fire spread as an idealized elliptic shape, similar to other global fire models. Burned 6 

areas are typically patchy and the front line rarely remains unbroken around the perimeter of the fire, 7 

especially in fragmented and uneven landscapes. Better accounting for these aspects could improve 8 

models performances, for example with the implementation of a fragmentation feedback on the 9 

fraction of the idealized elliptical shape that actually burns.  10 

[51] Additionally, anthropogenic fire practices mentioned in Sect. 4.1.3 can have a substantial 11 

footprint on fire size, including in regions where it is over-estimated by HESFIRE. In sub-Saharan 12 

Africa for example, a better representation of small early dry-season burns as a fire management 13 

practice would lead to a more realistic accounting of fire sizes and of the landscape fragmentation 14 

feedback on late-season fire spread. 15 

4.2. Applications to environmental issues and for decision support. 16 

4.2.1. Projection of future fire activity 17 

[52] Large scale policy decisions on agricultural production and climate mitigation will have 18 

impacts on fire activity and might have to adapt in response, which global fire models could help 19 

anticipate. Projections of agricultural lands point to a wide range of potential outcomes regarding 20 

their expansion in natural ecosystems, depending among other factors on food demand, 21 

technological developments and policies such as incentives for forest conservation (e.g. REDD) or 22 
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biofuels expansion (DeFries and Rosenzweig, 2010; Thomson et al., 2010; Tilman et al., 2011). 1 

Given the sensitivity of fire activity to human presence in the landscape and to climate, it is essential 2 

to anticipate the fire impacts of these scenarios, as well as the synergies and trade-offs with their 3 

respective societal goals (e.g. climate mitigation, food security, biodiversity). An integrated 4 

perspective is key to understand the interactions in play and to provide some level of confidence in 5 

projections of fire regimes under altered environmental conditions (Bowman et al., 2009, 2011). We 6 

believe HESFIRE as a standalone version can provide relevant insights on fire incidence and 7 

variability under projections of future climate (Taylor et al., 2012), land use (Hurtt et al., 2011) and 8 

societal conditions (Van Vuuren et al., 2011), and on regional sensitivities.  9 

4.2.2. Integration to vegetation and socio-economic models 10 

[53] Beyond fire incidence and variability, fire impacts are of primary importance in multiple 11 

contexts, including climate mitigation policies and the global carbon cycle (Le Page et al., 2013; van 12 

der Werf et al., 2010), ecosystem dynamics across major biomes (Bond-Lamberty et al., 2007; 13 

Cochrane, 2009), as well as pollution, health effects and a wide range of economic aspects (e.g. 14 

Bowman et al., 2011; Calkin et al., 2005; Kochi et al., 2010; Sastry, 2002).  15 

[54] First, impacts on ecosystem dynamics, the carbon cycle and other pollutant emissions can be 16 

explored in fire models coupled to dynamic vegetation model (e.g. Thonicke et al., 2010). HESFIRE 17 

is being implemented in the Ecosystem Demography model  (ED, Moorcroft et al., 2001) which is 18 

well adapted for fire impacts modeling because it tracks vegetation patches of different ages within a 19 

grid-cell and the size and type of successional cohorts within each patch. Such characteristics are 20 

essential to realistically estimate fire behavior (e.g. ladder fuel and crown versus understory fires), fire 21 

intensity and combustion completeness, size and PFT dependent fire-induced mortality (Brando et 22 

al., 2012), snags and downed-fuel decomposition rates (Chambers et al., 2000; Palace et al., 2008), 23 
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and post-fire regrowth dynamics (Balch et al., 2008; Bond-Lamberty et al., 2007; Goetz et al., 2007). 1 

Vegetation models also enable a process-based representation of key fire drivers, especially fuel load 2 

and fuel moisture that are otherwise estimated through proxy variables in HESFIRE (precipitation 3 

and soil moisture). 4 

[55] Second, the role of fires within the Human-Earth system needs to be explored within an 5 

integrated framework to provide consistent scenarios of climate, ecosystems and society under 6 

different environmental policy assumptions (Le Page et al., 2013). HESFIRE has been specifically 7 

developed to this end, with anthropogenic input data commonly reported and projected by 8 

integrated assessment models (land use and GDP). Recent developments to couple integrated 9 

assessment models to process-based vegetation and climate models (Jones et al., 2013) enable the 10 

simultaneous consideration of societal, vegetation and climate dynamics and how they feed back on 11 

each other, without the need to exogenously specify input data from other models run under 12 

potentially conflicting assumptions and forcing. Such a framework is particularly relevant to explore 13 

fires and their interaction within the Human-Earth System. 14 

5. Conclusions 15 

[56] HESFIRE and its optimization procedure provide a relevant tool to explore certain aspects 16 

of fire ecology and to anticipate potential changes in fire activity. We provide a first assessment of 17 

the uncertainties attached to the parameters and the model sensitivity to the driving assumptions 18 

they represent. We identify limitations and propose key developments to address the most 19 

significant ones. Finally, we highlight potential research areas to better understand contemporary 20 

and future fire activity, to support estimates of greenhouse gas emissions and ecosystem dynamics, 21 

and to provide policy makers with insights into the consequences of potential economic and 22 

environmental decisions. 23 
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Table 1. Model parameters. 1"

Parameter Description Value & unit 
Source 

[optimization range], if applicable 

Ignitions 
   

CGignp Cloud-to-Ground ignition probability. Average probability of ignition from 
a cloud-to-ground lightning strike on natural vegetation. 6.8% 

Optimization 
[2.8 - 16.6] 

LUign Land Use ignitions. Original number of human ignitions per km2 of land use 
per 24 hour, prior to applying density-decreasing function (see LUexp). 

2.3 ×10-3 
km-1 

Optimization 
[1.1 – 6] ×10-3 

LUexp Land Use exponent. Shape parameter: Controls the decreasing contribution 
of incremental land use areas to human ignitions 14.9 

Optimization 
[14.7 – 19.8] 

GDPexp
a GDP exponent. Shape parameter: Impact of GDP on ignitions, through land 

use practices. 1.28 
Optimization 
[0.83 – 3.02] 

LUrange
 Land Use range. of fractional land use controlling human ignitions, with no 

ignitions beyond the upper bound. [0 - 0.1] Successive trials for reasonable exponent 
valueb  

GDPrange GDP range. Range of regional GDP controlling fire ignitions, through land 
use practices. 

[0 - 60000] 
$.cap-1.year-1 

Observed rangec 

Spread    

BAfrag Burned Area fragmentation. Delay before burned areas can burn again 
(given sufficient precipitation for fuel accumulation), meanwhile 
contributing to fragmentation. 

8 months Model performance trialsd 

Maxforestrate Maximum forest fire spread rate. 0.28m.s-1 (Scott and Burgan, 2005) 

Maxshrubrate Maximum shrublands fire spread rate. 1.12m.s-1 (Scott and Burgan, 2005) 

Maxgrassrate Maximum grasslands fire spread rate. 2.79m.s-1 (Scott and Burgan, 2005) 



 2 

RHrange RH range. Range of relative humidity controlling fire spread. 
[30 - 80]% 

(Li et al., 2012) 
Scatter plote 

Model performance trials 

RHexp RH exponent. Shape parameter: Impact of relative humidity on fire spread 
rate. 1.18 

Optimization  
[0.52 – 1.31] 

SWrange Soil Water range. Range of volumetric soil moisture controlling fire spread. 
[20 - 35]% 

Scatter plot 
Model performance trials 

SWexp Soil Water exponent. Shape parameter: Impact of volumetric soil moisture 
on fire spread rate. 1.21 

Optimization 
[0.30 – 1.44] 

Trange Temperature range. Range of temperature controlling fire spread. 
[0 - 30]°C 

Scatter plot 
Model performance trials 

Texp Temperature exponent. Shape parameter: Impact of air temperature on fire 
spread rate. 1.78  

Optimization 
[0.8 – 3.8] 

Termination    

Fuelrange Fuel range. Range of precipitation controlling termination probability, 
through fuel build-up. 

[0.5 - 3] 
mm.day-1 

Scatter plot 
Model performance trials 

Fuelspan Fuel accumulation timespan.  Timespan of average precipitation controlling 
fuel build-up. 12 months 

(Greenville et al., 2009; Van der Werf et 
al., 2008; Van Wilgen et al., 2004) 

Model performance trials 

Fueldelay Fuel accumulation delay. Delay from actual precipitation to fuel build-up. 3 months Model performance trials 

Fuelexp Fuel exponent. Shape parameter: Impact of precipitation over -15 to -3 
months on fire termination probability, a proxy fuel build-up. 1.72 

Optimization 
[1.62 – 3.65] 

Fragrange Fragmentation range. Range of fractional landscape fragmentation 
controlling termination probability. [0 - 1] Oberved range 

Fragexp Fragmentation exponent. Shape parameter: Impact of landscape 
fragmentation on fire termination probability. 1.81 

Optimization 
[0.94 – 2.48] 



 3 

a: in order to limit the number of parameters to optimize for the first version of the fire model, GDPexp is attributed the same optimized 1"
value whether it applies to fire ignitions or fire termination. 2"
b: Successive trials for reasonable exponent value. This was applied to the range of land use fraction for ignition and suppression (see 3"
Sect. 2.2.1.2).  4"
c: Oberved range. The range covers all or most of the values across the world. For GDPrange, a few grid-cells are beyond the 5"
60000$/capita upper limit (in Qatar). 6"
d: Model performance trials. These parameters were not determined using the full optimization procedure, but we tried a limited 7"
number of values (e.g. 5, 8 and 12 month for BAfrag) and selected the one leading to the best fit.  8"
e: Scatter plot. We used scatter plot to determine the range of influence of some drivers, namely RH, soil moisture, temperature and the 9"
precipitation fuel proxy. An example is given in supplementary material. 10"
 11"

LUrange Land Use range. Range of fractional land use controlling termination 
probability, through suppression efforts. [0 - 0.1] Successive trials for reasonable exponent 

value 

LUSUPexp Land Use SUPpression exponent. Shape parameter: Impact of land use on 
fire termination probability, through suppression efforts, in interaction with 
GDP (below). 

4.08 
Optimization 
[1.62 – 7.18] 

GDPrange GDP range. Range of regional GDP controlling fire suppression effort. [0 - 60000] 
$.cap-1.year-1 

Oberved range 

GDPexp
a GDP exponent. Shape parameter: Impact of GDP on suppression effort, 

through land use practices. 1.28 
Optimization 
[0.83 – 3.02] 



FIGURES 1 
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Figure 1. HESFIRE diagram. 3 
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 6 

Figure 2. Control of shape parameters (exponents, here RHexp) on fire driving relationships. 7 
The exponent can take any value (from 0.033 to 30) as determined by the optimization 8 
procedure, thus covering a wide space of potential fire-driving influence. 9 
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 1 
Figure 3. HESFIRE’s performance through the optimization procedure iterations. The solid 2 
line represents the optimization of the final model (which happened to reach a near-final 3 
parameterization quite rapidly). The dashed lines represent the optimization of three of the 4 
alternative runs, using different sets of grid-cells and years to evaluate the robustness of the 5 
parameters. 6 

 7 

 8 
Figure 4. Parameter variability across the set of optimization runs with different grid-cells 9 
and years. Among the 20 runs, 16 reached a relatively consistent parameterization (see text). 10 
These are represented as colored markers and their range is shown by the black lines. For 11 
the other 4 runs, parameters are shown as grey markers. The vertical dashed lines indicate 12 
the lower and upper (symmetric) thresholds of parameters range that were used to separate 13 
these 4 runs. 14 
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CGignp = 6.8% 

6.8% of cloud-to-ground lightning strikes on fire prone vegetation do ignite a fire. The range is 
2.8% to 16.6% for the 16 optimization runs reaching a similar overall parameterization.  
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 4 

Figure 5. Optimized model parameters and their influence on fire ecology. For each plot, 1 
the thick black line represents the parameter influence in the final model. The dotted black 2 
lines represent the 16 optimization runs that reached a similar parameterization to the final 3 
model, the shaded area showing the range of their influence. The dotted grey lines represent 4 
the four optimization runs that reached a parameterization substantially different from the 5 
final model (see text). 6 
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Figure 6: Observed and modeled average annual burned fraction. Top: GFEDv3 burned 8 
areas on “natural” landscapes. Bottom: Fire model. 9 
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  OBS                  HESFIRE 

Bars: fraction of total 
number of fires 

Lines: Fraction of 
cumulated burned area 

a) GLOBAL 

b) BONA 

c) TENA 

d) CEAM 

e) NHSA 

Avg burned area: 3390 / 3430 103km2 ; IAV spearman correlation: 0.32 

BA: 20 / 1 103km2 ; IAV: -0.41 

BA: 12 / 20 103km2 ; IAV: 0.21 

BA: 11 / 86 103km2 ; IAV: 0.72* 

BA: 20 / 15 103km2 ; IAV: -0.03 
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g) EURO 

h) MIDE 

i) NHAF 

j) SHAF 

k) BOAS 

l) CEAS 

BA: 3 / 9 103km2 ; IAV: 0.29 

BA: 4 / 51 103km2 ; IAV: 0.58* 

BA: 1190 / 1360 103km2 ; IAV: 0.71* 

BA: 1230 / 1080 103km2 ; IAV: 0.41 

BA: 52 / 2 103km2 ; IAV: 0.08 

BA: 98 / 66 103km2 ; IAV: 0.33 

f) SHSA BA: 198 / 268 103km2 ; IAV: 0.67* 
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Figure 7. Comparison of HESFIRE with observation-derived data over 14 regions. Left side 1 
plots: time series of normalized monthly burned area, with quantification of average annual 2 
burned area in GFED and in HESFIRE, and inter-annual correlation. Right side: 2005 3 
distribution of fires by size classes and cumulative burned area along these classes. 4 
Observation data are from the MODIS MCD45 product. * indicates significance of the IAV 5 
spearman correlation (p<0.05, (Spearman, 1904))  6 
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 8 

 9 

Figure 8. Major drivers of average annual burned area sensitivity among the 9 optimized 10 
parameters as grouped into 4 thematic classes (climate, vegetation fuel, anthropogenic 11 
practices, landscape fragmentation). For each of the 9 parameters, HESFIRE was run 12 
keeping the original parameterization, but altering the value of the considered parameter by 13 

m) SEAS 

n) EQAS 

o) AUST 

BA: 48 / 87 103km2 ; IAV: 0.62* 

BA: 16 / 0.2 103km2 ; IAV: 0.66* 

BA: 491 / 383 103km2 ; IAV: 0.72* 
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-50% and +50%. The map shows the class of the parameter for which the average burned 1 
area in the considered grid-cell varied the most between the 2 runs with these alternative 2 
values.  3 


