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Abstract

Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions.
Potential changes in fire activity under future climate and land use scenarios thus have
important consequences for human and natural systems. Anticipating these consequences
relies first on a realistic model of fire activity (e.g. fire incidence and inter-annual variability)
and second on a model accounting for fire impacts (e.g. mortality and emissions). Key
opportunities remain to develop the capabilities of fire activity models, which include
quantifying the influence of poorly understood fire drivers, modeling the occurrence of
large, multi-day fires - which have major impacts — and evaluating the fire driving
assumptions and parameterization with observation data. Here, we describe the HESFIRE
model, which integrates the influence of weather, vegetation characteristics, and human
activities on fires in a standalone framework, with a particular emphasis on keeping model
assumptions consistent with fire ecology, such as allowing fires to spread over consecutive
days. A subset of the model parameters was calibrated through an optimization procedure
using observation data to enhance our understanding of regional drivers of fire activity and

improve the performance of the model on a global scale. Modeled fire activity showed
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reasonable agreement with observations of burned area, fire seasonality and inter-annual
variability in many regions, including for spatial and temporal domains not included in the
optimization procedure. Significant discrepancies are investigated, most notably regarding
fires in boreal regions, in xeric ecosystems, and fire size distribution. We highlight the
capabilities of HESFIRE and its optimization procedure to analyze the sensitivity of fire
activity, and to provide fire projections in the coupled Human-Earth System at regional and
global scale. These capabilities and their detailed evaluation also provide a solid foundation
for integration within a vegetation model to represent fire impacts on vegetation dynamics

and emissions.

Keywords: vegetation fire model, coupled human-Earth system, fire ignition/spread/termination,

model optimization, model evaluation.

1. Introduction

[1] The human population has more than doubled in the past 50 years, expanding the scale and
diversity of changes in the Earth system from anthropogenic activity. The build-up of greenhouse
gases in the atmosphere, as well as the degradation and conversion of natural lands, have major
consequences for future climate, natural ecosystems, and human societies (Parry, 2007; Stocker et al.,
2013). The interactions between human and natural systems are complex, yet observational data,
field experiments, and various types of models continue to elucidate key linkages among climate
variability, ecosystem function, and anthropogenic activities. This knowledge is essential to anticipate
potential changes under future conditions and to design adaptation or mitigation strategies that

promote the sustainability of the coupled Human-Earth system.

[2] One of these interactive processes linking human activities and natural ecosystems is fire
(Bowman et al., 2009). Humans exert considerable influence over global fire activity (Le Page et al.,

2010a); fire-driven deforestation accounts for an estimated 20% of the increase in atmospheric CO,
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from human activities since preindustrial times (Bowman et al., 2011; van der Werf et al., 2010). Fire
activity depends on a range of drivers covering three major components of the Human-Earth
System: the atmosphere (e.g. weather conditions), the terrestrial biosphere (e.g. fuel loads) and
anthropogenic activities (e.g. land-use fires and fire suppression). The interaction among these
drivers determines global fire activity, as illustrated in 1997-1998 when a strong El Nifo led to
extreme fire events around the world (Le Page et al, 2008), including unprecedented fires in
peatlands and forests of Indonesia where human-caused fires emitted an estimated 13 to 40% of the

world’s annual fossil fuel emissions (Page et al., 2002).

[3] Future fire activity and impacts thus depends on the synergistic interactions between these
drivers, and on fire-mediated feedbacks in the Earth system. In boreal regions, recent increases in
fire activity are consistent with warming and drying trends that favor fire occurrence (Gillett et al.,
2004; Goetz et al., 2005). Projected increases in fire activity from climate change in other ecosystems
range from a moderate decrease to a 5-fold increase depending on characteristics of the climate
projections and modeling frameworks (e.g. Flannigan et al., 2009; Liu et al., 2010; Soares-Filho et al.,
2012). Studies that consider both climatic and anthropogenic drivers highlight the sensitivity of
future fire activity to societal developments, including fire suppression and fire-driven deforestation
of natural ecosystems for agricultural expansion (Cardoso et al., 2003; Keeley and Fotheringham,
2003; Kloster et al.,, 2012; Le Page et al., 2010b). In return, altered fire activity may amplify or
moderate climate change via global greenhouse gas emissions and local albedo changes (Liu et al.,
2013; Randerson et al., 2006). Net changes in carbon emissions from disturbances, including fires,
constitute a major uncertainty for climate change adaptation and mitigation assessments: any
unforeseen increase in greenhouse gas emissions from fire would require an adaptive mitigation

effort to achieve a predefined climate target (Le Page et al., 2013; Running, 2008).
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[4] Modeling changes in fire activity under future climate, policy, and land use scenarios requires
a framework with a broad range of variables (Pechony and Shindell, 2009) and a good understanding
of the influence of these variables for model parameterization. A range of global fire models have
been developed in recent decades, each with a different focus (e.g. Arora and Boer, 2005; Li et al.,
2013; Pfeiffer et al.,, 2013; Prentice et al., 2011; Thonicke et al., 2001, 2010). Among these examples,
SPITFIRE (Thonicke et al., 2010) is a process-based fire model coupled to a vegetation model
explicitly representing many physical properties of fire behavior providing great capabilities
regarding fire spread, fire intensity and fire impacts (damage, mortality, emissions). The model
developed by Li et al. (2013) has a particular emphasis on depicting anthropogenic ignitions, with

good performances regarding global patterns of burned area.

[5] One key prospect to build upon existing work, as mentioned by Thonicke et al. (2010), is to
develop the capability for modeling fire spread over consecutive days. This capability has been
reported in one global fire model focusing on pre-industrial era fires (Pfeiffer et al., 2013). In many
ecosystems, multi-day fires are a major driver of the overall fire activity. In boreal regions, dry-spells
and heat-waves in days and weeks following ignition enable the growth of large fires (Abatzoglou
and Kolden, 2011), and although those burning over 200ha represent a minor fraction of all fires,
they typically account for 90+% of the total area burned (Stocks et al., 2002). In tropical forests,
large-scale climate anomalies allow individual fires to over the course of several weeks, including
areas further away from the forest edge where ignition typically occurs (Morton et al., 2013). Similar
findings have been reported for temperate regions, including in Mediterranean ecosystems (Pereira
et al., 2005; Westerling et al., 2004). Modeling fire-climate interactions therefore requires careful

attention to the duration of fire weather events.
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[6] Another opportunity for fire modeling research is model parameterization and their
evaluation. Many early models had to extrapolate findings from local studies or to simplify key
drivers of fire activity when information of some components was unavailable (e.g. ignitions
independent of anthropogenic activities). Recently, model calibration has been applied to one
(Thonicke et al., 2010) or a few (Li et al., 2013) parameters. Expanding this approach to additional
parameters in a model with realistic assumptions on key aspects of fire ecology could yield relevant
insights on fire drivers. Subsequent model evaluation is essential to assess our confidence in fire
projections, especially regarding fire activity - which global spatio-temporal patterns are relatively
well characterized by observation data (Mouillot et al., 2014) — because depicting patterns of fire
activity and their sensitivity to fire drivers is a pre-requisite to project realistic fire impacts.
Evaluating fire models is challenging when they are embedded within vegetation models however,
because vegetation distribution strongly affects fire dynamics (Scott and Burgan, 2005), and if
inaccurate (e.g. figure 7 in Sitch et al., 2003, figure 2 in Cramer et al., 2001), may lead to unrealistic

fire projections for reasons unrelated to the fire parameterization.

[7] This paper describes the development of the HESFIRE model (Human-Earth System
FIRE), aiming to improve our understanding of current fire activity and our capacity to anticipate its
evolution with future environmental and societal changes. HESFIRE is first developed as a
standalone model, i.e. not integrated within a dynamic vegetation model. The major emphasis of this
research is to outline the model structure and apply an optimization procedure to explore some of
the research opportunities mentioned above. Our analysis has three main objectives: 1) explicit
representation of fire ignition, spread, and termination, with realistic assumptions regarding fire
ecology (e.g. multi-day fires); 2) consideration of atmospheric, terrestrial, and anthropogenic drivers
in order to represent synergistic effects among changes in climate, vegetation, and human activity—

key steps towards the implementation of the fire model within Human- and Earth-system models;
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and 3) model optimization and evaluation to improve our understanding of constraints on global fire

activity and to quantify uncertainties of future fire activity projections.

2. Methods

2.1. Model overview

[8] The structure of HESFIRE was designed to satisfy objectives 1 & 2 (realistic assumptions
and ease of integration to vegetation and integrated assessment models), and some of its parameters
were optimized to estimate the quantitative role of poorly understood drivers and to maximize the
agreement between modeled and observed fire regimes (objective 3). The model focuses on fires in
natural ecosystems: deforestation and agricultural fires are dependent on very different dynamics

(controlled spread, pile burning) and thus only considered as a source of ignition for escaped fires.

[9] The model is organized in three parts, with specific drivers for fire ignition, spread, and

termination (Figure 1):

- TFire ignitions. Natural ignitions are a function of cloud-to-ground lightning strikes and a
probability of ignition per strike. Human ignitions reflect agricultural and ecosystem

management as a function of land use density and national Gross Domestic Product (GDP).

- Fire spread. Fire spread rate is a function of weather conditions (relative humidity,

temperature, wind speed), soil moisture, and fuel structure categories (forest, shrub, grass).

- Fire termination. Four factors control the termination of fires: weather conditions, fuel
availability, landscape fragmentation, and fire suppression efforts (a function of land use,

GDP and fire suppressibility).
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[10] To account for the diurnal variability in fire spread and termination (see introduction), every
fire is tracked individually with a 12-hour timestep. The analyses presented in this paper were

conducted with model runs at a resolution of 1-degree.

[11] HESFIRE  was coded in Python 27 and is  freely available at
https://github.com/HESFIRE /model (Note: open source licensing in process at the time of

writing). The optimization procedure is included in the code.

2.2. Model description
[12] The full list of parameters is described in Table 1. The following sections detail the fire

ignition, spread and termination modules.

2.2.1. Fire ignitions
[13] Fires may occur due to natural ignitions (NAT,,,) and human ignitions (LU,,):

Nfires = NATign + LUign Eq' !

To introduce some of the stochasticity associated with fires, IN,, represents the expected

realization of a Bernoulli trial (n=1000), and the final number of ignitions is computed following

the actual trial.

2.2.1.1. Natural ignitions
[14] Lightning strikes are the most frequent source of natural ignitions. Lightning ignitions are
highly stochastic because of the localized occurrence of convective storms, variability in the

frequency of cloud-to-ground lightning, and coincident rainfall which can terminate ignited fires
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before substantial spread occurs (see review in Podur et al.,, 2003). In HESFIRE, natural ignitions
are the product of cloud-to-ground lightning strikes, the probability of ignition from lightning, and
the fractional cover of flammable vegetation in a given grid cell:

Eq. 2

NATign = CGriashes X CGignp X (1 — Fragy)

ignp

Where CG,, is the number of cloud-to-ground lightning strikes, CG,,, is the lightning ignition
probability determined through the optimization procedure (see Sect. 2.3), and Frag, (fragmentation)

the fraction of the grid-cell that cannot sustain a fire (non-natural land or not enough fuel, see later).

2.2.1.2.  Anthropogenic ignitions

[15] Humans are the dominant source of fire ignition in most temperate and tropical ecosystems.
Ignitions from human activities include fires for agriculture and ecosystem management,
deforestation for agricultural expansion, accidental fires, and arson. Fire usage varies across
countries, climate zones, and land use practices (Korontzi et al., 2006; Le Page et al., 2010a), and this
diversity of human activity cannot be fully captured with current knowledge and data. However,
wealth is an important driver of fire use in agricultural settings, since fire is typically the least costly
tool to clear natural vegetation, control pests, or increase soil fertility (Laris, 2002; Thrupp et al.,
1997). Thus we represent anthropogenic ignitions as a function of land use intensity and national
GDP, where higher fractional land use and lower GDP increase anthropogenic fire ignitions. Similar
to the approach used in the SPITFIRE model (Thonicke et al., 2010), we assume that initial

settlements bring more ignitions relative to additional ones:
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Humign = (1 — GDP,)¢PPexp x f LU;gnX LU X (1 — LU, ) Vexp
0

Eq. 3

where GDP, is the normalized Gross Domestic Product per capita (from 0$ to 60000$), GDP,,, the
associated shape parameter, .U, is the number of ignitions per km?® of land use, .U the land use
area in the grid-cell considered, and LU, the shape parameter controlling the decrease in the
amount of additional ignitions with incremental land use. LU, is the normalized land use fraction of
the grid-cell, from O to 0.1 only. Applying a wider normalization range systematically led to very high
values of the optimized parameter [.U,, pointing to a rapid saturation of human ignitions with land
use density. L.U,, and GDP,, were also determined through our optimization procedure. Eq. 3

wn

conveys the following fire driving mechanisms:

- Human ignitions increase with human occupation of the landscape, but saturate once 10% of

the landscape is occupied.

- TFire use for land use management depends on the regional GDP, with maximum fire use in
the poorest regions, and virtually no fire use at all for regions beyond 60000$/capita. Only
one country (Qatar) has a GDP beyond this range in the data. In the future, more countries
are expected to to have a GDP over 60000$/capita, and thus would not have any human

ignitions (see discussion).

2.2.2. Fire spread
[16] The rate of fire spread is modeled for three broad vegetation types - forest, shrub, and grass

- and varies as a function of relative humidity, soil moisture, temperature, wind speed, and fuel



1 structure. Maximum fire spread rates are constrained by observations (Scott and Burgan, 2005):
2 0.28m/s in forests, 1.12m/s in shrubs, and 2.79m/s in grasses. The actual rate of fire spread I, for

rate

3 each vegetation type is then computed:

Frore = Max, g0 X (1 - RHRHex”) x (1 - SWSW”’”) x (1 - TnTe"p) x G(W) Eq. 4

n n

with X, as normalized driver, e.g.:

IfRH <RH,_ RH, =0
IfRH > RH,__ RH, =1 Eq. 5
EISC RHn — RH - RHmln

RHmax - RHmin

5  Where RH,is the normalized relative humidity, from RH,_;,=30% to RH,_,=80% (adapted from Li
6 etal, 2012). SIW, and T, are the normalized 0-10cm layer soil moisture (20-35%, used as a proxy for
7 fuel moisture) and temperature (0°C - 30°C), as determined by simple data analysis and parameter

8  wvalue trials (see Table 1 and Figure S1 in supplementary material). RH,

o are the

Sw,, and T,
9  optimized shape parameters controlling the fire-driving relationship. The influence of wind on fire
10  spread rate, G(IV), is computed following the method described in (Li et al., 2012), as a function of
11 the length-to-breadth (L.B) and head-to-back (HB) ratios of a typical elliptical burned area, both of

12 which depend on wind speed ().

LB = 1+10x (1 — e~006xw) Eq. 6
Hp = g+ LEHEE - D™ Eq. 7
N LB — (LB? — 1)05 &
GW) = 2 LB 0.0455
= X —— X 0U.
(1+ 1/HB) Eq. 8

13

10
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Within a grid cell, fires are assumed to spread with equal probability to each of the three vegetation
types. Their respective burned area therefore reflects their specific fire spread rates and fraction
within the grid-cell. Given the large size of the model grid cells (1°X1°), fire spread to neighboring

grid-cells is not considered.

2.2.3. Termination
[17] Individual, multi-day fires are modeled from ignition to termination. Fire termination may
occur in 4 ways: weather conditions are no longer favorable to fire spread, the fire is stopped by
landscape fragmentation, by lack of fuel, or suppressed by fire-fighting activities. Each termination
pathway contributes to the overall probability of termination; fire termination is then determined by
the same Bernoulli trial stochastic approach applied to fire ignitions. Fire termination is computed

every 12 hours and may occur before any spread (i.e., right after ignition).

(1 = Fuel;prmp) X (1- Fragtermp) X } Eq. 9

fires; 4 fires, { 1— Supptermp) X (1- Weathertermp)

where N, is the number of active fires, Fuel,,, Frag,,, Supp,,,, and Weather,

rmp

are the probability

res

of termination due to each factor.

[18] Weather-related termination occurs when fire spread rate decreases to zero, that is when RH

is 80% or above, soil moisture is 35% or above, or when the temperature drops below freezing.

[19] Fuel load and its impact on termination is a function of the cumulative precipitation prior to

the current time step, as an indicator of water limitation on fuel build-up in arid areas:

Fueliermp = 1 — Precip:uelex” Eg. 10

11
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where Precip, is the average precipitation from -15 to -3 months, normalized from 0.5 mm.day-1
(Precipn=1) to 3mm.day-1 (Precipn=0). These were chosen based on the literature (Greenville et al.,
2009; Van der Werf et al., 2008; Van Wilgen et al., 2004), and on simple data analysis and parameter
value trials (see Table 1 and Figure S1 in supplementary material). Fuel,, is the shape parameter,
determined through the optimization procedure. Note that when integrated into an ecosystem

model, fuel constraints can be directly inferred from vegetation, litter and soil carbon pools.

[20] Landscape fragmentation is computed as the fraction of the grid-cell that cannot sustain
natural vegetation fires (croplands, urban areas, water bodies, deserts). Burned areas also contribute
to fragmentation, up to 8 months after the fire, thus avoiding repeated burns within the same fire

season, but allowing fuel build-up for the following fire season if enough precipitation occurs (e.g. in

sub-Saharan Africa).

Fragex
Fragiermp = Frag, P Eq. 11

where Frag, is the fraction of the grid-cell that cannot sustain a fire, normalized from 0% (Frag,=0)

to 100% (Frag,=1). Frag,, is the shape parameter, determined through the optimization procedure.

[21] Fire suppression is modeled as a function of land use (human presence), GDP, and fire
suppressibility. This approach assumes that 1) fire suppression activities are limited in regions with
low GDP, and in remote areas with little land use regardless of GDP (e.g. boreal fires in Canada and
Alaska, bush fires in northern Australia); and 2) the more fire prone the conditions (weather, fuel),
the less effective fire suppression efforts are. These assumptions are embodied in the following

equation:

12
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LUSUPgy GDPey
Supptermp = (1 - (1 - LUn p) X (1 - GDPn p)) X (1 - Fsuppressibility) Eq‘ 12

where LU, is the fraction of the grid-cell with land use, normalized from 0 (LLU,=0) to 0.1 (LU,=1),
LUSUP,, a shape parameter controlling the increase in suppression effort with land use density,
GDP, is the normalized GDP (from 0 to 600008/ capita), GDP,, the shape parameter, and F,,,. .
a proxy for the influence of weather and fuel on easiness of suppression. LUSUP,, and GDP, , are
determined through the optimization procedure. Note that GDP,, has the same value as in Eq. 3
for human ignitions. GDP has a negative relationship on fires through both ignitions and
suppression, leading to an under-constrained optimization if maintaining 2 separate parameters.

F st 18 dependent on weather conditions and fuel, assuming lower suppressibility with windier,

drier, hotter conditions and with higher fuel load:

n

X (1 - TnTexp) x G(W) x Precip:udexp

Fsuppressibility = (1 - RH::HQXP) X (1 - SWSWexp) Eq_ 13

2.3. Model optimization

[22] The 9 optimized parameters (Table 1) are classified in 2 categories:

a. Non-shape parameters (2 out of 9) account for quantitative impacts of fire drivers:
the default number of human ignitions per land use area (L.U,,), and the probability

that lightning strikes on vegetated areas ignite a fire (CG,,,).

13
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b. Shape parameters (7 out of 9) control the shape of the relationship between a given
driver and fire. For example, relative humidity is assumed to limit fire spread
between 30% and 80%, but the linear or non-linear relationship with relative
humidity between 30% and 80% and fire spread is unclear. To optimize this type of
parameter, the variable was first normalized between 0 (RHmin=30%) and 1
(RHmax=80%). Then the actual impact of RH on fire spread rates was computed

with a shape parameter, RH,, (Eq. 4).

[23] These shape parameters can convey a wide range of potential driving relationships (Figure
2). The exponential function was selected to balance gains in process understanding and costs
associated with computational efforts. We assumed that fires respond monotonically to all optimized
drivers, but acknowledge that more complex fire driving relationships cannot be accounted for here.
Exploring such aspects would require 2 or more parameters per driver, which would lead to
computational speed and convergence problems during optimization. The objective was to infer
general conclusions on otherwise little understood fire drivers, for which single-parameter functions

were well adapted.

[24] We used a Markov Chain Monte Carlo approach based on the Metropolis Algorithm
(Metropolis et al., 1953) to obtain best-fit parameter values. The algorithm generates trial sets of
parameters pseudo-randomly, and compares model outputs with observation data. Each trial set is
either accepted or rejected, and the history of acceptance and rejection guides the generation of
subsequent trial sets. Acceptance occurs if a trial set leads to a better fit than the current
parameterization. To limit the risk of convergence to local optimums, acceptance may also occur if
the trial set does not have a better fit, with decreasing likelihood as the difference with the best fit

increases. Upon acceptance (rejection), the range of possible parameter values is increased

14
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(decreased) before the next trial set is generated. The algorithm typically explored hundreds to over a

thousand sets of trial parameter values before converging to a best fit (Figure 3).

[25] The optimization metric was defined to minimize classification error across 7 classes of
annual burned fraction (interval boundaries: 0, 1, 5, 10, 20, 35, 50+% of the grid-cell), and to
maximize the correlation with observed inter-annual variability. Within each class, grid-cells are
attributed continuous values based on linear interpolation: a grid-cell with 3% burned fraction is
given the value of 2.5, being in the middle of the 2™ interval boundaries. This classification approach
aims at capturing important changes that would have little weight on the optimization if using direct
burned fraction value. The difference between 3% and 4% in fire-sensitive tropical forests is
probably more relevant to capture than between 33 and 34% in fire-adapted grasslands of northern

Australia.

Optindex = Eq‘ 14

2
eridcell=1(M0chlass - OBSfclass) + Zgridcelhl (1 - IAVcorrcoef(MODr OBS))
n

and OBS

class

where MODf

class

are the modeled and observed fire classification, and LAV, the

correlation coefficients for both time series, for each grid-cell.

[26] The optimization was performed using modeled and observed burned area over 5-years
(2002-2007). Fewer than 2% of all land grid-cells were used for the optimization step; these were
selected manually to represent the broad spectrum of fire regimes and the range of environmental
conditions around the world (e.g. biomes, land use density, fuel gradient in semi-arid regions, GDP,
see Figure S2). No grid-cells were selected from South America, in order to test the model’s ability

to reproduce fire patterns under combinations of drivers it might not have encountered during

15
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optimization. To evaluate the robustness of the algorithm convergence, we performed 20
optimization runs, each using different grid-cells and years. The algorithm was a very valuable tool
applied repeatedly throughout model development to support its design. In particular, we used it to
test the relevancy of additional fire driving mechanisms by quantifying the gain in the optimization
index, to progressively adapt non-optimized parameters (e.g. input normalization range), and to

compare the performance with different data sources (e.g. alternative land cover datasets).

2.3.1. Model evaluation
[27] We evaluated HESFIRE using satellite-derived estimates of 1) burned area and aggregate
characteristics of regional fire activity over a 13-years timespan (fire incidence, seasonality, inter-

annual variability); and 2) the regional distribution of fire size for the year 2005.

[28] Finally, we performed a sensitivity analysis to evaluate the influence of each model parameter
on the averaged annual burned area within the model. For each parameter, the model was run twice,
with the parameter changed to +50% and -50% of its original value while everything else was kept
the same. For each grid-cell, we then extracted the parameter that generated the largest change in
burned area. This approach has been applied in numerous modeling studies (e.g. Potter et al., 2001;
White et al., 2000; Zaehle and Friend, 2010; see Saltelli et al., 2000 for alternatives methods). Results of
the sensitivity analysis were grouped into four classes to map the spatial distribution of parameter
sensitivity: 1) Climate (lightning strike, RH, soil moisture and temperature parameters); 2) Fuel
(precipitation-based proxy); 3) Anthropogenic (ignitions and suppression parameters); 4)

Fragmentation (landscape fragmentation parameter).

2.4. Data

2.4.1. Weather

16
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[29] We combined two data sources to estimate the spatial and temporal variability in natural
ignitions from lightning. The timing and location of cloud-to-ground lightning strikes is based on
convective precipitation (Allen and Pickering, 2002) using sub-daily convective precipitation data
from NCEP (see below). We then corrected biases in the spatial distribution of lightning strikes
identified by the authors of this method with the observed LIS/OTD climatology (Christian et al.,

2003), converted to cloud-to-ground lightning strikes following (Prentice and Mackerras, 1977).

[30] Sub-daily relative humidity, soil moisture, temperature, wind speed and convective
precipitation data were obtained from the NCEP reanalysis-II project (Kanamitsu et al., 2002). For
fuel limitation, we used monthly precipitation data from the Global Precipitation Climatology
Project (GPCP, Adler et al., 2003). All data were interpolated linearly from their original resolution

(2.5-degree for NCEP) to the model 1-degree resolution, and averaged from 6-houtly to 12-hourly.

2.4.2. Land cover
[31] We used the GlobCover version 2.3 land cover map (Bontemps et al., 2011) to estimate the
distribution of natural ecosystems and human land uses at 1-degree resolution. GlobCover data were
re-gridded from the original 300m resolution to 1-degree and reclassified from 22 land cover classes
to the 5 classes used in the model (forests, shrublands, grasslands, croplands/urban, bare

areas/water).

2.4.3. Land use and GDP
[32] Land use density was computed as the sum of crops and urban lands in the GlobCover data.

National GDP was inferred from the 2009 World Factbook (CIA, 2009).

2.4.4. Fire activity

17
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[33] The Global Fire Emission Database (GFED, version 3, van der Werf et al., 2010) was used
in the optimization procedure as well as to evaluate the representation of fire incidence, seasonality
and inter-annual variability in HESFIRE. The regional distribution of fire was evaluated with
observations from the MODIS MCD45 burned area product (Roy et al., 2008). Note that both of
these products feature substantial uncertainties (Giglio et al., 2010, 2013; Roy et al., 2008). In the
case of burned area from GFED, we consider uncertainties to be roughly 25-50% based on these

papers and on comparison between GFED versions 2, 3 and 4.

3. Results

3.1. Optimization

[34] The parameters inferred by the optimization procedure are consistent with our current
understanding of fire drivers, and provide a quantitative estimate on otherwise pootly constrained
relationships. Their value, variability across the 20 optimization runs and implications for fire
ignition, spread and termination are presented in Figure 4 and Figure 5. In 16 out of the 20
optimization runs performed, the final set of parameters was relatively similar to the final model, and
changes in parameter values were mostly compensative of each other, especially for correlated fire
drivers (e.g. relative humidity and soil moisture). In four cases, the optimization procedure reached
an alternative configuration, with one or several parameters differing from the final parameterization
by a factor greater than five, and were discarded as unsuccessful parameterization, most likely getting
stuck at local optimums. Hereafter, we refer to the remaining 16 models to consider parameter

uncertainty, represented by the black lines in Figure 4 and shaded areas in Figure 5.

[35] For fire ignitions, the probability that lightning strikes on natural vegetation ignite a fire
under fire prone conditions is optimized at 6.8% (uncertainty range [2.8 to 16.6%]), comparable to

the value inferred from the literature used in SPITFIRE (4%, Thonicke et al., 2010). We emphasize,
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however, that this metric is a general probability that does not depict the complex relationship
between cloud-to-ground lightning strikes and fire ignitions (Podur et al., 2003). Regarding
anthropogenic sources, the optimization procedure suggests that the number of human ignitions
saturates at a low landuse fraction, with any additional land use beyond 2-3% of the grid-cell area
having no contribution to ignitions (Figure 5a). The final number of anthropogenic ignitions further

depends on GDP per capita, with a neatly linear relationship Figure 5b.

[36] Regarding fire spread, exponents depicting the role of RH and soil moisture indicate

relatively linear relationships, with significant uncertainty (RH,,, = 1.18 [0.52 to 1.29]; SW, = 1.21

exp

[0.3 to 1.44]) (Figure 5d,e). The relationship with temperature is slightly non-linear (T, = 1.78 [0.80

exp
to 3.30]), indicating a lower impact of temperature changes towards the higher range of the influence
interval ([0 30°C]). Optimizing the model without the influence of temperature produced relatively

similar performances, except in high-latitude regions where temperature constraints encompass

limits on fire spread (e.g., snow cover).

[37] For fire termination, the anthropogenic influence indicated a rapid saturation of suppression
efforts with land use density (LUSUP,, = 4.08 [1.62 to 7.18]) and maximum suppression at 0.1
fractional land use (Figure 5a). The influence of GDP was approximately linear (GDP,, = 1.28
[0.97 to 2.24]), while the influence of landscape fragmentation was slightly non-linear (FRAG,, =
1.41 [0.83 to 3.02]). The cumulative precipitation proxy for fuel load also indicated a slightly non-
linear relationship (FUEL,, = 1.72 [1.62 to 3.65]). Climatic factors only operate through condition

thresholds (e.g. relative humidity over 80%) and were thus not optimized.

3.2. Global 1997-2010 run and comparison to observation-derived data
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[38] The modeled and observed average annual burned fractions across the world are illustrated
in Figure 6. In South America, which was not part of the optimization phase, HESFIRE depicts
most spatial patterns as well as the actual incidence of fires, including increased fire activity
associated with the expansion of human activities into the Amazon basin, the competing influence
of the moisture gradient (Le Page et al., 2010b), and fires associated with pastures and grasslands in
northern Venezuela and southern Columbia. In Africa and Australia, HESFIRE generally captures
high fire incidence in grassland areas, although modeled spatial patterns in Africa are more uniform
than observations (probably due to the simple representation of fuel, see sect. 4.1.2). HESFIRE also
reproduces areas of moderate fire incidence in south-eastern Asia, Kazakhstan and south-western
Europe, and identifies strong fire gradients with decreasing fuel load across semi-arid and arid
regions (e.g. in Africa, central Australia), although with some limitation especially at the northern
edge of sub-Saharan Africa where fire incidence is over-estimated. Conversely, HESFIRE performs
poorly in several regions, including the pan-boreal region, at least partly due to a bias in the climate
and soil moisture data (see discussion), as well as Central America, Mexico, the horn of Africa and
some areas of the Middle East where fire incidence is over-estimated. It also under-estimates fire
incidence in Indonesia, where soil moisture remains beyond the fire prone threshold almost all year
long. Fires preferentially occur on areas with degraded forests and drained peatlands in Indonesia
(Page et al., 2002; Van der Werf et al., 2008), which moisture dynamics is not captured in a 2.5-

degree resolution dataset.

[39] Aggregated monthly burned area across 14 regions and their respective fire size distribution
are illustrated in Figure 7. The monthly time setries provide insights into the performance of
HESFIRE on regional fire incidence, fire seasonality and inter-annual variability. Average burned

area in the main fire incidence regions are in agreement with the GFED database (NHAF, SHAF,
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AUST, SHSA). Seasonality also shows a good agreement, whether regionally or at 1-degree
resolution (not shown). The main seasonality discrepancy occurs in sub-Saharan Africa, where the
model substantially delays the onset and peak of the fire season. Finally, HESFIRE performs
unevenly regarding inter-annual variability, with medium to high correlation to observations in some
tropical and temperate regions, but low or even negative correlation in boreal regions. It reproduces
the El Nino induced anomaly in Indonesia in 1997-1998, but because of the under-estimation of fire

incidence mentioned before, the actual extent of that extreme fire episode is not captured.

[40] Next to each time series, the regional fire size distribution histograms for 2005 suggest the
representation of single fire size in HESFIRE is within the range of observations, and that it depicts
the decreasing fire frequency as a function of fire size. It tends to overestimate the frequency of
large fires and their contribution to the total burned area, however. Fire duration could not be
readily evaluated with the MODIS data, but a map of maximum fire duration is provided in
supplementary material to illustrate this capability (Figure S3). 68% of the 2005 burned area

occurred in fires longer than one day in HESFIRE.

3.3. Model sensitivity

[41] The sensitivity analysis shows the class of the parameter whose altered values (+50% and -
50%) led to the largest change in averaged annual burned area at the grid-cell level (Figure 8). In
boreal regions, although HESFIRE does not perform well, fire incidence is mostly sensitive to
weather parameters, and to a lower extent to the fuel load parameter. In humid tropical ecosystems,
HESFIRE is also mostly sensitive to weather parameters, but anthropogenic parameters become
dominant in areas with a substantial dry season and agricultural activities, especially in South
America along the arc of deforestation. In semi-arid areas, the vegetation fuel parameter has the

most influence, including in Mexico, sub-Saharan and southern sub-equatorial Africa, the horn of
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Africa, Australia and Kazakhstan, with consequences for the model performance in these various
regions (see discussion). Finally, HESFIRE is primarily sensitive to the landscape fragmentation
parameter in several regions due to two mechanisms. In regions of high land use density (e.g. India),
fire spread is constantly limited by the fragmentation parameter and fire incidence is low, but can
increase (or diminish further) when altering its value. In regions of low land use density but high fire
incidence due to a very seasonal climatology (e.g. sub-Saharan and northern sub-equatorial Africa),
landscape fragmentation due to previous fires becomes a limiting factor for late-season fires. Finally,
regions of relatively high land use density and fire incidence are probably sensitive to both
mechanisms. Note that a landscape fragmentation is in part due to human activities, adding to the

sensitivity of the model to anthropogenic factors.

4. Discussion

4.1. Model performance and potential improvements

[42] HESFIRE shows encouraging capabilities, especially given the difficulty of achieving a good
representation of global fire patterns (Bowman et al., 2011; Spessa et al., 2013). It is a first step
towards the 3 objectives stated in introduction. First, the model avoids some assumptions that
would be fundamentally inconsistent with fire ecology (e.g. fire spread limited to a single day).
Second, it includes climatic, anthropogenic and vegetation drivers, and the input variables were
chosen so as to enable integration within dynamic vegetation and integrated assessment models (e.g.
human ignitions dependent on land use instead of population). Third, HESFIRE reproduces
reasonably well many aspects of regional fire activity, including fire incidence and variability in South
America and fire size, both of which were not part of the optimization procedure, and its regional
sensitivity to the 4 parameter classes corresponds to what would be expected based on broad fire

ecology concepts.
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[43] The comparison to results reported by other models — mostly fire incidence — suggests
HESFIRE generally achieves strong performances on spatial patterns (Figure 6 in this paper, figure
3c in Thonicke et al., 2010, figure 2 in Prentice et al., 2011, figure 1 in Kloster et al., 2010), and on
the actual quantification of the average burned area fraction, with a rather infrequent occurrence of
large discrepancies which are susceptible to severely bias impacts on vegetation and carbon
dynamics. Note however that these results are not fully comparable as they are produced from fire-
modules embedded within dynamic vegetation models, with potential bias originating from other
parts of the model (e.g. PFT distribution, fuel load). The fire model developed by Li et al. (2012) and
modified to better account for anthropogenic ignitions has similar spatial patterns of averaged

burned area to HESFIRE (figure 9 in Li et al., 2013).

[44] The combination of these characteristics and performance suggests that the modeling and
optimization framework realistically captures the primary fire-driving mechanisms and the specific
magnitude of their influence regionally. It could thus bring relevant insights into future fire activity
under altered environmental conditions, including agricultural expansion and extreme climatic events
(e.g. sustained droughts). There are however a number of issues, as well as key potential

improvements which we discuss in the next sections.

4.1.1. Fire incidence in boreal regions
[45] HESFIRE under-estimates fire incidence in Boreal regions. This issue has been reported
before by Rupp et al. (2007), whose model projected almost no burned area when driven by the
NCEP data but performed better when driven by other datasets. Serreze and Hurst (2000) found
that summer precipitation is largely over-estimated in NCEP, compromising the whole hydrological

cycle including RH and soil moisture. Alternative datasets may address this issue, either by using
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them as a direct input or to correct the bias in the NCEP data while maintaining its high temporal

resolution and extensive timespan.

[46] HESFIRE might be further limited because it does not represent specific aspects of boreal
fire regimes. In particular, boreal needle-leaf forests are highly flammable and have a vertical
structure favorable to the development of crown fires, which spread faster and can overcome higher
levels of moisture and humidity (Ryan, 2002). Additionally, large boreal fires typically spread over
weeks or months - which can be captured by HESFIRE - but might also remain dormant in a
smoldering phase during fire-averse conditions and re-activate later without any new ignitions

(Sedano and Randerson, 2014).

4.1.2. Fires in semi-arid regions and links to the fuel proxy

[47] Semi-arid ecosystems presented a particular challenge due to the sensitivity of fuel
characteristics to soil, precipitation and potential evapotranspiration conditions, which cannot be
fully captured by the cumulative precipitation proxy. In the final parameterization, HESFIRE is in
good agreement with observations in Australia, southern hemisphere Africa and Kazakhstan, but
over-estimates fire incidence in Mexico, the horn of Africa and semi-desert areas at the border of the
Sahara (Figure 8). Precipitation patterns in these xeric landscapes vary widely. Some semi-desert
regions have low amounts of precipitation year-round (Kazakhstan), while others have short rainy
seasons (sub-Saharan Africa). The optimization procedure favors one set of conditions, leading to

unequal performances across these regions.

[48] Clearly there are other potential factors contributing to this issue, but most of them are likely
related to fuel characteristics. The integration of HESFIRE within a vegetation model (Sect. 4.2.3)

will be important to provide dynamic and process-based estimates of fuel load, fuel structure and
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fuel moisture (see Sect 4.2.3). In parallel, integrating observation-derived estimates of aboveground
biomass (Saatchi et al., 2011) as a fuel-proxy could improve performances while maintaining the

value of a standalone version of HESFIRE.

4.1.3. Representation of anthropogenic ignitions

[49] Modeling the global diversity of fire practices remains a significant challenge. HESFIRE
performs well in regions with a well-established anthropogenic footprint on fire regimes, even
though it is based on a simplistic representation of fire practices and suppression effort by necessity
to obtain a globally consistent initial approach. The timing and frequency of anthropogenic ignitions
are a complex aspect to represent in global models. In sub-Saharan Africa for example, local
populations are known to burn numerous small fires early in the dry season to fragment the
landscape and limit the occurrence of high-intensity late-season fires (Laris, 2002; Le Page et al.,
2010a). These fire management practices are not accounted for in HESFIRE, leading to a delayed
fire-peak month (by 1-3 months), and to an over-estimation of the average fire size. Beyond this
specific case, fire practices vary as a function of land use (e.g. agriculture, pastures), of land use
transitions (e.g. deforestation and post-clearing activities Morton et al., 2008), of land management
practices (fire prevention, fire suppression), and can also be due to arson or leisure activities (e.g.
campfire). For agricultural lands, fire practices can be very specific (clearing, pre-sowing, pre- and
post-harvest burns) and last for as little as a week to several months (Le Page et al., 2010a). Finally,
these practices vary at local to global scale according to environmental conditions, the availability of
alternatives to fires (e.g. fertilizer, pest control), national regulations, fire fighting capabilities, etc.
There is not much ground to believe fire practices will closely follow future GDP and land use
trends, but they are part of the equation. Research towards a better representation of broad classes

of fire practices is ongoing (Li et al., 2013), and, as mentioned in other studies, fire driver analysis on
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longer time periods (e.g. with historical reconstruction, Mouillot and Field, 2005) would provide

further guidance.

4.1.4. Representation of fire spread
[50] The evaluation suggests the modeled average fire size is within the observed range, but
HESFIRE tends to overestimate the contribution of large fires, which could be linked to the
representation of fire spread as an idealized elliptic shape, similar to other global fire models. Burned
areas are typically patchy and the front line rarely remains unbroken around the perimeter of the fire,
especially in fragmented and uneven landscapes. Better accounting for these aspects could improve
models performances, for example with the implementation of a fragmentation feedback on the

fraction of the idealized elliptical shape that actually burns.

[51] Additionally, anthropogenic fire practices mentioned in Sect. 4.1.3 can have a substantial
footprint on fire size, including in regions where it is over-estimated by HESFIRE. In sub-Saharan
Africa for example, a better representation of small early dry-season burns as a fire management
practice would lead to a more realistic accounting of fire sizes and of the landscape fragmentation

feedback on late-season fire spread.

4.2. Applications to environmental issues and for decision support.
4.2.1. Projection of future fire activity
[52] Large scale policy decisions on agricultural production and climate mitigation will have
impacts on fire activity and might have to adapt in response, which global fire models could help
anticipate. Projections of agricultural lands point to a wide range of potential outcomes regarding
their expansion in natural ecosystems, depending among other factors on food demand,

technological developments and policies such as incentives for forest conservation (e.g. REDD) or
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biofuels expansion (DeFries and Rosenzweig, 2010; Thomson et al., 2010; Tilman et al., 2011).
Given the sensitivity of fire activity to human presence in the landscape and to climate, it is essential
to anticipate the fire impacts of these scenarios, as well as the synergies and trade-offs with their
respective societal goals (e.g. climate mitigation, food security, biodiversity). An integrated
perspective is key to understand the interactions in play and to provide some level of confidence in
projections of fire regimes under altered environmental conditions (Bowman et al., 2009, 2011). We
believe HESFIRE as a standalone version can provide relevant insights on fire incidence and
variability under projections of future climate (Taylor et al., 2012), land use (Hurtt et al., 2011) and

societal conditions (Van Vuuren et al., 2011), and on regional sensitivities.

4.2.2. Integration to vegetation and socio-economic models
[53] Beyond fire incidence and variability, fire impacts are of primary importance in multiple
contexts, including climate mitigation policies and the global carbon cycle (Le Page et al., 2013; van
der Werf et al.,, 2010), ecosystem dynamics across major biomes (Bond-Lamberty et al., 2007;
Cochrane, 2009), as well as pollution, health effects and a wide range of economic aspects (e.g.

Bowman et al., 2011; Calkin et al., 2005; Kochi et al., 2010; Sastry, 2002).

[54] First, impacts on ecosystem dynamics, the carbon cycle and other pollutant emissions can be
explored in fire models coupled to dynamic vegetation model (e.g. Thonicke et al., 2010). HESFIRE
is being implemented in the Ecosystem Demography model (ED, Moorcroft et al., 2001) which is
well adapted for fire impacts modeling because it tracks vegetation patches of different ages within a
grid-cell and the size and type of successional cohorts within each patch. Such characteristics are
essential to realistically estimate fire behavior (e.g. ladder fuel and crown versus understory fires), fire
intensity and combustion completeness, size and PFT dependent fire-induced mortality (Brando et

al., 2012), snags and downed-fuel decomposition rates (Chambers et al., 2000; Palace et al., 2008),
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and post-fire regrowth dynamics (Balch et al., 2008; Bond-Lamberty et al., 2007; Goetz et al., 2007).
Vegetation models also enable a process-based representation of key fire drivers, especially fuel load
and fuel moisture that are otherwise estimated through proxy variables in HESFIRE (precipitation

and soil moisture).

[55] Second, the role of fires within the Human-Earth system needs to be explored within an
integrated framework to provide consistent scenarios of climate, ecosystems and society under
different environmental policy assumptions (Le Page et al., 2013). HESFIRE has been specifically
developed to this end, with anthropogenic input data commonly reported and projected by
integrated assessment models (land use and GDP). Recent developments to couple integrated
assessment models to process-based vegetation and climate models (Jones et al., 2013) enable the
simultaneous consideration of societal, vegetation and climate dynamics and how they feed back on
each other, without the need to exogenously specify input data from other models run under
potentially conflicting assumptions and forcing. Such a framework is particularly relevant to explore

fires and their interaction within the Human-Earth System.

5. Conclusions

[56] HESFIRE and its optimization procedure provide a relevant tool to explore certain aspects
of fire ecology and to anticipate potential changes in fire activity. We provide a first assessment of
the uncertainties attached to the parameters and the model sensitivity to the driving assumptions
they represent. We identify limitations and propose key developments to address the most
significant ones. Finally, we highlight potential research areas to better understand contemporary
and future fire activity, to support estimates of greenhouse gas emissions and ecosystem dynamics,
and to provide policy makers with insights into the consequences of potential economic and

environmental decisions.
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Table 1. Model parameters.

o . Source
Parameter Description Value & unit [optimization range], if applicable

Ignitions
CGignp Cloud-to-Ground ignition probability. Average probability of ignition from o Optimization

a cloud-to-ground lightning strike on natural vegetation. 6.8% [2.8 - 16.6]
LUjgn Land Use ignitions. Original number of human ignitions per km® of land use 2.3 x107 Optimization

per 24 hour, prior to applying density-decreasing function (see LUp). km-! [1.1-6]x10°
LUcxp Land Use exponent. Shape parameter: Controls the decreasing contribution Optimization

of incremental land use areas to human ignitions 14.9 [14.7 - 19.8]
GDP,,," GDP exponent. Shape parameter: Impact of GDP on ignitions, through land Optimization

: 1.28

use practices. [0.83 —3.02]
LU ange Land Use range. of fractional land use controlling human ignitions, with no [0-0.1] Successive trials for reasonable exponent

ignitions beyond the upper bound. ’ value”
GDP ¢ GDP range. Range of regional GDP controlling fire ignitions, through land [0 - 60000] .

use practices 1 . Observed range

p : $.cap™.year

Spread
BAfe Burned Area fragmentation. Delay before burned areas can burn again

(given sufficient precipitation for fuel accumulation), meanwhile 8 months Model performance trials’

contributing to fragmentation.
MaX orestrate Maximum forest fire spread rate. 0.28m.s™ (Scott and Burgan, 2005)
MaXghrubrate Maximum shrublands fire spread rate. 1.12m.s™ (Scott and Burgan, 2005)
MaXgrassrate Maximum grasslands fire spread rate. 2.79m.s” (Scott and Burgan, 2005)



RH;ange RH range. Range of relative humidity controlling fire spread. (Lietal., 2012)
[30 - 80]% Scatter plot”®
Model performance trials
RHeyp RH exponent. Shape parameter: Impact of relative humidity on fire spread L18 Optimization
rate. ' [0.52 - 1.31]
SWiange Soil Water range. Range of volumetric soil moisture controlling fire spread. [20 - 35]% Scatter plot
° Model performance trials
SWeyp Soil Water exponent. Shape parameter: Impact of volumetric soil moisture Optimization
on fire spread rate. 1.21 [0.30 — 1.44]
Trange Temperature range. Range of temperature controlling fire spread. [0~ 30]°C Scatter plot
Model performance trials
Texp Temperature exponent. Shape parameter: Impact of air temperature on fire Optimization
spread 1.78
pread rate. [0.8 —3.8]
Termination
Fueliange Fuel range. Range of precipitation controlling termination probability, [0.5-3] Scatter plot
through fuel build-up. mm.day”' Model performance trials
Fuelgpan Fuel accumulation timespan. Timespan of average precipitation controlling (Greenville et al., 2009; Van der Werf et
fuel build-up. 12 months al., 2008; Van Wilgen et al., 2004)
Model performance trials
Fuelgeray Fuel accumulation delay. Delay from actual precipitation to fuel build-up. 3 months Model performance trials
Fuelex, Fuel exponent. Shape parameter: Impact of precipitation over -15 to -3 Optimization
e . X 1.72
months on fire termination probability, a proxy fuel build-up. [1.62 —3.65]
Fragange Fragmgntatlon range. Range of fractional landscape fragmentation [0-1] Oberved range
controlling termination probability.
Frage,, Fragmentation exponent. Shape parameter: Impact of landscape 181 Optimization

fragmentation on fire termination probability.

[0.94 - 2.48]
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LUrange

LUSUP.y

GDPrange

GDP.y,*

Land Use range. Range of fractional land use controlling termination
probability, through suppression efforts.

Land Use SUPpression exponent. Shape parameter: Impact of land use on
fire termination probability, through suppression efforts, in interaction with
GDP (below).

GDP range. Range of regional GDP controlling fire suppression effort.

GDP exponent. Shape parameter: Impact of GDP on suppression effort,
through land use practices.

[0-0.1]

4.08

[0 - 60000]
$.cap™.year”

1.28

Successive trials for reasonable exponent
value

Optimization
[1.62 —7.18]

Oberved range

Optimization
[0.83 —3.02]

*: in order to limit the number of parameters to optimize for the first version of the fire model, GDP.y, is attributed the same optimized
value whether it applies to fire ignitions or fire termination.
®: Successive trials for reasonable exponent value. This was applied to the range of land use fraction for ignition and suppression (see

Sect. 2.2.1.2).

‘. Oberved range. The range covers all or most of the values across the world. For GDPypee, a few grid-cells are beyond the
60000$/capita upper limit (in Qatar).
9 Model performance trials. These parameters were not determined using the full optimization procedure, but we tried a limited

number of values (e.g. 5, 8 and 12 month for BAg,,) and selected the one leading to the best fit.

°: Scatter plot. We used scatter plot to determine the range of influence of some drivers, namely RH, soil moisture, temperature and the
precipitation fuel proxy. An example is given in supplementary material.
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6.8% of cloud-to-ground lightning strikes on fire prone vegetation do ignite a fire. The range is
2.8% to 16.6% for the 16 optimization runs reaching a similar overall parameterization.
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Figure 5. Optimized model parameters and their influence on fire ecology. For each plot,
the thick black line represents the parameter influence in the final model. The dotted black
lines represent the 16 optimization runs that reached a similar parameterization to the final
model, the shaded area showing the range of their influence. The dotted grey lines represent
the four optimization runs that reached a parameterization substantially different from the
final model (see text).
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Figure 6: Observed and modeled average annual burned fraction. Top: GFEDv3 burned
areas on “natural” landscapes. Bottom: Fire model.
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Figure 7. Comparison of HESFIRE with observation-derived data over 14 regions. Left side

plots: time series of normalized monthly burned area, with quantification of average annual
burned area in GFED and in HESFIRE, and inter-annual correlation. Right side: 2005
distribution of fires by size classes and cumulative burned area along these classes.
Observation data are from the MODIS MCD45 product. * indicates significance of the IAV
spearman correlation (p<0.05, (Spearman, 1904))
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Figure 8. Major drivers of average annual burned area sensitivity among the 9 optimized
parameters as grouped into 4 thematic classes (climate, vegetation fuel, anthropogenic
practices, landscape fragmentation). For each of the 9 parameters, HESFIRE was run
keeping the original parameterization, but altering the value of the considered parameter by
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-50% and +50%. The map shows the class of the parameter for which the average burned
area in the considered grid-cell varied the most between the 2 runs with these alternative
values.



