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Abstract 13 

Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. 14 

Anticipating potential changes in fire activity and their impacts relies first on a realistic 15 

model of fire activity (e.g. fire incidence and inter-annual variability) and second on a model 16 

accounting for fire impacts (e.g. mortality and emissions). In this paper, we focus on our 17 

understanding of fire activity and describe a new fire model, HESFIRE, which integrates 18 

the influence of weather, vegetation characteristics, and human activities on fires in a 19 

standalone framework. It was developed with a particular emphasis on allowing fires to 20 

spread over consecutive days given their major contribution to burned areas in many 21 

ecosystems. A subset of the model parameters was calibrated through an optimization 22 

procedure using observation data to enhance our knowledge of regional drivers of fire 23 

activity and improve the performance of the model on a global scale. Modeled fire activity 24 

showed reasonable agreement with observations of burned area, fire seasonality and inter-25 

annual variability in many regions, including for spatial and temporal domains not included 26 

in the optimization procedure. Significant discrepancies are investigated, most notably 27 

regarding fires in boreal regions, in xeric ecosystems, as well as fire size distribution. The 28 



 2 

sensitivity of fire activity to model parameters is analyzed to explore the dominance of 1 

specific drivers across regions and ecosystems. The characteristics of HESFIRE and the 2 

outcome of its evaluation provide insights into the influence of anthropogenic activities, 3 

weather and their interactions on fire activity.  4 
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1. Introduction 9 

[1] The human population has more than doubled in the past 50 years, expanding the scale and 10 

diversity of changes in the Earth system from anthropogenic activity. The build-up of greenhouse 11 

gases in the atmosphere, as well as the degradation and conversion of natural lands, have major 12 

consequences for future climate, natural ecosystems, and human societies (Parry, 2007; Stocker et al., 13 

2013). The interactions between human and natural systems are complex, yet observational data, 14 

field experiments, and various types of models continue to elucidate key linkages among climate 15 

variability, ecosystem function, and anthropogenic activities. This knowledge is essential to anticipate 16 

potential changes under future conditions and to design adaptation or mitigation strategies that 17 

promote the sustainability of the coupled Human-Earth system.  18 

[2] One of these interactive processes linking human activities and natural ecosystems is fire 19 

(Bowman et al., 2009). Humans exert considerable influence over global fire activity (Le Page et al., 20 

2010a); fire-driven deforestation accounts for an estimated 20% of the increase in atmospheric CO2 21 

from human activities since preindustrial times (Bowman et al., 2011; van der Werf et al., 2010). Fire 22 

activity depends on a range of drivers covering three major components of the Human-Earth 23 

System: the atmosphere (e.g. weather conditions), the terrestrial biosphere (e.g. fuel loads) and 24 

anthropogenic activities (e.g. land-use fires and fire suppression). The interaction among these 25 
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drivers determines global fire activity, as illustrated in 1997-1998 when a strong El Niño led to 1 

extreme fire events around the world (Le Page et al., 2008), including unprecedented fires in 2 

peatlands and forests of Indonesia where human-caused fires emitted an estimated 13 to 40% of the 3 

world’s annual fossil fuel emissions (Page et al., 2002).  4 

Former paragraph 3 was removed. 5 

[3] Modeling fire activity under future climate, policy, and land use scenarios requires a 6 

framework with a broad range of variables (Pechony and Shindell, 2009) and a good understanding 7 

of the influence of these variables for model parameterization. Several global fire models have been 8 

developed in recent decades, each with a different focus (e.g. Arora and Boer, 2005; Li et al., 2013; 9 

Pfeiffer et al., 2013; Prentice et al., 2011; Thonicke et al., 2001, 2010). Among these examples, 10 

SPITFIRE (Thonicke et al., 2010) is a process-based fire model coupled to a vegetation model 11 

explicitly representing many physical properties of fire behavior providing great capabilities 12 

regarding fire spread, fire intensity and fire impacts (damage, mortality, emissions). The model 13 

developed by Li et al. (2013) has a particular emphasis on depicting anthropogenic ignitions, with 14 

good performances regarding global patterns of burned area.  15 

[4] One key prospect to build upon existing work, as mentioned by Thonicke et al. (2010), is to 16 

develop the capability for modeling fire spread over consecutive days. This capability has been 17 

reported in one global fire model focusing on pre-industrial era fires (Pfeiffer et al., 2013). In many 18 

ecosystems, multi-day fires are a major driver of the overall fire activity. In boreal regions, dry-spells 19 

and heat-waves in days and weeks following ignition enable the growth of large fires (Abatzoglou 20 

and Kolden, 2011), and although those burning over 200ha represent a minor fraction of all fires, 21 

they typically account for 90+% of the total area burned (Stocks et al., 2002). In tropical forests, 22 
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large-scale climate anomalies allow individual fires to spread over several weeks, including areas 1 

further away from the forest edge where ignitions typically occur (Morton et al., 2013). Similar 2 

findings have been reported for temperate regions, including in Mediterranean ecosystems (Pereira 3 

et al., 2005; Westerling et al., 2004). Modeling fire-climate interactions therefore requires careful 4 

attention to the duration of fire weather events.  5 

[5] Another opportunity for fire modeling research is model parameterization and their 6 

evaluation. Many early models had to extrapolate findings from local studies or to simplify key 7 

drivers of fire activity when information of some components was unavailable (e.g. ignitions 8 

independent of anthropogenic activities). Recently, model calibration has been applied to one 9 

(Thonicke et al., 2010) or a few (Li et al., 2013) parameters. Expanding this approach to additional 10 

parameters could yield relevant insights on fire drivers. Subsequent model evaluation is essential to 11 

assess our confidence in fire projections, especially regarding fire activity - which global spatio-12 

temporal patterns are relatively well characterized by observation data (Mouillot et al., 2014) – 13 

because depicting patterns of fire activity and their sensitivity to fire drivers is a pre-requisite to 14 

project realistic fire impacts. Evaluating fire models is challenging when they are embedded within 15 

vegetation models however, because vegetation distribution strongly affects fire dynamics (Scott and 16 

Burgan, 2005), and if modeled inacurately, may lead to unrealistic fire projections for reasons 17 

unrelated to the fire parameterization. 18 

[6] This paper describes the development of the HESFIRE model (Human-Earth System 19 

FIRE), aiming to improve our understanding of current fire activity and our capacity to anticipate its 20 

evolution with future environmental and societal changes. HESFIRE is first developed as a 21 

standalone model, i.e. not integrated within a dynamic vegetation model. The major emphasis of this 22 

research is to outline the model structure and apply an optimization procedure to explore some of 23 
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the research opportunities mentioned above. Our analysis has three main objectives: 1) explicit 1 

representation of fire ignition, spread, and termination, without exogenous constrain on fire 2 

duration; 2) consideration of atmospheric, terrestrial, and anthropogenic drivers in order to 3 

represent synergistic effects among weather, vegetation, and human activity—key steps towards the 4 

implementation of the fire model within Human- and Earth-system models; and 3) model 5 

optimization and evaluation to improve our understanding of constraints on global fire activity and 6 

to quantify uncertainties of future fire activity projections.  7 

2. Methods 8 

2.1. Model overview 9 

[7] The structure of HESFIRE was designed to satisfy objectives 1 & 2 (representation of 10 

ignition, spread and termination, and ease of integration to vegetation and integrated assessment 11 

models), and some of its parameters were optimized to estimate the quantitative role of poorly 12 

understood drivers and to maximize the agreement between modeled and observed fire regimes 13 

(objective 3). The model focuses on fires in natural ecosystems: deforestation and agricultural fires 14 

are dependent on very different dynamics (controlled spread, pile burning) and thus only considered 15 

as a source of ignition for escaped fires.  16 

[8] The model is organized in three parts, with specific drivers for fire ignition, spread, and 17 

termination (Figure 1): 18 

- Fire ignitions. Natural ignitions are a function of cloud-to-ground lightning strikes and a 19 

probability of ignition per strike. Human ignitions reflect agricultural and ecosystem 20 

management as a function of land use density and national Gross Domestic Product (GDP). 21 
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- Fire spread. Fire spread rate is a function of weather conditions (relative humidity, 1 

temperature, wind speed), soil moisture, and fuel structure categories (forest, shrub, grass). 2 

- Fire termination. Four factors control the termination of fires: weather conditions, fuel 3 

availability, landscape fragmentation, and fire suppression efforts (a function of land use, 4 

GDP and fire suppressibility). 5 

[9] To account for the diurnal variability in fire spread and termination (see introduction), every 6 

fire is tracked individually with a 12-hour timestep. The analyses presented in this paper were 7 

conducted with model runs at a resolution of 1-degree. 8 

[10] HESFIRE is coded in Python 2.7 and is available at 9 

https://github.com/HESFIRE/HESFIRE1. The optimization procedure is included in the code. 10 

2.2. Model description 11 

[11] The full list of parameters is described in Table 1. The following sections detail the fire 12 

ignition, spread and termination modules. 13 

2.2.1. Fire ignitions 14 

[12] Fires may occur due to natural ignitions (NATign) and human ignitions (ANTHROPign): 15 

!!"#$% = !!"#!"# + !!"#$%&'!"# Eq.  1 

 16 
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To introduce some of the stochasticity associated with fires, Nfires represents the expected 1 

realization of a Bernoulli trial (n=1000), and the final number of ignitions is computed following 2 

the actual trial.  3 

2.2.1.1. Natural ignitions 4 

[13] Lightning strikes are the most frequent source of natural ignitions. Lightning ignitions are 5 

highly stochastic because of the localized occurrence of convective storms, variability in the 6 

frequency of cloud-to-ground lightning, and coincident rainfall which can terminate ignited fires 7 

before substantial spread occurs (see review in Podur et al., 2003). In HESFIRE, natural ignitions 8 

are the product of cloud-to-ground lightning strikes, the probability of ignition from lightning, and 9 

the fractional cover of flammable vegetation in a given grid cell: 10 

!"#!"# = !!"!"#$!!"!×!!"!"#$!×!(1− !!"#$!) Eq.  2 
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Where CGflashes is the number of cloud-to-ground lightning strikes, CGignp is the lightning ignition 12 

probability determined through the optimization procedure (see Sect. 2.3), and Fragn (fragmentation) 13 

the fraction of the grid-cell that cannot sustain a fire. Areas contributing to fragmentation include 14 

croplands, urban areas, water bodies, deserts, as well as areas burned within the last 8 months, the 15 

latter to avoid repeated burns within the same fire season. 16 

2.2.1.2. Anthropogenic ignitions 17 

[14] Humans are the dominant source of fire ignition in most temperate and tropical ecosystems. 18 

Ignitions from human activities include fires for agriculture and ecosystem management, 19 

deforestation for agricultural expansion, accidental fires, and arson. Fire usage varies across 20 
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countries, climate zones, and land use practices (Korontzi et al., 2006; Le Page et al., 2010a), and this 1 

diversity of human activity cannot be fully captured with current knowledge and data. However, 2 

wealth is an important driver of fire use in agricultural settings, since fire is typically the least costly 3 

tool to clear natural vegetation, control pests, or increase soil fertility (Laris, 2002; Thrupp et al., 4 

1997). Thus we represent anthropogenic ignitions as a function of land use intensity and national 5 

GDP, where higher fractional land use and lower GDP increase anthropogenic fire ignitions. Similar 6 

to the approach used in the SPITFIRE model (Thonicke et al., 2010), we assume that initial 7 

settlements bring more ignitions relative to additional ones:  8 

!"#$%&'!"# = ! (1− !"#!)!"#!"# !× !"!"#×!!"!!"!"#
!"!!"!"!

!"!!
 Eq.  3 

 
with LUn as normalized land use fraction:   

If LU ≤ LUrange[1] LUn = 1  

If LU ≥ LUrange[2] LUn = 0 Eq.  4 

Else !"! =
!"!"#$%[!] − !"

!"!"#$%[!] − !"!"#$%[!]
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where GDPn is the normalized Gross Domestic Product per capita (from 0$ to 60000$), GDPexp the 10 

associated shape parameter, LUign is the initial number of ignitions per km2 of land use, LUtot the land 11 

use area in the grid-cell considered, and LUexp the shape parameter controlling the decrease in the 12 

amount of additional ignitions with incremental land use. LUn is the normalized land use fraction of 13 

the grid-cell, from LUrange[1] = 0 (LUn = 1) to LUrange[2] = 0.1 (LUn = 0). Applying a wider 14 

normalization range systematically led to very high values of the optimized parameter LUexp, pointing 15 

to a rapid saturation of human ignitions with land use density. LUign and GDPexp were also 16 
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determined through our optimization procedure. Eq.  3 conveys the following fire driving 1 

mechanisms: 2 

- Anthropogenic ignitions increase with human occupation of the landscape, but saturate once 3 

10% of the landscape is occupied (Figure S1). 4 

- Fire use for land use management depends on the regional GDP, with maximum fire use in 5 

the poorest regions, and virtually no fire use at all for regions beyond 60000$/capita. Only 6 

one country (Qatar) has a GDP beyond this range in the data. In the future, more countries 7 

are expected to have a GDP over 60000$/capita, and thus would not have any human 8 

ignitions (see discussion).  9 

2.2.2. Fire spread 10 

[15] The rate of fire spread Frate is modeled for three broad vegetation types - forest, shrub, and 11 

grass - and varies as a function of their respective maximum fire spread rate, of relative humidity, 12 

soil moisture, temperature, wind speed, and fuel structure: 13 

!!"#$ = !"#!"#$ !× ! 1− !"!
!"!"# × ! 1− !"!

!"!"# × ! 1− !!
!!"# ×!! !  Eq.  5 

 
with Xn as normalized driver, e.g.:   

If RH ≤ RHrange[1] RHn = 0  

If RH ≥ RHrange[2] RHn = 1 Eq.  6 

Else !"!
= !" − !"!"#$%[!]
!"!"#$%[!] − !"!"#$%[!]

 

 

 

 

 14 
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Where Maxrate is the maximum fire spread rate, constrained by observations (Scott and Burgan, 1 

2005): 0.28m/s in forests, 1.12m/s in shrubs, and 2.79m/s in grasses. RHn is the normalized relative 2 

humidity, from RHrange[1]=30% to RHrange[2]=80% (adapted from Li et al., 2012). SWn and Tn are the 3 

normalized 0-10cm layer soil moisture (20-35%, used as a proxy for fuel moisture) and temperature 4 

(0°C  - 30°C), as determined by simple data analysis and parameter value trials (see Table 1). RHexp, 5 

SWexp and Texp are the optimized shape parameters controlling the fire-driving relationship. Fires are 6 

modeled with an eliptical shape, with higher winds leading to higher fire spread rate and to more 7 

elongated fires. The influence of wind, G(W), is computed following the method adapted from 8 

Arora and Boer (2005) described in Li et al. (2012), as a function of the length-to-breadth (LB) and 9 

head-to-back (HB) ratios of the elliptical fire, both of which depend on wind speed (w).  10 

!" = !1+ 10!×!(1− !!!.!"×!) Eq.  7 

!" = !!" + !!" + (!"
! − 1)!.!

!" − (!"! − 1)!.! Eq.  8 

! ! = !2!× ! !"
(1+ 1/!") !×!0.0455 Eq.  9 
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Within a grid cell, fires are assumed to spread with equal probability to each of the three vegetation 12 

types. Their respective burned area therefore reflects their specific fire spread rates and fraction 13 

within the grid-cell. Given the large size of the model grid cells (1°×1°), fire spread to neighboring 14 

grid-cells is not considered. 15 

2.2.3. Termination 16 

[16] Individual, multi-day fires are modeled from ignition to termination. Fire termination may 17 

occur in 4 ways: weather conditions are no longer favorable to fire spread, the fire is stopped by 18 
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landscape fragmentation, by lack of fuel, or suppressed by fire-fighting activities. Each termination 1 

pathway contributes to the overall probability of termination; fire termination is then determined by 2 

the same Bernoulli trial stochastic approach applied to fire ignitions. Fire termination is computed 3 

every 12 hours and may occur before any spread (i.e., right after ignition). 4 

!!"#$%!!! = !!!"#$%!!× !
(1− !"#$!"#$%)!×! 1− !"#$!"#$% !×!!
(1− !!"##!"#$%)!×!!(1− !!"#$ℎ!"!"#$%)

! Eq.  10 

where Nfires is the number of active fires, Fueltermp, Fragtermp, Supptermp and Weathertermp, are the probability 5 

of termination due to each factor.  6 

[17] Weather-related termination occurs when fire spread rate decreases to zero, that is when RH 7 

is 80% or above, soil moisture is 35% or above, or when the temperature drops below freezing.  8 

If RH ≥ RHmax or SW ≥ SWmax or T ≤ Tmin      Weathertermp = 1  

Else Weathertermp = 0 Eq.  11 
 9 

[18] Fuel load and its impact on termination is a function of the cumulative precipitation prior to 10 

the current time step, as an indicator of water limitation on fuel build-up in arid areas: 11 

!"#$!"#$% = 1− !"#$%&!
!"#$!"# Eq.  12 

where Precipn is the average precipitation from -15 to -3 months, normalized from 0.5 mm.day-1 12 

(Precipn=1) to 3mm.day-1 (Precipn=0). The averaging window was determined based on values 13 

from the literature (Greenville et al., 2009; Van der Werf et al., 2008; Van Wilgen et al., 2004), which 14 

consider a 12- to 24-months window, and adjusted through model performance assessment with 15 

different values. The normalization range was determined based on simple data analysis and 16 
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parameter value trials (see Table 1 and Figure S2 in supplementary material). Fuelexp is the shape 1 

parameter, determined through the optimization procedure.  2 

[19] The influence of landscape fragmentation is computed as: 3 

!"#$!"#$% = !"#$!
!"#$!"# Eq.  13 

where Fragn is the fraction of the grid-cell that cannot sustain a fire, normalized from 0% (Fragn=0) 4 

to 100% (Fragn=1). Areas that cannot sustain natural vegetation fires include croplands, urban areas, 5 

water bodies, deserts, and areas than burned up to 8 months prior to the day being considered, thus 6 

avoiding repeated burns within the same fire season, but allowing fires in the following fire season if 7 

enough precipitation occurs (e.g. in sub-Saharan Africa). Fragexp is the shape parameter, determined 8 

through the optimization procedure.  9 

[20] Fire suppression is modeled as a function of land use (human presence), GDP, and fire 10 

suppressibility. This approach assumes that 1) fire suppression activities are limited in regions with 11 

low GDP, and in remote areas with little land use regardless of GDP (e.g. boreal fires in Canada and 12 

Alaska, bush fires in northern Australia); and 2) the more fire prone the conditions (weather, fuel), 13 

the less effective fire suppression efforts are. These assumptions are embodied in the following 14 

equation: 15 

!"##!"#$% = (1− (1− !"!
!"#"$!"#)!×!(1− !"#!

!"#!"#))!×!(1− !!"##$%!!&'&(&)*) Eq.  14 

where LUn is the fraction of the grid-cell with land use, normalized from 0 (LUn=0) to 0.1 (LUn=1), 16 

LUSUPexp a shape parameter controlling the increase in suppression effort with land use density, 17 

GDPn is the normalized GDP (from 0 to 60000$/capita), GDPexp the shape parameter, and Fsuppressibility 18 
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a proxy for the influence of weather and fuel on easiness of suppression. LUSUPexp and GDPexp are 1 

determined through the optimization procedure. Note that GDPexp has the same value as in Eq. 3 2 

for human ignitions. GDP has a negative relationship on fires through both ignitions and 3 

suppression, leading to an underconstrained optimization if maintaining 2 separate parameters. 4 

Fsuppressibility is dependent on weather conditions and fuel, assuming lower suppressibility with windier, 5 

drier, hotter conditions and with higher fuel load: 6 

!!"##$%!!&'&(&)* = ! 1− !"!
!"!"# × ! 1− !"!

!"!"#  

× ! 1− !!
!!"# ×!! ! !×!!"#$%&!

!"#$!"# ! 
Eq.  15 

Previous studies on the influence of climate conditions on fire intensity and suppressibility are 7 

limited and have mostly focused on process-based modeling (Rothermel and Forest, 1972; Thonicke 8 

et al., 2010). Our approach is thus a simple combination of the fuel and weather variables that have 9 

an impact on fire suppression, until more research is done on the subject. 10 

2.3. Model optimization  11 

[21] The 9 optimized parameters (Table 1) are classified in 2 categories:  12 

a. Non-shape parameters (2 out of 9) account for quantitative impacts of fire drivers: 13 

the default number of human ignitions per land use area (LUign), and the probability 14 

that lightning strikes on vegetated areas ignite a fire (CGignp).  15 

b. Shape parameters (7 out of 9) control the shape of the relationship between a given 16 

driver and fire. For example, relative humidity is assumed to limit fire spread 17 

between 30% and 80%, but the linear or non-linear relationship with relative 18 
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humidity between 30% and 80% and fire spread is unclear. To optimize this type of 1 

parameter, the variable was first normalized between 0 (RHrange[1]=30%) and 1 2 

(RHrange[2]=80%). Then the actual impact of RH on fire spread rates was computed 3 

with a shape parameter, RHexp (Eq. 4). 4 

[22] These shape parameters can convey a wide range of potential driving relationships (Figure 5 

2). The exponential function was selected to balance gains in process understanding and costs 6 

associated with computational efforts. We acknowledge that complex fire driving relationships (e.g. 7 

sigmoid) cannot be accounted for here. Exploring such aspects would require 2 or more parameters 8 

per driver, which would lead to computational speed and convergence problems during 9 

optimization. The objective was to infer general conclusions on otherwise little understood fire 10 

drivers, for which single-parameter functions were well adapted. 11 

[23] We used a Markov Chain Monte Carlo approach based on the Metropolis Algorithm 12 

(Metropolis et al., 1953) to obtain best-fit parameter values. The algorithm generates trial sets of 13 

parameters pseudo-randomly, and compares model outputs with observation data. Each trial set is 14 

either accepted or rejected, and the history of acceptance and rejection guides the generation of 15 

subsequent trial sets. Acceptance occurs if a trial set leads to a better fit than the current 16 

parameterization. To limit the risk of convergence to local optimums, acceptance may also occur if 17 

the trial set does not have a better fit, with decreasing likelihood as the difference with the best fit 18 

increases. Upon acceptance (rejection), the range of possible parameter values is increased 19 

(decreased) before the next trial set is generated. The algorithm typically explored hundreds to over a 20 

thousand sets of trial parameter values before converging to a best fit (Figure 3).  21 
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[24] The optimization metric was defined to minimize classification error across 7 classes of 1 

annual burned fraction (interval boundaries: 0, 1, 5, 10, 20, 35, 50+% of the grid-cell), and to 2 

maximize the correlation with observed interannual variability. Within each class, grid-cells are 3 

attributed continuous values based on linear interpolation: a grid-cell with 3% burned fraction is 4 

given the value of 2.5, being in the middle of the 2nd interval boundaries. This classification approach 5 

aims at capturing important changes that would have little weight on the optimization if using direct 6 

burned fraction value. In the context of ecosystem sustainability and fire impacts in general, a 7 

difference between 3% and 4% in fire-sensitive tropical forests is more relevant to capture than 8 

between 33 and 34% in fire-adapted grasslands of northern Australia. 9 

!"#!"#$% =!           Eq.  16 10 

!"#!"#$%% − !"#!"#$%%
!!

!"#$%&''!! + !− !"#!"##!"$% !"#,!"#!
!"#$%&''!!
! ! 

where MODfclass and OBSclass are the modeled and observed fire classification, and IAVcorrecoef the 11 

correlation coefficients for both time series, for each grid-cell.  12 

[25] The optimization was performed using modeled and observed burned area over 5-years 13 

(2002-2007). Fewer than 2% of all land grid-cells were used for the optimization step; these were 14 

selected manually to represent the broad spectrum of fire regimes and the range of environmental 15 

conditions around the world (e.g. biomes, land use density, fuel gradient in semi-arid regions, GDP, 16 

see Figure S3 and Figure S4). No grid-cells were selected from South America, in order to test the 17 

model’s ability to reproduce fire patterns under combinations of drivers it might not have 18 

encountered during optimization (e.g. Brazil’s GDP is higher than other tropical countries in Africa 19 

and South East Asia), and under specific conditions that cannot be fully depicted by the model 20 
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drivers (e.g. fire practices). To evaluate the robustness of the algorithm convergence, we performed 1 

20 optimization runs, each using different grid-cells and years.  2 

2.3.1. Model evaluation 3 

[26] We evaluated HESFIRE using satellite-derived estimates of 1) burned area and aggregate 4 

characteristics of regional fire activity over 1997-2010 (fire incidence, seasonality, interannual 5 

variability); and 2) the regional distribution of fire size for the year 2005. 6 

[27] Finally, we performed a sensitivity analysis to evaluate the influence of each model parameter 7 

on the averaged annual burned area within the model. For each parameter, the model was run twice, 8 

with the parameter changed to +50% and -50% of its original value while everything else was kept 9 

the same. For each grid-cell, we then extracted the parameter that generated the largest change in 10 

burned area. This approach has been applied in numerous modeling studies (e.g. Potter et al., 2001; 11 

White et al., 2000; Zaehle and Friend, 2010), see Saltelli et al. (2000) for alternatives methods. Results 12 

of the sensitivity analysis were grouped into four classes to map the spatial distribution of parameter 13 

sensitivity: 1) Weather (lightning strike, RH, soil moisture and temperature parameters); 2) Fuel 14 

(precipitation proxy); 3) Anthropogenic (ignitions and suppression parameters); 4) Fragmentation 15 

(landscape fragmentation parameter).  16 

2.4. Data 17 

2.4.1. Weather 18 

[28] We combined two data sources to estimate the spatial and temporal variability in natural 19 

ignitions from lightning. The timing and location of cloud-to-ground lightning strikes is based on 20 

convective precipitation (Allen and Pickering, 2002) using sub-daily convective precipitation data 21 

from NCEP (see below). We then corrected biases in the spatial distribution of lightning strikes 22 
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identified by the authors of this method with the observed LIS/OTD climatology (Christian et al., 1 

2003), converted to cloud-to-ground lightning strikes following (Prentice and Mackerras, 1977). 2 

[29] Sub-daily relative humidity, soil moisture, temperature, wind speed and convective 3 

precipitation data were obtained from the NCEP reanalysis-II project (Kanamitsu et al., 2002). For 4 

fuel limitation, we used monthly precipitation data from the Global Precipitation Climatology 5 

Project (GPCP, Adler et al., 2003). All data were interpolated linearly from their original resolution 6 

(2.5-degree for NCEP) to the model 1-degree resolution, and averaged from 6-hourly to 12-hourly.  7 

2.4.2. Land cover 8 

[30] We used the GlobCover version 2.3 land cover map (Bontemps et al., 2011) to estimate the 9 

distribution of natural ecosystems and anthropogenic land use at 1-degree resolution. GlobCover 10 

data were re-gridded from the original 300m resolution to 1-degree and reclassified from 22 land 11 

cover classes to the 5 classes used in the model (forests, shrublands, grasslands, croplands/urban, 12 

bare areas/water).  13 

2.4.3. Land use and GDP 14 

[31] Land use density was computed as the sum of crops and urban lands in the GlobCover data. 15 

National GDP was inferred from the 2009 World Factbook (CIA, 2009).  16 

2.4.4. Fire activity 17 

[32] The Global Fire Emission Database (GFED version 3, van der Werf et al., 2010) was used 18 

in the optimization procedure as well as to evaluate the representation of fire incidence, seasonality 19 

and interannual variability in HESFIRE. The regional distribution of fire was evaluated with 20 

observations from the MODIS MCD45 burned area product (Roy et al., 2008). Note that both of 21 

these products feature substantial uncertainties (Giglio et al., 2010, 2013; Roy et al., 2008). In the 22 
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case of burned area from GFED, we consider uncertainties to be roughly 25-50% based on these 1 

papers and on a comparison of GFED versions 2, 3 and 4. 2 

3. Results 3 

3.1. Optimization 4 

[33] The parameters inferred by the optimization procedure are consistent with our current 5 

understanding of fire drivers, and provide a quantitative estimate on otherwise poorly constrained 6 

relationships. Their value, variability across the 20 optimization runs and implications for fire 7 

ignition, spread and termination are presented in Figure 4 and Figure 5. In 16 out of the 20 8 

optimization runs performed, the final set of parameters was relatively similar to the final model, and 9 

changes in parameter values were mostly compensative of each other, especially for correlated fire 10 

drivers (e.g. relative humidity and soil moisture). In four cases, the optimization procedure reached 11 

an alternative configuration, with one or several parameters differing from the final parameterization 12 

by a factor greater than five, and were discarded as unsuccessful parameterization, most likely getting 13 

stuck at local optimums. Hereafter, we refer to the remaining 16 models to consider parameter 14 

uncertainty, represented by the black lines in Figure 4 and shaded areas in Figure 5.  15 

[34] For fire ignitions, the probability that lightning strikes on natural vegetation ignite a fire 16 

under fire prone conditions is optimized at 6.8% (uncertainty range [2.8 to 16.6%]), comparable to 17 

the value inferred from the literature used in SPITFIRE (4%, Thonicke et al., 2010). We emphasize, 18 

however, that this metric is a general probability which does not depict the complex relationship 19 

between cloud-to-ground lightning strikes and fire ignitions (Podur et al., 2003). Regarding 20 

anthropogenic sources, the optimization procedure suggests that the number of human ignitions 21 

saturates at a low landuse fraction, with any additional land use beyond 2-3% of the grid-cell area 22 



 19 

having no contribution to ignitions (Figure 5a). The final number of anthropogenic ignitions further 1 

depends on GDP per capita, with a nearly linear relationship Figure 5b. 2 

[35] Regarding fire spread, exponents depicting the role of RH and soil moisture indicate 3 

relatively linear relationships, with significant uncertainty (RHexp = 1.18 [0.52 to 1.29]; SWexp = 4 

1.21 [0.3 to 1.44]) (Figure 5d,e). The relationship with temperature is slightly non-linear (Texp = 5 

1.78 [0.80 to 3.30]), indicating a lower impact of temperature changes towards the higher range of 6 

the influence interval ([0 30°C]). Optimizing the model without the influence of temperature 7 

produced relatively similar performances, except in high-latitude regions where temperature 8 

constraints encompass limits on fire spread (e.g., snow cover). 9 

[36] For fire termination, the anthropogenic influence indicated a rapid saturation of suppression 10 

efforts with land use density (LUSUPexp = 4.08 [1.62 to 7.18]) and maximum suppression at 0.1 11 

fractional land use (Figure 5a). The influence of GDP was approximately linear (GDPexp = 1.28 12 

[0.97 to 2.24]), while the influence of landscape fragmentation was slightly non-linear (FRAGexp = 13 

1.41 [0.83 to 3.02]). The cumulative precipitation proxy for fuel load also indicated a slightly non-14 

linear relationship (FUELexp = 1.72 [1.62 to 3.65]). Climatic factors only operate through condition 15 

thresholds (e.g. relative humidity over 80%) and were thus not optimized. 16 

3.2. Global 1997-2010 run and comparison to observation-derived data 17 

[37] The modeled and observed average annual burned fractions across the world are illustrated 18 

in Figure 6. In South America, which was not part of the optimization phase, HESFIRE depicts 19 

most spatial patterns as well as the actual incidence of fires, including increased fire activity 20 

associated with the expansion of human activities into the Amazon basin, the competing influence 21 

of the moisture gradient (Le Page et al., 2010b), and fires associated with pastures and grasslands in 22 
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northern Venezuela and southern Columbia. In Africa and Australia, HESFIRE generally captures 1 

high fire incidence in grassland areas, although modeled spatial patterns in Africa are more uniform 2 

than observations (probably due to the simple representation of fuel, see sect. 4.1.2). HESFIRE also 3 

reproduces areas of moderate fire incidence in south-eastern Asia, Kazakhstan and south-western 4 

Europe, and identifies strong fire gradients with decreasing fuel load across semi-arid and arid 5 

regions (e.g. in Africa, central Australia), although with some limitation especially at the northern 6 

edge of sub-Saharan Africa where fire incidence is over-estimated. Conversely, HESFIRE performs 7 

poorly in several regions, including the pan-boreal region, at least partly due to a bias in the climate 8 

and soil moisture data (see discussion), as well as Central America, Mexico, the horn of Africa and 9 

some areas of the Middle East where fire incidence is over-estimated. It also under-estimates fire 10 

incidence in Indonesia, where soil moisture remains beyond the fire prone threshold almost all year 11 

long. Fires preferentially occur on areas with degraded forests and drained peatlands in Indonesia 12 

(Page et al., 2002; Van der Werf et al., 2008), which moisture dynamics is not captured in a 2.5-13 

degree resolution dataset. 14 

[38] Aggregated monthly burned area across 14 regions and their respective fire size distribution 15 

are illustrated in Figure 7. The monthly time series provide insights into the performance of 16 

HESFIRE on regional fire incidence, fire seasonality and inter-annual variability. Average burned 17 

area in the main fire incidence regions are in agreement with the GFED database (NHAF, SHAF, 18 

AUST, SHSA). Seasonality also shows a good agreement, whether regionally or at 1-degree 19 

resolution (not shown). The main seasonality discrepancy occurs in sub-Saharan Africa, where the 20 

model substantially delays the onset and peak of the fire season. Finally, HESFIRE performs 21 

unevenly regarding inter-annual variability, with medium to high correlation to observations in some 22 

tropical and temperate regions, but low or even negative correlation in boreal regions. It reproduces 23 
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the El Nino induced anomaly in Indonesia in 1997-1998, but because of the under-estimation of fire 1 

incidence mentioned before, the actual extent of that extreme fire episode is not captured.  2 

[39] Next to each time series, the regional fire size distribution histograms for 2005 suggest the 3 

representation of single fire size in HESFIRE is within the range of observations, and that it depicts 4 

the decreasing fire frequency as a function of fire size. It tends to overestimate the frequency of 5 

large fires and their contribution to the total burned area, however. Fire duration could not be 6 

readily evaluated with the MODIS data, but a map of maximum fire duration is provided in 7 

supplementary material to illustrate this capability (Figure S5). 68% of the 2005 global burned area 8 

occurred in fires longer than one day in HESFIRE.  9 

3.3. Model sensitivity 10 

[40] The sensitivity analysis shows the class of the parameter whose altered values (+50% and -11 

50%) led to the largest change in averaged annual burned area at the grid-cell level (Figure 8). In 12 

boreal regions, although HESFIRE does not perform well, fire incidence is mostly sensitive to 13 

weather parameters, and to a lower extent to the fuel load parameter. In humid tropical ecosystems, 14 

HESFIRE is also mostly sensitive to weather parameters, but anthropogenic parameters become 15 

dominant in areas with a substantial dry season and agricultural activities, especially in South 16 

America along the arc of deforestation. In semi-arid areas, the vegetation fuel parameter has the 17 

most influence, including in Mexico, sub-Saharan and southern sub-equatorial Africa, the horn of 18 

Africa, Australia and Kazakhstan, with consequences for the model performance in these various 19 

regions (see discussion). Finally, HESFIRE is primarily sensitive to the landscape fragmentation 20 

parameter in several regions due to two mechanisms. In regions of high land use density (e.g. India), 21 

fire spread is constantly limited by the fragmentation parameter and fire incidence is low, but can 22 

increase (or diminish further) when altering its value. In regions of low land use density but high fire 23 
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incidence due to a very seasonal climatology (e.g. sub-Saharan and northern sub-equatorial Africa), 1 

landscape fragmentation due to previous fires becomes a limiting factor for late-season fires. Finally, 2 

regions of relatively high land use density and fire incidence are probably sensitive to both 3 

mechanisms. Note that landscape fragmentation is in part due to human activities, adding to the 4 

sensitivity of the model to anthropogenic factors. 5 

4. Discussion 6 

 7 

[41]  HESFIRE shows encouraging capabilities, especially given the difficulty of achieving a good 8 

representation of global fire patterns (Bowman et al., 2011; Spessa et al., 2013). It is a first step 9 

towards the 3 objectives stated in introduction. First, the model avoids some assumptions that 10 

would be fundamentally inconsistent with fire ecology (e.g. fire spread limited to a single day). 11 

Second, it includes climatic, anthropogenic and vegetation drivers, and the input variables were 12 

chosen so as to enable projections under altered conditions; GDP and landuse are reported in future 13 

projections from integrated assessment models (Van Vuuren et al., 2011). Third, HESFIRE 14 

reproduces reasonably well many aspects of regional fire activity, including fire incidence and 15 

variability in South America and fire size, both of which were not part of the optimization 16 

procedure, and regional sensitivities to the 4 parameter classes correspond to what would be 17 

expected based on broad fire ecology concepts.  18 

[42] The comparison to results reported by other models – mostly fire incidence – suggests 19 

HESFIRE generally achieves strong performances on spatial patterns (Figure 6 in this paper, figure 20 

3c in Thonicke et al., 2010, figure 2 in Prentice et al., 2011, figure 1 in Kloster et al., 2010), and on 21 

the actual quantification of the average burned area fraction, with a rather infrequent occurrence of 22 

large discrepancies which are susceptible to severely bias impacts on vegetation and carbon 23 
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dynamics. Note however that these results are not fully comparable as they are produced from fire-1 

modules embedded within dynamic vegetation models, with potential bias originating from other 2 

parts of the model (e.g. PFT distribution, fuel load). The fire model developed by Li et al. (2012) and 3 

modified to better account for anthropogenic ignitions has similar spatial patterns of averaged 4 

burned area to HESFIRE (figure 9 in Li et al., 2013).  5 

[43] The combination of these characteristics and performance suggests that the modeling and 6 

optimization framework realistically captures the primary fire-driving mechanisms and the specific 7 

magnitude of their influence regionally. It could thus bring relevant insights into future fire activity 8 

under altered environmental conditions, including agricultural expansion and extreme climatic events 9 

(e.g. sustained droughts). There are however a number of issues, as well as key potential 10 

improvements which we discuss in the next sections.  11 

4.1.  Fire incidence in boreal regions 12 

[44] HESFIRE under-estimates fire incidence in Boreal regions. This issue has been reported 13 

before by Rupp et al. (2007), whose model projected almost no burned area when driven by the 14 

NCEP data but performed better when driven by other datasets. Serreze and Hurst (2000) found 15 

that summer precipitation is largely over-estimated in NCEP, compromising the whole hydrological 16 

cycle including RH and soil moisture. Alternative datasets may address this issue, either by using 17 

them as a direct input or to correct the bias in the NCEP data while maintaining its high temporal 18 

resolution and extensive timespan. 19 

[45] HESFIRE might be further limited because it does not represent specific aspects of boreal 20 

fire regimes. In particular, boreal needle-leaf forests are highly flammable and have a vertical 21 

structure favorable to the development of crown fires, which spread faster and can overcome higher 22 
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levels of moisture and humidity (Ryan, 2002). Additionally, large boreal fires typically spread over 1 

weeks or months - which can be captured by HESFIRE - but might also remain dormant in a 2 

smoldering phase during fire-averse conditions and re-activate later without any new ignitions 3 

(Sedano and Randerson, 2014). 4 

4.2. Fires in semi-arid regions and links to the fuel proxy 5 

[46] Semi-arid ecosystems presented a particular challenge due to the sensitivity of fuel 6 

characteristics to soil, precipitation and potential evapotranspiration conditions, which cannot be 7 

fully captured by the cumulative precipitation proxy. In the final parameterization, HESFIRE is in 8 

good agreement with observations in Australia, southern hemisphere Africa and Kazakhstan, but 9 

over-estimates fire incidence in Mexico, the horn of Africa and semi-desert areas at the border of the 10 

Sahara (Figure 8). Precipitation patterns in these xeric landscapes vary widely. Some semi-desert 11 

regions have low amounts of precipitation year-round (Kazakhstan), while others have short rainy 12 

seasons (sub-Saharan Africa). The optimization procedure favors one set of conditions, leading to 13 

unequal performances across these regions.  14 

[47] Clearly there are other potential factors contributing to this issue. The integration of 15 

HESFIRE within a vegetation model (see conclusion) could provide dynamic and process-based 16 

estimates of fuel load, fuel structure and fuel moisture. In parallel, integrating observation-derived 17 

estimates of aboveground biomass (Saatchi et al., 2011) as a fuel-proxy could improve performances 18 

while maintaining the value of a standalone version of HESFIRE. Finally, semi-arid regions 19 

generally feature strong precipitation gradients which influence the spatial distribution of vegetation 20 

and fuel load, and are not captured accurately by the raw input data (2.5 degree) or through their 21 

interpolation to 1-degree. 22 
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4.3. Representation of anthropogenic ignitions 1 

[48] Modeling the global diversity of fire practices remains a significant challenge. HESFIRE 2 

performs well in regions with a well-established anthropogenic footprint on fire regimes, even 3 

though it is based on a simplistic representation of fire practices and suppression effort by necessity 4 

to obtain a globally consistent initial approach. The timing and frequency of anthropogenic ignitions 5 

are a complex aspect to represent in global models. In sub-Saharan Africa for example, local 6 

populations are known to burn numerous small fires early in the dry season to fragment the 7 

landscape and limit the occurrence of high-intensity late-season fires (Laris, 2002; Le Page et al., 8 

2010a). These fire management practices are not accounted for in HESFIRE, leading to a delayed 9 

fire-peak month (by 1-3 months), and to an over-estimation of the average fire size. Beyond this 10 

specific case, fire practices vary as a function of land use (e.g. agriculture, pastures), of land use 11 

transitions (e.g. deforestation and post-clearing activities, Morton et al., 2008), of land management 12 

practices (fire prevention, fire suppression), and can also be due to arson or leisure activities (e.g. 13 

campfire). For agricultural lands, fire practices are very specific (clearing, pre-sowing, pre- and post-14 

harvest burns) and last for as little as a week to several months (Le Page et al., 2010a). Finally, these 15 

practices vary at local to global scale according to environmental conditions, the availability of 16 

alternatives to fires (e.g. fertilizer, pest control), national regulations, fire fighting capabilities, etc. 17 

There is not much ground to believe fire practices will closely follow future GDP and land use 18 

trends, but these factors are part of the equation. Research towards a better representation of broad 19 

classes of fire practices is ongoing (Li et al., 2013), and, as mentionned in other studies, fire driver 20 

analysis on longer time periods (e.g. with historical reconstruction, Mouillot and Field, 2005) would 21 

provide further guidance. 22 

4.4. Representation of fire spread  23 
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[49] The evaluation suggests the modeled average fire size is within the observed range, but 1 

HESFIRE tends to overestimate the contribution of large fires, which could be linked to the 2 

representation of fire spread as an idealized elliptic shape, similar to other global fire models. Burned 3 

areas are typically patchy and the front line rarely remains unbroken around the perimeter of the fire, 4 

especially in fragmented and uneven landscapes. Better accounting for these aspects could improve 5 

models performances, for example with the implementation of a fragmentation feedback on the 6 

fraction of the idealized elliptical shape that actually burns.  7 

[50] Additionally, anthropogenic fire practices mentioned in Sect. 4.1.3 can have a substantial 8 

footprint on fire size, including in regions where it is over-estimated by HESFIRE. In sub-Saharan 9 

Africa for example, a better representation of small early dry-season burns as a fire management 10 

practice would lead to a more realistic accounting of fire sizes and of the landscape fragmentation 11 

feedback on late-season fire spread. 12 

Multiple paragraphs dealing with future plans (regional versions, integration in DGVMs, etc) 13 

were removed. 14 

5. Conclusions 15 

[51] This analysis highlights the strengths of the HESFIRE model as well as its limitations, and 16 

opportunities to address them. The representation of multi-day fires opens the perspective to 17 

explore regional sensitivities of fire duration to climate change (e.g. longer droughts). The calibration 18 

of the anthropogenic ignition function - suggesting a very rapid saturation of ignitions with land use 19 

density – can be applied to gridded land use scenarios to explore potential implications of terrestrial 20 

policies for fire activity. Ultimately, exploring interactions between fires, the terrestrial biosphere and 21 

the atmosphere relies on frameworks of the coupled Human-Earth System. The data-assimilation 22 
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methods applied here to infer fire-driver parameters may provide additional guidance for the 1 

parameterization of such complex models. The integration of HESFIRE into a dynamic global 2 

vegetation model (DGVM) could also bring insights on the contribution of fire-driving assumptions, 3 

observation data and DGVM-derived vegetation/fuel characteristics on model performances. 4 
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Table 1. Model parameters. 1 

Parameter Description Value & unit 
Source 

[optimization range], if applicable 

Ignitions 
   

CGignp Cloud-to-Ground ignition probability. Average probability of 
ignition from a cloud-to-ground lightning strike on natural 
vegetation. 

6.8% 
Optimization 
[2.8 - 16.6] 

LUign Land Use ignitions. Original number of human ignitions per 
km2 of land use per 24 hour, prior to applying density-
decreasing function (see LUexp). 

2.3 ×10-3 
km-1 

Optimization 
[1.1 – 6] ×10-3 

LUexp Land Use exponent. Shape parameter: Controls the decreasing 
contribution of incremental land use areas to human ignitions 14.9 

Optimization 
[14.7 – 19.8] 

GDPexp
a GDP exponent. Shape parameter: Impact of GDP on ignitions, 

through land use practices. 1.28 
Optimization 
[0.83 – 3.02] 

LUrange
 Land Use range. of fractional land use controlling human 

ignitions, with no ignitions beyond the upper bound. [0 - 0.1] Successive trials for reasonable 
exponent valueb  

GDPrange GDP range. Range of regional GDP controlling fire ignitions, 
through land use practices. 

[0 - 60000] 
$.cap-1.year-1 

Observed rangec 

Spread    

BAfrag Burned Area fragmentation. Delay before burned areas can 
burn again (given sufficient precipitation for fuel 
accumulation), meanwhile contributing to fragmentation. 

8 months Model performance trialsd 

Maxforestrate Maximum forest fire spread rate. 0.28m.s-1 (Scott and Burgan, 2005) 
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Maxshrubrate Maximum shrublands fire spread rate. 1.12m.s-1 (Scott and Burgan, 2005) 

Maxgrassrate Maximum grasslands fire spread rate. 2.79m.s-1 (Scott and Burgan, 2005) 

RHrange RH range. Range of relative humidity controlling fire spread. 
[30 - 80]% 

(Li et al., 2012) 
Scatter plote 

Model performance trials 

RHexp RH exponent. Shape parameter: Impact of relative humidity on 
fire spread rate. 1.18 

Optimization  
[0.52 – 1.31] 

SWrange Soil Water range. Range of volumetric soil moisture 
controlling fire spread. [20 - 35]% 

Scatter plot 
Model performance trials 

SWexp Soil Water exponent. Shape parameter: Impact of volumetric 
soil moisture on fire spread rate. 1.21 

Optimization 
[0.30 – 1.44] 

Trange Temperature range. Range of temperature controlling fire 
spread. [0 - 30]°C 

Scatter plot 
Model performance trials 

Texp Temperature exponent. Shape parameter: Impact of air 
temperature on fire spread rate. 1.78  

Optimization 
[0.8 – 3.8] 

Termination    

Fuelrange Fuel range. Range of precipitation controlling termination 
probability, through fuel build-up. 

[0.5 - 3] 
mm.day-1 

Scatter plot 
Model performance trials 

Fuelspan Fuel accumulation timespan.  Timespan of average 
precipitation controlling fuel build-up. 

12 months 

(Greenville et al., 2009; Van der 
Werf et al., 2008; Van Wilgen et al., 

2004) 
Model performance trials 

Fueldelay Fuel accumulation delay. Delay from actual precipitation to 3 months Model performance trials 
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a: in order to limit the number of parameters to optimize for the first version of the fire model, GDPexp is attributed the same optimized 1 
value whether it applies to fire ignitions or fire termination. 2 
b: Successive trials for reasonable exponent value. This was applied to the range of land use fraction for ignition and suppression (see 3 
Sect. 2.2.1.2).  4 
c: Oberved range. The range covers all or most of the values across the world. For GDPrange, a few grid-cells are beyond the 5 
60000$/capita upper limit (in Qatar). 6 
d: Model performance trials. These parameters were not determined using the full optimization procedure, but we tried a limited 7 
number of values (e.g. 5, 8 and 12 month for BAfrag) and selected the one leading to the best fit.  8 
e: Scatter plot. We used scatter plot to determine the range of influence of some drivers, namely RH, soil moisture, temperature and the 9 
precipitation fuel proxy. An example is given in Figure S2 (supplementary material). 10 

fuel build-up. 

Fuelexp Fuel exponent. Shape parameter: Impact of precipitation over -
15 to -3 months on fire termination probability, a proxy fuel 
build-up. 

1.72 
Optimization 
[1.62 – 3.65] 

Fragrange Fragmentation range. Range of fractional landscape 
fragmentation controlling termination probability. [0 - 1] Oberved range 

Fragexp Fragmentation exponent. Shape parameter: Impact of 
landscape fragmentation on fire termination probability. 1.81 

Optimization 
[0.94 – 2.48] 

LUrange Land Use range. Range of fractional land use controlling 
termination probability, through suppression efforts. [0 - 0.1] Successive trials for reasonable 

exponent value 

LUSUPexp Land Use SUPpression exponent. Shape parameter: Impact of 
land use on fire termination probability, through suppression 
efforts, in interaction with GDP (below). 

4.08 
Optimization 
[1.62 – 7.18] 

GDPrange GDP range. Range of regional GDP controlling fire 
suppression effort. 

[0 - 60000] 
$.cap-1.year-1 

Oberved range 

GDPexp
a GDP exponent. Shape parameter: Impact of GDP on 

suppression effort, through land use practices. 1.28 
Optimization 
[0.83 – 3.02] 
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FIGURES 1 

 2 
Figure 1. HESFIRE diagram. 3 

 4 
 5 

 6 
Figure 2. Control of shape parameters (exponents, here RHexp) on fire driving relationships. 7 
The exponent can take any value (from 0.033 to 30) as determined by the optimization 8 
procedure, thus covering a wide space of potential fire-driving influence. 9 
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 1 
Figure 3. HESFIRE’s performance through the optimization procedure iterations. The solid 2 
line represents the optimization of the final model (which happened to reach a near-final 3 
parameterization quite rapidly). The dashed lines represent the optimization of three of the 4 
alternative runs, using different sets of grid-cells and years to evaluate the robustness of the 5 
parameters. 6 

 7 

 8 
Figure 4. Parameter variability across the set of optimization runs with different grid-cells 9 
and years. Among the 20 runs, 16 reached a relatively consistent parameterization (see text). 10 
These are represented as colored markers and their range is shown by the black lines. For 11 
the other 4 runs, parameters are shown as grey markers. The vertical dashed lines indicate 12 
the lower and upper (symmetric) thresholds of parameters range which were used to 13 
separate these 4 runs. 14 

 15 
 16 
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CGignp = 6.8% 

6.8% of cloud-to-ground lightning strikes on fire prone vegetation do ignite a fire. The range is 
2.8% to 16.6% for the 16 optimization runs reaching a similar overall parameterization.  

 

  

  

  

a) b) 

c) d) 

e) f) 
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Figure 5. Optimized model parameters and their influence on fire ecology. For each plot, 1 
the thick black line represents the parameter influence in the final model. The dotted black 2 
lines represent the 16 optimization runs that reached a similar parameterization to the final 3 
model, the shaded area showing the range of their influence. The dotted grey lines represent 4 
the four optimization runs which reached a parameterization substantially different from the 5 
final model (see text). 6 
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Fraction (%) 

 

 

Figure 6: Observed and modeled average annual burned fraction. Top: GFEDv3 burned 8 
areas on “natural” landscapes. Bottom: Fire model. 9 
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  OBS                  HESFIRE 

Bars: fraction of total 
number of fires 

Lines: Fraction of 
cumulated burned area 

a) GLOBAL 

b) BONA 

c) TENA 

d) CEAM 

e) NHSA 

Avg burned area: 3390 / 3430 103km2 ; IAV spearman correlation: 0.32 

BA: 20 / 1 103km2 ; IAV: -0.41 

BA: 12 / 20 103km2 ; IAV: 0.21 

BA: 11 / 86 103km2 ; IAV: 0.72* 

BA: 20 / 15 103km2 ; IAV: -0.03 
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g) EURO 

h) MIDE 

i) NHAF 

j) SHAF 

k) BOAS 

l) CEAS 

BA: 3 / 9 103km2 ; IAV: 0.29 

BA: 4 / 51 103km2 ; IAV: 0.58* 

BA: 1190 / 1360 103km2 ; IAV: 0.71* 

BA: 1230 / 1080 103km2 ; IAV: 0.41 

BA: 52 / 2 103km2 ; IAV: 0.08 

BA: 98 / 66 103km2 ; IAV: 0.33 

f) SHSA BA: 198 / 268 103km2 ; IAV: 0.67* 
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Figure 7. Comparison of HESFIRE with observation-derived data over 14 regions. Left side 1 
plots: time series of normalized monthly burned area, with quantification of average annual 2 
burned area in GFED and in HESFIRE, and inter-annual correlation. Right side: 2005 3 
distribution of fires by size classes and cumulative burned area along these classes. 4 
Observation data are from the MODIS MCD45 product. * indicates significance of the IAV 5 
spearman correlation (p<0.05, (Spearman, 1904))  6 

  7 

 8 

 9 

Figure 8. Major drivers of average annual burned area sensitivity among the 9 optimized 10 
parameters as grouped into 4 thematic classes (climate, vegetation fuel, anthropogenic 11 
practices, landscape fragmentation). For each of the 9 parameters, HESFIRE was run 12 

m) SEAS 

n) EQAS 

o) AUST 

BA: 48 / 87 103km2 ; IAV: 0.62* 

BA: 16 / 0.2 103km2 ; IAV: 0.66* 

BA: 491 / 383 103km2 ; IAV: 0.72* 
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keeping the original parameterization, but altering the value of the considered parameter by 1 
-50% and +50%. The map shows the class of the parameter for which the average burned 2 
area in the considered grid-cell varied the most between the 2 runs with these alternative 3 
values.  4 


