
 

 1

Identifying environmental controls on vegetation 1 

greenness phenology through model-data integration  2 

 3 

M. Forkel1, N. Carvalhais1,2, S. Schaphoff3, W. v. Bloh3, M. Migliavacca1, M. 4 

Thurner1,4 and K. Thonicke3 5 

[1]{Max-Planck-Institute for Biogeochemistry, Department for Biogeochemical Integration, 6 

Hans-Knöll-Str. 10, 07745 Jena, Germany } 7 

[2]{Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, 2829-516, Caparica, 8 

Portugal} 9 

[3]{Potsdam Institute for Climate Impact Research, Earth System Analysis, Telegraphenberg 10 

A31, 14473 Potsdam, Germany} 11 

[4]{Stockholm University, Department of Applied Environmental Science and Bolin Centre 12 

for Climate Research, Svante Arrhenius väg 8, 10691 Stockholm, Sweden} 13 

Correspondence to: M. Forkel (mforkel@bgc-jena.mpg.de) 14 

 15 

Abstract 16 

Existing dynamic global vegetation models (DGVMs) have a limited ability in reproducing 17 

phenology and decadal dynamics of vegetation greenness as observed by satellites. These 18 

limitations in reproducing observations reflect a poor understanding and description of the 19 

environmental controls on phenology, which strongly influence the ability to simulate longer 20 

term vegetation dynamics, e.g. carbon allocation. Combining DGVMs with observational data 21 

sets can potentially help to revise current modelling approaches and thus to enhance the 22 

understanding of processes that control seasonal to long-term vegetation greenness dynamics. 23 

Here we implemented a new phenology model within the LPJmL (Lund Potsdam Jena 24 

managed lands) DGVM and integrated several observational data sets to improve the ability 25 

of the model in reproducing satellite-derived time series of vegetation greenness. Specifically, 26 

we optimized LPJmL parameters against observational time series of the fraction of absorbed 27 

photosynthetic active radiation (FAPAR), albedo and gross primary production to identify the 28 
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main environmental controls for seasonal vegetation greenness dynamics. We demonstrated 1 

that LPJmL with new phenology and optimized parameters better reproduces seasonality, 2 

inter-annual variability and trends of vegetation greenness. Our results indicate that soil water 3 

availability is an important control on vegetation phenology not only in water-limited biomes 4 

but also in boreal forests and the arctic tundra. Whereas water availability controls phenology 5 

in water-limited ecosystems during the entire growing season, water availability co-modulates 6 

jointly with temperature the beginning of the growing season in boreal and arctic regions. 7 

Additionally, water availability contributes to better explain decadal greening trends in the 8 

Sahel and browning trends in boreal forests. These results emphasize the importance of 9 

considering water availability in a new generation of phenology modules in DGVMs in order 10 

to correctly reproduce observed seasonal to decadal dynamics of vegetation greenness.  11 

 12 

1 Introduction 13 

The greenness of the terrestrial vegetation is directly linked to plant productivity, surface 14 

roughness and albedo and thus affects the climate system (Richardson et al., 2013). 15 

Vegetation greenness can be quantified from satellite observations for example as Normalized 16 

Difference Vegetation Index (NDVI) (Tucker, 1979). NDVI is a remotely sensed proxy for 17 

structural plant properties like leaf area index (LAI) (Turner et al., 1999), green leaf biomass 18 

(Gamon et al., 1995) and plant productivity. Especially, NDVI of green vegetation has a 19 

linear relationship with the fraction of absorbed photosynthetic active radiation (FAPAR) 20 

(Fensholt et al., 2004; Gamon et al., 1995; Myneni et al., 1995, 1997b; Myneni and Williams, 21 

1994). Satellite-derived FAPAR estimates are often used to estimate  terrestrial 22 

photosynthesis (Beer et al., 2010; Jung et al., 2008, 2011; Potter et al., 1999). Decadal 23 

satellite observations of NDVI demonstrate widespread positive trends (“greening”) 24 

especially in the high latitude regions (Lucht et al., 2002; Myneni et al., 1997a; Xu et al., 25 

2013) but also in the Sahel, southern Africa and southern Australia (Fensholt and Proud, 26 

2012; de Jong et al., 2011, 2013b). Surprisingly, these trends are accompanied by negative 27 

trends (“browning”) which were observed regionally in parts of the boreal forests of North 28 

America and Eurasia, and in parts of eastern Africa and South America (Baird and Verbyla, 29 

2012; Bi et al., 2013; de Jong et al., 2013b). Regionally different causes have been identified 30 

for the observed greening and browning trends. The greening of the high latitudes is supposed 31 
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to be mainly induced by rising air temperatures (Lucht et al., 2002; Myneni et al., 1997a; Xu 1 

et al., 2013). Browning trends in subtropical regions were related to changing drought 2 

conditions and land use change (Cook and Pau, 2013; van Leeuwen et al., 2013). On the other 3 

hand, the environmental controls on the browning of boreal forests have been intensively 4 

investigated but no concluding or general explanation has been found so far (Barichivich et 5 

al., 2014; Beck et al., 2011; Beck and Goetz, 2011; Bunn et al., 2007; Goetz et al., 2005; Piao 6 

et al., 2011; Wang et al., 2011). Trends  in vegetation greenness are often related to changes 7 

in vegetation phenology like an earlier onset and an associated lengthening of the growing 8 

season in mid- and high-latitude regions (Atzberger et al., 2013; Høgda et al., 2001, 2013; 9 

Tucker et al., 2001; Zeng et al., 2011). Changes in vegetation greenness are linked to changes 10 

in primary production and thus affect atmospheric CO2 concentrations and the terrestrial 11 

carbon cycle (Barichivich et al., 2013; Keeling et al., 1996; Myneni et al., 1997a). 12 

Additionally, vegetation greenness affects the climate system by influencing surface albedo. 13 

For example, greening trends in high-latitudes are associated with decreasing surface albedo 14 

(Urban et al., 2013) which alters the surface radiation budget (Loranty et al., 2011). This can 15 

potentially further contribute to a warming of arctic regions (Chapin et al., 2005). Thus, 16 

satellite observations of vegetation greenness demonstrate the recent interactions and changes 17 

between terrestrial vegetation dynamics and the climate system.  18 

Dynamic global vegetation models (DGVM) or generally climate/carbon cycle models are 19 

used to analyze and project the response of the terrestrial vegetation to the past, recent and 20 

future climate variability (Prentice et al., 2007). DGVMs can be used to explain observed 21 

trends in vegetation greenness (Lucht et al., 2002) or to quantify the related terrestrial CO2 22 

uptake. While most global models simulate an increasing uptake of CO2 by the terrestrial 23 

vegetation under future climate change scenarios, the magnitude of future changes in land 24 

carbon uptake largely differs among models (Friedlingstein et al., 2006; Sitch et al., 2008). 25 

The spread of land carbon uptake estimates among DGVMs might be partly related to 26 

insufficient representations of vegetation phenology and greenness (Richardson et al., 2012). 27 

Coupled climate-carbon cycle models and uncoupled DGVMs have been compared against 30 28 

year satellite-derived time series of LAI (Anav et al., 2013; Murray-Tortarolo et al., 2013; 29 

Zhu et al., 2013). Models usually overestimate mean annual LAI in all biomes and have a too 30 

long growing season because of a delayed season end (Anav et al., 2013; Murray-Tortarolo et 31 

al., 2013; Zhu et al., 2013). Additionally, most DGVMs have more positive LAI trends than 32 
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the satellite-derived LAI product, i.e. they underestimate browning trends in boreal forests 1 

while a few DGVMs do not reproduce the general greening of the high latitudes (Murray-2 

Tortarolo et al., 2013). The limitations of DGVMs in reproducing observed LAI or FAPAR 3 

time series is mostly related to limited phenology routines that often miss environmental 4 

controls on seasonal leaf development (Kelley et al., 2013; Murray-Tortarolo et al., 2013; 5 

Richardson et al., 2012). In conclusion, with improved modelling approaches for vegetation 6 

phenology and greenness, DGVMs can potentially more accurately reproduce the recent, and 7 

project the future response of the terrestrial vegetation to climate variability. 8 

Past studies successfully demonstrated the use of vegetation greenness observations to 9 

improve stand-alone phenology models or to optimize phenology and productivity-related 10 

parameters in DGVMs. The growing season index (GSI) is an empirical phenology model that 11 

is used to estimate seasonal leaf developments (Jolly et al., 2005). Empirical parameters of 12 

GSI have been optimized against globally distributed 10 year FAPAR and LAI time series 13 

from MODIS to reanalyze climatic drivers for vegetation phenology (Stöckli et al., 2008, 14 

2011). This optimization resulted in a good representation of temporal FAPAR and LAI 15 

dynamics in all major biomes except evergreen tropical forests (Stöckli et al., 2011). Model 16 

parameters of the Biome-BGC model were optimized against eddy covariance flux 17 

observations and NDVI time series from MODIS for poplar plantations in Northern Italy 18 

which resulted in a more accurate representation of carbon fluxes and NDVI (Migliavacca et 19 

al., 2009). The BETHY-CCDAS model was optimized against FAPAR time series from 20 

MERIS for seven eddy covariance sites (Knorr et al., 2010) and later for 170 land grid cells 21 

using coarse 8 by 10° spatial resolution (Kaminski et al., 2012). These studies demonstrated 22 

the improvements in simulated vegetation phenology by optimizing model parameters against 23 

observations of vegetation greenness.  24 

Nevertheless, spatial patterns and temporal dynamics of vegetation greenness were not yet 25 

optimized in a DGVM globally at a higher spatial resolution (0.5°) and by using long-term 26 

(30 year) satellite-derived time series of vegetation greenness. Newly developed 30 year time 27 

series of LAI or FAPAR from the GIMMS3g dataset (Global Inventory Modeling and 28 

Mapping Studies, 3rd generation of datasets) (Zhu et al., 2013) allow improving DGVMs not 29 

only based on seasonal cycles of single years (i.e. phenology) but additionally against decadal 30 

time series properties including inter-variability and trends. By integrating the GIMMS3g 31 

FAPAR data set in a DGVM, we can potentially improve spatial patterns and seasonal to 32 
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long-term temporal dynamics of vegetation greenness. We are using the LPJmL DGVM 1 

(Lund-Potsdam-Jena managed lands). Similar to other DGVMs, LPJmL does not accurately 2 

reproduce the growing season onset and seasonal amplitude of observed LAI and FAPAR 3 

time series presumably because of a limited phenology model (Kelley et al., 2013; Murray-4 

Tortarolo et al., 2013). Thus integrating long-term observations of FAPAR in the LPJmL 5 

DGVM potentially requires the development of an improved phenology scheme. 6 

We are aiming to improve environmental controls on vegetation phenology and greenness in 7 

LPJmL by 1) developing a new phenology module for LPJmL, by 2) optimizing FAPAR, 8 

productivity and phenology-related parameters of LPJmL against 30 year satellite-derived 9 

time series of FAPAR, against 10 year satellite-derived time series of vegetation albedo and 10 

against spatial patterns of mean annual gross primary production (GPP) from a data-oriented 11 

estimate and by 3) integrating further data streams in LPJmL to constrain land cover 12 

dynamics and disturbance effects on vegetation greenness in diagnostic model simulations. 13 

This model-data integration approach for LPJmL (LPJmL-MDI) will be applied to identify 14 

the environmental controls on vegetation greenness phenology.  15 

 16 

2 Model, data sets and model-data integration 17 

2.1 Overview  18 

LPJmL is a dynamic global vegetation model that simulates ecosystem processes as carbon 19 

and water fluxes, carbon allocation in plants and soils, permafrost dynamics, fire spread and 20 

behaviour and vegetation establishment and mortality. We were using LPJmL version 3.5. 21 

This version is based on the original LPJ model (Sitch et al., 2003). The model has been 22 

extended for  human land use (Bondeau et al., 2007), and agricultural water use (Rost et al., 23 

2008). It includes a process-oriented fire model (Thonicke et al., 2010), an improved 24 

representation of surface albedo and snow coverage (Strengers et al., 2010) and a newly 25 

implemented soil hydrology scheme and permafrost module (Schaphoff et al., 2013). This 26 

study focusses on the natural vegetation plant functional types (PFTs) (Sitch et al., 2003), i.e. 27 

our model developments and optimizations were not applied for crop functional types (CFTs) 28 

(Bondeau et al., 2007) because crop phenology is highly driven by human practices. 29 
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We developed a model-data integration approach for the LPJmL DGVM (LPJmL-MDI, 1 

Figure 1). LPJmL-MDI  allows to 1) directly insert land cover, tree cover and burnt area data 2 

sets in LPJmL for diagnostic model applications (section 2.4.1); 2) to optimize LPJmL model 3 

parameters against datasets (here FAPAR, GPP, albedo; section 2.4.2); and 3) to evaluate and 4 

benchmark LPJmL simulations against observations or observation-based data sets (section 5 

2.4.3). Like in a prognostic mode, LPJmL was driven by climate forcing data. Additionally, 6 

observed burnt areas were directly inserted in LPJmL to consider observed fire dynamics in 7 

diagnostic model applications. For this, we directly replaced the simulated burnt area in the 8 

LPJmL-SPITFIRE fire module (Thonicke et al., 2010) by observed burnt areas using the 9 

approach of Lehsten et al. (2008). Thus, the timing and location of fire spread is constrained 10 

by observations whereas fire effects on vegetation are still simulated by LPJmL-SPITFIRE. 11 

We further prescribed observed land cover and tree cover fractions to control for vegetation 12 

dynamics in parameter optimization experiments. Observed FAPAR and albedo time series as 13 

well as observation-based mean annual spatial patterns of GPP were used in a joint cost 14 

function to optimize productivity, phenology, radiation, and albedo-related model parameters 15 

using a genetic optimization algorithm.  16 

LPJmL was previously evaluated against site measurements of net carbon ecosystem 17 

exchange (Schaphoff et al., 2013; Sitch et al., 2003), atmospheric CO2 fractions (Sitch et al., 18 

2003), soil moisture (Wagner et al., 2003), evapotranspiration and runoff (Gerten et al., 2004; 19 

Schaphoff et al., 2013), fire regimes (Thonicke et al., 2010), and permafrost distribution 20 

(Schaphoff et al., 2013). Here we evaluate LPJmL against additional and partly new available 21 

global data sets of FAPAR (Baret et al., 2013; Zhu et al., 2013), GPP and evapotranspiration 22 

(ET) (Jung et al., 2011), tree cover (Townshend et al., 2011) and biomass (Carvalhais et al., 23 

2014; Saatchi et al., 2011; Thurner et al., 2014). 24 

2.2 FAPAR and phenology in the LPJmL DGVM 25 

2.2.1 FAPAR 26 

FAPAR is defined as the ratio between the photosynthetic active radiation absorbed by the 27 

green canopy (APAR) and the total incident photosynthetic active radiation (PAR). Thus, the 28 

total FAPAR of a grid cell is the sum of FAPAR that is distributed among the individual 29 

PFTs: 30 
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where n is the number of established PFTs in a grid cell. The FAPAR of a PFT depends on 3 

the annual maximum foliar projective cover (FPC), on the daily snow coverage in the green 4 

canopy (Fsnow,gv), green-leaf albedo (βleaf) and the daily phenology status (Phen): 5 

)1())(( ,,, PFTleafPFTgvsnowPFTPFTPFTPFT FPhenPhenFPCFAPAR   (3) 6 

Thus, the temporal dynamic of FAPAR in LPJmL is affected on an annual time step by 7 

changes in foliar projective cover (FPCPFT) and on daily time steps by changes in phenology 8 

(PhenPFT) and snow coverage in the green canopy (Fsnow,gv,PFT) (Figure S1). This approach 9 

extends the previous implementation of Sitch et al. (2003) where FAPAR depends only on 10 

FPC and phenology but leaf albedo and snow effects on FAPAR were missing.  11 

FPCPFT expresses the land cover fraction of a PFT. It is the annual maximum fractional green 12 

canopy coverage of a PFT and is annually calculated from crown area (CA), population 13 

density (P) and LAI (Sitch et al., 2003):  14 

)1( PFTPFT LAIk
PFTPFTPFT ePCAFPC   (4) 15 

The last term expresses the light extinction in the canopy which depends exponentially on 16 

LAI and the light extinction coefficient k of the Lambert-Beer law (Monsi and Saeki, 1953). 17 

The parameter k had a constant value of 0.5 for all PFTs in the original LPJmL formulation 18 

(Sitch et al., 2003). We changed k to a PFT-dependent parameter because it varies for 19 

different plant species as seen from field observations (Bolstad and Gower, 1990; Kira et al., 20 

1969; Monsi and Saeki, 1953). Crown area and leaf area index are calculated based on 21 

allocation rules and are depending on the annual biomass increment (Sitch et al., 2003). 22 

Population density depends on establishment and mortality processes in LPJmL (Sitch et al., 23 

2003).  24 

 25 
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2.2.2 Phenology 1 

The daily phenology and green leaf status of a PFT (PhenPFT) in LPJmL expresses the 2 

fractional cover of green leafs (from 0 = no leafs to 1 = full leaf cover). Thus, it represents the 3 

temporal dynamic of the canopy greenness. We explored two phenology models in this study: 4 

First, we were trying to optimize model parameters of the original phenology module in 5 

LPJmL (LPJmL-OP, Sitch et al., 2003). Secondly, we implemented a new phenology module 6 

based on the growing season index (GSI) concept (Jolly et al., 2005), hereinafter called 7 

LPJmL-GSI.  8 

LPJmL-OP has three different routines for summergreen (i.e. temperature-driven deciduous), 9 

evergreen (no seasonal variation) and rain-green (i.e. water-driven deciduous) PFTs (details in 10 

Supplement 1.1). Obviously, LPJmL-OP misses important controls on phenology like effects 11 

of light in all PFTs or effects of water in summergreen and herbaceous PFTs. Additionally, in 12 

herbaceous PFTs the end of the growing season is not controlled by environmental conditions 13 

but is defined based on fixed calendar dates.  14 

Because of the obvious limitations of LPJmL-OP, we developed the alternative LPJmL-GSI 15 

phenology module. The growing season index (GSI) is an empirical phenology model that 16 

multiplies limiting effects of temperature, day length and vapour pressure deficit (VPD) to a 17 

common phenology status (Jolly et al., 2005). We modified the GSI concept for the specific 18 

use in LPJmL (LPJmL-GSI). We defined the phenology status as a function of cold 19 

temperature, short-wave radiation and water availability. Additionally to the original GSI 20 

model, we added a heat stress limiting function because it has been suggested that vegetation 21 

greenness is limited by temperature-induced heat stress in several ecosystems (Bunn et al., 22 

2007; Verstraeten et al., 2006) and has been demonstrated that heat stress reduces plant 23 

productivity also without additional water stress (Jiang and Huang, 2001; Van Peer et al., 24 

2004; Poirier et al., 2012). Thus, the daily phenology status of a PFT is the product of the 25 

daily cold temperature (fcold,PFT), light (flight,PFT), water (fwater,PFT) and heat stress (fheat,PFT) 26 

limiting functions: 27 

PFTheatPFTwaterPFTlightPFTcoldPFT ffffPhen ,,,,   (5) 28 

Examples for the four functions are shown in Figure 2. 29 

The cold temperature limiting function at a daily time step t is defined as: 30 
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where slcold,PFT and basecold,PFT are PFT-dependent slope and inflection point parameters of a 2 

logistic function based on mean daily air temperature T (°C). The parameter τcold,PFT is the 3 

change rate parameter based on the difference between the actual predicted limiting function 4 

value and the previous-day cold temperature limiting function value. This parameter 5 

introduces a temporal autocorrelation in the phenology status and avoids abrupt phenological 6 

changes because of changing weather conditions.  7 

The light-limiting function was implemented accordingly: 8 
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where sllight,PFT and baselight,PFT are the PFT-dependent slope and inflection point parameters of 10 

a logistic function based on daily shortwave downward radiation SW (W m-2). The parameter 11 

τlight,PFT is the temporal change rate for the light-limiting function.  12 

The water-limiting function fwater,PFT depends on the daily water availability W (%) in LPJmL: 13 
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 (8) 15 

where slwater,PFT and basewater,PFT are the PFT-dependent slope and inflection point parameters 16 

of a logistic function based on daily water availability. W is a ratio between water supply from 17 

soil moisture and atmospheric water demand (Supplement 1.2) (Gerten et al., 2004). The 18 

parameter τwater,PFT is the temporal change rate for the water-limiting function. 19 

The heat-stress limiting function is defined as the cold-temperature limiting function based on 20 

daily air temperature but with a negative slope parameter: 21 
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  (9) 22 

where slheat,PFT and baseheat,PFT are the PFT-dependent slope and inflection point parameters of 23 

a logistic function based on T. The parameter τheat,PFT is the temporal change rate for the heat 24 

limiting function. 25 
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Besides the additional use of the heat stress limiting function, LPJmL-GSI has important 1 

differences to the original GSI phenology model (Jolly et al., 2005). We made the water 2 

limiting function dependent on water availability. VPD has been used instead in the original 3 

GSI phenology model. Nevertheless, it has been shown that phenology is more driven by soil 4 

moisture and plant available water than by atmospheric water demand especially in 5 

Mediterranean and grassland ecosystems (Archibald and Scholes, 2007; Kramer et al., 2000; 6 

Liu et al., 2013; Yuan et al., 2007) and that GSI performed better when using a soil moisture 7 

limiting function instead of the VPD limiting function (Migliavacca et al., 2011). With the 8 

implementation of the water limiting function in LPJmL-GSI, phenology depends not only on 9 

atmospheric water demand as in the original GSI model but also on water supply from soil 10 

moisture. Additionally, the soil moisture can be modulated through seasonal freezing and 11 

thawing in permafrost soils according to the permafrost routines in LPJmL (Schaphoff et al., 12 

2013). Another important difference to the original GSI phenology model is the use of logistic 13 

functions instead of stepwise linear functions with fixed thresholds because smooth functions 14 

are generally easier to optimize than functions with abrupt thresholds and potentially better 15 

represent biological processes. A moving average of 21 days has been used in the original 16 

GSI model to create smooth phenological cycles and to avoid abrupt phenology changes 17 

because of daily weather variability (Jolly et al., 2005). It has been shown that PFT- and 18 

limiting function-dependent time averaging parameters are needed instead of one single time 19 

averaging parameter (Stöckli et al., 2011). We implemented change rate parameters τcold, τlight, 20 

τwater and τheat that are PFT- and limiting function-dependent instead of moving average 21 

window lengths because LPJmL cannot use the same running window time averaging 22 

approach as a prognostic model.  23 

 24 

2.3 Data sets 25 

2.3.1 Data sets for parameter optimization: FAPAR, albedo and GPP 26 

We used FAPAR, albedo and GPP data sets to optimize phenology, FAPAR, productivity and 27 

vegetation albedo-related parameters in LPJmL (Figure 2). We require long-term FAPAR 28 

datasets to improve vegetation greenness in LPJmL on seasonal to decadal time scales. Two 29 

recently developed datasets provide 30-year time series of FAPAR. The Geoland2 BioPar 30 
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(GEOV1) FAPAR dataset (Baret et al., 2013) (hereinafter called GL2 FAPAR) and the 1 

GIMMS3g FAPAR (Zhu et al., 2013) datasets were used in this study.  2 

GL2 FAPAR is defined as the black-sky green canopy FAPAR at 10:15 solar time and has 3 

been produced based on SPOT VGT (1999-2012) and AVHRR (1981-2000) observations 4 

(Baret et al., 2013). The GL2 FAPAR dataset has a temporal resolution of 10 days and a 5 

spatial resolution of 0.05° for the AVHRR-period and of 1/112° for the SPOT VGT period. 6 

GIMMS3g FAPAR corresponds to black-sky FAPAR at 10:35 solar time and has been 7 

produced based on the GIMMS3g NDVI dataset (Pinzon and Tucker, 2014; Zhu et al., 2013). 8 

GIMMS3g FAPAR has a 15-day temporal resolution and a 1/12° spatial resolution and covers 9 

July 1981 to December 2011. We excluded in both FAPAR datasets observations that were 10 

flagged as contaminated by snow, aerosols or clouds. Additionally, we excluded FAPAR 11 

observations for months with temperatures < 0°C to exclude potential remaining distortions of 12 

snow cover. Both datasets were aggregated to a 0.5° spatial and monthly temporal resolution 13 

to be comparable with LPJmL simulations. We found that the GL2 AVHRR and GL2 VGT 14 

FAPAR datasets have not been well harmonized (Supplement 2.1). Thus, we did not use the 15 

combined GL2 VGT and AVHRR FAPAR dataset for parameter optimization and for 16 

analyses of inter-annual variability and trends but only for analyses and evaluations of mean 17 

seasonal cycles and spatial patterns of FAPAR. The GIMMS3g FAPAR dataset has no 18 

uncertainty estimates. Uncertainty estimates are necessary in multiple data stream parameter 19 

optimization to weight single data streams in the total cost function. As a workaround we 20 

estimated the uncertainty based on monthly-varying quantile regressions to the 0.95 quantile 21 

between FAPAR and the FAPAR uncertainty in the GL2 VGT dataset. We applied the fitted 22 

regressions to the GIMMS3g dataset to estimate FAPAR uncertainties (Supplement 2.2). The 23 

fit to the upper quantile provides conservative uncertainty estimates for the GIMMS3g 24 

FAPAR dataset.  25 

We used monthly shortwave white-sky albedo time series ranging from 2000 to 2010 from the 26 

MODIS C5 dataset (Lucht et al., 2000; Schaaf et al., 2002) to constrain vegetation albedo 27 

parameters. Albedo observations in months with < 5°C air temperature and above an albedo 28 

of 0.3 were excluded from optimization because we are optimizing only vegetation-related 29 

albedo parameters. High albedo values at low temperatures are probably affected by changing 30 

snow regimes which is not within our focus of model development and optimization. Thus we 31 

are only optimizing growing season albedo. 32 
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We used mean annual total GPP patterns from the data-oriented MTE (model tree ensemble) 1 

GPP estimate (Jung et al., 2011). This GPP estimate uses FLUXNET eddy covariance 2 

observations together with satellite observations and climate data to upscale GPP using a 3 

machine learning approach (Jung et al., 2011). This dataset is not an observation but a result 4 

of an empirical model. Nevertheless, evaluation and cross-validation analyses have shown 5 

that this dataset well represents the mean annual spatial patterns and mean seasonal cycles of 6 

GPP whereas it has a poor performance in representing temporal GPP anomalies (trends and 7 

extremes) (Jung et al., 2011). Thus, we are only using the mean annual total GPP from this 8 

dataset for parameter optimization to constrain LPJmL within small biases of mean annual 9 

GPP. We used the mean seasonal cycle from the MTE GPP product as an independent 10 

benchmark for model evaluation. 11 

 12 

2.3.2 Data sets for the prescription of land cover, tree cover and burnt 13 

area 14 

The FAPAR, albedo and GPP data sets do not presumably contain enough information to 15 

constrain all processes that control FAPAR dynamics. Especially, processes like 16 

establishment, mortality, competition between PFTs, allocation and disturbances control FPC 17 

and thus FAPAR. The optimization of parameters of these processes against appropriate data 18 

streams is not feasible within this study. Thus, we directly prescribed land and tree cover 19 

fractions as well as burnt areas from observed data to control for some of these processes. 20 

To prescribe land and tree cover in LPJmL, we combined several datasets to create 21 

observation-based maps of FPC (Supplement 3.1). Land cover maps from remote sensing 22 

products are not directly comparable with PFTs in global vegetation models due to 23 

differences in classification systems (Jung et al., 2006; Poulter et al., 2011a). PFTs in LPJmL 24 

are defined according to biome (tropical, temperate or boreal), leaf type (needle-leaved, 25 

broadleaved) and phenology type (summergreen, evergreen, rain green). We extracted the 26 

biome information from the Köppen-Geiger climate classification (Kottek et al., 2006) 27 

whereas leaf type and phenology were extracted from the SYNMAP land cover map (Jung et 28 

al., 2006). FPC was derived from MODIS tree cover (Townshend et al., 2011). Because 29 

LPJmL so far classified herbaceous vegetation according to their photosynthetic pathway (i.e. 30 

C3, temperate herbaceous and C4, tropical herbaceous), we further sub-divided herbaceous 31 
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PFTs according to biome and introduced a polar herbaceous PFT (PoH) based on the existing 1 

temperate herbaceous PFT (TeH) to differentiate tundra from temperate grasslands.  2 

Burnt area data was prescribed directly in LPJmL by combining three data sets, the Global 3 

Fire Emissions Database (GFED) burnt area dataset (Giglio et al., 2010), the Alaska Large 4 

Fire Database (ALFDB) (Frames, 2012; Kasischke et al., 2002) and the Canadian National 5 

Fire Database (CNFDB) (CFS, 2010; Stocks et al., 2002). GFED provides monthly burnt area 6 

estimates in 0.5° resolution from 1996 to 2011. Burnt areas from the Alaska (ALFDB) and 7 

Canada (CNFDB) fire databases were used to extent burnt area time series before 1996 for 8 

boreal North America. Fire perimeter observations from 1979 to 1996 from ALFDB and 9 

CNFDB were aggregated to 0.5°×0.5° gridded monthly burnt area time series. Observations 10 

before 1979 were excluded because fires were not reported for all provinces in Canada. 11 

Although the CNFDB contains only fire perimeters > 200ha, in both databases some fires are 12 

missing due to different mapping techniques, and fire perimeters do not agree with burned 13 

area, the integration of these datasets provides unique information about spatial-temporal 14 

patterns of disturbances especially in boreal ecosystems. It is necessary to simulate fire 15 

activity also during the model spin-up as fire influences the equilibrium between vegetation, 16 

soil and climate as well. Otherwise biomass would be overestimated at the beginning of the 17 

transient model run. For this purpose, we created artificial burnt area time series for the 18 

periods 1901-1978 (North America) and 1901-1995 (rest of the world). For this observed 19 

annual total burnt areas from the periods 1979-2011 (North America) and 1996-2011 (rest of 20 

the world) were resampled according to temperature and precipitation conditions and assigned 21 

to the pre-data period in order to include fire regimes that agree with observed fire regimes in 22 

the spin-up of LPJmL. This approach assumes that fire regimes in the pre-data period were 23 

not different than in the observation period. 24 

 25 

2.3.3 Data sets for model evaluation  26 

LPJmL was evaluated against data sets that are independent from the optimization and 27 

prescription data sets and against independent temporal or spatial scales of the optimization 28 

and prescription data sets. We compared LPJmL against mean annual patterns and mean 29 

seasonal cycles of ET from the MTE estimate (Jung et al., 2011). Further, we evaluated model 30 

results against spatial patterns of biomass. Ecosystem biomass estimates were taken from 31 
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satellite-derived forest biomass maps for the tropics (Saatchi et al., 2011) and for the 1 

temperate and boreal forests (Thurner et al., 2014) including an estimation of herbaceous 2 

biomass (Carvalhais et al., 2014). Additionally, we evaluated LPJmL against independent 3 

temporal and spatial scales of the integration data (mean seasonal cycle of GPP, tree cover, 4 

inter-annual variability and trends of FAPAR). We were using tree cover from MODIS to 5 

evaluate LPJmL model runs with dynamic vegetation. 6 

 7 

2.3.4 Climate forcing data and model spin-up 8 

LPJmL was driven by observed monthly temperature and precipitation data from the CRU 9 

TS3.1 dataset ranging from 1901 to 2011 (Harris et al., 2013) as well as by monthly 10 

shortwave downward radiation and long wave net radiation re-analysis data from ERA-11 

Interim (Dee et al., 2011).  12 

LPJmL needs a model spin-up to establish PFTs and to bring vegetation and soil carbon pools 13 

into equilibrium. The spin-up was performed according to the standard LPJmL modelling 14 

protocol (Schaphoff et al., 2013; Thonicke et al., 2010): LPJmL was run for 5000 years by 15 

repeating the climate data from 1900-1930. After the spin-up model run, the transient model 16 

run was restarted from the spin-up conditions in 1901 and LPJmL was run for the period 17 

1901-2011. Model results were analyzed for the observation period (1982-2011).  18 

For model optimization experiments we used a different spin-up scheme because the spin-up 19 

is computational time demanding and many model runs are needed during optimization 20 

experiments. As in the standard modelling protocol, we firstly spin-up the model for 5000 21 

years by repeating the climate from 1901-1930. Secondly, a transient model run was restarted 22 

from the spin-up conditions in 1901 and was performed for the period 1901-1979. Thirdly, 23 

each optimization experiment was restarted from the conditions in 1979 and a second spin-up 24 

for 100 years by recycling the climate from 1979 to 1988 was performed. The transient model 25 

run was restarted from the conditions of the second spin-up and simulated for the period 26 

1979-2011. This second spin-up is needed to bring the vegetation into a new equilibrium 27 

which can be caused by a new parameter combination during optimization. From visual 28 

analyses of model results, we found that a spin-up time of 100 years for the second spin-up 29 

was enough to eliminate trends in FAPAR and GPP that resulted from other equilibrium 30 

conditions.  31 
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 1 

2.4 Model-data integration 2 

2.4.1 Prescription of land and tree cover 3 

Land cover is expressed as FPC in LPJmL. We used the observation-based FPC dataset to 4 

prescribe land and tree cover in LPJmL (section 2.3.2, Supplement 3.1). The presence of a 5 

PFT in a grid cell depends on establishment and mortality in LPJmL (Sitch et al., 2003). A 6 

PFT establishes in a grid cell if the climate is within the bioclimatic limits of the PFT for 7 

establishment and survival. On the other hand, a PFT dies in a grid cell if the climate is no 8 

longer suitable for the PFT. Additionally, mortality occurs because of heat stress, low 9 

productivity, competition among PFTs for light, and because of fire disturbance (Sitch et al., 10 

2003; Thonicke et al., 2010).  11 

FPC is the major variable that contributes to inter-annual variability of FAPAR in LPJmL 12 

despite the daily phenological status. Thus fixing FPC to the observed value is not a desired 13 

solution to prescribe land cover in LPJmL. Fixing FPC would neglect mortality effects on 14 

land cover but would also permit the simulation of post-fire succession trajectories. 15 

Consequently, we prescribed land cover in LPJmL using a hybrid diagnostic-dynamic 16 

approach. In this approach we prescribed the annual maximum FPC in LPJmL similar to 17 

previous approaches (Poulter et al., 2011b). Firstly, we switched off the effects of bioclimatic 18 

limits on establishment and mortality. Only these PFTs were allowed to establish in a grid cell 19 

that occurred in the observed land-cover data set. Vegetation growth depends on the annual 20 

biomass increment and allocation rules in LPJmL. This leads to an extension of FPC of each 21 

PFT. We limited a further expansion of FPC if the simulated FPC exceeded the observed FPC 22 

by replacing the simulated FPC with the observed FPC (prescribed maximum FPC). 23 

Consequently, the simulated FPC can be lower than the observed FPC because the PFT is still 24 

growing or because the FPC was reduced due to fire, heat stress or low productivity. For 25 

herbaceous PFTs we only reduced the FPC if the observed total fractional vegetation cover in 26 

a grid cell was exceeded. This allowed herbaceous PFTs to replace tree PFTs if the FPC of 27 

trees was reduced due to fire or other mortality effects in the model. With this approach a 28 

prescription of land cover can be achieved in LPJmL which well represents observed PFT 29 

distributions (Supplement 3.2) but still allows for main processes of dynamic vegetation. 30 
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 1 

2.4.2 Parameter optimization  2 

Photosynthesis, albedo, FAPAR and phenology-related model parameters of LPJmL were 3 

optimized against observed FAPAR and albedo satellite observations and data-oriented 4 

estimates of GPP. A description of all parameters including parameter values is given in 5 

Supplement 4.1. The parameter αa is the most important parameter in LPJmL for 6 

photosynthesis (Zaehle et al., 2005). This parameter accounts for the amount of radiation that 7 

is absorbed at leaf level in comparison to the total canopy. Thus, this parameter is a 8 

replacement for a more enhanced model formulation for canopy structure and leaf clumping. 9 

We used this parameter to adjust biases in GPP. The PFT-dependent leaf, stem and litter 10 

albedo parameters (βleaf, βstem and βlitter) are mostly sensitive for model simulations of albedo. 11 

The parameter βleaf affects additionally the maximum FAPAR of a PFT. The light extinction 12 

coefficient k controls the FPC of a PFT and thus affects mainly land cover, maximum FAPAR 13 

and the available radiation for photosynthesis. All other parameters that were considered in 14 

optimization experiments are the parameters of the LPJmL-OP and LPJmL-GSI phenology 15 

modules. These parameters contribute mainly to seasonal variations in FAPAR. Some 16 

parameters were excluded from optimization experiments that were identified as insensitive to 17 

GPP and FAPAR simulations in PFTs. The temporal change rate parameters τtmin, τlight, τheat 18 

and τwater are insensitive in most PFTs because of the monthly temporal resolution of the used 19 

climate forcing data. 20 

The optimization of model parameters was performed by minimizing a cost function between 21 

model simulations and observations using a combined genetic and gradient-based 22 

optimization algorithm (GENOUD, genetic optimization using derivatives, Mebane and 23 

Sekhon, 2011, see Supplement 4.2 for details). The cost function J of LPJmL for a single 24 

model grid cell (gc) depends on the scaled model parameter vector d (d = proposed parameter 25 

value / prior parameter value) and is the sum of square error (SSE) between model simulation 26 

and observation weighted by the number of observations (nobs) for each data stream (DS): 27 
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The SSE for a single data stream is calculated from the LPJmL simulation of this data stream 1 

(xLPJmL) and the corresponding observed values (xobs) weighted by the uncertainty of the 2 

observations (xobsunc) for each time step t: 3 
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where p0 are LPJmL prior parameters. That means the minimization of the cost function J is 5 

based on scalars of LPJmL parameters relative to the prior parameter values.  6 

Different model optimization experiments were performed for individual grid cell and for 7 

multiple grid cells of the same PFT for LPJmL-OP as well as for LPJmL-GSI (Table 1). In the 8 

grid cell-based optimization experiments model parameters of the established target tree PFT 9 

and the established herbaceous PFT were optimized at the same time. The purpose of grid 10 

cell-level optimization experiments was to explore the variability of parameters within 11 

different regions and PFTs. In the PFT-level optimization experiments the cost of LPJmL was 12 

calculated as the sum of the cost for each grid cell weighted by the grid cell area A: 13 
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For PFT-level optimizations parameters of herbaceous PFTs were first optimized for grid 15 

cells where only the herbaceous PFT was dominant. In a second step, the optimized 16 

parameters of the herbaceous PFTs were used in the optimization of the target tree PFT 17 

(Figure S9). The purpose of PFT-level optimization experiments is to derive optimized 18 

parameter sets that can be used for one PFT in global model runs.  19 

For grid cell as well PFT-level optimization experiments, we only used grid cells that are 20 

vegetated, dominated by one PFT and that are only marginally affected from agricultural use 21 

or fire disturbances. These grid cells are called candidate grid cells in the following. We 22 

randomly selected grid cells from the set of candidate grid cells to perform grid cell- or PFT-23 

level optimization experiments. Table 1 gives an overview of all optimization experiments for 24 

LPJmL-OP and LPJmL-GSI with the number of used grid cells. Grid cells that were selected 25 

for optimization experiments are also shown in Figure 3. The PFT-level optimization of 26 
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LPJmL-OP (OP.pft) did not result in plausible posterior parameter sets because of structural 1 

limitations of the LPJmL-OP phenology model for herbaceous PFTs (i.e. no water effects, 2 

calendar day as end of growing season), raingreen PFT (i.e. binary phenology) and evergreen 3 

PFTs (i.e. constant phenology) and was therefore excluded from further analysis. 4 

Posterior parameter sensitivities, uncertainties and correlations were explored by analyzing 5 

the maximum likelihood and the posterior range of each parameter as derived from all 6 

parameter sets from the genetic optimization algorithm (Supplement 4.3).  7 

 8 

2.4.3 Model evaluation and time series analysis 9 

Global model runs of LPJmL were performed in order to evaluate model results against the 10 

integration data, against independent metrics of the integration data and against independent 11 

data streams. We evaluated results from LPJmL-OP with standard parameters (LPJmL-OP-12 

prior), from LPJmL-OP with optimized productivity, albedo and FAPAR parameters from 13 

grid-cell level optimization experiments (LPJmL-OP-gc) and from LPJmL-GSI with 14 

optimized parameters from PFT-level optimization experiments (Table 2). We did not use 15 

optimized phenology parameters in the LPJmL-OP-gc model run because we were not able to 16 

derive plausible phenology parameters in optimization experiments of LPJmL-OP. All model 17 

runs were performed with dynamic vegetation and prescribed burnt areas.  18 

We aggregated monthly FAPAR time series to mean annual FAPAR to evaluate inter-annual 19 

variability and trends. Mean annual FAPAR time series were averaged from all monthly 20 

values with mean monthly air temperatures > 0°C to exclude potential remaining effects of 21 

snow in the observed FAPAR time series. Trends in mean annual FAPAR time series and 22 

trend breakpoints were computed using the “greenbrown” package for the R software (Forkel 23 

et al., 2013). In this implementation, trends are computed by fitting piece-wise linear trends to 24 

the annual FAPAR time series using ordinary least squares regression. The significance of 25 

trends was computed using the Mann-Kendall trend test (Kendall, 1975; Mann, 1945).  26 

 27 
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3 Results and Discussion 1 

3.1 Parameter optimization 2 

3.1.1 Performance of phenology models  3 

The newly developed LPJmL-GSI phenology model resulted in significantly higher 4 

correlations with monthly GIMMS3g FAPAR than LPJmL-OP in all PFTs except in the 5 

tropical broadleaved evergreen (TrBE) and boreal broadleaved summergreen (BoBS) PFTs 6 

(Figure 4). LPJmL-OP with prior parameters had high correlations with monthly GIMMS3g 7 

FAPAR in broad-leaved summergreen PFTs (TeBS median r = 0.87, BoBS median r = 0.92) 8 

PFTs and medium correlations in boreal needle-leaved PFTs (BoNE median r = 0.53, BoNS 9 

median r = 0.6). In all other PFTs, LPJmL-OP had low correlations with monthly GIMMS3g 10 

FAPAR. The correlation against monthly GIMMS3g FAPAR did not significantly improve in 11 

all PFTs after grid cell-level optimization experiments of LPJmL-OP (Figure 4). The use of 12 

the newly developed LPJmL-GSI phenology model already significantly improved the 13 

correlation with monthly GIMMS3g FAPAR in all PFTs except in the temperate herbaceous 14 

(TeH) and BoBS PFTs. LPJmL-GSI had significantly higher correlations with monthly 15 

GIMMS3g FAPAR after grid cell-level optimization experiments in the TrBR, TeNE, TeBS, 16 

TeH, BoBS and BoNS PFTs. After PFT-level optimization experiments, LPJmL-GSI had 17 

median correlation coefficients > 0.5 in all PFTs except in broadleaved evergreen PFTs 18 

(TrBE, TeBE). These results prove that the rain-green, evergreen and herbaceous phenology 19 

schemes of LPJmL-OP were not able to reproduce temporal FAPAR dynamics despite the 20 

attempt of parameter optimization and that LPJmL-GSI can reproduce seasonal FAPAR 21 

dynamics in most PFTs.  22 

The low correlations coefficients between LPJmL-GSI and GIMMS3g FAPAR after 23 

optimization experiments in broadleaved evergreen PFTs (TrBE, TeBE) might be caused by 24 

the specific properties of the FAPAR dataset in these PFTs. GIMMS3g FAPAR does not have 25 

a clear seasonal cycle but a high short-term variability in broadleaved evergreen forests. 26 

These regions are often covered by clouds that inhibit continuous optical satellite 27 

observations. The high short-term variability results ultimately in low correlation coefficients 28 

between both LPJmL versions (LPJmL-OP and LPJmL-GSI) and GIMMS3g FAPAR time 29 

series. In temperate broadleaved evergreen forests, the GIMMS3g FAPAR dataset might have 30 



 

 20

a wrong seasonality. In these regions, the mean seasonal FAPAR cycles from the GIMMS3g 1 

and GL2 VGT FAPAR datasets are anti-correlated and FAPAR from LPJmL-GSI agrees 2 

better with the GL2 VGT dataset. Because of these reasons, we did not expect to improve 3 

seasonal FAPAR dynamics in broadleaved evergreen forests with the current model-data 4 

integration setup.  5 

All optimization experiments of LPJmL-OP and LPJmL-GSI resulted in a significant 6 

reduction of the cost in comparison to the respective prior models (Supplement 4.4, Figure 7 

S10). Nevertheless, the prior parameter set of LPJmL-GSI resulted already in a significant 8 

lower cost than the grid cell-level optimized parameter sets of LPJmL-OP in tropical and 9 

polar herbaceous PFTs, and in temperate broad-leaved summergreen and boreal needle-leaved 10 

summergreen PFTs. The reduction of the overall cost was in all model optimization 11 

experiments usually associated with a significant reduction of the annual GPP bias (Figure 12 

S11). LPJmL-OP with prior parameters underestimated mean annual GPP in the tropical 13 

broad-leaved evergreen PFT and overestimated mean annual GPP in all other PFTs. Grid cell-14 

level optimization experiments of LPJmL-OP resulted in a significant reduction of the GPP 15 

bias in all PFTs except in the polar herbaceous PFT (PoH). We were not able to remove the 16 

GPP bias and to reduce the cost of LPJmL-OP and of LPJmL-GSI in the PoH PFT in 17 

optimization experiments because of inconsistencies between the FAPAR and GPP datasets 18 

or in the LPJmL formulation. LPJmL was not able to sustain the relatively high peak FAPAR 19 

in Tundra regions as seen in the GIMMS3g dataset given the low mean annual GPP of the 20 

MTE dataset (Supplement 4.4). These inconsistencies might be related to higher uncertainties 21 

of the GPP and FAPAR datasets in tundra regions where the MTE GPP dataset is not covered 22 

by many eddy covariance measurement sites, and where satellite-based FAPAR observations 23 

are affected from high sun zenith angles (Tao et al., 2009; Walter-Shea et al., 1998). On the 24 

other hand, dominant tundra plant communities like mosses and lichen are not represented in 25 

LPJmL (Supplement 4.4). All model optimizations experiments kept growing season albedo 26 

within reasonable ranges in comparison to MODIS albedo (Figure S12). These results 27 

demonstrate an improved performance of optimized model parameter sets over prior model 28 

parameter sets and of LPJmL-GSI over LPJmL-OP regarding a cost that is defined based on 29 

30 years of monthly FAPAR, mean annual GPP and 10 years of monthly vegetation albedo. 30 

 31 
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3.1.2 Parameter sensitivities and uncertainties 1 

The uncertainty of productivity and albedo-related parameters was reduced after optimization 2 

of LPJmL-GSI in most PFTs while the reduction of the uncertainty of phenology-related 3 

parameters depended often on plant functional type (Figure 5). Prior and posterior parameter 4 

values from each optimization experiment are listed in the Supplement (Tables S2 to S5). 5 

The parameter αa (absorption of light at leaf level in relation to canopy level) was sensitive 6 

within a narrow parameter range for all PFTs. The posterior αa parameter range was smaller 7 

than the uniform prior range in all PFTs. In all optimization experiments we found for the 8 

parameter αa a gradient from high values in tropical to low values in boreal PFTs (Figure 9 

S13). This pattern reflects the initial overestimation of mean annual GPP in temperate and 10 

boreal PFTs and underestimation of GPP in tropical regions with the prior parameter set of 11 

LPJmL-OP. Thus, the low αa parameter values probably accounts for nitrogen limitation 12 

effects on productivity in boreal forests (Vitousek and Howarth, 1991) that are currently not 13 

considered in LPJmL. A future implementation of nitrogen limitation processes in LPJmL 14 

requires a re-optimization of the αa parameter. 15 

The leaf albedo parameter βleaf was sensitive in all PFTs and the posterior βleaf parameter 16 

range was smaller than the prior parameter range in evergreen PFTs. In these evergreen PFTs 17 

the βleaf parameter was well constrained because albedo satellite observations are less affected 18 

by variations in background albedo (soil, snow) than in deciduous PFTs. In all other PFTs the 19 

βleaf posterior parameter range was equal the prior parameter range or the optimized parameter 20 

value was close to a boundary of the prior parameter range. This result indicates that the 21 

albedo routines in LPJmL should consider variations in background albedo caused by changes 22 

in soil properties, soil moisture, or snow conditions in order to accurately reproduce satellite-23 

observed albedo time series (see supplementary discussion in Supplement 4.5). Nevertheless, 24 

the optimization of the leaf albedo parameter βleaf resulted in values that differed especially 25 

between broadleaved and needle-leaved evergreen PFTs as well as herbaceous PFTs (Figure 26 

5, Figure S14). Low leaf albedo parameters in needle-leaved evergreen PFTs (TeNE and 27 

BoNE) and high leaf albedo parameters in broad-leaved summergreen and herbaceous PFTs 28 

agree well with the patterns reported by Cescatti et al. (2012). 29 

The light extinction coefficient k was sensitive for all PFTs but the posterior parameter range 30 

was only in herbaceous PFTs and in the BoBS PFT smaller than the prior parameter range 31 
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(Figure 5). In all PFTs this parameter had a large spatial variability (Figure S15). The 1 

parameter k affects mostly the FPC and thus the maximum FAPAR. Thus, this parameter 2 

cannot be well constrained for tree PFTs in the current optimization setup because the 3 

maximum FPC of trees was prescribed from the land and tree cover dataset. On the other 4 

hand, the maximum FPC of herbaceous PFTs was not prescribed from observations which 5 

resulted in narrow k posterior parameter ranges for herbaceous PFTs. The parameter k was 6 

optimized towards a very high value in the BoNS PFT (k = 0.7) due to high tree mortality 7 

rates after low-productivity years (Supplement 4.5). This parameter would result in an 8 

overestimated PFT coverage in model runs with dynamic vegetation. Thus, we performed a 9 

second optimization experiment for this PFT (blue in Figure 5) where kBoNS was limited to 10 

0.65. This optimization experiment resulted in similar posterior values for the other 11 

parameters. Although the k parameter was well constrained for the TrH, TeH and PoH PFTs, 12 

these parameters cannot be used in the final parameter set of LPJmL-GSI. In dynamic 13 

vegetation model runs, the relatively low k parameter values for the TrH and TeH PFTs and 14 

relatively high values for the PoH PFT would result in an underestimation of herbaceous 15 

coverage in temperate and tropical climates and an overestimation of herbaceous coverage in 16 

boreal and polar climates, respectively. Therefore, we performed three more optimization 17 

experiments for herbaceous PFTs where we fixed k at 0.5 (blue in Figure 5). These 18 

optimization experiments resulted in similar αa parameters but different albedo parameters 19 

and phenology parameters in order to compensate for biases in FAPAR and albedo that were 20 

introduced by the fixed k parameter. Thus, the high spatial variability and the large 21 

uncertainty of the light extinction coefficient k require re-addressing this parameter in a model 22 

optimization setup with dynamic vegetation using tree and vegetation cover data or perhaps a 23 

replacement by a better representation of canopy architecture and radiative transfer.  24 

The sensitivity and posterior uncertainty of phenology-related model parameters depended 25 

often on plant functional type. The parameter basetmin which controls the effect of cold 26 

temperature on phenology was sensitive in all PFTs except the TrBE and TrH PFTs. The 27 

posterior parameter range was smaller than the prior parameter range in temperate PFTs 28 

(TeNE, TeBS and TeH). The parameter baseheat which controls the effect of heat stress on 29 

phenology was sensitive in TrBR, TrH, TeH, BoNE and BoNS PFTs while in other PFTs this 30 

parameter was only sensitive towards the boundaries of the prior parameter range. 31 

Nevertheless, the posterior parameter range was only smaller than the prior parameter range 32 
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in TrBR and TrH PFTs. The parameter baselight was sensitive in temperate and boreal PFTs. In 1 

tropical PFTs this parameter is only sensitive above a certain threshold (i.e. 60 W m-2 for 2 

TrBE and 100 W m-2 for TrBR). The parameter basewater was sensitive in all PFTs. The 3 

posterior parameter range of this parameter was smaller in all PFTs except in TeBS, BoNE, 4 

BoBS and BoNS PFTs. Although, the parameter basewater had a large variability among PFTs, 5 

it was generally optimized towards higher values in PFTs that are presumably water-6 

controlled (TrBR, TeBS, TrH, TeH) and optimized towards lower values in PFTs that are 7 

presumably less water controlled (TrBE, TeNE, BoNE, BoNS, PoH). This result indicates that 8 

FAPAR of water-controlled PFTs reacts already to small decreases in water availability 9 

whereas other PFTs react only to strong decreases in water availability. We found no strong 10 

correlations between posterior values of the phenology-related model parameters (Figure S16) 11 

which indicates the ability to disentangle the relative effects of temperature, light and water 12 

on phenology. As the basewater parameter was the only phenology parameter which was 13 

sensitive in all PFTs, this indicates that water availability is the only phenological control that 14 

acts in all PFTs. 15 

 16 

3.2 Effects of an improved phenology module in LPJmL 17 

3.2.1 Effects on seasonal and inter-annual greenness dynamics  18 

LPJmL-GSI represents better the observed spatial patterns and seasonal to decadal temporal 19 

dynamics of vegetation greenness (FAPAR) than LPJmL-OP (Figure 6, Supplement 5.3). 20 

Whereas LPJmL-OP overestimated mean annual FAPAR in many high-latitude and semi-arid 21 

regions, LPJmL-GSI was closer to both datasets and within the uncertainty of the GL2 VGT 22 

FAPAR dataset in most regions and under most climate conditions (Figure S22). LPJmL-GSI 23 

still overestimated mean annual FAPAR in temperate dry regions, but this overestimation was 24 

reduced in comparison to LPJmL-OP.  25 

We further observe a substantial improvement in LPJmL-GSI regarding the seasonal cycles, 26 

monthly and annual dynamics of FAPAR as retrieved from the GIMMS3g and GL2 VGT 27 

FAPAR datasets (Figure 6, Figures S23-S25). Monthly FAPAR time series from LPJmL-GSI 28 

were significantly (p  0.05) higher correlated with GIMMS3g than from LPJmL-OP in 29 

boreal forests of eastern Siberia, in the North American tundra, in temperate and tropical 30 
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grasslands of central Asia, North America, Australia and especially, in the Sahel (Figure 6a). 1 

This is because of an improved representation of spring onset and the end of the growing 2 

season in temperate and boreal forests and in herbaceous PFTs (Figure S24). The highest 3 

differences between simulated and observed mean seasonal FAPAR cycles where observed in 4 

the temperate broad-leaved evergreen PFT, where both model versions had opposite, although 5 

insignificant, relationships to the GIMMS3g datasets. For this PFT, the observational 6 

constraints are particularly problematic, where a weak agreement and opposite relationship is 7 

observed between the two datasets (r = -0.48). 8 

Globally, LPJmL-GSI describes better the inter-annual dynamics of GIMMS3g FAPAR when 9 

compared to the previous model versions (Figure 6 b). In 20% of the land the difference to 10 

other model versions is statistically significant, and in 40% does not detract from the previous 11 

model versions. This improvement in inter-annual variability is especially seen in temperate 12 

and tropical dry regions, with sparse tree cover and grassland dominated ecosystems (western 13 

United States, central Asia, the Sahel, southern Africa, and Australia) (Figure S25). In the 14 

arctic, boreal and temperate climates LPJmL usually shows a higher correlation with the 15 

GIMMS3g dataset than the correlation observed between both datasets (GIMMS3g and GL2 16 

VGT). These results demonstrate that LPJmL-GSI can explain the inter-annual variability of 17 

the GIMMS3g FAPAR dataset especially in temperate and boreal forests and temperate and 18 

tropical grasslands.  19 

Overall, the global spatial representation of phenological dynamics in LPJmL-GSI improves 20 

significantly over the previous model versions from seasonal to inter-annual time scales. 21 

Given the inclusion of water controls on phenological development, these results emphasize 22 

the importance of water availability in explaining the mean spatial patterns of vegetation 23 

greenness, but also the seasonal phenology as well as inter-annual dynamics in vegetation 24 

development. 25 

 26 

3.2.2 Effects on trends in vegetation greenness  27 

The role of different climate drivers underlying the greening and browning trends in 28 

vegetation activity is still highly debated and the dominant factors show a strong spatial 29 

variability (de Jong et al., 2013a). The consideration of different environmental controls on 30 
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the phenological development in LPJmL shows a significant improvement in representing 1 

such dynamics when compared to the previous model formulations (Figure 7). 2 

Both LPJmL-OP and LPJmL-GSI reproduced the observed greening trends in tundra regions 3 

and in boreal forests of Siberia. In both model versions this greening is mostly driven by 4 

annual changes in foliar projective cover and effects of temperature on spring phenology. This 5 

agrees with observational studies that identified temperature increases as drivers for an 6 

increasing shrub cover in tundra ecosystems (Blok et al., 2011; Forbes et al., 2010; Myers-7 

Smith et al., 2011; Raynolds et al., 2013; Sturm et al., 2001) and that found a positive 8 

association between warming, increasing tree ring widths and NDVI greening in boreal 9 

forests of eastern Siberia (Berner et al., 2011, 2013).  10 

Parts of the boreal forests in North America showed significant browning trends in the 11 

GIMMS3g dataset but a tendency to positive trends in the GL2 dataset. The simulation results 12 

from LPJmL-GSI are in agreement with the GIMMS3g-based browning trends, rather than 13 

greening trends. However, these model-based browning trends were not as strong as in the 14 

GIMMS3g dataset. In LPJmL-GSI these browning trends are caused by the effects of seasonal 15 

light and water effects on phenology, and by fire activity. In the GIMMS3g dataset these 16 

browning trends were related to several environmental factors like fire activity (Goetz et al., 17 

2005), temperature-induced drought stress (Beck et al., 2011; Bunn and Goetz, 2006) and to 18 

snow-regulated changes in soil water availability (Barichivich et al., 2014).  19 

The Sahel had widespread greening trends in the GIMMS3g FAPAR dataset. Whereas 20 

LPJmL-OP simulated browning trends, the implementation of water availability effects on 21 

phenology enabled LPJmL-GSI to reproduce the observed greening trends. Increases in 22 

precipitation and rain-use efficiency were also identified in observational studies as the main 23 

drivers of positive trends in vegetation greenness in the Sahel (Fensholt et al., 2013).  24 

Overall, we observed that both LPJmL-OP and LPJmL-GSI reproduced the greening trends in 25 

tundra, boreal and temperate forests, although LPJmL-GSI showed a wider agreement in the 26 

extent of browning trends in the boreal forests of North America. Further, in the Sahel region, 27 

the greening trends can only be reproduced through the inclusion of water availability 28 

controls on the phenology development. These results demonstrate that environmental 29 

controls like light, heat stress and water availability contribute to a better description of 30 

regional greening and browning trends in very different bioclimatic regions of the globe. 31 
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Hence, a comprehensive characterization of the different environmental controls on 1 

phenological development is essential in performing model-based analysis of long term trends 2 

in vegetation activity. 3 

 4 

3.2.3 Effects on carbon fluxes and stocks 5 

LPJmL-GSI and LPJmL-OP-gc with optimized parameters represented better the global 6 

patterns and mean seasonal cycles of gross primary production and biomass than LPJmL with 7 

original phenology and prior parameters (LPJmL-OP-prior) (Figure 8). LPJmL-OP-prior 8 

overestimated mean annual GPP and biomass in most polar, boreal and temperate regions. 9 

LPJmL-OP-prior underestimated mean annual GPP but overestimated mean annual biomass 10 

in tropical regions around the Equator. These biases were reduced in LPJmL-OP-gc and 11 

LPJmL-GSI. LPJmL generally overestimated GPP also in arid regions but these biases were 12 

reduced after optimization in LPJmL-OP-gc and LPJmL-GSI (Figure S18). We also found 13 

that the mean seasonal cycle of GPP from LPJmL-GSI agreed better with the mean seasonal 14 

GPP cycle from the MTE estimate especially in temperate forests and in tropical, temperate 15 

and polar grasslands (Supplement 5.1, Figure S17) although no information about the 16 

seasonality of GPP was included in optimization experiments. LPJmL-GSI still overestimated 17 

biomass in some tropical regions (African Savannas, south-east Brazil, south and south-east 18 

Asia) (Figure S19). These regions were mainly simulated as agricultural lands in LPJmL, i.e. 19 

as different crop functional types (CFTs). The LPJmL-GSI phenology module was not 20 

applied or optimized for agricultural regions, where the seasonal phenological development is 21 

prescribed according to the CFTs parameterizations from Bondeau et al. (2007). Generally, 22 

LPJmL-GSI performed substantially better than LPJmL-OP-prior and LPJmL-OP-gc when 23 

comparing the global total carbon fluxes and stocks to the data-oriented estimates 24 

(Supplement 5.1, Table S6). These results demonstrate that in addition to the optimization of 25 

productivity parameters in LPJmL, the implementation of the new GSI-based phenology 26 

improved estimates of spatial patterns, seasonal dynamics, and global totals of gross primary 27 

production and biomass. 28 

 29 
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3.2.4 Effects on forest distribution  1 

LPJmL-GSI with dynamic vegetation better represented the observed tree cover in high 2 

latitude regions than LPJmL-OP-prior and LPJmL-OP-gc (Figure 8 d). LPJmL-OP-prior 3 

highly overestimated tree cover in boreal and arctic regions and simulated a too northern 4 

arctic tree line in comparison with tree cover from MODIS observations. Although this 5 

overestimation was reduced after optimization, LPJmL-OP-gc still highly overestimated tree 6 

cover in boreal and temperate regions. The occurrence of trees was shifted southwards in 7 

LPJmL-GSI. Although LPJmL-GSI still overestimated tree cover in boreal regions, this 8 

overestimation was much lower than in LPJmL-OP-gc. LPJmL-OP-prior and LPJmL-OP-gc 9 

slightly underestimated tree cover in temperate regions around 45°N but this was well 10 

reproduced by LPJmL-GSI. We found no differences in tree cover between LPJmL-OP and 11 

LPJmL-GSI in other parts of the world where tree cover is highly affected from agricultural 12 

land use and thus implicitly prescribed to LPJmL. These results demonstrate that additional to 13 

the optimization of productivity parameters in LPJmL-OP-gc, the newly developed GSI-based 14 

phenology model and the optimized model parameters contribute to a better representation of 15 

tree cover in high-latitude regions. 16 

 17 

3.2.5 Effects on evapotranspiration processes  18 

Evapotranspiration from LPJmL agreed well with the data-oriented MTE estimates (Figure 8 19 

b). The implementation and optimization of the new GSI-based phenology did not affect ET 20 

much. ET increased only in tropical rainforests around the Equator in LPJmL-GSI and 21 

LPJmL-OP-gc in comparison to LPJmL-OP-prior because of the increased GPP in these 22 

regions. In other regions ET remained almost unchanged. But this does not imply that the 23 

structural improvements in LPJmL-GSI did not affect the transpiration processes (Figures 24 

S20, S21). Indeed, LPJmL-GSI had lower interception losses than LPJmL-OP in boreal 25 

forests because of the reduced tree cover. On the other hand this implies that simulated soil 26 

evaporation was increased. Furthermore, interception and soil evaporation had slightly shifted 27 

seasonal cycles in LPJmL-GSI compared to LPJmL-OP due to the seasonal differences in 28 

timing of leaf development and senescence stages (Figure S21). Consequently, small 29 

differences in total evapotranspiration result from opposite and compensatory changes in 30 

interception and soil evaporation and slight changes in transpiration fluxes in LPJmL-GSI. 31 
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 1 

3.3 Applicability and challenges of the LPJmL-GSI phenology module 2 

The LPJmL-GSI phenology module is part of a DGVM that is applied for climate impact 3 

studies. In order to assess how well the model performs under different climate conditions, we 4 

additionally tested how the model performance changes in grid cells that were not used during 5 

optimization (Figure S26). We found no general decrease in model performance with distance 6 

to the nearest grid cell used for optimization, or under different temperature conditions. 7 

Especially, no significantly lower correlations (p  0.05, Wilcoxon rank-sum test, Figure S26) 8 

were found between simulated and observed FAPAR time series in grid cells that were 3° to 9 

5°C warmer than the closest optimization grid cell. From a typical perspective of space for 10 

time substitution, this could indicate that the confidence in the simulation of FAPAR 11 

dynamics should not detract under climate warming scenarios of 0.3° to 4.8°C (IPCC, 2014). 12 

Nevertheless, model optimization experiments and model evaluation indicated further needs 13 

for improvement in future studies, for example, simulations of surface albedo could improve 14 

through the implementation of time-varying effects of snow conditions and surface moisture 15 

on albedo. Also, an enhanced representation of canopy architecture and canopy radiative 16 

transfer could reduce the large spatial variability and parameter uncertainty found for the light 17 

extinction coefficient and hence improve the simulation of tree coverage and peak FAPAR. In 18 

addition to temperature, light and water availability, phenology also depends on other factors 19 

that are not considered in LPJmL-GSI. Phenology is also driven by leaf age (Caldararu et al., 20 

2012, 2014) and nutrient availability (Wright, 1996). These effects are neither considered in 21 

the original GSI phenology model (Jolly et al., 2005; Stöckli et al., 2011) nor in the LPJmL-22 

GSI or other traditional formulations. Here, the lower posterior values found for the parameter 23 

αa may be compensating for missing nitrogen limitation effects on productivity in boreal 24 

forests (Vitousek and Howarth, 1991). Thus a future implementation of nitrogen limitation 25 

processes in LPJmL requires a re-optimization of the αa parameter. Additionally, the current 26 

implementation of phenology in LPJmL affects photosynthesis only through changes in 27 

APAR. In future model developments a stronger coupling between phenology and ecosystem 28 

carbon cycle dynamics could be explored. For example, the LPJmL-GSI phenology module 29 

could demand carbon for leaf development from photosynthesis or additional storage pools on 30 

the one hand and could trigger carbon turnover through litterfall on the other hand. In this 31 
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case a phenology module could partly regulate an optimal carbon gain for a canopy similar to 1 

the approach of Caldararu et al. (2014). Nevertheless, such an analysis needs to go beyond the 2 

approach of Caldararu et al. (2014) and demands for additional observational constraints on 3 

ecosystem carbon fluxes, leaf area, biomass and litterfall. In order to better understand 4 

couplings between leaf phenology, changes in carbon allocation and photosynthesis it will be 5 

of benefit to use site-level eddy covariance measurements from the FLUXNET network  6 

(Baldocchi et al., 2001) together with ancillary data in ecosystem-scale model optimization 7 

experiments (Carvalhais et al., 2010; Kuppel et al., 2012; Williams et al., 2009). Thus the 8 

LPJmL-GSI phenology module and the LPJmL model-data integration approach can serve as 9 

a framework to further explore hypotheses of ecosystem processes and vegetation dynamics. 10 

We demonstrated the improved performance of LPJmL-GSI over LPJmL-OP in representing 11 

observed carbon fluxes and stocks, forest cover and seasonal to decadal dynamics of 12 

vegetation greenness. Thus, similar approaches to the LPJmL-GSI phenology module can be 13 

applied in other DGVMs to improve model simulations in comparison with observations. 14 

However, the adaptation of current results to other models should be cautionary because the 15 

phenology scheme of LPJmL-GSI is an empirical approach with PFT-dependent parameters 16 

that need to be estimated. This estimation is model-specific because (1) different models do 17 

not necessarily use the same definition and set of PFTs; (2) our parameterizations depend on 18 

model structure, e.g. different models often use different hydrology routines; and (3) our 19 

posterior parameters for phenology were also constrained by using albedo and GPP data. Thus 20 

LPJmL-GSI model parameters cannot be easily transferred to other models. It might be 21 

possible to use the parameters of the temperature and light limiting functions in other models 22 

because these functions depend uniquely on the forcing data. On the other hand, the 23 

parameters for the water availability limiting function might need to be re-optimized because 24 

of differences in soil moisture computations. However, depending on the co-variability 25 

between forcing variables and simulated water availability by other models, the best 26 

parameterizations may differ from the ones presented here. Consequently, we acknowledge 27 

the potential need to optimize parameters of the LPJmL-GSI phenology model in order to 28 

obtain plausible results in other modelling structures. However, it is likely that the LPJmL-29 

GSI phenology model can be easily applied to other models of the LPJ group of models 30 

(Prentice et al., 2011; Smith et al., 2001) that are using the hydrology routines of Gerten et al. 31 
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(2004) while probably additional parameter optimization exercise are required to adapt the 1 

model to other types of DGVMs or ecosystem models. 2 

 3 

3.4 Environmental controls on vegetation greenness phenology 4 

As the newly developed GSI-based phenology model of LPJmL can reproduce the seasonality 5 

and monthly dynamics of observed FAPAR in most biomes, it can be used to identify 6 

environmental controls on vegetation greenness phenology. The importance of phenological 7 

controls differed by climate regions, ecosystems and season (Figure 9). We identified 8 

environmental controls on seasonal FAPAR dynamics by analyzing the mean seasonal cycles 9 

of FAPAR, of the cold temperature, light, water availability and heat stress limiting functions 10 

for phenology from the LPJmL-GSI model run. This analysis is comparable to previous 11 

investigations of limiting factors for vegetation phenology (e.g. Jolly et al., 2005; Caldararu et 12 

al., 2014). FAPAR seasonality in high-latitude regions (tundra, boreal forests) was mainly 13 

controlled by cold temperature (entire year) and light (October to February). We also found an 14 

important control by water availability in February to April in the tundra and in boreal forests 15 

of North America and eastern Siberia. This water limitation in early spring was due to the 16 

seasonal freezing of the upper permafrost layer in LPJmL. FAPAR seasonality in temperate 17 

grasslands in western North America and central Asia was controlled from a mixture of cold 18 

temperature (January to April), of water availability (May to November) and light (November 19 

to January). FAPAR seasonality in temperate forests in Europe was mainly limited by cold 20 

temperature in spring and by a combination of cold temperature and light in autumn. 21 

Additionally, heat stress and water availability contributed to a small reduction in summer 22 

FAPAR in temperate and boreal forests. The FAPAR seasonality in savannas (Sahel) was 23 

limited by water availability in the entire year and additionally by heat stress before the 24 

beginning of the rain season. The FAPAR seasonality of temperate regions in South America 25 

was limited by water availability in the entire year. Cold temperature was additionally 26 

limiting between May and September. Thus, water availability was the only environmental 27 

factor in LPJmL-GSI that controlled phenology globally from tropical to arctic biomes. 28 

The implementation of the water limiting function on phenology in LPJmL-GSI resulted in 29 

unique patterns of phenological controls that were different from results reported in similar 30 

analyses (Caldararu et al., 2014; Jolly et al., 2005). LPJmL-GSI showed water limitation on 31 
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phenology in many sub-tropical and dry temperate regions (especially Mediterranean, Pampas 1 

and Patagonia in South America, Mongolia, and northern Great Plains). The original GSI 2 

model showed mainly temperature and light limitation in these regions. In contrast to the 3 

original GSI, our implementation considers water limitations on phenology based on plant 4 

available water and not on VPD (Jolly et al., 2005). As considered by Caldararu et al. (2014), 5 

soil water availability exerts a more direct control on phenology development, which has been 6 

demonstrated for Mediterranean ecosystems (Kramer et al., 2000; Richardson et al., 2013) 7 

and in dry temperate grasslands (Liu et al., 2013; Yuan et al., 2007).  8 

Additionally, we identify water availability as an important limiting function for spring 9 

phenology in boreal and arctic regions in LPJmL-GSI because of the seasonal freezing of the 10 

upper active layer in permafrost soils. Although no relationships between active layer depth 11 

and vegetation greenness were found so far (Mcmichael et al., 1997), frozen grounds limit the 12 

seasonal tree growth in boreal forests because of limited water supply and nutrient uptake 13 

(Benninghoff, 1952; Jarvis and Linder, 2000). As the seasonal freezing and thawing of 14 

permafrost soils is to a large extent driven by changes in air temperature, one might argue that 15 

air temperature is enough to explain phenology dynamics in boreal and arctic regions. 16 

Nevertheless, we found weak correlations between posterior model parameters for the cold 17 

temperature and water limiting function for phenology in PFTs that experience strong 18 

permafrost dynamics (BoNS r = 0.2, PoH r = -0.28) (Figure S16). This indicates that the 19 

water and cold temperature limiting functions in boreal and arctic regions are only weakly 20 

correlated. Indeed, we did not find a completely synchronized temporal dynamic of the cold 21 

temperature and water limiting functions for phenology (Figure 9). These results emphasize 22 

the ability to disentangle effects of seasonal air temperature and soil moisture on phenology in 23 

boreal and arctic regions. Air temperature and soil thawing are not completely synchronized 24 

because soil temperature depends also on topography, substrate, and the insulating effects of 25 

the snow, litter and vegetation cover (Jorgenson et al., 2010; Shur and Jorgenson, 2007; 26 

Zhang, 2005). Soils might be still frozen if air temperature is already positive or vice versa. 27 

Also experimental studies highlighted the role of permafrost-regulated soil moisture on 28 

phenology and productivity in boreal and arctic ecosystem (Natali et al., 2012; Schuur et al., 29 

2007). It also has been observed that the seasonal freezing and thawing in permafrost regions 30 

regulates ecosystem evapotranspiration (Ohta et al., 2008) and fire activity (Forkel et al., 31 

2012) especially during extreme dry years. Thus, although temperature might be enough to 32 
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explain average spatial patterns of phenology in boreal and arctic regions we acknowledge 1 

that variations in snow or vegetation cover that affects soil temperature and thus moisture 2 

might be important factors in explaining inter-annual variations of land surface phenology.  3 

The heat stress limiting function was additionally introduced in LPJmL-GSI. Heat stress had 4 

no importance for seasonal FAPAR dynamics in most regions except in temperate and 5 

tropical grasslands. The heat stress function was highly correlated with the water availability 6 

function in temperate grasslands. This suggests that summer FAPAR is both regulated by 7 

water-induced and temperature-induced drought conditions in temperate grasslands. In 8 

tropical grasslands, heat stress and water availability were driving the temporal dynamics of 9 

seasonal FAPAR but asynchronously (in the Sahel). These results suggest that soil moisture 10 

needs to be considered in observational data analyses and in other ecosystem models as 11 

controlling factor for vegetation phenology in all biomes.  12 

Interestingly, Caldararu et al. (2014) identify leaf age as the dominant factor for phenology 13 

development in many permanent moist subtropical and tropical forests, but also in several 14 

water limited regions which were here identified as seasonally controlled by water 15 

availability. We cannot identify a dominant control on seasonal FAPAR dynamics in 16 

evergreen forests, as leaf age is not explicitly simulated in LPJmL-GSI. We acknowledge that 17 

the consideration of leaf age effects on phenology could further enhance the representation of 18 

ecosystem processes. However, the seasonal co-variation between LAI or FAPAR and 19 

environmental controls on phenology complicates the ability to disentangle the leaf aging 20 

signal from a temperature, light or water availability-driven signal, especially in seasonally 21 

deciduous vegetation types, where climate-driven models explain a significant fraction of 22 

seasonal variability and the realized age of leafs is shorter than a year. In addition, cloud 23 

cover contamination over moist tropical or subtropical forests pertain usually a weak seasonal 24 

signal and a high short-term variability, hinging on the reliability of the seasonal signal. 25 

Especially, Morton et al. (2014)  show that seasonal changes in MODIS LAI in the Amazon 26 

forests are linked to insufficient corrections of the sun-sensor geometry, which challenge the 27 

representation of vegetation phenology. However, in these tropical moist regions, where we 28 

find no environmental seasonal controls, and the realized age of oldest leafs are higher than a 29 

year, leaf age may be an important contributor for further consideration regarding the above-30 

seasonal frequency of phenology. Hence, grasping the relevance of leaf longevity, especially 31 

in tropical perennial systems, would necessarily require ground observations of leaf 32 
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development and litter fall to constrain leaf age parameters, as well as measurements of soil 1 

water content to address the appropriateness of soil moisture effects. 2 

 3 

4 Conclusions 4 

We have demonstrated a major improvement of the LPJmL dynamic global vegetation model 5 

by implementing a new set of phenological controls on vegetation greenness and by 6 

integrating multiple decadal satellite observations. We have proven that the original 7 

phenology model in LPJmL is unable to explain temporal dynamics of FAPAR. As an 8 

alternative we implemented a new phenology model (LPJmL-GSI) which considers effects of 9 

cold temperature, heat stress, light, and water availability on vegetation phenology. We 10 

developed a model-data integration approach for LPJmL (LPJmL-MDI) to 1) constrain model 11 

parameters against observations, 2) to directly integrate observed land cover fractions and 12 

burnt area time series and 3) to evaluate LPJmL against independent data streams. 13 

Specifically, phenology, productivity, and albedo-related model parameters of LPJmL-GSI 14 

were optimized jointly against 30 year time series of satellite observations of FAPAR, against 15 

10 year time series of vegetation albedo and mean annual patterns of gross primary 16 

production using a genetic optimization algorithm.  17 

The new phenology model and the parameter optimization clearly improved LPJmL model 18 

simulations. LPJmL-GSI better reproduces observed spatial patterns of gross primary 19 

production, tree cover, biomass and FAPAR than the original model. LPJmL-GSI simulates 20 

global total carbon stocks and fluxes that are closer to independent estimates than from the 21 

original model. LPJmL-GSI better represents observed seasonal, monthly, inter-annual and 22 

decadal FAPAR dynamics than the original model. The improvements of LPJmL in 23 

representing observed patterns and temporal dynamics of vegetation greenness allows 24 

assessing environmental controls on vegetation phenology and greenness. Contrasting to 25 

previous studies (Jolly et al., 2005; Stöckli et al., 2011), our results indicate that soil water 26 

availability is a major control of seasonal FAPAR dynamics not only in water-limited biomes 27 

but also in boreal forests and the arctic tundra where water availability is regulated through 28 

seasonal thawing and freezing of the active permafrost layer. Until now phenology of these 29 

ecosystems was mostly considered as temperature-limited. The consideration of the effect of 30 

soil water availability on phenology in LPJmL improved model simulations of greening 31 
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trends in the Sahel and of browning trends in parts of the boreal forests of North America. 1 

Our results demonstrate that improved phenology models that consider seasonal effects of 2 

water availability on a continuous canopy development are needed in order to correctly 3 

explain seasonal to long-term dynamics in vegetation greenness.  4 
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Table 1: Overview of optimization experiments with information sources for prior and 1 
posterior parameter sets. Parameter values and prior parameter ranges for each parameter set 2 
are listed in Supplement 4.1. 3 

Experiment  Description Number of randomly 
selected grid cells  

Prior parameter set and 
sources 

Posterior parameter 
set 

OP.prior Parameters or 
model results of 
LPJmL-OP with 
standard 
parameters 

-- Table S2 

Sitch et al. (2003): αa, k, 
ramp, aphenmin, aphenmax, 
Wscalmin 

Strengers et al. (2010): sfc 
and albedo parameters 
(partly estimated from 
MODIS albedo) 

--  

OP.gc Optimization of 
single grid cells of 
LPJmL-OP.  

530 in total 

TrBE 66, TrBR 51, 
TeNE 46, TeBE 32, 
TeBS 32, BoNE 68, 
BoBS 40, BoNS 49, 
TeH 66, TrH 80 

Table D2 

Parameters as in OP.prior 

One optimized 
parameter set per 
grid cell. Median-
averaged values for 
PFTs (Table S3) 

 

 

OP.pft 

(results not 
shown) 

Optimization of 
multiple grid of 
LPJmL-OP. 
Multiple grid cells 
of the same 
dominant PFT 
were optimized at 
the same time.  

673 in total 

TrBE 50, TrBR 80, 
TeNE 50, TeBE 50, 
TeBS 80, BoNE 50, 
BoBS 80, BoNS 158, 
TeH 50, TrH 25 

Median-averaged values for 
PFTs from posterior values 
of OP.gc (Table S3) 

 

-- (No useful 
posterior parameter 
sets were found) 

GSI.prior Parameters or 
model results of 
LPJmL-GSI with 
standard 
parameters. 

-- Table S4 

OP.gc: αa, k, sfc, βleaf, βlitter, 
and βstem  

Stöckli et al. (2011): 
parameters for cold and 
light limiting functions 
derived from fitting logistic 
functions to stepwise 
functions as reported in 
Stöckli et al. (2011) 

-- 

GSI.gc Optimization of 
single grid cells of 
LPJmL-GSI.  

348 in total 

TrBE 33, TrBR 33, 
TeNE 32, TeBE 22, 
TeBS 43, BoNE 30, 
BoBS 41, BoNS 30, 
TeH 46, TrH 38 

Parameters as in GSI.prior 
(Table S4) 

One optimized 
parameter set per 
grid cell.  

 

GSI.pft Optimization of 
multiple grid of 
LPJmL-GSI. 
Multiple grid cells 
of the same 

500 in total 

TrBE 30, TrBR 30, 
TeNE 30, TeBE 30, 
TeBS 30, BoNE 50, 

Parameters as in GSI.prior 
(Table S4) 

Table S5 (one 
optimized 
parameter set per 
PFT) 



 

 49

dominant PFT 
were optimized at 
the same time.  

BoBS 30, BoNS 60, 
TeH 70, TrH 70, PoH 
70 

 1 

 2 

Table 2: Overview of global model runs that were used in this study for model evaluation.  3 

Model run Phenology 
model 

Parameter set  Further settings 

LPJmL-
OP-prior 

original 
phenology 

LPJmL standard parameters as in the 
OP.prior experiment (Table S2) 

LPJmL-
OP-gc 

original 
phenology 

Optimized productivity, FAPAR and 
albedo parameters from the OP.gc 
optimization experiment, but original 
phenology parameters as in the 
OP.prior experiment (Table S3) 

LPJmL-
GSI 

GSI-based 
phenology 

Parameters from the GSI.pft 
optimization experiment (Table S5) 

dynamic vegetation/no prescribed land 
cover, prescribed agricultural land use, 
prescribed observed burnt area 

 

 

 4 



 

 50

 1 

Figure 1. Structure of the model-data integration approach for LPJmL (LPJmL-MDI). The 2 

LPJmL model structure is highly simplified.  3 
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 1 

Figure 2: Examples of the cold temperature, heat stress, light and water limiting functions for 2 
phenology in LPJmL-GSI. Depending on the chosen parameters the functions have different 3 
shapes for each PFT. 4 

 5 

 6 
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 1 

Figure 3: Map of the dominant PFT in each grid cell as derived from SYNMAP, Köppen-2 
Geiger climate zones and MODIS VCF. Grid cells that were used in any of the optimization 3 
experiments are shown as black crosses. Some grid cells were used in multiple optimization 4 
experiments. Grid cells that are dominated by agriculture were not used for optimization 5 
(TrML, tropical managed lands and TeML, temperate managed lands).  6 

 7 

 8 
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  1 

Figure 4: Distribution of the correlation coefficient between monthly LPJmL and GIMMS3g 2 
FAPAR (1982-2011) for several grid cells in prior model runs and optimization experiments 3 
grouped by plant functional types and biomes. (a) Correlation coeffcient for LPJmL-OP with 4 
default parameters (a, OP.prior), after grid cell-level optimizations (b, OP.gc), cost for 5 
LPJmL-GSI with prior parameters (c, GSI.prior), after grid cell-level optimizations (d, 6 
GSI.gc) and after PFT-level optimizations (e, GSI.pft). Biomes are Tr (tropical), Te 7 
(temperate) and Bo (boreal/polar). (b) Legend for the plot. Each distribution is plotted 8 
according to usual boxplot statistics. The point symbols indicate the plant functional type. The 9 
significance flag on top of each distribution shows if a distribution is significant different (p  10 
0.01) to the corresponding distribution of the same PFT in another optimization experiment. 11 
The significance is based on the Wilcoxon rank-sum test. For example “acd” indicates a 12 
significant difference to the main categories a (OP.prior), c (GSI.prior) and d (GSI.gc) but no 13 
significant difference to b (OP.gc) and e (GSI.pft). 14 

 15 

 16 
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 1 

Figure 5: Uncertainty and sensitivity of LPJmL-GSI parameters derived from all individuals 2 
of genetic optimizations at PFT level. Shown is the relationship between parameter values and 3 
the likelihood of the corresponding parameter vector. The likelihood is normalized with the 4 
likelihood of the optimum parameter set. Only individuals with dAIC < 2 are shown. Grey 5 
areas indicate the uniform prior parameter range. Red crosses indicate the optimum parameter 6 
value. The optimum parameter value is indicated as text in a plot if it is outside of the plotting 7 
range. Results from two independent optimization experiments are shown for the BoNS, TrH, 8 
TeH and PoH PFTs (black and blue colours, respectively) but not all parameters were 9 
included in both experiments. The parameter ALBEDO_LITTER in the TrBE and TeBE 10 
PFTs was not considered in optimization experiments. 11 

 12 
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Figure 6: Best LPJmL model runs for (a) monthly FAPAR dynamics (1982-2011, n = 360 2 

months) and (b) time series of mean annual FAPAR (1982-2011, n = 30 years). The best 3 

LPJmL model run has the highest correlation coefficient between simulated LPJmL FAPAR 4 

and GIMMS3g FAPAR. If one model run is shown the correlation coefficient of this best 5 

model is significant higher than of the second best model run (p  0.05, Fisher z-6 

transformation on difference in correlation). If two model runs are shown the correlation 7 

coefficients of the first and second best model runs are not significantly different from each 8 

other (p > 0.05).  9 
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Figure 7: Comparison of trends in mean annual FAPAR from LPJmL and from satellite 2 
datasets. Trends were computed between 1982 and 2011 as linear trends. The significance of 3 
a trend was determined using the Mann-Kendall trend test. Only significant trends slopes (p  4 
0.05) are displayed in each map. Spatial correlations of trend slopes (Spearman coefficient) 5 
between LPJmL and the GIMMS3g dataset are given in the map titles. Time series are 6 
showing mean annual FAPAR time series and trends spatially averaged for the regions as 7 
indicated in the first map. The blue area in time series represents the uncertainty of the GL2 8 
VGT FAPAR dataset. Numbers in the time series plot are correlation coefficients between 9 
mean annual FAPAR time series from GIMMS3g and from GL2 or LPJmL model runs, 10 
respectively. The significance of a trend and of the correlation is indicated as point symbol: 11 
*** (p  0.001), ** (p  0.01), * (p  0.05), . (p  0.1). 12 
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Figure 8: Latitudinal gradients of (a) gross primary production (GPP), (b) evapotranspiration, 2 
(c) biomass and (d) tree cover from data-oriented estimates and from LPJmL model 3 
simulations. Gradients were spatially averaged (median) from all 0.5° grid cells for latitudinal 4 
bands of 1° width. Grey areas represent uncertainty estimates for the data-oriented estimates. 5 
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Figure 9: Phenological controls on seasonal FAPAR dynamics. The maps are red-green-blue 2 
composites of the mean monthly values for the water (red), light (green) and cold temperature 3 
(blue) phenology limiting function values from the LPJmL-GSI model run. White regions in 4 
the maps are without vegetation or dominated by croplands for which the LPJmL-GSI 5 
phenology model was not applied. Time series represent the mean seasonal cycles (January to 6 
December) (averaged over 1982-2011) of simulated and observed FAPAR and phenology 7 
limiting function values averaged for different regions as indicated in the first map. 8 
Phenology limiting function values close to 0 indicate a strong control by phenology limiting 9 
functions whereas values close to 1 indicate no phenological control. The correlation 10 
coefficients of each time series with the simulated FAPAR time series are shown in each time 11 
series plot. The significance of the correlation is indicated as point symbol: *** (p  0.001), 12 
** (p  0.01), * (p  0.05), . (p  0.1). 13 
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