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Abstract

Existing dynamic global vegetation models (DGVMs) have a limited ability in reproducing
phenology and decadal dynamics of vegetation greenness as observed by satellites. These
limitations in reproducing observations reflect a poor understanding and description of the
environmental controls on phenology, which strongly influence the ability to simulate longer
term vegetation dynamics, e.g. carbon allocation. Combining DGVMs with observational data
sets can potentially help to revise current modelling approaches and thus to enhance the
understanding of processes that control seasonal to long-term vegetation greenness dynamics.
Here we implemented a new phenology model within the LPJmL (Lund Potsdam Jena
managed lands) DGVM and integrated several observational data sets to improve the ability
of the model in reproducing satellite-derived time series of vegetation greenness. Specifically,
we optimized LPJmL parameters against observational time series of the fraction of absorbed

photosynthetic active radiation (FAPAR), albedo and gross primary production to identify the
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main environmental controls for seasonal vegetation greenness dynamics. We demonstrated
that LPJmL with new phenology and optimized parameters better reproduces seasonality,
inter-annual variability and trends of vegetation greenness. Our results indicate that soil water
availability is an important control on vegetation phenology not only in water-limited biomes
but also in boreal forests and the arctic tundra. Whereas water availability controls phenology
in water-limited ecosystems during the entire growing season, water availability co-modulates
jointly with temperature the beginning of the growing season in boreal and arctic regions.
Additionally, water availability contributes to better explain decadal greening trends in the
Sahel and browning trends in boreal forests. These results emphasize the importance of
considering water availability in a new generation of phenology modules in DGVMs in order

to correctly reproduce observed seasonal to decadal dynamics of vegetation greenness.

1 Introduction

The greenness of the terrestrial vegetation is directly linked to plant productivity, surface
roughness and albedo and thus affects the climate system (Richardson et al., 2013).
Vegetation greenness can be quantified from satellite observations for example as Normalized
Difference Vegetation Index (NDVI) (Tucker, 1979). NDVI is a remotely sensed proxy for
structural plant properties like leaf area index (LAI) (Turner et al., 1999), green leaf biomass
(Gamon et al., 1995) and plant productivity. Especially, NDVI of green vegetation has a
linear relationship with the fraction of absorbed photosynthetic active radiation (FAPAR)
(Fensholt et al., 2004; Gamon et al., 1995; Myneni et al., 1995, 1997b; Myneni and Williams,
1994). Satellite-derived FAPAR estimates are often used to estimate  terrestrial
photosynthesis (Beer et al., 2010; Jung et al., 2008, 2011; Potter et al., 1999). Decadal
satellite observations of NDVI demonstrate widespread positive trends (“greening”)
especially in the high latitude regions (Lucht et al., 2002; Myneni et al., 1997a; Xu et al.,
2013) but also in the Sahel, southern Africa and southern Australia (Fensholt and Proud,
2012; de Jong et al., 2011, 2013b). Surprisingly, these trends are accompanied by negative
trends (“browning”) which were observed regionally in parts of the boreal forests of North
America and Eurasia, and in parts of eastern Africa and South America (Baird and Verbyla,
2012; Bi et al., 2013; de Jong et al., 2013b). Regionally different causes have been identified

for the observed greening and browning trends. The greening of the high latitudes is supposed
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to be mainly induced by rising air temperatures (Lucht et al., 2002; Myneni et al., 1997a; Xu
et al., 2013). Browning trends in subtropical regions were related to changing drought
conditions and land use change (Cook and Pau, 2013; van Leeuwen et al., 2013). On the other
hand, the environmental controls on the browning of boreal forests have been intensively
investigated but no concluding or general explanation has been found so far (Barichivich et
al., 2014; Beck et al., 2011; Beck and Goetz, 2011; Bunn et al., 2007; Goetz et al., 2005; Piao
et al., 2011; Wang et al., 2011). Trends in vegetation greenness are often related to changes
in vegetation phenology like an earlier onset and an associated lengthening of the growing
season in mid- and high-latitude regions (Atzberger et al., 2013; Hogda et al., 2001, 2013;
Tucker et al., 2001; Zeng et al., 2011). Changes in vegetation greenness are linked to changes
in primary production and thus affect atmospheric CO, concentrations and the terrestrial
carbon cycle (Barichivich et al., 2013; Keeling et al., 1996; Myneni et al., 1997a).
Additionally, vegetation greenness affects the climate system by influencing surface albedo.
For example, greening trends in high-latitudes are associated with decreasing surface albedo
(Urban et al., 2013) which alters the surface radiation budget (Loranty et al., 2011). This can
potentially further contribute to a warming of arctic regions (Chapin et al., 2005). Thus,
satellite observations of vegetation greenness demonstrate the recent interactions and changes

between terrestrial vegetation dynamics and the climate system.

Dynamic global vegetation models (DGVM) or generally climate/carbon cycle models are
used to analyze and project the response of the terrestrial vegetation to the past, recent and
future climate variability (Prentice et al., 2007). DGVMSs can be used to explain observed
trends in vegetation greenness (Lucht et al., 2002) or to quantify the related terrestrial CO,
uptake. While most global models simulate an increasing uptake of CO; by the terrestrial
vegetation under future climate change scenarios, the magnitude of future changes in land
carbon uptake largely differs among models (Friedlingstein et al., 2006; Sitch et al., 2008).
The spread of land carbon uptake estimates among DGVMs might be partly related to
insufficient representations of vegetation phenology and greenness (Richardson et al., 2012).
Coupled climate-carbon cycle models and uncoupled DGVMs have been compared against 30
year satellite-derived time series of LAI (Anav et al., 2013; Murray-Tortarolo et al., 2013;
Zhu et al., 2013). Models usually overestimate mean annual LAI in all biomes and have a too
long growing season because of a delayed season end (Anav et al., 2013; Murray-Tortarolo et

al., 2013; Zhu et al., 2013). Additionally, most DGVMs have more positive LAI trends than
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the satellite-derived LAI product, i.e. they underestimate browning trends in boreal forests
while a few DGVMs do not reproduce the general greening of the high latitudes (Murray-
Tortarolo et al., 2013). The limitations of DGVMs in reproducing observed LAI or FAPAR
time series is mostly related to limited phenology routines that often miss environmental
controls on seasonal leaf development (Kelley et al., 2013; Murray-Tortarolo et al., 2013;
Richardson et al., 2012). In conclusion, with improved modelling approaches for vegetation
phenology and greenness, DGVMs can potentially more accurately reproduce the recent, and

project the future response of the terrestrial vegetation to climate variability.

Past studies successfully demonstrated the use of vegetation greenness observations to
improve stand-alone phenology models or to optimize phenology and productivity-related
parameters in DGVMs. The growing season index (GSI) is an empirical phenology model that
is used to estimate seasonal leaf developments (Jolly et al., 2005). Empirical parameters of
GSI have been optimized against globally distributed 10 year FAPAR and LAI time series
from MODIS to reanalyze climatic drivers for vegetation phenology (Stockli et al., 2008,
2011). This optimization resulted in a good representation of temporal FAPAR and LAI
dynamics in all major biomes except evergreen tropical forests (Stockli et al., 2011). Model
parameters of the Biome-BGC model were optimized against eddy covariance flux
observations and NDVI time series from MODIS for poplar plantations in Northern Italy
which resulted in a more accurate representation of carbon fluxes and NDVI (Migliavacca et
al., 2009). The BETHY-CCDAS model was optimized against FAPAR time series from
MERIS for seven eddy covariance sites (Knorr et al., 2010) and later for 170 land grid cells
using coarse 8 by 10° spatial resolution (Kaminski et al., 2012). These studies demonstrated
the improvements in simulated vegetation phenology by optimizing model parameters against

observations of vegetation greenness.

Nevertheless, spatial patterns and temporal dynamics of vegetation greenness were not yet
optimized in a DGVM globally at a higher spatial resolution (0.5°) and by using long-term
(30 year) satellite-derived time series of vegetation greenness. Newly developed 30 year time
series of LAI or FAPAR from the GIMMS3g dataset (Global Inventory Modeling and
Mapping Studies, 3" generation of datasets) (Zhu et al., 2013) allow improving DGVMs not
only based on seasonal cycles of single years (i.e. phenology) but additionally against decadal
time series properties including inter-variability and trends. By integrating the GIMMS3g

FAPAR data set in a DGVM, we can potentially improve spatial patterns and seasonal to
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long-term temporal dynamics of vegetation greenness. We are using the LPJmL DGVM
(Lund-Potsdam-Jena managed lands). Similar to other DGVMs, LPJmL does not accurately
reproduce the growing season onset and seasonal amplitude of observed LAI and FAPAR
time series presumably because of a limited phenology model (Kelley et al., 2013; Murray-
Tortarolo et al., 2013). Thus integrating long-term observations of FAPAR in the LPJmL
DGVM potentially requires the development of an improved phenology scheme.

We are aiming to improve environmental controls on vegetation phenology and greenness in
LPJmL by 1) developing a new phenology module for LPJmL, by 2) optimizing FAPAR,
productivity and phenology-related parameters of LPJmL against 30 year satellite-derived
time series of FAPAR, against 10 year satellite-derived time series of vegetation albedo and
against spatial patterns of mean annual gross primary production (GPP) from a data-oriented
estimate and by 3) integrating further data streams in LPJmL to constrain land cover
dynamics and disturbance effects on vegetation greenness in diagnostic model simulations.
This model-data integration approach for LPJmL (LPJmL-MDI) will be applied to identify

the environmental controls on vegetation greenness phenology.

2 Model, data sets and model-data integration

2.1 Overview

LPJmL is a dynamic global vegetation model that simulates ecosystem processes as carbon
and water fluxes, carbon allocation in plants and soils, permafrost dynamics, fire spread and
behaviour and vegetation establishment and mortality. We were using LPJmL version 3.5.
This version is based on the original LPJ model (Sitch et al., 2003). The model has been
extended for human land use (Bondeau et al., 2007), and agricultural water use (Rost et al.,
2008). It includes a process-oriented fire model (Thonicke et al., 2010), an improved
representation of surface albedo and snow coverage (Strengers et al., 2010) and a newly
implemented soil hydrology scheme and permafrost module (Schaphoff et al., 2013). This
study focusses on the natural vegetation plant functional types (PFTs) (Sitch et al., 2003), i.e.
our model developments and optimizations were not applied for crop functional types (CFTs)

(Bondeau et al., 2007) because crop phenology is highly driven by human practices.
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We developed a model-data integration approach for the LPJmL DGVM (LPJmL-MDI,
Figure 1). LPJmL-MDI allows to 1) directly insert land cover, tree cover and burnt area data
sets in LPJmL for diagnostic model applications (section 2.4.1); 2) to optimize LPJmL model
parameters against datasets (here FAPAR, GPP, albedo; section 2.4.2); and 3) to evaluate and
benchmark LPJmL simulations against observations or observation-based data sets (section
2.4.3). Like in a prognostic mode, LPJmL was driven by climate forcing data. Additionally,
observed burnt areas were directly inserted in LPJmL to consider observed fire dynamics in
diagnostic model applications. For this, we directly replaced the simulated burnt area in the
LPJmL-SPITFIRE fire module (Thonicke et al., 2010) by observed burnt areas using the
approach of Lehsten et al. (2008). Thus, the timing and location of fire spread is constrained
by observations whereas fire effects on vegetation are still simulated by LPJmL-SPITFIRE.
We further prescribed observed land cover and tree cover fractions to control for vegetation
dynamics in parameter optimization experiments. Observed FAPAR and albedo time series as
well as observation-based mean annual spatial patterns of GPP were used in a joint cost
function to optimize productivity, phenology, radiation, and albedo-related model parameters

using a genetic optimization algorithm.

LPJmL was previously evaluated against site measurements of net carbon ecosystem
exchange (Schaphoff et al., 2013; Sitch et al., 2003), atmospheric CO, fractions (Sitch et al.,
2003), soil moisture (Wagner et al., 2003), evapotranspiration and runoff (Gerten et al., 2004;
Schaphoff et al., 2013), fire regimes (Thonicke et al., 2010), and permafrost distribution
(Schaphoff et al., 2013). Here we evaluate LPJmL against additional and partly new available
global data sets of FAPAR (Baret et al., 2013; Zhu et al., 2013), GPP and evapotranspiration
(ET) (Jung et al., 2011), tree cover (Townshend et al., 2011) and biomass (Carvalhais et al.,
2014; Saatchi et al., 2011; Thurner et al., 2014).

2.2 FAPAR and phenology in the LPIJmL DGVM

2.2.1 FAPAR

FAPAR is defined as the ratio between the photosynthetic active radiation absorbed by the
green canopy (APAR) and the total incident photosynthetic active radiation (PAR). Thus, the
total FAPAR of a grid cell is the sum of FAPAR that is distributed among the individual
PFTs:



10
11

12
13
14

15

16
17
18
19
20
21
22
23
24

25

APAR ppr

FAPAR = 1
PFT PAR (1)
PFT=n
FAPARgridcell = ZFAPARPFT (2)
PFT=1

where 7 is the number of established PFTs in a grid cell. The FAPAR of a PFT depends on
the annual maximum foliar projective cover (FPC), on the daily snow coverage in the green

canopy (Fsuow,gv), green-leaf albedo (fi.qr) and the daily phenology status (Phen):
FAPARppr = FPCppr x(Phenppr — (Phenppr X Fo,0,, oy, pET ) X (1= Blear, pET) (3)

Thus, the temporal dynamic of FAPAR in LPJmL is affected on an annual time step by
changes in foliar projective cover (FPCprr) and on daily time steps by changes in phenology
(Phenprr) and snow coverage in the green canopy (Fluowevprr) (Figure S1). This approach
extends the previous implementation of Sitch et al. (2003) where FAPAR depends only on
FPC and phenology but leaf albedo and snow effects on FAPAR were missing.

FPCprr expresses the land cover fraction of a PFT. It is the annual maximum fractional green
canopy coverage of a PFT and is annually calculated from crown area (CA), population

density (P) and LAI (Sitch et al., 2003):
FPCppr = CAppr % Pppy x (1=~ *rrr <tAlprr ) 4)

The last term expresses the light extinction in the canopy which depends exponentially on
LAI and the light extinction coefficient k£ of the Lambert-Beer law (Monsi and Saeki, 1953).
The parameter £ had a constant value of 0.5 for all PFTs in the original LPJmL formulation
(Sitch et al., 2003). We changed k£ to a PFT-dependent parameter because it varies for
different plant species as seen from field observations (Bolstad and Gower, 1990; Kira et al.,
1969; Monsi and Saeki, 1953). Crown area and leaf area index are calculated based on
allocation rules and are depending on the annual biomass increment (Sitch et al., 2003).
Population density depends on establishment and mortality processes in LPJmL (Sitch et al.,
2003).
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2.2.2 Phenology

The daily phenology and green leaf status of a PFT (Phenprr) in LPJmL expresses the
fractional cover of green leafs (from 0 = no leafs to 1 = full leaf cover). Thus, it represents the
temporal dynamic of the canopy greenness. We explored two phenology models in this study:
First, we were trying to optimize model parameters of the original phenology module in
LPJmL (LPJmL-OP, Sitch et al., 2003). Secondly, we implemented a new phenology module
based on the growing season index (GSI) concept (Jolly et al., 2005), hereinafter called
LPJmL-GSI.

LPJmL-OP has three different routines for summergreen (i.e. temperature-driven deciduous),
evergreen (no seasonal variation) and rain-green (i.e. water-driven deciduous) PFTs (details in
Supplement 1.1). Obviously, LPJmL-OP misses important controls on phenology like effects
of light in all PFTs or effects of water in summergreen and herbaceous PFTs. Additionally, in
herbaceous PFTs the end of the growing season is not controlled by environmental conditions

but is defined based on fixed calendar dates.

Because of the obvious limitations of LPJmL-OP, we developed the alternative LPJmL-GSI
phenology module. The growing season index (GSI) is an empirical phenology model that
multiplies limiting effects of temperature, day length and vapour pressure deficit (VPD) to a
common phenology status (Jolly et al., 2005). We modified the GSI concept for the specific
use in LPJmL (LPJmL-GSI). We defined the phenology status as a function of cold
temperature, short-wave radiation and water availability. Additionally to the original GSI
model, we added a heat stress limiting function because it has been suggested that vegetation
greenness is limited by temperature-induced heat stress in several ecosystems (Bunn et al.,
2007; Verstraeten et al., 2006) and has been demonstrated that heat stress reduces plant
productivity also without additional water stress (Jiang and Huang, 2001; Van Peer et al.,
2004; Poirier et al., 2012). Thus, the daily phenology status of a PFT is the product of the
daily cold temperature (feolaprr), light (fighiprr), Water (fwaerprr) and heat stress (fheatprr)

limiting functions:
Phenppr = feola, PFT * flight, PFT * fwater,PFT % fheat, PFT (5)

Examples for the four functions are shown in Figure 2.

The cold temperature limiting function at a daily time step ¢ is defined as:
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where slcoigprr and basecoiaprr are PFT-dependent slope and inflection point parameters of a
logistic function based on mean daily air temperature T (°C). The parameter Tcoqprr 1S the
change rate parameter based on the difference between the actual predicted limiting function
value and the previous-day cold temperature limiting function value. This parameter
introduces a temporal autocorrelation in the phenology status and avoids abrupt phenological

changes because of changing weather conditions.

The light-limiting function was implemented accordingly:

1 -1
— : X .
N e_Sllight,PFT X(SW_baselight,PFT) fllght,PFT Tlight, PFT (7

t s
Jiight.PFT = Jlight, PFT J{l

where sljignprr and basejign prr are the PFT-dependent slope and inflection point parameters of
a logistic function based on daily shortwave downward radiation SW (W m™). The parameter

Tiigh prT 1S the temporal change rate for the light-limiting function.

The water-limiting function fyaer prr depends on the daily water availability W (%) in LPJmL:

1 t—1
- XT
1_+_e_Slwater,PFTX(W_basewater,PFT) water, PFT water, PFT

(8)

t t—1
Swater PFT = fwater, PFT + (

where Slyaterprr and baseyater prr are the PFT-dependent slope and inflection point parameters
of a logistic function based on daily water availability. /¥ is a ratio between water supply from
soil moisture and atmospheric water demand (Supplement 1.2) (Gerten et al., 2004). The

parameter Tyaeer prr 1S the temporal change rate for the water-limiting function.

The heat-stress limiting function is defined as the cold-temperature limiting function based on

daily air temperature but with a negative slope parameter:

t _ ot 1 -l
Jheat, PFT —fheat,PFTJ{ 1+ olneat,prr X(T=baseyeqr prr) Jhear,PFT ]”he‘”ap rr o 9)

where slpeat prr and basepea prr are the PFT-dependent slope and inflection point parameters of
a logistic function based on 7. The parameter Theaprr 1S the temporal change rate for the heat

limiting function.
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Besides the additional use of the heat stress limiting function, LPJmL-GSI has important
differences to the original GSI phenology model (Jolly et al., 2005). We made the water
limiting function dependent on water availability. VPD has been used instead in the original
GSI phenology model. Nevertheless, it has been shown that phenology is more driven by soil
moisture and plant available water than by atmospheric water demand especially in
Mediterranean and grassland ecosystems (Archibald and Scholes, 2007; Kramer et al., 2000;
Liu et al., 2013; Yuan et al., 2007) and that GSI performed better when using a soil moisture
limiting function instead of the VPD limiting function (Migliavacca et al., 2011). With the
implementation of the water limiting function in LPJmL-GSI, phenology depends not only on
atmospheric water demand as in the original GSI model but also on water supply from soil
moisture. Additionally, the soil moisture can be modulated through seasonal freezing and
thawing in permafrost soils according to the permafrost routines in LPJmL (Schaphoff et al.,
2013). Another important difference to the original GSI phenology model is the use of logistic
functions instead of stepwise linear functions with fixed thresholds because smooth functions
are generally easier to optimize than functions with abrupt thresholds and potentially better
represent biological processes. A moving average of 21 days has been used in the original
GSI model to create smooth phenological cycles and to avoid abrupt phenology changes
because of daily weather variability (Jolly et al., 2005). It has been shown that PFT- and
limiting function-dependent time averaging parameters are needed instead of one single time
averaging parameter (Stockli et al., 2011). We implemented change rate parameters Tcolq, Tiight,
Twater aNd Theae that are PFT- and limiting function-dependent instead of moving average
window lengths because LPJmL cannot use the same running window time averaging

approach as a prognostic model.

2.3 Data sets

2.3.1 Data sets for parameter optimization: FAPAR, albedo and GPP

We used FAPAR, albedo and GPP data sets to optimize phenology, FAPAR, productivity and
vegetation albedo-related parameters in LPJmL (Figure 2). We require long-term FAPAR
datasets to improve vegetation greenness in LPJmL on seasonal to decadal time scales. Two

recently developed datasets provide 30-year time series of FAPAR. The Geoland2 BioPar

10
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(GEOVI1) FAPAR dataset (Baret et al., 2013) (hereinafter called GL2 FAPAR) and the
GIMMS3g FAPAR (Zhu et al., 2013) datasets were used in this study.

GL2 FAPAR is defined as the black-sky green canopy FAPAR at 10:15 solar time and has
been produced based on SPOT VGT (1999-2012) and AVHRR (1981-2000) observations
(Baret et al., 2013). The GL2 FAPAR dataset has a temporal resolution of 10 days and a
spatial resolution of 0.05° for the AVHRR-period and of 1/112° for the SPOT VGT period.
GIMMS3g FAPAR corresponds to black-sky FAPAR at 10:35 solar time and has been
produced based on the GIMMS3g NDVI dataset (Pinzon and Tucker, 2014; Zhu et al., 2013).
GIMMS3g FAPAR has a 15-day temporal resolution and a 1/12° spatial resolution and covers
July 1981 to December 2011. We excluded in both FAPAR datasets observations that were
flagged as contaminated by snow, aerosols or clouds. Additionally, we excluded FAPAR
observations for months with temperatures < 0°C to exclude potential remaining distortions of
snow cover. Both datasets were aggregated to a 0.5° spatial and monthly temporal resolution
to be comparable with LPJmL simulations. We found that the GL2 AVHRR and GL2 VGT
FAPAR datasets have not been well harmonized (Supplement 2.1). Thus, we did not use the
combined GL2 VGT and AVHRR FAPAR dataset for parameter optimization and for
analyses of inter-annual variability and trends but only for analyses and evaluations of mean
seasonal cycles and spatial patterns of FAPAR. The GIMMS3g FAPAR dataset has no
uncertainty estimates. Uncertainty estimates are necessary in multiple data stream parameter
optimization to weight single data streams in the total cost function. As a workaround we
estimated the uncertainty based on monthly-varying quantile regressions to the 0.95 quantile
between FAPAR and the FAPAR uncertainty in the GL2 VGT dataset. We applied the fitted
regressions to the GIMMS3g dataset to estimate FAPAR uncertainties (Supplement 2.2). The
fit to the upper quantile provides conservative uncertainty estimates for the GIMMS3g

FAPAR dataset.

We used monthly shortwave white-sky albedo time series ranging from 2000 to 2010 from the
MODIS C5 dataset (Lucht et al., 2000; Schaaf et al., 2002) to constrain vegetation albedo
parameters. Albedo observations in months with < 5°C air temperature and above an albedo
of 0.3 were excluded from optimization because we are optimizing only vegetation-related
albedo parameters. High albedo values at low temperatures are probably affected by changing
snow regimes which is not within our focus of model development and optimization. Thus we

are only optimizing growing season albedo.

11
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We used mean annual total GPP patterns from the data-oriented MTE (model tree ensemble)
GPP estimate (Jung et al., 2011). This GPP estimate uses FLUXNET eddy covariance
observations together with satellite observations and climate data to upscale GPP using a
machine learning approach (Jung et al., 2011). This dataset is not an observation but a result
of an empirical model. Nevertheless, evaluation and cross-validation analyses have shown
that this dataset well represents the mean annual spatial patterns and mean seasonal cycles of
GPP whereas it has a poor performance in representing temporal GPP anomalies (trends and
extremes) (Jung et al., 2011). Thus, we are only using the mean annual total GPP from this
dataset for parameter optimization to constrain LPJmL within small biases of mean annual
GPP. We used the mean seasonal cycle from the MTE GPP product as an independent

benchmark for model evaluation.

2.3.2 Data sets for the prescription of land cover, tree cover and burnt

area

The FAPAR, albedo and GPP data sets do not presumably contain enough information to
constrain all processes that control FAPAR dynamics. Especially, processes like
establishment, mortality, competition between PFTs, allocation and disturbances control FPC
and thus FAPAR. The optimization of parameters of these processes against appropriate data
streams is not feasible within this study. Thus, we directly prescribed land and tree cover

fractions as well as burnt areas from observed data to control for some of these processes.

To prescribe land and tree cover in LPJmL, we combined several datasets to create
observation-based maps of FPC (Supplement 3.1). Land cover maps from remote sensing
products are not directly comparable with PFTs in global vegetation models due to
differences in classification systems (Jung et al., 2006; Poulter et al., 2011a). PFTs in LPJmL
are defined according to biome (tropical, temperate or boreal), leaf type (needle-leaved,
broadleaved) and phenology type (summergreen, evergreen, rain green). We extracted the
biome information from the Koppen-Geiger climate classification (Kottek et al., 2006)
whereas leaf type and phenology were extracted from the SYNMAP land cover map (Jung et
al., 2006). FPC was derived from MODIS tree cover (Townshend et al., 2011). Because
LPJmL so far classified herbaceous vegetation according to their photosynthetic pathway (i.e.

Cs, temperate herbaceous and Cy, tropical herbaceous), we further sub-divided herbaceous

12
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PFTs according to biome and introduced a polar herbaceous PFT (PoH) based on the existing

temperate herbaceous PFT (TeH) to differentiate tundra from temperate grasslands.

Burnt area data was prescribed directly in LPJmL by combining three data sets, the Global
Fire Emissions Database (GFED) burnt area dataset (Giglio et al., 2010), the Alaska Large
Fire Database (ALFDB) (Frames, 2012; Kasischke et al., 2002) and the Canadian National
Fire Database (CNFDB) (CFS, 2010; Stocks et al., 2002). GFED provides monthly burnt area
estimates in 0.5° resolution from 1996 to 2011. Burnt areas from the Alaska (ALFDB) and
Canada (CNFDB) fire databases were used to extent burnt area time series before 1996 for
boreal North America. Fire perimeter observations from 1979 to 1996 from ALFDB and
CNFDB were aggregated to 0.5°x0.5° gridded monthly burnt area time series. Observations
before 1979 were excluded because fires were not reported for all provinces in Canada.
Although the CNFDB contains only fire perimeters > 200ha, in both databases some fires are
missing due to different mapping techniques, and fire perimeters do not agree with burned
area, the integration of these datasets provides unique information about spatial-temporal
patterns of disturbances especially in boreal ecosystems. It is necessary to simulate fire
activity also during the model spin-up as fire influences the equilibrium between vegetation,
soil and climate as well. Otherwise biomass would be overestimated at the beginning of the
transient model run. For this purpose, we created artificial burnt area time series for the
periods 1901-1978 (North America) and 1901-1995 (rest of the world). For this observed
annual total burnt areas from the periods 1979-2011 (North America) and 1996-2011 (rest of
the world) were resampled according to temperature and precipitation conditions and assigned
to the pre-data period in order to include fire regimes that agree with observed fire regimes in
the spin-up of LPJmL. This approach assumes that fire regimes in the pre-data period were

not different than in the observation period.

2.3.3 Data sets for model evaluation

LPJmL was evaluated against data sets that are independent from the optimization and
prescription data sets and against independent temporal or spatial scales of the optimization
and prescription data sets. We compared LPJmL against mean annual patterns and mean
seasonal cycles of ET from the MTE estimate (Jung et al., 2011). Further, we evaluated model

results against spatial patterns of biomass. Ecosystem biomass estimates were taken from
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satellite-