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In the following we are referring to the interactive discussion as follows:
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discuss.net/11/C4434/2014/

RES2: Response to referee 2, www.biogeosciences-discuss.net/11/C5096/2014/

Comments from
referees (short

Author’s response

Author's changes in manuscript

summary)
Length of the See our responses in We moved the original Figures 7, 8, 9 and 10 to
manuscript RES1 (sect. 1) and RES2  the Supplement and replaced them with the

REF1 and REF2 suggest
to shorten the text and to
better select figures to
improve the readability
of the text.

(sect. 1).

new Figure 6. Additionally we merged and
shortened the original sections 3.2.2, 3.2.3 and
3.2.4 into a new section 3.2.4. To further
shorten the main manuscript we removed all
Appendices and moved the material to a new
Supplement document.

Model complexity

REF1 was concerned that
the higher number of
parameters  in  the
LPJmL-GSI  phenology
module could increase
the complexity of the
model and thus result in
a better model
performance.

See our detailed
response in RES1 (sect.

2).

We did not apply changes on the manuscript.
The LPJmL-OP phenology module has only a
lower complexity as it misses environmental
controls on phenology. Thus, LPJmL-OP and
LPJmL-GSI are not equal candidates in
comparisons of model complexity.

Extrapolation

See REST (sect. 2.2).

We added Figure 3 from RESI to the




capabilities

REF1 asked to
demonstrate the

extrapolation capabilities

of LPJmL-GSI by
splitting the data in
temporal or spatial
distinct sets for model
optimization and
evaluation.

Supplement (Figure S26) and included our
response RES1 (sect. 2.2) into the new section
3.3 of the main text.

Model deficiencies

REF2 asked to
summarize a discussion
on model deficiencies.

See RES2 (sect. 2)

We summarized model deficiencies and
potential further improvements in the new
section 3.3.

Impacts on carbon and
water cycles

REF2 asked to more
discuss the effect of the
improved phenology
module on carbon and
water cycles, especially
on evapotranspiration.

See RES2 (sect. 2)

We updated Figure 6 of the main text and
added Figures 1 and 2 from RES2 to the
Supplement (Figures 520, S21). Additionally
we changed the structure of section 3.2 and
added a discussion on the effects on ET
(section 3.2.3).

Transferability to other
DGVMs

REF2 asked about the
transferability of the
LPJmL-GSI phenology
module to other
DGVMs.

See RES2 (sect. 3).

We added this discussion to the new section
3.3.

Correlations between
parameters

REF2 asked about
correlations between
prior and posterior
parameters

See RES2 (sect. 4)

We added Figure 4 of RES2 to the Supplement
(Figure S16) and refer to it in section 3.4 of the
main text.

Water vs. temperature
controls in permafrost
regions

REF1 and REF2 both
argue that water
availability in

See RESI (sect. 3) and
RES2 (sect. 4)

We added this discussion to section 3.4.

permafrost soils depends
on temperature and thus
temperature is enough to
explain phenology in
permafrost regions.

Minor comments See RES1 and RES2 We considered the minor comments in the new




version of the manuscript.
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Abstract

Existing dynamic global vegetation models (DGVMs) have a limited ability in reproducing
phenology and decadal dynamics of vegetation greenness as observed by satellites. These
limitations in reproducing observations reflect a poor understanding and description of the
environmental controls on phenology, which strongly influence the ability to simulate longer
term vegetation dynamics, e.g. carbon allocation. Combining DGVMs with observational data
sets can potentially help to revise current modelling approaches and thus to enhance the
understanding of processes that control seasonal to long-term vegetation greenness dynamics.
Here we implemented a new phenology model within the LPJmL (Lund Potsdam Jena
managed lands) DGVM and integrated several observational data sets to improve the ability
of the model in reproducing satellite-derived time series of vegetation greenness. Specifically,
we optimized LPJmL parameters against observational time series of the fraction of absorbed

photosynthetic active radiation (FAPAR), albedo and gross primary production to identify the
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main environmental controls for seasonal vegetation greenness dynamics. We demonstrated
that LPJmL with new phenology and optimized parameters better reproduces seasonality,
availability is an important control on vegetation phenology not only in water-limited biomes
but also in boreal forests and the arctic tundra. Whereas water availability controls phenology
in water-limited ecosystems during the entire growing season, water availability co-modulates
jointly with temperature the beginning of the growing season in boreal and arctic regions.
Additionally, water availability contributes to better explain decadal greening trends in the
Sahel and browning trends in boreal forests. These results emphasize the importance of
considering water availability in a new generation of phenology modules in DGVMs in order

to correctly reproduce observed seasonal to decadal dynamics of vegetation greenness.

1 Introduction

The greenness of the terrestrial vegetation is directly linked to plant productivity, surface
roughness and albedo and thus affects the climate system (Richardson et al., 2013).
Vegetation greenness can be quantified from satellite observations for example as Normalized

Difference Vegetation Index (NDVI) (Tucker, 1979). NDVI is a remotely sensed proxy for

1994). Satellite-derived FAPAR estimates are often used to estimate  terrestrial
photosynthesis (Beer et al., 2010; Jung et al., 2008, 2011; Potter et al., 1999). Decadal
satellite observations of NDVI demonstrate widespread positive trends (“greening”)
especially in the high latitude regions (Lucht et al., 2002; Myneni et al., 1997a; Xu et al.,
2012; de Jong et al., 2011, 2013b). Surprisingly, these trends are accompanied by negative
trends (“browning”) which were observed regionally in parts of the boreal forests of North
America and Eurasia, and in parts of eastern Africa and South America (Baird and Verbyla,
2012; Bi et al., 2013; de Jong et al., 2013b). Regionally different causes have been identified

for the observed greening and browning trends. The greening of the high latitudes is supposed

> Formatiert: Englisch
- (GroRbritannien)

_ { Geléscht: and

P { Geloscht: but moreover for

[ Feldfunktion geandert

~ ~ 7 Geldscht: and Williams, 1994;
Myneni

[ Feldfunktion geandert




O 0 3 & »n b W N =

I e S e e = ==
0 NN N kA WD = O

19
20
21
22
23
24
25
26
27
28
29
30
31
32

to be mainly induced by rising air temperatures (Lucht et al., 2002; Myneni et al., 1997a; Xu
et al., 2013). Browning trends in subtropical regions were related to changing drought
conditions and land use change (Cook and Pau, 2013; van Leeuwen et al., 2013). On the other

hand, the environmental controls on the browning of boreal forests have been intensively

et al., 2011; Wang et al., 2011). Trends in vegetation greenness are often related to changes
in vegetation phenology like an earlier onset and an associated lengthening of the growing
season in mid- and high-latitude regions (Atzberger et al., 2013; Hagda et al., 2001, 2013;
in primary production and thus affect atmospheric CO, concentrations and the terrestrial
carbon cycle (Barichivich et al, 2013; Keeling et al., 1996; Myneni et al., 1997a).
Additionally, vegetation greenness affects the climate system by influencing surface albedo.
For example, greening trends in high-latitudes are associated with decreasing surface albedo
(Urban et al., 2013) which alters the surface radiation budget (Loranty et al., 2011). This can
potentially further contribute to a warming of arctic regions (Chapin et al., 2005). Thus,
satellite observations of vegetation greenness demonstrate the recent interactions and changes

between terrestrial vegetation dynamics and the climate system.

used to analyze and project the response of the terrestrial vegetation to the past, recent and
future climate variability (Prentice et al., 2007). DGVMs can be used to explain observed
trends in vegetation greenness (Lucht et al., 2002) or to quantify the related terrestrial CO,
uptake. While most global models simulate an increasing uptake of CO, by the terrestrial
vegetation under future climate change scenarios, the magnitude of future changes in land
carbon uptake largely differs among models (Friedlingstein et al., 2006; Sitch et al., 2008).
The spread of land carbon uptake estimates among DGVMs might be partly related to
Coupled climate-carbon cycle models and uncoupled DGVMs have been compared against 30
year satellite-derived time series of LAI (Anav et al., 2013; Murray-Tortarolo et al., 2013;
Zhu et al., 2013). Models usually overestimate mean annual LAI in all biomes and have a too
long growing season because of a delayed season end (Anav et al., 2013; Murray-Tortarolo et

al., 2013; Zhu et al., 2013). Additionally, most DGVMs have more positive LAI trends than
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the satellite-derived LAI product, i.e. they underestimate browning trends in boreal forests
while a few DGVMs do not reproduce the general greening of the high latitudes (Murray-
Tortarolo et al., 2013). The limitations of DGVMs in reproducing observed LAI or FAPAR
time series is mostly related to limited phenology routines that often miss environmental
controls on seasonal leaf development (Kelley et al., 2013; Murray-Tortarolo et al., 2013;
phenology and greenness, DGVMs can potentially more accurately reproduce the recent, and

project the future response of the terrestrial vegetation to climate variability.

Past studies successfully demonstrated the use of vegetation greenness observations to
improve stand-alone phenology models or to optimize phenology and productivity-related
parameters in DGVMSs. The growing season index (GSI) is an empirical phenology model that
is used to estimate seasonal leaf developments (Jolly et al., 2005). Empirical parameters of
GSI have been optimized against globally distributed 10 year FAPAR and LAI time series
from MODIS to reanalyze climatic drivers for vegetation phenology (Stockli et al., 2008,
2011). This optimization resulted in a good representation of temporal FAPAR and LAI
dynamics in all major biomes except evergreen tropical forests (Stockli et al., 2011). Model
parameters of the Biome-BGC model were optimized against eddy covariance flux

observations and NDVI time series from MODIS for poplar plantations in Northern Italy

using coarse 8 by 10° spatial resolution (Kaminski et al., 2012). These studies demonstrated
the improvements in simulated vegetation phenology by optimizing model parameters against

observations of vegetation greenness.

Nevertheless, spatial patterns and temporal dynamics of vegetation greenness were not yet
optimized in a DGVM globally at a higher spatial resolution (0.5°) and by using long-term
(30 year) satellite-derived time series of vegetation greenness. Newly developed 30 year time
series of LAl or FAPAR from the GIMMS3g dataset (Global Inventory Modeling and
Mapping Studies, 31 generation of datasets) (Zhu et al., 2013) allow improving DGVMs not
only based on seasonal cycles of single years (i.e. phenology) but additionally against decadal
time series properties including inter-variability and trends. By integrating the GIMMS3g
FAPAR data set in a DGVM, we can potentially improve spatial patterns and seasonal to
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long-term temporal dynamics of vegetation greenness. We are using the LPJmL DGVM
(Lund-Potsdam-Jena managed lands). Similar to other DGVMs, LPJmL does not accurately
reproduce the growing season onset and seasonal amplitude of observed LAI and FAPAR
time series presumably because of a limited phenology model (Kelley et al., 2013; Murray-
Tortarolo et al., 2013). Thus integrating long-term observations of FAPAR in the LPJmL
DGVM potentially requires the development of an improved phenology scheme.

We are aiming to improve environmental controls on vegetation phenology and greenness in
LPJmL by 1) developing a new phenology module for LPJmL, by 2) optimizing FAPAR,
productivity and phenology-related parameters of LPJmL against 30 year satellite-derived
time series of FAPAR, against 10 year satellite-derived time series of vegetation albedo and
against spatial patterns of mean annual gross primary production (GPP) from a data-oriented
estimate and by 3) integrating further data streams in LPJmL to constrain land cover

dynamics and disturbance effects on vegetation greenness in diagnostic model simulations.

This model-data integration approach for LPJmL (LPJmL-MDI) will be applied to jdentify .-

the environmental controls on yvegetation greenness phenology. -

2 Model, data sets and model-data integration

2.1 Overview

/

and water fluxes, carbon allocation in plants and soils, permafrost dynamics, fire spread and

behaviour and vegetation establishment and mortality. We were using LPJmL version 3.5.
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We developed a model-data integration approach for the LPJmL DGVM (LPJmL-MDI,

A_ L L

Figure 1). LPJmL-MDI allows to 1) directly insert land cover, tree cover and burnt area data
sets in LPJmL for diagnostic model applications (section 2.4.1); 2) to optimize LPJmL model
parameters against datasets (here FAPAR, GPP, albedo; section 2.4.2); and 3) to evaluate and

L _ A ______

benchmark LPJmL simulations against observations or observation-based data sets (section

v _ _ _ _

A
2.4.3). Like in a prognostic mode, LPJmL was driven by climate forcing data. Additionally, *

observed burnt areas were directly inserted in LPJmL to consider observed fire dynamics in
diagnostic model applications. For this, we directly replaced the simulated burnt area in the
LPJmL-SPITFIRE fire module (Thonicke et al., 2010) by observed burnt areas using the
approach of Lehsten et al. (2008). Thus, the timing and location of fire spread is constrained
by observations whereas fire effects on vegetation are still simulated by LPJmL-SPITFIRE.
We further prescribed observed land cover and tree cover fractions to control for vegetation
dynamics in parameter optimization experiments. Observed FAPAR and albedo time series as
well as observation-based mean annual spatial patterns of GPP were used in a joint cost
function to optimize productivity, phenology, radiation, and albedo-related model parameters

using a genetic optimization algorithm.

LPJmL was previously evaluated against site measurements of net carbon ecosystem
exchange (Schaphoff et al., 2013; Sitch et al., 2003), atmospheric CO; fractions (Sitch et al.,
2003), soil moisture (Wagner et al., 2003), evapotranspiration and runoff (Gerten et al., 2004;
Schaphoff et al., 2013), fire regimes (Thonicke et al., 2010), and permafrost distribution

2014; Saatchi et al., 2011; Thurner et al., 2014).

2.2 FAPAR and phenology in the LPJmL DGVM

2.2.1 FAPAR

green canopy (APAR) and the total incident photosynthetic active radiation (PAR). Thus, the
total FAPAR of a grid cell is the sum of FAPAR that is distributed among the individual
PFTs:
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2.2.2 Phenology
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introduces a temporal autocorrelation in the phenology status and avoids abrupt phenological

changes because of changing weather conditions.

The light-limiting function was implemented accordingly:
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soil moisture and atmospheric water demand (Supplement 1,2) (Gerten et al., 2004). The \ { fg;’g;ﬁ‘;;ﬁjkfn”)g'is°h }
parameter Tuaerprr 1S the temporal change rate for the water-limiting function. \ { Geldscht: Appendix A ]
o . . L . Formatiert: Englisch
The heat-stress limiting function is defined as the cold-temperature limiting function based on (GroRbritannien)

daily air temperature but with a negative slope parameter:

1
n eSZhem,PFT x(T—basepeqs, prr)

t
Sheat,PFT = = fiec heat PFT T ~fhe heat prr |XFheat,PFT (9
1

where Slheatprr and basenea prr are the PFT-dependent slope and inflection point parameters of

a logistic function based on 7, The parameter Thea prr is the temporal change rate for the heat

limiting function.
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Besides the additional use of the heat stress limiting function, LPJmL-GSI has important
differences to the original GSI phenology model (Jolly et al., 2005). We made the water
limiting function dependent on water availability. VPD has been used instead in the original
GSI phenology model. Nevertheless, it has been shown that phenology is more driven by soil
moisture and plant available water than by atmospheric water demand especially in

Mediterranean and grassland ecosystems (Archibald and Scholes, 2007; Kramer et al., 2000;

Liu et a. 2013 Yuan e al. 2007) and that GSI perfomed betr when using  sofl moisure - [Fort. e
limiting function instead of the VPD limiting function (Migliavacca et al., 2011). With the
implementation of the water limiting function in LPJmL-GSI, phenology depends not only on
atmospheric water demand as in the original GSI model but also on water supply from soil
moisture. Additionally, the soil moisture can be modulated through seasonal freezing and
thawing in permafrost soils according to the permafrost routines in LPJmL (Schaphoff et al.,
2013). Another important difference to the original GSI phenology model is the use of logistic
functions instead of stepwise linear functions with fixed thresholds because smooth functions
are generally easier to optimize than functions with abrupt thresholds and potentially better
represent biological processes. A moving average of 21 days has been used in the original
GSI model to create smooth phenological cycles and to avoid abrupt phenology changes
because of daily weather variability (Jolly et al., 2005). It has been shown that PFT- and
limiting function-dependent time averaging parameters are needed instead of one single time
averaging parameter (Stockli et al., 2011). We implemented change rate parameters Teold, Tiight,
Twater aNd Tpeye that are PFT- and limiting function-dependent instead of moving average
window lengths because LPJmL cannot use the same running window time averaging {Gel@scht as a prognostic model
approach as a prognostic model. o . B \h {Geloscm :
o . v | Formatiert: Englisch
: \{(Groﬂbrltannlen)
Formatiert: Englisch
{ (GroBbritannien)
23 Data sets |

o J

2.3.1 Data sets for parameter optimization: FAPAR, albedo and GPP

Formatiert: Englisch

We used FAPAR, albedo and GPP data sets to optimize phenology, FAPAR, productivity and -~ { (GroRbritannien)

vegetation albedo-related parameters in LPJmL (Figure 2). We require long-term FAPAR
datasets to improve vegetation greenness in LPJmL on seasonal to decadal time scales. Two

recently developed datasets provide 30-year time series of FAPAR. The Geoland2 BioPar
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(GEOV1) FAPAR dataset (Baret et al., 2013) (hereinafter called GL2 FAPAR) and the
GIMMS3g FAPAR (Zhu et al., 2013) datasets were used in this study.

GL2 FAPAR is defined as the black-sky green canopy FAPAR at 10:15 solar time and has
been produced based on SPOT VGT (1999-2012) and AVHRR (1981-2000) observations
spatial resolution of 0.05° for the AVHRR-period and of 1/112° for the SPOT VGT period.
GIMMS3g FAPAR corresponds to black-sky FAPAR at 10:35 solar time and has been
GIMMS3g FAPAR has a 15-day temporal resolution and a 1/12° spatial resolution and covers
July 1981 to December 2011. We excluded in both FAPAR datasets observations that were
flagged as contaminated by snow, aerosols or clouds. Additionally, we excluded FAPAR
observations for months with temperatures < 0°C to exclude potential remaining distortions of
snow cover. Both datasets were aggregated to a 0.5° spatial and monthly temporal resolution
to be comparable with LPJmL simulations. We found that the GL2 AVHRR and GL2 VGT
combined GL2 VGT and AVHRR FAPAR dataset for parameter optimization and for
analyses of inter-annual variability and trends but only for analyses and evaluations of mean
seasonal cycles and spatial patterns of FAPAR. The GIMMS3g FAPAR dataset has no
uncertainty estimates. Uncertainty estimates are necessary in multiple data stream parameter
optimization to weight single data streams in the total cost function. As a workaround we
estimated the uncertainty based on monthly-varying quantile regressions to the 0.95 quantile
between FAPAR and the FAPAR uncertainty in the GL2 VGT dataset. We applied the fitted
fit to the upper quantile provides conservative uncertainty estimates for the GIMMS3g

FAPAR dataset.

We used monthly shortwave white-sky albedo time series ranging from 2000 to 2010 from the
MODIS C5 dataset (Lucht et al., 2000; Schaaf et al., 2002) to constrain vegetation albedo
parameters. Albedo observations in months with < 5°C air temperature and above an albedo
of 0.3 were excluded from optimization because we are optimizing only vegetation-related
albedo parameters. High albedo values at low temperatures are probably affected by changing
snow regimes which is not within our focus of model development and optimization. Thus we

are only optimizing growing season albedo.
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We used mean annual total GPP patterns from the data-oriented MTE (model tree ensemble)
GPP estimate (Jung et al., 2011). This GPP estimate uses FLUXNET eddy covariance
observations together with satellite observations and climate data to upscale GPP using a
machine learning approach (Jung et al., 2011). This dataset is not an observation but a result
of an empirical model. Nevertheless, evaluation and cross-validation analyses have shown
that this dataset well represents the mean annual spatial patterns and mean seasonal cycles of
GPP whereas it has a poor performance in representing temporal GPP anomalies (trends and
extremes) (Jung et al., 2011). Thus, we are only using the mean annual total GPP from this
dataset for parameter optimization to constrain LPJmL within small biases of mean annual
GPP. We used the mean seasonal cycle from the MTE GPP product as an independent

benchmark for model evaluation.

2.3.2 Data sets for the prescription of land cover, tree cover and burnt

area

The FAPAR, albedo and GPP data sets do not presumably contain enough information to
constrain all processes that control FAPAR dynamics. Especially, processes like
establishment, mortality, competition between PFTs, allocation and disturbances control FPC
and thus FAPAR. The optimization of parameters of these processes against appropriate data
streams is not feasible within this study. Thus, we directly prescribed land and tree cover

fractions as well as burnt areas from observed data to control for some of these processes.

To prescribe land and tree cover in LPJmL, we combined several datasets to create

products are not directly comparable with PFTs in global vegetation models due to
differences in classification systems (Jung et al., 2006; Poulter et al., 2011a). PFTs in LPJmL
broadleaved) and phenology type (summergreen, evergreen, rain green). We extracted the
biome information from the Koppen-Geiger climate classification (Kottek et al., 2006)
whereas leaf type and phenology were extracted from the SYNMAP land cover map (Jung et
al., 2006). FPC was derived from MODIS tree cover (Townshend et al., 2011). Because
LPJmL so far classified herbaceous vegetation according to their photosynthetic pathway (i.e.

Cs, temperate herbaceous and C,, tropical herbaceous), we further sub-divided herbaceous
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PFTs according to biome and introduced a polar herbaceous PFT (PoH) based on the existing

temperate herbaceous PFT (TeH) to differentiate tundra from temperate grasslands.

Burnt area data was prescribed directly in LPJmL by combining three data sets, the Global
Fire Emissions Database (GFED) burnt area dataset (Giglio et al., 2010), the Alaska Large

_ - Formatiert: Englisch

Fire Database (ALFDB) (Frames, 2012; Kasischke et al., 2002) and the Canadian National .- ){(Gmgbritannien)

Fire Database (CNFDB) (CFS, 2010; Stocks et al., 2002). GFED provides monthly burnt area
estimates in 0.5° resolution from 1996 to 2011. Burnt areas from the Alaska (ALFDB) and

.

. . _{ Gelsscht: -
Canada (CNFDB) fire databases were used to extent burnt area time, series before 1996 for - { b _t -
”””””””””” T ‘{ Format_lert:‘ Englisch
boreal North America. Fire perimeter observations from 1979 to 1996 from ALFDB and (GroBbritannien)
. . . . . iert: Englisch
CNFDB were aggregated to 0.5°x0.5° gridded monthly burnt area time series. Observations -~ | (erotbritannien

before 1979 were excluded because fires were not reported for all provinces in Canada.
Although the CNFDB contains only fire perimeters > 200ha, in both databases some fires are
missing due to different mapping techniques, and fire perimeters do not agree with burned
area, the integration of these datasets provides unique information about spatial-temporal
patterns of disturbances especially in boreal ecosystems. It is necessary to simulate fire
activity also during the model spin-up as fire influences the equilibrium between vegetation,
soil and climate as well. Otherwise biomass would be overestimated at the beginning of the

transient model run. For this purpose, we created artificial burnt area time series for the

_ { Geloscht: Observed

Formatiert: Englisch

annual total burnt areas from the periods 1979-2011 (North America) and 1996-2011 (rest of -~ { (GroRbritannien)

the world) were resampled according to temperature and precipitation conditions and assigned
to the pre-data period in order to include fire regimes that agree with observed fire regimes in
the spin-up of LPJmL. This approach assumes that fire regimes in the pre-data period were

not different than in the observation period.

2.3.3 Data sets for model evaluation

prescription data sets and against independent temporal or spatial scales of the optimization
and prescription data sets. We compared LPJmL against mean annual patterns and mean
seasonal cycles of ET from the MTE estimate (Jung et al., 2011). Further, we evaluated model

results against spatial patterns of biomass. Ecosystem biomass estimates were taken from
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satellite-derived forest biomass maps for the tropics (Saatchi et al., 2011) and for the

. . .. . . iert: Englisch
biomass (Carvalhais et al., 2014), Additionally, we evaluated LPJmL against independent .- {fg,;?gﬁ{i;ﬂ,fn”)g e

temporal and spatial scales of the integration data (mean seasonal cycle of GPP, tree cover,

inter-annual variability and trends of FAPAR). We were using tree cover from MODIS to

- { Geléscht:

evaluate LPJmL model runs with dynamic vegetation. :
””””””””””””””””””””””””””””””””””” <7~ 7| Formatiert: Englisch
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2.3.4 Climate forcing data and model spin-up

Formatiert: Englisch

LPImL was driven by observed monthly temperature and precipitation data from the CRU .- ”{(Grogbritamien)

TS3.1 dataset ranging from 1901 to 2011 (Harris et al., 2013) as well as by monthly
shortwave downward radiation and long wave net radiation re-analysis data from ERA-

Interim (Dee et al., 2011).

LPJmL needs a model spin-up to establish PFTs and to bring vegetation and soil carbon pools

P { Gelbscht: modeling

protocol (Schaphoft et al., 2013; Thonicke et al., 2010): LPJmL was run for 5000 years by

Formatiert: Englisch
(GroRbritannien)

into equilibrium. The spin-up was performed according to the standard LPJmL modelling - - {

repeating the climate data from 1900-1930. After the spin-up model run, the transient model
run was restarted from the spin-up conditions in 1901 and LPJmL was run for the period

1901-2011. Model results were analyzed for the observation period (1982-2011).

For model optimization experiments we used a different spin-up scheme because the spin-up

is computational time demanding and many model runs are needed during optimization

P { Gel6scht: modeling

Formatiert: Englisch
(GroRbritannien)

experiments. As in the standard jnodelling protocol, we firstly spin-up the model for 5000 - {

years by repeating the climate from 1901-1930. Secondly, a transient model run was restarted

from the spin-up conditions in 1901 and was performed for the period 1901-1979. Thirdly,
each optimization experiment was restarted from the conditions in 1979 and a second spin-up
for 100 years by recycling the climate from 1979 to 1988 was performed. The transient model
run was restarted from the conditions of the second spin-up and simulated for the period
1979-2011. This second spin-up is needed to bring the vegetation into a new equilibrium
which can be caused by a new parameter combination during optimization. From visual
analyses of model results, we found that a spin-up time of 100 years for the second spin-up
was enough to eliminate trends in FAPAR and GPP that resulted from other equilibrium
conditions.
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2.4 Model-data integration

2.4.1 Prescription of land and tree cover

<

PFT establishes in a grid cell if the climate is within the bioclimatic limits of the PFT for
establishment and survival. On the other hand, a PFT dies in a grid cell if the climate is no
longer suitable for the PFT. Additionally, mortality occurs because of heat stress, low
productivity, competition among PFTs for light, and because of fire disturbance (Sitch et al.,

2003; Thonicke et al., 2010).

FPC is the major variable that contributes to inter-annual variability of FAPAR in LPJmL
despite the daily phenological status. Thus fixing FPC to the observed value is not a desired
solution to prescribe land cover in LPJmL. Fixing FPC would neglect mortality effects on
land cover but would also permit the simulation of post-fire succession trajectories.
Consequently, we prescribed land cover in LPJmL using a hybrid diagnostic-dynamic
approach. In this approach we prescribed the annual maximum FPC in LPJmL similar to
previous approaches (Poulter et al., 2011b). Firstly, we switched off the effects of bioclimatic
limits on establishment and mortality. Only these PFTs were allowed to establish in a grid cell

that occurred in the observed land-cover data set. Vegetation growth depends on the annual

biomass increment and allocation rules in LPJmL. This leads to an extension of FPC of each ’

PFT. We limited a further expansion of FPC if the simulated FPC gxceeded the observed FPC /

growing or because the FPC was reduced due to fire, heat stress or low productivity. For

herbaceous PFTs we only reduced the FPC if the observed total fractional vegetation cover in

prescription of land cover can be achieved in LPJmL which well represents observed PFT
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2.4.2 Parameter optimization

Photosynthesis, albedo, FAPAR and phenology-related model parameters of LPJmL were x"{féﬁ,’};’s;ii;ﬁifnr‘)g'is‘:h }

optimized against observed FAPAR and albedo satellite observations and data-oriented

estimates of GPP. A description of all parameters including parameter values is given in

. . . _{ Geloscht: Appendix D

Supplement 4.1. The parameter o, is the most important parameter in LPJmL for - {cetosch: Appendi )
T T T T T T T T T T T T T T T T T T T e T e e e e e e e e e e e T ‘{ Formal:iert:_ Englisch }
photosynthesis (Zaehle et al., 2005). This parameter accounts for the amount of radiation that (GroRbritannien)

is absorbed at leaf level in comparison to the total canopy. Thus, this parameter is a
replacement for a more enhanced model formulation for canopy structure and leaf clumping.
We used this parameter to adjust biases in GPP. The PFT-dependent leaf, stem and litter
albedo parameters (Bieat, Pstem and Piiter) are mostly sensitive for model simulations of albedo.

The parameter Pie,r affects additionally the maximum FAPAR of a PFT. The light extinction

. . . _ | Formatiert: Schriftart: Kursiv,
coefficient & controls the FPC of a PFT and thus affects mainly land cover, maximum FAPAR - {Eﬁgﬁ;?h"fémmfﬂ{;niﬁen)”'S'V }

and the available radiation for photosynthesis. All other parameters that were considered in { (Fgrrof};s:tzaﬁifnn)g'i“h }

optimization experiments are the parameters of the LPJmL-OP and LPJmL-GSI phenology
modules. These parameters contribute mainly to seasonal variations in FAPAR. Some

parameters were excluded from optimization experiments that were identified as insensitive to

Geléscht: Appendix D
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Formatiert: Schriftart: Kursiv

climate forcing data. Englisch (GroRbritannien)

Formatiert: Englisch

The optimization of model parameters was performed by minimizing a cost function between (GroBbritannien)

Formatiert: Schriftart: Kursiv
Englisch (GrofB3britannien)

model simulations and observations using a combined genetic and gradient-based

Formatiert: Englisch

p!
optimization algorithm (GENOUD, genetic optimization using derivatives, Mebane and // (GroRbritannien)

[/

Englisch (GroBbritannien)

~

(GroRbritannien)

value / prior parameter value) and is the sum of square error (SSE) between model simulation

YA\
Formatiert: Schriftart: Kursiv.
Englisch (GroBbritannien)

s
NN
\

s
-
\\\
777777777777777777 A, . .
N Formatiert: Englisch
\
\y
\

DS=n SSE d \ (GroRbritannien)
J(d)ge = Z LS() (11) Formatiert: Englisch
&¢ nobs (GroRbritannien)
DS=1 DS

Formatiert: Schriftart: Kursiv
Englisch (GroRbritannien)

Formatiert: Englisch
(GroRbritannien)

| |
{ }
o |
A |
e
{ Formatfert: Schrilf'tart: Kursiv, }
{ Formatiert: Englisch }
| -
| |
| |
| |

{ |

16



10
11
12
13

14

15
16
17
18
19

20
21
22
23
24
25
26

The SSE for a single data stream is calculated from the LPJmL simulation of this data stream

(XLpimp) and the corresponding observed values (Xo»s) Weighted by the uncertainty of the
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multiple grid cells of the same PFT for LPJmL-OP as well as for LPJmL-GSI (Table 1). In the
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(GroBbritannien)
grid cell-based optimization experiments model parameters of the established target tree PFT
and the established herbaceous PFT were optimized at the same time. The purpose of grid
cell-level optimization experiments was to explore the variability of parameters within
different regions and PFTs. In the PFT-level optimization experiments the cost of LPJmL was
calculated as the sum of the cost for each grid cell weighted by the grid cell area A:
ge=n
D J(d) g x Age
J(d)ppr =55 (13)
2 Age
gc=1
For PFT-level optimizations parameters of herbaceous PFTs were first optimized for grid
cells where only the herbaceous PFT was dominant. In a second ste ,theogtimizedJ/%s:lt::::r: E——
parameters of the herbaceous PFTs were used in the optimization of the target tree PFT (GroBbritannien)
(Figure S9). The purpose of PFT-level optimization experiments is to derive optimized -~ { rotaiey

parameter sets that can be used for one PFT in global model runs.

For grid cell as well PFT-level optimization experiments, we only used grid cells that are
vegetated, dominated by one PFT and that are only marginally affected from agricultural use
or fire disturbances. These grid cells are called candidate grid cells in the following. We
randomly selected grid cells from the set of candidate grid cells to perform grid cell- or PFT-
level optimization experiments. Table 1 gives an overview of all optimization experiments for
LPJmL-OP and LPJmL-GSI with the number of used grid cells. Grid cells that were selected

for optimization experiments are also shown in Figure 3. The PFT-level optimization of
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LPJmL-OP (OP.pft) did not result in plausible posterior parameter sets because of structural
limitations of the LPJmL-OP phenology model for herbaceous PFTs (i.e. no water effects,
calendar day as end of growing season), raingreen PFT (i.e. binary phenology) and evergreen

PFTs (i.e. constant phenology) and was therefore excluded from further analysis.
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Global model runs of LPJmL were performed in order to evaluate model results against the { Formatiert: Englisch
(GroRbritannien)

o J A A

integration data, against independent metrics of the integration data and against independent
data streams. We evaluated results from LPJmL-OP with standard parameters (LPJmL-OP-
prior), from LPJmL-OP with optimized productivity, albedo and FAPAR parameters from
grid-cell level optimization experiments (LPJmL-OP-gc) and from LPJmL-GSI with
optimized parameters from PFT-level optimization experiments (Table 2). We did not use
optimized phenology parameters in the LPJmL-OP-gc model run because we were not able to
derive plausible phenology parameters in optimization experiments of LPJmL-OP. All model

runs were performed with dynamic vegetation and prescribed burnt areas.

We aggregated monthly FAPAR time series to mean annual FAPAR to evaluate inter-annual
variability and trends. Mean annual FAPAR time series were averaged from all monthly
values with mean monthly air temperatures > 0°C to exclude potential remaining effects of

snow in the observed FAPAR time series. Trends in mean annual FAPAR time series and

_ 7| Formatiert: Englisch
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et al., 2013). In this implementation, trends are computed by fitting piece-wise linear trends to

the annual FAPAR time series using ordinary least squares regression. The significance of
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3 Results and Discussion

3.1 Parameter optimization

3.1.1 Performance of phenology models

correlations with monthly GIMMS3g FAPAR than LPJmL-OP in all PFTs except in the
tropical broadleaved evergreen (TrBE) and boreal broadleaved summergreen (BoBS) PFTs
(Figure 4). LPJmL-OP with prior parameters had high correlations with monthly GIMMS3g

PFTs and medium correlations in boreal needle-leaved PFTs (BoNE median , = 0.53, BoNS

median z,= 0.6). In all other PFTs, LPJmL-OP had low correlations with monthly GIMMS3g

FAPAR. The correlation against monthly GIMMS3g FAPAR did not significantly improve in
all PFTs after grid cell-level optimization experiments of LPJmL-OP (Figure 4). The use of
the newly developed LPJmL-GSI phenology model already significantly improved the
correlation with monthly GIMMS3g FAPAR in all PFTs except in the temperate herbaceous
(TeH) and BoBS PFTs. LPImL-GSI had significantly higher correlations with monthly
GIMMS3g FAPAR after grid cell-level optimization experiments in the TrBR, TeNE, TeBS,
TeH, BoBS and BoNS PFTs. After PFT-level optimization experiments, LPJmL-GSI had
median correlation coefficients > 0.5 in all PFTs except in broadleaved evergreen PFTs
(TrBE, TeBE). These results prove that the rain-green, evergreen and herbaceous phenology
schemes of LPJmL-OP were not able to reproduce temporal FAPAR dynamics despite the
attempt of parameter optimization and that LPJmL-GSI can reproduce seasonal FAPAR

dynamics in most PFTs.

The low correlations coefficients between LPJmL-GSI and GIMMS3g FAPAR after
optimization experiments in broadleaved evergreen PFTs (TrBE, TeBE) might be caused by
the specific properties of the FAPAR dataset in these PFTs. GIMMS3g FAPAR does not have
These regions are often covered by clouds that inhibit continuous optical satellite

observations. The high short-term variability results ultimately in low correlation coefficients
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(Caldararu et al., 2012, 2014) and
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a wrong seasonality. In these regions, the mean seasonal FAPAR cycles from the GIMMS3g
and GL2 VGT FAPAR datasets are anti-correlated and FAPAR from LPJmL-GSI agrees
better with the GL2 VGT dataset. Because of these reasons, we did not expect to improve
seasonal FAPAR dynamics in broadleaved evergreen forests with the current model-data

integration setup.,

All optimization experiments of LPJmL-OP and LPJmL-GSI resulted in a significant

<

lower cost than the grid cell-level optimized parameter sets of LPJmL-OP in tropical and
polar herbaceous PFTs, and in temperate broad-leaved summergreen and boreal needle-leaved
summergreen PFTs. The reduction of the overall cost was in all model optimization

experiments usually associated with a significant reduction of the annual GPP bias (Figure

Zowr oy e D po Y PRy ey e e ey oy A s o Y YR

broad-leaved evergreen PFT and overestimated mean annual GPP in all other PFTs. Grid cell-
level optimization experiments of LPJmL-OP resulted in a significant reduction of the GPP
bias in all PFTs except in the polar herbaceous PFT (PoH). We were not able to remove the
GPP bias and to reduce the cost of LPJmL-OP and of LPJmL-GSI in the PoH PFT jn
optimization experiments because of inconsistencies between the FAPAR and GPP datasets
or in the LPJmL formulation. LPJmL was not able to sustain the relatively high peak FAPAR
in Tundra regions as seen in the GIMMS3g dataset given the low mean annual GPP of the
of the GPP and FAPAR datasets in tundra regions where the MTE GPP dataset is not covered
by many eddy covariance measurement sites, and where satellite-based FAPAR observations

other hand, dominant tundra plant communities like mosses and lichen are not represented in

demonstrate an improved performance of optimized model parameter sets over prior model
parameter sets and of LPJmL-GSI over LPJmL-OP regarding a cost that is defined based on
30 years of monthly FAPAR, mean annual GPP and 10 years of monthly vegetation albedo.
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3.1.2 Parameter sensitivities and uncertainties
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of LPJmL-GSI in most PFTs while the reduction of the uncertainty of phenology-related

parameters depended often on plant functional type (Figure 5). Prior and posterior parameter
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within a narrow parameter range for all PFTs. The posterior o, parameter range was smaller . | (Grogbritannien)
than the uniform prior range in all PFTs. In all optimization experiments we found for the \{(Fgr':)rgk?:t;ﬁis:)g"“h }
parameter o, a gradient from high values in tropical to low values in boreal PFTs (Figure {Formatiert: Englisch }
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S13). This pattern reflects the initial overestimation of mean annual GPP in temperate and __ {gelsscht: ps )
boreal PETs and underestimation of GPP in tropical regions with the prior parameter set of { (Fgrrrr;gt_itert:_ En)glisch }
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LPJmL-OP. Thus, the low a, parameter values probably accounts for nitrogen limitation __ { Formatiert: Englisch }
. . (GroRbritannien)
effects on productivity in boreal forests (Vitousek and Howarth, 1991) that are currently not
considered in LPJmL. A future implementation of nitrogen limitation processes in LPJmL
requires a re-optimization of the o, parameter.
The leaf albedo parameter Pi.r Was sensitive in all PFTs and the posterior Bier parameter
range was smaller than the prior parameter range in evergreen PFTs. In these evergreen PFTs
the Piear parameter was well constrained because albedo satellite observations are less affected
by variations in background albedo (soil, snow) than in deciduous PFTs. In all other PFTs the
Breat posterior parameter range was equal the prior parameter range or the optimized parameter
value was close to a boundary of the prior parameter range. This result indicates that the
albedo routines in LPJmL should consider variations in background albedo caused by changes
. . . . . .. . . | Formatiert: Englisch
in soil properties, soil moisture, or snow conditions in order to accurately reproduce satellite- -~ | (grosbritannien)
observed albedo time series (see supplementary discussion in Supplement 4,5). Nevertheless, -~ { Geloscht: Appendix D )
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the optimization of the leaf albedo parameter Pier resulted in values that differed especially {(Grogbntannien) }
between broadleaved and needle-leaved evergreen PFTs as well as herbaceous PFTs (Figure
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5, Figure S14). Low leaf albedo parameters in needle-leaved evergreen PFTs (TeNE and - {ceteso )
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BoNE) and high leaf albedo parameters in broad-leaved summergreen and herbaceous PFTs (Grofbritannien)
agree well with the patterns reported by Cescatti et al. (2012).
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was only in herbaceous PFTs and in the BoBS PFT smaller than the prior parameter range {(Grof;britannien) }
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(TeNE, TeBS and TeH). The parameter basen..r which controls the effect of heat stress on
phenology was sensitive in TrBR, TrH, TeH, BoNE and BoNS PFTs while in other PFTs this
parameter was only sensitive towards the boundaries of the prior parameter range.

Nevertheless, the posterior parameter range was only smaller than the prior parameter range
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Whereas LPJmL-OP overestimated mean annual FAPAR in many high-latitude and semi-arid
regions, LPJmL-GSI was closer to both datasets and within the uncertainty of the GL2 VGT
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grasslands of central Asia, North America, Australia and especially, in the Sahel (Figure 6a).
This is because of an improved representation of spring onset and the end of the growing

season in temperate and boreal forests and in herbaceous PFTs (Figure S24). The highest
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the phenological development in LPJmL shows a significant improvement in representing -~ | temperate and boreal PFTs than
X . . . \ LPJmL-OP in comparison with the
such dynamics when compared to the previous model formulations (Figure 7). ' | GIMMS3g FAPAR dataset.

\ Nevertheless, GIMMS3g FAPAR
3 . . \ has an earlier spring onset in
Both LPJmL-OP and LPJmL-GSI reproduced the observed greening trends in tundra regions ' | temperate and boreal forest PFTs
T I N \ | than
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phenological development is essential in performing model-based analysis of long term trends . {

in vegetation activity.

3.2.3 Effects on carbon fluxes and stocks

LPJmL-GSI and LPJmL-OP-gc with optimized parameters represented better the global
patterns and mean seasonal cycles of gross primary production and biomass than LPJmL with
original phenology and prior parameters (LPJmL-OP-prior) (Figure 8). LPJmL-OP-prior
overestimated mean annual GPP and biomass in most polar, boreal and temperate regions.
LPJmL-OP-prior underestimated mean annual GPP but overestimated mean annual biomass
in tropical regions around the Equator. These biases were reduced in LPJmL-OP-gc and
LPImL-GSI. LPJmL generally overestimated GPP also in arid regions but these biases were
reduced after optimization in LPJmL-OP-gc and LPJmL-GSI (Figure S18). We also found
that the mean seasonal cycle of GPP from LPJmL-GSI agreed better with the mean seasonal
GPP cycle from the MTE estimate especially in temperate forests and in tropical, temperate
and polar grasslands (Supplement 5.1, Figure S17) although no information about the
seasonality of GPP was included in optimization experiments. LPJmL-GSI still overestimated
biomass in some tropical regions (African Savannas, south-east Brazil, south and south-east
Asia) (Figure S19). These regions were mainly simulated as agricultural lands in LPJmL, i.e.
as different crop functional types (CFTs). The LPJmL-GSI phenology module was not
applied or optimized for agricultural regions, where the seasonal phenological development is
prescribed according to the CFTs parameterizations from Bondeau et al. (2007). Generally,
LPJmL-GSI performed substantially better than LPJmL-OP-prior and LPJmL-OP-gc when
comparing the global total carbon fluxes and stocks to the data-oriented estimates
(Supplement 5.1, Table S6). These results demonstrate that in addition to the optimization of
productivity parameters in LPJmL, the implementation of the new GSI-based phenology
improved estimates of spatial patterns, seasonal dynamics, and global totals of gross primary

production and biomass.
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3.2.4 Effects on forest distribution

LPJmL-GSI with dynamic vegetation better represented the observed tree cover in high
latitude regions than LPJmL-OP-prior and LPJmL-OP-gc (Figure 8 d). LPJmL-OP-prior
highly overestimated tree cover in boreal and arctic regions and simulated a too northern
arctic tree line in comparison with tree cover from MODIS observations. Although this
overestimation was reduced after optimization, LPJmL-OP-gc still highly overestimated tree
cover in boreal and temperate regions. The occurrence of trees was shifted southwards in
LPJmL-GSI. Although LPJmL-GSI still overestimated tree cover in boreal regions, this
overestimation was much lower than in LPJmL-OP-gc. LPJmL-OP-prior and LPJmL-OP-gc
slightly underestimated tree cover in temperate regions around 45°N but this was well
reproduced by LPJmL-GSI. We found no differences in tree cover between LPJmL-OP and
LPJmL-GSI in other parts of the world where tree cover is highly affected from agricultural
land use and thus implicitly prescribed to LPJmL. These results demonstrate that additional to
the optimization of productivity parameters in LPJmL-OP-gc, the newly developed GSI-based
phenology model and the optimized model parameters contribute to a better representation of

tree cover in high-latitude regions.

3.2.5 Effects on evapotranspiration processes

Evapotranspiration from LPJmL agreed well with the data-oriented MTE estimates (Figure 8
b). The implementation and optimization of the new GSI-based phenology did not affect ET
much. ET increased only in tropical rainforests around the Equator in LPJmL-GSI and
LPJmL-OP-gc in comparison to LPJmL-OP-prior because of the increased GPP in these
regions. In other regions ET remained almost unchanged. But this does not imply that the
structural improvements in LPJmL-GSI did not affect the transpiration processes (Figures
S20, S21). Indeed, LPJmL-GSI had lower interception losses than LPJmL-OP in boreal
forests because of the reduced tree cover. On the other hand this implies that simulated soil
evaporation was increased. Furthermore, interception and soil evaporation had slightly shifted

seasonal cycles in LPJmL-GSI compared to LPJmL-OP due to the seasonal differences in
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timing of leaf development and senescence stages (Figure S21). Consequently, smallX//{(Gmgbritannien)

differences in total evapotranspiration result from opposite and compensatory changes in

interception and soil evaporation and slight changes in transpiration fluxes in LPJmL-GSI.
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3.3 Applicability and challenges of the LPJmL-GSI phenology module

The LPJmL-GSI phenology module is part of a DGVM that is applied for climate impact
studies. In order to assess how well the model performs under different climate conditions, we
additionally tested how the model performance changes in grid cells that were not used during
optimization (Figure S26). We found no general decrease in model performance with distance

to the nearest grid cell used for optimization, or under different temperature conditions.

Especially, no significantly lower correlations (p < 0.05, Wilcoxon rank-sum test, Figure S26)

were found between simulated and observed FAPAR time series in grid cells that were 3° to
5°C warmer than the closest optimization grid cell. From a typical perspective of space for
time substitution, this could indicate that the confidence in the simulation of FAPAR

dynamics should not detract under climate warming scenarios of 0.3° to 4.8°C (IPCC, 2014).

Nevertheless, model optimization experiments and model evaluation indicated further needs
for improvement in future studies, for example, simulations of surface albedo could improve
through the implementation of time-varying effects of snow conditions and surface moisture
on albedo. Also, an enhanced representation of canopy architecture and canopy radiative
transfer could reduce the large spatial variability and parameter uncertainty found for the light
extinction coefficient and hence improve the simulation of tree coverage and peak FAPAR. In
addition to temperature, light and water availability, phenology also depends on other factors
that are not considered in LPJmL-GSI. Phenology is also driven by leaf age (Caldararu et al.,
2012, 2014) and nutrient availability (Wright, 1996). These effects are neither considered in
the original GSI phenology model (Jolly et al., 2005; Stockli et al., 2011) nor in the LPJmL-
GSI or other traditional formulations. Here, the lower posterior values found for the parameter
0, may be compensating for missing nitrogen limitation effects on productivity in boreal
forests (Vitousek and Howarth, 1991). Thus a future implementation of nitrogen limitation
processes in LPJmL requires a re-optimization of the o, parameter. Additionally, the current
implementation of phenology in LPJmL affects photosynthesis only through changes in
APAR. In future model developments a stronger coupling between phenology and ecosystem
carbon cycle dynamics could be explored. For example, the LPJmL-GSI phenology module
could demand carbon for leaf development from photosynthesis or additional storage pools on

the one hand and could trigger carbon turnover through litterfall on the other hand. In this
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case a phenology module could partly regulate an optimal carbon gain for a canopy similar to
the approach of Caldararu et al. (2014). Nevertheless, such an analysis needs to go beyond the
approach of Caldararu et al. (2014) and demands for additional observational constraints on
ecosystem carbon fluxes, leaf area, biomass and litterfall. In order to better understand
couplings between leaf phenology, changes in carbon allocation and photosynthesis it will be
of benefit to use site-level eddy covariance measurements from the FLUXNET network
(Baldocchi et al., 2001) together with ancillary data in ecosystem-scale model optimization
experiments (Carvalhais et al., 2010; Kuppel et al., 2012; Williams et al., 2009). Thus the
LPJmL-GSI phenology module and the LPJmL model-data integration approach can serve as

a framework to further explore hypotheses of ecosystem processes and vegetation dynamics.

We demonstrated the improved performance of LPJmL-GSI over LPJmL-OP in representing
observed carbon fluxes and stocks, forest cover and seasonal to decadal dynamics of
vegetation greenness. Thus, similar approaches to the LPJmL-GSI phenology module can be
applied in other DGVMs to improve model simulations in comparison with observations.
However, the adaptation of current results to other models should be cautionary because the
phenology scheme of LPJmL-GSI is an empirical approach with PFT-dependent parameters
that need to be estimated. This estimation is model-specific because (1) different models do
not necessarily use the same definition and set of PFTs; (2) our parameterizations depend on
model structure, e.g. different models often use different hydrology routines; and (3) our
posterior parameters for phenology were also constrained by using albedo and GPP data. Thus
LPJmL-GSI model parameters cannot be easily transferred to other models. It might be
possible to use the parameters of the temperature and light limiting functions in other models
because these functions depend uniquely on the forcing data. On the other hand, the
parameters for the water availability limiting function might need to be re-optimized because
of differences in soil moisture computations. However, depending on the co-variability
between forcing variables and simulated water availability by other models, the best
parameterizations may differ from the ones presented here. Consequently, we acknowledge
the potential need to optimize parameters of the LPJmL-GSI phenology model in order to
obtain plausible results in other modelling structures. However, it is likely that the LPJmL-
GSI phenology model can be easily applied to other models of the LPJ group of models
(Prentice et al., 2011; Smith et al., 2001) that are using the hydrology routines of Gerten et al.
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(2004) while probably additional parameter optimization exercise are required to adapt the

model to other types of DGVMs or ecosystem models.

3.4 Environmental controls on vegetation greenness phenology

As the newly developed GSI-based phenology model of LPJmL can reproduce the seasonality
and monthly dynamics of observed FAPAR in most biomes, it can be used to identify

environmental controls on vegetation greenness phenology. The importance of phenological
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controls differed by climate regions, ecosystems and season (Figure 9). We identiﬁedJ//{(Grogbrimnnien)

environmental controls on seasonal FAPAR dynamics by analyzing the mean seasonal cycles
of FAPAR, of the cold temperature, light, water availability and heat stress limiting functions
for phenology from the LPJmL-GSI model run. This analysis is comparable to previous
investigations of limiting factors for vegetation phenology (e.g. Jolly et al., 2005; Caldararu et
al., 2014). FAPAR seasonality in high-latitude regions (tundra, boreal forests) was mainly
controlled by cold temperature (entire year) and light (October to February). We also found an
important control by water availability in February to April in the tundra and in boreal forests
of North America and eastern Siberia. This water limitation in early spring was due to the
seasonal freezing of the upper permafrost layer in LPJmL. FAPAR seasonality in temperate
grasslands in western North America and central Asia was controlled from a mixture of cold
temperature (January to April), of water availability (May to November) and light (November
to January). FAPAR seasonality in temperate forests in Europe was mainly limited by cold
temperature in spring and by a combination of cold temperature and light in autumn.
Additionally, heat stress and water availability contributed to a small reduction in summer
FAPAR in temperate and boreal forests. The FAPAR seasonality in savannas (Sahel) was
limited by water availability in the entire year and additionally by heat stress before the
beginning of the rain season. The FAPAR seasonality of temperate regions in South America
was limited by water availability in the entire year. Cold temperature was additionally
limiting between May and September. Thus, water availability was the only environmental

factor in LPJmL-GSI that controlled phenology globally from tropical to arctic biomes.

The implementation of the water limiting function on phenology in LPJmL-GSI resulted in

unique patterns of phenological controls that were different from results reported in similar
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phenology in many sub-tropical and dry temperate regions (especially Mediterranean, Pampas
and Patagonia in South America, Mongolia, and northern Great Plains). The original GSI

model showed mainly temperature and light limitation in these regions. In contrast to the
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available water and not on VPD (Jolly et al., 2005). As considered by Caldararu et al. (2014),

soil water availability exerts a more direct control on phenology development, which has been

1

phenology in boreal and arctic regions in LPJmL-GSI because of the seasonal freezing of the |

|

upper active layer in permafrost soils. Although no relationships between active layer depth |

seasonal tree growth in boreal forests because of limited water supply and nutrient uptake ‘=‘ \

(Benninghoff, 1952; Jarvis and Linder, 2000). As the seasonal freezing and thawing of] :‘:

permafrost soils is to a large extent, driven by changes in air temperature, one might argue thatL\ ‘

water and cold temperature limiting functions in boreal and arctic regions are only weakly
correlated. Indeed, we did not find a completely synchronized temporal dynamic of the cold

temperature and water Jimiting

Al

the ability to disentangle effects of seasonal air temperature and soil moisture on phenology in
boreal and arctic regions. Air temperature and soil thawing are not completely synchronized
because soil temperature depends also on topography, substrate, and the insulating effects of
the snow, litter and vegetation cover (Jorgenson et al., 2010; Shur and Jorgenson, 2007;
Zhang, 2005). Soils might be still frozen if air temperature is already positive or vice versa.
Also experimental studies highlighted the role of permafrost-regulated soil moisture on
phenology and productivity in boreal and arctic ecosystem (Natali et al., 2012; Schuur et al.,
2007). It also has been observed that the seasonal freezing and thawing in permafrost regions
regulates ecosystem evapotranspiration (Ohta et al., 2008) and fire activity (Forkel et al.,

2012) especially during extreme dry years. Thus, although temperature might be enough to
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explain average spatial patterns of phenology in boreal and arctic regions we acknowledge
that variations in snow or vegetation cover that affects soil temperature and thus moisture

might be important factors in explaining inter-annual variations of land surface phenology.

The heat stress limiting function was additionally introduced in LPJmL-GSI. Heat stress had
no importance for seasonal FAPAR dynamics in most regions except in temperate and
tropical grasslands. The heat stress function was highly correlated with the water availability
function in temperate grasslands. This suggests that summer FAPAR is both regulated by

water-induced and temperature-induced drought conditions in temperate grasslands. In

needs to be considered in observational data analyses and in other ecosystem models as

controlling factor for vegetation phenology in all biomes.

Interestingly, Caldararu et al. (2014) identify leaf age as the dominant factor for phenology
development in many permanent moist subtropical and tropical forests, but also in several
water limited regions which were here identified as seasonally controlled by water
availability. We cannot identify a dominant control on seasonal FAPAR dynamics in
evergreen forests, as leaf age is not explicitly simulated in LPJmL-GSI. We acknowledge that
the consideration of leaf age effects on phenology could further enhance the representation of
ecosystem processes. However, the seasonal co-variation between LAI or FAPAR and
environmental controls on phenology complicates the ability to disentangle the leaf aging
signal from a temperature, light or water availability-driven signal, especially in seasonally
deciduous vegetation types, where climate-driven models explain a significant fraction of
seasonal variability and the realized age of leafs is shorter than a year. In addition, cloud
cover contamination over moist tropical or subtropical forests pertain usually a weak seasonal
signal and a high short-term variability, hinging on the reliability of the seasonal signal.
Especially, Morton ef al. (2014) show that seasonal changes in MODIS LAI in the Amazon
forests are linked to insufficient corrections of the sun-sensor geometry, which challenge the
representation of vegetation phenology. However, in these tropical moist regions, where we
find no environmental seasonal controls, and the realized age of oldest leafs are higher than a
year, leaf age may be an important contributor for further consideration regarding the above-
seasonal frequency of phenology. Hence, grasping the relevance of leaf longevity, especially

in tropical perennial systems, would necessarily require ground observations of leaf
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development and litter fall to constrain leaf age parameters, as well as measurements of soil

water content to address the appropriateness of soil moisture effects.

4 Conclusions

We have demonstrated a major improvement of the LPJmL dynamic global vegetation model .-~ {

A T T E MmO e Ty T

by implementing a new set of phenological controls on vegetation greenness and by
integrating multiple decadal satellite observations. We have proven that the original
phenology model in LPJmL is unable to explain temporal dynamics of FAPAR. As an
alternative we implemented a new phenology model (LPJmL-GSI) which considers effects of
cold temperature, heat stress, light, and water availability on vegetation phenology. We
developed a model-data integration approach for LPJmL (LPJmL-MDI) to 1) constrain model
parameters against observations, 2) to directly integrate observed land cover fractions and
burnt area time series and 3) to evaluate LPJmL against independent data streams.
Specifically, phenology, productivity, and albedo-related model parameters of LPJmL-GSI
were optimized jointly against 30 year time series of satellite observations of FAPAR, against
10 year time series of vegetation albedo and mean annual patterns of gross primary

production using a genetic optimization algorithm.

The new phenology model and the parameter optimization clearly improved LPJmL model
simulations. LPJmL-GSI better reproduces observed spatial patterns of gross primary
production, tree cover, biomass and FAPAR than the original model. LPJmL-GSI simulates
global total carbon stocks and fluxes that are closer to independent estimates than from the

original model. LPJmL-GSI better represents observed seasonal, monthly, inter-annual and

decadal FAPAR dynamics than the original model. The improvements of LPJmL in -

| Guih—

representing observed patterns and temporal dynamics of vegetation greenness allows |

assessing environmental controls on vegetation phenology and greenness. Contrasting to
previous studies (Jolly et al., 2005; Stockli et al., 2011), our results indicate that soil water
availability is a major control of seasonal FAPAR dynamics not only in water-limited biomes
but also in boreal forests and the arctic tundra where water availability is regulated through
seasonal thawing and freezing of the active permafrost layer. Until now phenology of these
ecosystems was mostly considered as temperature-limited. The consideration of the effect of

soil water availability on phenology in LPJmL improved model simulations of greening
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optimization experiments and model
evaluation demonstrated further
weaknesses of LPJmL that might
need to be improved in future
studies. To more accurately simulate
surface albedo in LPJmL it is
necessary to implement time-
varying effects of snow conditions
and surface moisture on albedo. The
optimization of the light extinction
coefficient resulted in a large spatial
variability and large parameter
uncertainty. This model parameter
needs to be addressed in future and
perhaps needs to be replaced by a
more enhanced representation of
canopy architecture and canopy
radiative transfer to improve
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Appendix A: LPJmL model
detailsy

A.1 Original phenology model
(LPJmL-OP)|

The phenology model in the original
LPJmL formulation has three
different routines for summergreen
(i.e. temperature-driven deciduous),
evergreen (no seasonal variation)
and rain-green (i.e. water-driven
deciduous) PFTs (Sitch et al., 2003).
Evergreen PFTs have a constant
phenology status (Phen = 1). The
daily phenology status of
summergreen PFTs depends on
growing degree-days (GDD):

AT =T —GDDy,

GDD, = GDD,_; + AT,
(ADY

Where T is the daily air temperature
and GDDy, is the minimum
temperature threshold to start
counting GDDs. Daily GDD is
scaled to the phenology status using
a parameter ramp which is the
amount of GDDs to get full leave
cover:q

Phen pp T|summergreen —

(A2)]
The daily phenology status is set
back to 0 if the accumulated
phenology status (aphen) is larger
than a parameter aphen,, or if
aphen is greater than aphen,, and
the daily temperature is below
GDDypyee. The daily accumulated
phenology status is calculated as:
aphen; = aphen; _ + Ph
(A3)
For rain-green PFTs the daily
phenology status is calculated
dependent on the daily water
availability scaling factor Wscal in
LPJmL (Appendix A.2) (Gerten et
al., 2004) and a threshold value

(Wscalnin): (...[69]
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Figure 3: Map of the dominant PFT in each grid cell as derived from SYNMAP, K&ppen-
Geiger climate zones and MODIS VCF. Grid cells that were used in any of the optimization
experiments are shown as black crosses. Some grid cells were used in multiple optimization
experiments. Grid cells that are dominated by agriculture were not used for optimization
(TrML, tropical managed lands and TeML, temperate managed lands).
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default parameters (a, OP.prior), after grid cell-level optimizations (b, OP.gc), cost for
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according to usual boxplot statistics. The point symbols indicate the plant functional type. The
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The significance is based on the Wilcoxon rank-sum test. For example “acd” indicates a

significant difference to the main categories a (OP.prior), ¢ (GSILprior) and d (GSI.gc) but no
significant difference to b (OP.gc) and e (GSIL.pft).
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Figure 5: Uncertainty and sensitivity of LPJmL-GSI parameters derived from all individuals
of genetic optimizations at PFT level. Shown is the relationship between parameter values and
the likelihood of the corresponding parameter vector. The likelihood is normalized with the
likelihood of the optimum parameter set. Only individuals with dAIC < 2 are shown. Grey
areas indicate the uniform prior parameter range. Red crosses indicate the optimum parameter
value. The optimum parameter value is indicated as text in a plot if it is outside of the plotting
range. Results from two independent optimization experiments are shown for the BoNS, TrH,
TeH and PoH PFTs (black and blue colours, respectively) but not all parameters were
included in both experiments. The parameter ALBEDO LITTER in the TrBE and TeBE
PFTs was not considered in optimization experiments.
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). LPJmL-OP-prior overestimated mean annual GPP and biomass in most polar, boreal and
temperate regions. LPJmL-OP-prior underestimated mean annual GPP but overestimated
mean annual biomass in tropical regions around the Equator. These biases were reduced in
LPJmL-OP-gc and LPJmL-GSI. LPJmL generally overestimated GPP also in arid regions but
these biases were reduced after optimization in LPJmL-OP-gc and LPJmL-GSI (Figure E1).
We also found that the mean seasonal cycle of GPP from LPJmL-GSI better agreed with the
mean seasonal GPP cycle from the MTE estimate especially in temperate forests and in

tropical, temperate and polar grasslands (
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E2) although no information about the seasonality of GPP was included in optimization
experiments. LPJmL-GSI still overestimated biomass in some tropical regions (African
Savannas, south-east Brazil, south and south-east Asia) (Figure E3). These regions were
mainly simulated as managed lands in LPJmL, i.e. as different crop functional types (CFTs).
The LPJmL-GSI phenology module was not applied and no parameter optimization was
performed for CFTs. Generally, LPJmL-GSI estimated global total carbon fluxes and stocks

that were closer to data-oriented estimates
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LPJmL-OP-gc (Table El1, Appendix E1). These results demonstrate that besides the
optimization of productivity parameters in LPJmL, the implementation of the new GSI-based
phenology improved estimates of spatial patterns, seasonal dynamics, and global totals of

gross primary production and biomass.

Evapotranspiration from LPJmL agreed well with the data-oriented MTE estimate. The
implementation and optimization of the new GSI-based phenology did not affect much ET

(Figure 6 b). Although LPJmL had lower mean annual ET than the data-oriented MTE



estimate in tropical and boreal regions, it followed the global pattern of ET. We detected no

major differences between the
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cycle of ET from LPJmL-OP and LPJmL-GSI (not shown). These results show that

evapotranspiration was not sensitive to
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implementation and optimization of the new GSI-based phenology model in LPJmL.
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LPJmL-GSI with dynamic vegetation better represented spatial patterns
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tree cover in high latitude regions than LPJmL-OP-prior and LPJmL-OP-gc (Figure 6 d).
LPJmL-OP-prior highly overestimated tree cover in boreal and arctic regions and simulated a
too northern arctic tree line in comparison with tree cover from MODIS observations.
Although this overestimation was reduced after optimization, LPJmL-OP-gc still highly
overestimated tree cover in boreal and temperate regions. The occurrence of trees was shifted

southwards in LPJmL-GSI. Although LPJmL-GSI still overestimated tree cover in boreal



regions, this overestimation was much lower than in LPJmL-OP-gc. LPJmL-OP-prior and
LPJmL-OP-gc slightly underestimated tree cover in temperate regions around 45°N but this
was well reproduced by LPJmL-GSI. We found no differences in tree cover between LPJmL-
OP and LPJmL-GSI in other parts of the world where tree cover is highly affected from
agricultural land use and thus implicitly prescribed to LPJmL. These results demonstrate that
additional to the optimization of productivity parameters in LPJmL-OP-gc, the newly
developed GSI-based phenology model and the optimized model parameters contribute to a

better representation of tree cover in high-latitude regions.

Improved spatial patterns of FAPAR

LPJmL with GSI-based phenology and optimized parameters better represents observed
spatial patterns than LPJmL with original phenology module. LPJmL-OP-prior and LPJmL-
OP-gc overestimated mean annual FAPAR in high-latitude regions of North America and

Asia, in western North America, central Asia,
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Mediterranean, China, the Sahel and in northern Australia (Figure 7). These overestimations
were removed in most regions in LPJmL-GSI. LPJmL-OP-gc and LPJmL-OP-prior
overestimated FAPAR
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in wet boreal and arctic regions with mean annual temperatures < 0°C in comparison to the
GIMMS3g and GL2 VGT FAPAR datasets. Mean annual FAPAR from LPJmL-GSI was
close to mean annual FAPAR from both datasets and within the uncertainty of the GL2 VGT

FAPAR dataset under most climate conditions. Under wet
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and tropical conditions all three model versions had mean annual FAPAR close to both

datasets and within the uncertainty of the
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FAPAR dataset. Mean annual FAPAR from
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GIMMS3g and GL2 datasets clearly differed in dry regions. GIMMS3g had in dry regions
higher FAPAR and outside

Seite 24: [48] Formatiert Autor

Englisch (GroBbritannien)

Seite 24: [49] Formatiert Autor

Englisch (GroBbritannien)

Seite 24: [50] Gel6éscht Autor

GL2 VGT dataset. Despite these differences of
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datasets in dry regions, LPJmL-OP-prior and LPJmL-OP-gc clearly overestimated FAPAR in
dry regions. Although LPJmL-GSI overestimated mean annual FAPAR in temperate dry



regions, this overestimation was reduced in comparison to LPJmL-OP. In tropical dry regions

mean annual FAPAR from LPJmL-GSI was within the range of
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datasets. These results demonstrate that LPJmL required an improved phenology model to

represent spatial patterns of mean annual FAPAR
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Improved seasonal to inter-annual FAPAR dynamics

LPJmL-GSI better reproduced seasonal cycles of FAPAR than LPJmL-OP in comparison to
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GIMMS3g and GL2 VGT FAPAR datasets (Figure 8). The mean seasonal cycle of FAPAR
from LPJmL-GSI was higher correlated with both datasets than
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mean seasonal cycle from LPJmL-OP in all PFTs. Only in the temperate broad-leaved
evergreen PFT, LPJmL-OP had a higher correlation with the GIMMS3g dataset than LPJmL-
GSI. Nevertheless, the mean seasonal cycle of both datasets was negatively correlated (r = -
0.48) in this PFT, which suggests that the GIMMS3g FAPAR dataset has a wrong seasonality
in this PFT because LPJmL-GSI agreed better with the GL2 FAPAR dataset (r = 0.419) than



with the GIMMS3g dataset (r = -0.131). In boreal PFTs LPJmL-GSI was higher correlated
with GIMMS3g FAPAR than with GL2 VGT FAPAR. In these boreal PFTs, LPJmL-OP
simulated a too late end of the growing season. In temperate PFTs, LPJmL-OP simulated a

too early spring onset. LPJmL-GSI better reproduced the spring onset and the end of

Seite 25: [61] Gelbscht Autor

GL2 FAPAR dataset. As LPJmL-GSI was optimized against GIMMS3g FAPAR it
reproduced the early spring onset of the GIMMS3g dataset. LPJmL-OP had a too long
growing season in temperate and polar herbaceous PFTs because the end of the growing
season is defined as fixed calendar date in LPJmL-OP. LPJmL-GSI does not depend on
calendar dates but on environmental conditions and thus more appropriately reproduced the

end of the growing season in herbaceous PFTs than LPJmL-OP.

LPJmL-GSI significantly better reproduced monthly FAPAR time series than LPJmL-OP in
all PFTs in comparison with the GIMMS3g FAPAR dataset (Figure 10). LPJmL-OP-prior had
low correlations with monthly GIMMS3g FAPAR in boreal forests of eastern Siberia, in the
North American tundra, in temperate and tropical grasslands of central Asia, North America,
Australia and especially, in the Sahel (Figure E4). LPJmL-GSI had higher correlation
coefficients with GIMMS3g than LPJmL-OP in all these regions. Only in 11% of the global
land area LPJmL-OP-prior or LPJmL-OP-gc had a significantly higher correlation (p < 0.05,
Fisher z-transformation) with monthly GIMMS3g FAPAR than LPJmL-GSI (Figure 9a).
These regions were located in agriculture-dominated grid cells in the central United States,
eastern China and Argentina. In 10% of the land area the correlation coefficient of all LPJmL
versions was smaller than 0.2 compared to the GIMMS3g dataset. These grid cells were
mostly located in the Amazon, the Kongo Basis and the Sunda Islands where FAPAR time
series of tropical forests do not exhibit seasonal cycles and where optical satellite observations
are often distorted from clouds. LPJmL-GSI better represents monthly FAPAR dynamics
under all climate conditions than LPJmL-OP-prior or LPJmL-OP-gc (Figure 9b). The
correlation coefficient improved the most with LPJmL-GSI in boreal climates with mean
annual air temperatures between -15°C and 0°C and in temperate and tropical dry regions
with mean annual air temperatures > 5°C. LPJmL-GSI had higher correlations with
GIMMS3g FAPAR in boreal and cold temperate climates than the two datasets with each
other. These results demonstrate that the implementation of a new phenology model in
LPJmL was needed to appropriately simulate seasonal and long-term FAPAR dynamics

globally.



LPJmL-GSI better reproduced annual time series of mean annual FAPAR (averaged for
months > 0°C mean monthly temperature) than LPJmL-OP in many regions in comparison
with the GIMMS3g FAPAR dataset (Figure 10). Annual time series of mean annual FAPAR
from LPJmL-GSI were in 20% of all global land areas significant higher correlated with the
GIMMS3g dataset than LPJmL-OP (Figure 10 a). In 40% of the global land areas, LPJmL-
GSI and LPJmL-OP-prior or LPJmL-OP-gc had equal correlations with mean annual
GIMMS3g FAPAR. Only in 15% of the global land area, LPJmL-OP had a higher correlation
with mean annual GIMMS3g FAPAR than LPJmL-GSI. These regions were mostly located in
agricultural regions in the eastern United States and in parts of South America and south-
eastern Asia where an improvement because of the GSI-based phenology model was not
expected. LPJmL-GSI better explained the inter-annual variability of GIMMS3g FAPAR
especially in grasslands (western United States, central Asia, the Sahel, southern Africa, and
Australia) (Figure ES). Especially in these temperate and tropical dry regions, LPJmL-GSI
had the highest improvements over LPJmL-OP regarding the inter-annual variability of
FAPAR (Figure 10 b). Although the absolute correlation coefficients between mean annual
FAPAR from LPJmL and GIMMS3g were relatively low under all climate conditions, LPJmL
was in arctic, boreal and temperate climates usually higher correlated with the GIMMS3g
dataset than the GIMMS3g dataset with the GL2 VGT dataset. Only in subtropical and
tropical climates the two datasets were higher correlated with each other than LPJmL with the
GIMMS3g FAPAR dataset. These results demonstrate that datasets have large difference in
term of inter-annual variability of FAPAR but LPJmL-GSI can explain the inter-annual
variability of the GIMMS3g FAPAR dataset especially in temperate and boreal forests and

temperate and tropical grasslands.

Improved representation of FAPAR trends

LPJmL-GSI better represented observed trends and trend changes in mean annual FAPAR
than LPJmL-OP-prior and LPJmL-OP-gc (Figure 11). Spatial patterns of trend slopes from
LPJmL-GSI were higher correlated with the GIMMS3g FAPAR dataset than from LPJmL-
OP. LPJmL-OP and LPJmL-GSI both reproduced greening trends in tundra, boreal and
temperate forests. Nevertheless, LPJmL-GSI had higher correlation coefficients with mean
annual GIMMS3g FAPAR than LPJmL-OP in these regions. LPJmL-GSI reproduced
observed browning trends in some parts of the boreal forests of North America that were not

reproduced by LPJmL-OP. In the Sahel, LPJmL-OP simulated widespread browning trends



while the GIMMS3g dataset shows greening trends. Although LPJmL-GSI still
underestimated the area extent of greening in the Sahel, it reproduces the general greening in
this region. These results demonstrate that the implementation of environmental controls like
light, heat stress and water availability in the LPJmL-GSI phenology model contributed to

better explain regional greening and browning trends.

LPJmL-OP and LPJmL-GSI both reproduced

Seite 25: [62] Gelbscht Autor

LPJmL-GSI suggests that rather browning trends than greening trends
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plausible given the considered environmental conditions although these
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These results suggest that LPJmL-GSI can be applied in future studies to analyze the effects

of different environmental controls on greening and browning trends.
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vegetation greenness

As the newly developed GSI-based phenology model of LPJmL can reproduce the seasonality
and monthly dynamics of observed FAPAR in most biomes, it can be used to identify

phenological controls on seasonal FAPAR dynamics. The importance of phenological
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Interestingly, Caldararu et al. (2014) identify leaf age as the dominant factor for phenology
development in many permanent moist subtropical and tropical forests, but also in several
water limited regions which were here identified as seasonally controlled by water
availability. We cannot identify a dominant control on seasonal FAPAR dynamics in these
regions, as leaf age is not explicitly simulated in LPJmL-GSI. We acknowledge that the
consideration of leaf age effects on phenology would clearly further enhance the
representation of ecosystem processes. However, the seasonal co-variation between LAI or
FAPAR and environmental controls on phenology complicates the ability to disentangle the

leaf aging signal from a temperature, light or water availability-driven signal, especially in



seasonally deciduous vegetation types, where climate-driven models explain a significant
fraction of seasonal variability and the realized age of leaves is shorter than a year. In
addition, cloud cover contamination over the tropics pertain usually a weak seasonal signal
and a high short-term variability, hinging on the reliability of the seasonal signal in moist
tropical or subtropical forests. Especially, Morton ef al. (2014) show that seasonal changes in
MODIS LAI in the Amazon forests are linked to insufficient corrections of the sun-sensor
geometry, which challenge the representation of vegetation phenology. However, in these
tropical moist regions, where we find no environmental seasonal controls, and the realized age
of oldest leaves are higher than a year, leaf age may be an important contributor for further
consideration regarding the above-seasonal frequency of phenology. Hence, grasping the
relevance of leaf longevity, especially in tropical perennial systems, would necessarily require
ground observations of leaf development and litter fall to constrain leaf age parameters, as
well as measurements of soil water content to address the appropriateness of soil moisture

effects.
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regions limits soil moisture and thus can contribute to drought conditions that regulate
ecosystem evapotranspiration (Ohta et al., 2008) and that contribute to extreme fire events
(Forkel et al., 2012). The seasonal regulation of soil moisture through freezing and thawing in
permafrost regions contributes to spring leaf development in boreal summergreen forests. The
heat stress limiting function was newly introduced in LPJmL-GSI. Heat stress had no
importance for seasonal FAPAR dynamics in most regions except in temperate and tropical
grasslands. The heat stress function was highly correlated with the water availability function
in temperate grasslands. This suggests that summer FAPAR is both regulated by water-
induced and temperature-induced drought conditions in temperate grasslands. In contrary,
heat stress and water availability were driving seasonal FAPAR dynamics in temporal non-

synchronized periods in tropical grasslands (Sahel). Whereas the FAPAR seasonality was
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availability in the entire year, heat stress regulated FAPAR seasonality only at the end of the

dry season and before the beginning of the rain season
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Appendix A: LPJmL model details
A.1 Original phenology model (LPJmL-OP)

The phenology model in the original LPJmL formulation has three different routines for
summergreen (i.e. temperature-driven deciduous), evergreen (no seasonal variation) and rain-
green (i.e. water-driven deciduous) PFTs (Sitch et al., 2003). Evergreen PFTs have a constant
phenology status (Phen = 1). The daily phenology status of summergreen PFTs depends on
growing degree-days (GDD):
AT =T — GDDy .

(A1)
GDD; =GDD,_; + AT, if AT >0
Where T is the daily air temperature and GDDy,s is the minimum temperature threshold to
start counting GDDs. Daily GDD is scaled to the phenology status using a parameter ramp

which is the amount of GDDs to get full leave cover:

GDD/ramp if aphen < aphen
Phe”PFT|summergreen = 0 if aphen 2 aphen (A2)
0 if aphen > aphen,,;, and AT <0

The daily phenology status is set back to 0 if the accumulated phenology status (aphen) is
larger than a parameter aphenmay or if aphen is greater than apheny, and the daily temperature

is below GDDy,s.. The daily accumulated phenology status is calculated as:
aphen, = aphen;_y + Phen; (A3)

For rain-green PFTs the daily phenology status is calculated dependent on the daily water
availability scaling factor Wscal in LPJmL (Appendix A.2) (Gerten et al., 2004) and a
threshold value (Wscalpin):

1 if Wscal 2 Wscal

Phenpp T|raingreen — {O if Wscal < Wseal . (A4)

The phenology of rain-green PFTs has no smooth behaviour but is a binary switch between
full leave cover and no leaves according to this formulation. For herbaceous PFTs the same
phenology scheme like for summergreen PFTs is used but the phenology status is only set
back to 0 at the end of the phenology year (i.e. on the 14M day of the year for the northern
hemisphere and on the 195" day of the year for the southern hemisphere).



A.2 Water availability scaling factor

The water availability scaling factor Wscal in LPJmL is a ratio between water supply S and

atmospheric water demand D for a dry canopy (Gerten et al., 2004):
Wscal = S (A5)
D
In the LPJmL-GSI phenology model the water availability scaling factor is expressed as a
percentage value:

W =Wscal x100 (A6)

Water supply is dependent on the maximum transpiration E;,x under water saturation and

relative soil moisture w; (Gerten et al., 2004):
S = Emax X Wy (A7)
Atmospheric water demand D for a dry canopy is calculated from potential evapotranspiration

PET, maximum Priestley-Taylor coefficient amax = 1.391, scaling canopy conductance g, =

3.26 mm s-1 and potential canopy conductance g, (Gerten et al., 2004):

D= PETX(lmaX (AS)
1+(gp /gpot)
A.3 Albedo

Surface albedo and snow coverage routines have been implemented in LPJmL to use it as a
land surface scheme in a coupled vegetation-climate model (Strengers et al., 2010). We used
this implementation but made the albedo parameters PFT-dependent as albedo differs between
ecosystems (Cescatti et al., 2012). The albedo of a grid cell Albg is the area-weighted sum of
the vegetation albedo Alb,.g, bare-soil albedo Albya. and snow albedo:

Albgc = Albveg + Fbare X (anow X :Bsnow +(1- anow) x ﬂsoil) (A9)

where Fp,e and Fg,ow are the coverage of bare soil and snow on top of bare soil in a grid cell
and Bsoi1 and PBsnow are the soil and snow albedo parameters, respectively. The parameters Psoil
= 0.4 and Bsnow = 0.7 were used as constants (Strengers et al., 2010) and not further considered
in this study. Although soil and snow albedo has clear spatial and temporal variations which

are due to changing moisture contents, an improvement of these processes is not within the



scope of our study. The vegetation albedo is computed as the albedo of each PFT Albpgr and

its corresponding FPC:
PFT=n

Albyeg = Y Albppr x FPCppr (A10)
PFT=1

The albedo of a PFT depends on the fraction of the PFT that is completely covered by snow
Fsnowprr and the albedo of the PFT without snow coverage (Albprrnosnow) (Strengers et al.,

2010):
AleFT = L'spow, PFT * /Bsnow + (1 - anow,PFT ) x AleFT,nosnow (Al 1)

The albedo of a PFT without snow coverage is the sum of leaf, stem/branches and litter

(background) albedo:
Albppr posnow = Albjeqr, PET + Albgtem, prT + Albjisser, PFT (A12)

The albedo of green leaves depends on the foliar projective cover, the daily phenology status

and the PFT-dependent leaf albedo parameter:
Albjeqr prr = FPCppr X Phenppr X Bieaf pFT (A13)

The albedo of stems and branches depends on the fractional coverage of the ground by stems

and branches (cstem) and a PFT-dependent stem albedo parameter Bstem prr:
Albgem, prr = FPCppr x (1— Phenppr ) x cstem X Byey, prr (Al4)

The parameter cstem = 0.7 (Strengers et al., 2010) was used as a constant and not further
considered in this study. The background (i.e. litter) albedo of a PFT depends additionally on

a PFT-dependent litter albedo parameter Biiser prr:
Albjiyer, prr = FPCppr X (1= Phenppr ) x (1 — cstem) X Bliyer. pFT (A15)

The parameters Biearprr, Pstemprr and Prerprr Were implemented as PFT-dependent albedo
parameters which differs from the previous implementation (Strengers et al., 2010). The
fraction of snow in the green part of the canopy that is used to compute FAPAR (equation 3)
depends on the daily phenological status and the fraction of the PFT that is covered by snow:

anow,gv,PFT = PhenPFT x anow,PFT (Al6)

The fraction of the PFT that is covered by snow depends on snow height and the daily

calculated snow water equivalent (Strengers et al., 2010).



Appendix B: FAPAR datasets
B.1 Comparison of the Geoland2 and GIMMS3g FAPAR datasets

We compared the Geoland2 and GIMMS3g FAPAR datasets to assess 1) the agreement of
two newly developed FAPAR products and 2) to evaluate the suitability of these products for
the optimization of FAPAR and phenology-related parameters in LPJmL. We found important
differences between the Geoland2 and GIMMS3g FAPAR datasets during our analyses. The

differences are mostly related to inter-annual variability and trends.

The GL2 FAPAR dataset had a higher inter-annual variability in most regions especially in
northern Russia, central North America, Africa and eastern Australia (Figure B1). Despite the
different amplitudes of inter-annual variability, the temporal dynamic of annual aggregated
FAPAR values was well correlated in most regions (Figure B2). Nevertheless, in some
regions like in the North American Tundra, in parts of the Siberian boreal forest and in the
tropical forests the inter-annual temporal FAPAR dynamic was weakly or even negatively

correlated (Figure B2).

The temporal dynamics of mean annual FAPAR agreed relatively well between GIMMS3g
FAPAR and GL2 FAPAR in the AVHRR period. The temporal dynamic of mean annual
FAPAR agreed poorly between GIMMS3g and GL2 FAPAR in the VGT period. Both
datasets had higher biases in boreal needle-leaved evergreen forests (Figure B3). An offset
between the GL2 AVHRR and GL VGT FAPAR time series in the overlapping years 1999
and 2000 is evident in all biomes. Additionally, the GL2 VGT time series shows an abrupt
jump from 2002 to 2003. Because of these reasons, the Geoland2 FAPAR dataset cannot be

used for a long-term analysis of FAPAR trends and extremes.

B.2 Estimation of uncertainty for the GIMMS3g FAPAR dataset

The GIMMS3g FAPAR dataset was used for parameter optimization. For parameter
optimization it is necessary to consider data uncertainty in multiple data stream cost functions.
Unfortunately, the GIMMS3g dataset has no uncertainty estimates. On the other hand the GL2
FAPAR dataset has uncertainty estimates but time series are not well harmonized. Thus we
were using the GIMMS3g dataset for parameter optimization but estimated uncertainties by
using regression to the uncertainty of the GL2 FAPAR dataset (Figure B4). Therefore we

fitted for each month polynomial quantile regressions to the quantile 0.95 between FAPAR



and FAPAR uncertainty from the GL2 VGT FAPAR dataset. Then we were using these
regressions to estimate uncertainties for the GIMMS3g FAPAR dataset.

Appendix C: Land cover
C.1 Creation of an observation-based map of plant functional types

Land cover maps from remote sensing products are not directly comparable with plant
functional types in global vegetation models because they are using different legends for the
description of vegetation (Jung et al., 2006; Poulter et al., 2011a). Land cover classes have to
be reclassified into the corresponding PFTs. We were using the SYNMAP land cover map
(Jung et al., 2006), the K&ppen-Geiger climate classification (Kottek et al., 2006) and tree
coverage from MODIS (Townshend et al., 2011). We decided to use the SYNMAP land cover
map because it offers fractional land coverage and synergizes already the GLCC, MODIS and
GLC2000 land cover maps (Jung et al., 2006). PFTs in LPJmL are defined according to
biome (tropical, temperate or boreal), leaf type (needle leaved, broadleaved) and phenology
(summergreen, evergreen, rain green). We extracted the biome information from the Képpen-
Geiger climate classification whereas leaf type and phenology were extracted from the

SYNMAP land cover map. The FPC of a PFT was derived from MODIS tree cover.

In a first step, we reclassified the Koppen-Geiger climate classification in to bioclimatic zones
(biomes) that correspond to the definition used in LPJmL (Figure C1). This reclassification

followed to a large extent the rules of Poulter et al. (2011a):
The climate zone A was reclassified to the tropical biome.
The climate regions BWh and BSh were reclassified to the tropical biome.
The climate regions BWk and BSk were reclassified to the temperate biome.
The climate region Cw was reclassified to the tropical biome.
The climate regions Cf and Cs were reclassified to the temperate biome.
The climate regions D and E were reclassified to the boreal biome.

In a second step, we created a land cover map with PFT legend by crossing the land cover

information from SYNMAP with the map of biomes following rules for each tree PFT:
TrBE: EBF (evergreen broadleaved forest) AND tropical biome

TrBR: DBF (deciduous broadleaved forest) AND tropical biome



TeNE: ENF (evergreen needleleaved forest) AND temperate biome
TeBE: EBF (evergreen broadleaved forest) AND temperate biome
TeBS: DBF (deciduous broadleaved forest) AND temperate biome
BoNE: ENF (evergreen needleleaved forest) AND boreal biome
BoBS: DBF (deciduous broadleaved forest) AND boreal biome
BoNS: DNF (deciduous needleleaved forest) AND boreal biome

Although we translated in this step the land cover classes into PFTs, the fractions represent
still fraction of land cover and not FPC. For example, a grid cell can be covered by 100%
forest but this forest contains only 70% trees while the rest is covered by herbaceous plants.
This difference becomes evident by comparing the total coverage of forest land cover classes
from SYNMAP with tree cover from MODIS (Figure C2). MODIS tree cover is always lower

than forest cover but shows more spatial variability.

In a third step, we need to correct the land cover fraction with tree cover to create a map of
FPC. Thus, we calculated the FPC of each tree PFT by correcting the land cover fraction of a
PFT (LCppr) with the ratio of fractional tree coverage from MODIS (Fr.) and the total land
coverage of all 8 forest PFTs:

F
FPCppr = LC ppp X 06— (CD)

> LCppr
PFT=1

This calculation of FPC differs from the approach of Poulter et al. (2011a) who divided each

land cover class in fixed fractions of tree and herbaceous PFTs.

In the last step we need to calculate the FPC of herbaceous PFTs:

FPCherb =1- FTree - LCBarren - LCWater - LCSnow/Ice (C2)

which is the residual area by removing the fractional tree coverage from MODIS and the land
cover fractions of bare soil and rocks, water and permanent snow and ice from the total grid
cell. Thus, grasslands, croplands and shrub lands were assigned to herbaceous vegetation.

Then we divided the herbaceous FPC into the TeH, PoH and TrH PFTs according to biomes:
TrH: FPChper, AND tropical biome

Old TeH: FPCper, AND temperate OR boreal biome



The TeH was further splitted in a new temperate herbaceous and a polar herbaceous PFT to

separate between temperate grasslands and tundra:
TeH (new): old TeH AND temperate OR boreal biome AND boreal trees < 0.3

PoH: old TeH AND (boreal biome OR Koeppen-Geiger E climate) AND boreal trees
>0.3

These steps yielded in observation-based maps of foliar projective cover for each PFT (Figure
C3). As the input data (SYNMAP and MODIS VCF) is based on satellite data from the years
2000/2001 the retrieved maps reflect the distribution of PFTs of the year 2000.

C.2 Comparison of simulated and observed PFT distributions

We compared the observation-based PFT map with the simulated PFT distribution from
LPJmL-OP for the year 2000. LPJmL with dynamic vegetation simulated usually too high
tree and too low herbaceous cover in all regions (Figure C4). In the central tropical forests
(Amazon, Kongo basin) LPJmL simulated too low cover of TrBE but too high cover of TrBR.
The coverage of BoONE was too low in some regions in North America and Eastern Siberia.
The simulated distribution of BoNS did not agree much with the observed distribution which
is almost limited to eastern Siberia. Tree cover was especially overestimated in regions with
only sparse tree cover (Savannahs, Steppe/boreal forest transition, eastern Siberia). The extent
of boreal forest PFTs (BoNE, BoBS, BoNS) is generally too large with far southward

extensions into the Steppe and northward extensions into the Tundra.

As expected, the prescription of the observed PFT maps into LPJmL generally improved the
representation of the observed PFT distributions (Figure C4). The spatial patterns of PFT
distributions were highly correlated and the bias in comparison to the observed distribution
was clearly reduced in comparison with the model run with dynamic vegetation. The PFT
distribution of the LPJmL model run with prescribed land cover does not perfectly agree with
the observed PFT distribution which is due to the applied prescription approach. Tree PFTs
can have a lower FPC in LPJmL than the prescribed FPC value because the trees are still
growing or because mortality reduced the FPC. This effect especially happened in the BoNE
PFT where fire reduced the FPC in large regions in Canada and eastern Siberia (Figure C4).
Herbaceous PFTs can have a higher FPC than the observed FPC value because these PFTs
were allowed to establish the entire grid cell (except the fraction that is barren, water or

permanent snow/ice in the observations). This happened for example when fires burnt tree



PFTs and herbaceous PFTs succeeded afterwards in LPJmL. This is the reason for the
overestimation of herbaceous coverage in large regions in Canada and eastern Siberia where
the BoNE PFT was underestimated (Figure C4). In summary, the prescription of land cover
improved the representation of observed spatial patterns of PFTs in LPJmL. Differences to the
observed PFT distribution are due to the desired ability of LPJmL to represent important

processes of vegetation dynamics like mortality processes.

Appendix D: Model parameter optimization
D.1 Parameter definitions and values

This section documents the LPJmL parameters that were addressed in this study. The
parameters and their use in the model are described in Table D1. The information sources
from which prior parameter values were extracted for each optimization experiment are
shown in Figure D1. Tables D2, D3, D4 and D5 list prior and posterior parameter values of
each optimization experiment according to the logical flow of optimization experiments

indicated in Figure D1.

D.2 Genetic optimization algorithm

We were using a genetic optimization algorithm to minimize the cost function J(d) by
optimizing the scaled parameter vector d. The GENOUD algorithm (genetic optimization
using derivatives) (Mebane and Sekhon, 2011) combines global genetic optimization search
with local gradient-based search algorithms. In genetic optimization algorithms, each model
parameter is called a gene and each parameter set is called an individual. The fitness of this
individual is the cost of the model against the observations. At the beginning of the
optimization, a first generation of individuals is initialized by random sampling of parameter
sets within the prescribed parameter ranges. After the calculation of the cost of all individuals
of the first generation, a next generation is generated by cloning the best individuals, by
mutating the genes or by crossing different individuals (Mebane and Sekhon, 2011). This
results after some generations in a set of individuals with highest fitness, i.e. parameter sets
with minimized cost. Within the GENOUD algorithm we were using also the BFGS
(Broyden-Fletcher-Goldfarb-Shanno) gradient search algorithm (Broyden, 1970; Fletcher,
1970; Goldfarb, 1970; Shanno, 1970) to find an optimum parameter set. An optimized
parameter set of the BFGS algorithm is used as individual in the next generation. The BFGS



gradient search algorithm was first applied on the best individual of the second last generation
to avoid a too fast convergence of the optimization algorithm towards a local optimum. For
grid cell-based optimization experiments we were applying the GENOUD algorithm with at
least 20 generations and a population size of 1000 individuals per generation, i.e. at least
20000 single model runs. For PFT-level optimization experiments we were applying the
GENOUD algorithm with at least 15 generations and a population size of at least 700

individuals per generation, i.e. at least 10500 single model runs.

D.3 Parameter sensitivities and uncertainties

To explore the sensitivity and uncertainty of LPJmL-GSI parameters after PFT-level
optimizations, we computed the likelihood L and Akaikes Information Criterion AIC from the

cost J of each individual (i.e. parameter set d) of the genetic optimization:

L=¢/@ (D1)
AIC =2xn—-2xlog(L) (D2)

Where n is the number of parameters. The optimum parameter set has the highest likelihood
and the lowest AIC. Then, we selected only these individuals with an AIC difference dAIC of

< 2 in comparison to the best parameter set:

dAIC = AIC — AICy,, (D3)

Parameter sets or model formulations with an AIC difference < 2 are usually considered as
equally plausible like the best parameter set (Burnham and Anderson, 2002, p.70). The
relationship between likelihood and the value of each parameter provides both a qualitative
insight in the uncertainty of parameters as expressed by the parameter range and in the

parameter sensitivity as expressed by the maximum likelihood at each parameter value.

D.4 Supporting results and discussion on optimization performance

The optimization of LPJmL-OP and LPJmL-GSI resulted in a significant reduction of the cost
in comparison to the respective prior models although there were differences between plant
functional types (Figure D2). LPJmL-OP with prior parameters had high costs especially in
herbaceous PFTs (TrH and TeH) and in the boreal needle-leaved summer green PFT (BoNS).
The optimization of single grid cells in LPJmL-OP resulted in a significant reduction of the

cost in all PFTs (p <= 0.01, Wilcoxon rank-sum test) despite the polar herbaceous and tropical



herbaceous PFTs. The global prior parameter set of LPJmL-GSI resulted in a significant
lower cost than the grid cell-level optimized parameter sets of LPJmL-OP in TrH, TeBS,
BoNS and PoH PFTs. The optimization of single grid cells in LPJmL-GSI resulted in a
significant reduction of the cost in all PFTs except BoNS and PoH. PFT-level optimizations
of LPJmL-GSI resulted in a significant lower cost than the LPJmL-GSI prior parameter set in
all PFTs except TeBE, BoNS and PoH. PFT-level optimizations of LPJmL-GSI resulted in a
significant lower cost than the standard LPJmL-OP prior parameter set in all PFTs except
TeNE. These results demonstrate an improved overall performance of optimized model
parameter sets over prior model parameter sets and of LPJmL-GSI over LPJmL-OP regarding
a cost that is defined based on 30 years of monthly FAPAR, mean annual GPP and 10 years of

monthly vegetation albedo.

Model optimization experiments resulted in a significant reduction of the annual GPP bias of
LPJmL in comparison to the MTE data-oriented GPP product (Figure D3). LPJmL-OP with
prior parameters underestimated mean annual GPP in the TrBE PFT (median Pbias -13%) and
overestimated mean annual GPP in all other PFTs (up to 123% median Pbias in TeH). Grid
cell-level optimization experiments of LPJmL-OP resulted in a significant reduction of the
GPP bias in all PFTs except in the PoH PFT. Especially in the TrBE, TrBR, TrH, TeNE,
TeBE, TeBS and BoBS PFTs the bias of mean annual GPP of LPJmL was removed almost
completely (i.e. Pbias within 5%). The LPJmL-GSI prior parameter set had significant lower
biases of mean annual GPP than the prior parameter set of LPJmL-OP. This was because the
median of each parameter from the OP.gc experiments was used as prior parameter for
LPJmL-GSI. Grid cell-level optimization experiments of LPJmL-GSI resulted in significant
reductions of the bias in mean annual GPP in most PFTs despite PFTs where the LPJmL-GSI
prior parameter set resulted already in GPP biases close to 0 (i.e. TrH, TeBE and PoH). PFT-
level optimization experiments of LPJmL-GSI resulted in significant lower biases of mean
annual GPP than the prior parameter set of LPJmL-OP in all PFTs except PoH. These results
demonstrate that through the applied model optimization biases in mean annual GPP were

significantly reduced in all PFTs (except PoH) in LPJmL-OP as well as in LPJmL-GSI.

We were not able to remove the GPP bias and to reduce the cost of LPJmL-OP and of
LPJmL-GSI in the PoH PFT (tundra) in optimization experiments because of inconsistencies
between the FAPAR and GPP datasets or in the LPJmL formulation. Although a complete
removal of the GPP bias is in principle possible by adjusting the o, parameter, this would
result in a too low FPC of the PoH PFT. Such a low FPC cannot explain the relatively high
peak FAPAR values that are seen in the GIMMS3g FAPAR dataset in Tundra regions. It is



not possible to explain the low mean annual MTE GPP and the relatively high GIMMS3g
peak FAPAR with the current LPJmL model structure in tundra regions. The reasons for this
mismatch can be caused by inconsistencies between the GPP and FAPAR datasets or by an
insufficient model formulation. The MTE data-oriented GPP product has been upscaled from
FLUXNET eddy covariance measurements (Jung et al., 2011). Nevertheless, not many eddy
covariance measurement sites cover tundra regions with mean annual air temperatures < 0°C.
Thus, the MTE GPP estimates are not well supported by measurements in tundra regions. But
also the FAPAR dataset might be more uncertain in tundra regions than in other parts of the
globe. Optical remote sensing in high-latitude regions is usually performed under high-sun
zenith angles. Radiation can penetrate deeper into vegetation under high-sun zenith angles

which results in higher FAPAR (Tao et al., 2009; Walter - Shea et al., 1998). Thus, the high

FAPAR values in the GIMMS3g FAPAR dataset might be caused by satellite observations
under high-sun zenith angles. Finally, the inconsistencies between GPP and FAPAR might be
also caused by an inappropriate representation of tundra plant communities in LPJmL. The
PoH PFT in LPJmL was derived from a grass PFT but does not include shrubs or the large
functional diversity of mosses and lichen that are the dominant plant communities in tundra
ecosystems (Porada et al., 2013). We currently cannot decide if the inconsistency between
FAPAR and GPP in our optimization of productivity and FAPAR parameters in tundra
regions is more caused by the specific properties of the datasets or by an insufficient model

structure.

All optimization experiments resulted in reasonable albedo biases of LPJmL-OP and LPJmL-
GSI in comparison with monthly MODIS albedo time series (Figure D4). LPJmL-OP with
prior parameters overestimated growing season albedo in all PFTs. Grid cell-level
optimization experiments of LPJmL-OP resulted in significant reductions of the bias in
growing season albedo in TrBE, TeNE, TeBE, TeBS, BoNE, and BoNS PFTs but not in
TrBR, TrH, TeH, BoBS and PoH PFTs. The bias in growing season albedo of the latter PFTs
was significantly reduced with the LPJmL-GSI prior parameter set. The optimization of
LPJmL-GSI for single grid cells significantly reduced the bias in growing season albedo in
comparison to the LPJmL-GSI prior parameter set in all PFTs except in the TeH, BoNS and
PoH PFTs. These results demonstrate that model optimizations experiments kept growing

season albedo within reasonable ranges in comparison to MODIS albedo.

D.5 Supporting results and discussion on parameter variability



The optimization of the leaf albedo parameter PBie,r resulted in values that differed especially
between broadleaved and needle-leaved evergreen PFTs (Figure D6). Needle-leaved
evergreen PFTs (TeNE and BoNE) had in all optimization experiments the lowest Piear
parameter values while the broad-leaved summergreen PFTs (TeBS and BoBS) had the
highest Bjcar parameter values. After the PFT-level optimization of LPJmL-GSI herbaceous
PFTs had high Bi.r parameters. The leaf albedo parameter Pi.r was sensitive in all PFTs
(Figure 5). The optimization resulted in many PFTs in leaf and liiter albedo parameters that
were close to the boundaries of the prior parameter ranges (Figure 5). This indicates missing
environmental controls on surface albedo. The albedo routines of LPJmL need to be further
improved to account for moisture-driven changes in surface albedo. Such improved albedo
routines would allow a more accurate and constrained estimation of albedo parameters.
Because of these current limitations in the LPJmL albedo routines, albedo simulations in

regions or time periods with low vegetation cover need to be assessed with care.

The light extinction coefficient k had a large spatial variability in all PFTs and in both grid
cell-level optimization experiments of LPJmL-OP and LPJmL-GSI (Figure D7). The spatial
variability was lower after grid cell-level optimization experiments of LPJmL-GSI than after
grid cell-level optimization experiments of LPJmL-OP. The largest variability was found in
evergreen PFTs (TrBE, TeBE, TeNE and BoNE). This result demonstrates that unique or
PFT-dependent light extinction coefficient parameter values are not meaningful. Moreover,
the spatial variability of the light extinction coefficient needs to be analyzed more detailed

and perhaps replaced by a more advanced representation of canopy architecture.

The highest values of the light extinction coefficient were found in the BoNS PFT. This was
caused by an overestimation of tree mortality in years with simulated low productivity. Trees
are killed in LPJmL as a result of negative net primary production which reduces FPC and
results in a lower peak FAPAR in the following year. Having occurred more often in the
simulated time period, it can explain why FAPAR is underestimated in some years. To
remove these biases, the light extinction coefficient was optimized towards higher values in
the BoNS PFT to reach FAPAR values that are closer to the observed FAPAR values after
low-productivity years. However, such high values for the light extinction coefficient would
overestimate tree cover and FAPAR under average conditions and when LPJmL is applied
with dynamic vegetation. The approach to simulate tree mortality in LPJmL needs further
improvement by, e.g., considering for example reserve carbon pools that helps the plants to

endure low productivity conditions (Galvez et al., 2011).



Appendix E: Global model evaluation
E.1 Supporting results and discussion on carbon stocks and fluxes

Although no information about temporal variations in GPP were used in optimization
experiments, the mean seasonal cycle of GPP from LPJmL-GSI and LPJmL-OP-gc agreed
better with the MTE data estimate than the mean seasonal GPP cycle from LPJmL-OP-prior
especially in temperate and boreal PFTs and tropical grasslands (Figure E2). GPP simulated
by LPJmL-OP-prior increased too early and too fast in spring and decreased too late in
autumn in TeNE, TeBS, BoNE, BoBS and TeH PFTs compared to the MTE estimate. These
wrong dynamics improved after parameter optimization in both LPJmL-OP-gc and LPJmL-
GSI. Additionally, LPJmL-GSI agreed better with the data estimate than LPJmL-OP-gc in
TeNE, TeBS, TrH, PoH, TrML and TeML. These results demonstrate that the new GSI-based
phenology model improved not only FAPAR seasonality but also GPP seasonality especially

in temperate forests and in tropical to polar grasslands.

LPJmL-GSI estimated global total carbon fluxes and stocks closer to data-oriented estimates
than LPJmL-OP-prior and LPJmL-OP-gc (Table E1). All three LPJmL model versions
overestimated global total GPP although LPJmL-GSI was close to the upper uncertainty
estimate of the data-oriented GPP estimate. Estimates of ecosystem respiration from LPJmL
were clearly larger than the data-oriented estimates. Although LPJmL simulated global total
fire carbon emissions within the magnitude of independent estimates (van der Werf et al.,
2010), LPJmL-OP-gc had higher and LPJmL-GSI had lower fire carbon emissions despite the
use of observed burnt areas in the SPITFIRE fire module. Data-oriented estimates of global
total biomass have a large uncertainty. All three version of LPJmL were within these
uncertainties. LPJmL-GSI estimated global total biomass the closest to the data-oriented
estimates. From Table E1 it is obvious that LPJmL with the model settings as in (Schaphoff et
al., 2013) (i.e. without the BoNS and PoH PFTs and with simulated fire activity) resulted in
global total GPP and ecosystem respiration that were even closer to the data-oriented
estimates. This is mostly because LPJmL simulates larger burnt areas than seen in the

observations and thus higher fire emissions but lower GPP and ecosystem respiration.
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LPJmL- original LPJmL standard parameters as in the dynamic vegetation/no prescribed land
OP-prior phenology OP.prior experiment (Table D2) cover, prescribed agricultural land use,

prescribed observed burnt area




LPJmL- original Optimized productivity, FAPAR and dynamic vegetation/no prescribed land
OP-gc phenology albedo parameters from the OP.gc cover, prescribed agricultural land use,
optimization experiment, but original prescribed observed burnt area
phenology parameters as in the
OP.prior experiment (Table D3)
LPJmL- GSl-based Parameters from the GSIL.pft dynamic vegetation/no prescribed land
GSI phenology optimization experiment (Table D5) cover, prescribed agricultural land use,
prescribed observed burnt area
Table D1: Description of LPJmL model parameters that were addressed in this study.
Parameter Alternative name Use Description Unit
Photo- Leaf-to-canopy scaling parameter (amount of
aa ALPHAA . radiation absorbed at leaf-level in comparisonto -
synthesis
total canopy)
Brear ALBEDO_LEAF ﬁx)s;_j\% Albedo of green leaves -
Bstem ALBEDO_STEM Albedo Albedo of stems and branches -
Biitter ALBEDO_LITTER Albedo Albedo of litter -
FPC, Light extinction coefficient in Lambert-Beer
K LIGHTEXTCOEFF FAPAR relationship ]
sfc SNOWCANOPYFRAC ﬁfgﬂ% Maximum fraction of snow in the green canopy -
_ Original Minimum value of the water availability scaling )
Wscalmin MINWSCAL phenology factor for leaf onset in rain green PFTs
Original Minimum daily temperature to start counting o
GDDpase GDDBASE phenology growing degree days c
Original Number of growing degree days to reach full o
ramp RAMP phenology leave cover in summergreen PFTs c
4 Original Minimum accumulated phenology state to allow )
aphenmn  APHEN_MIN phenology senescence if temperature < GDDBASE
Original Maximum accumulated phenology state. )
aphenma  APHEN_MAX phenology Phenology is set back to 0 if this value is passed.
) GSI Slope of cold temperature limiting logistic o
Slmin TMIN_SL phenology function for phenology e
_ GSlI Inflection point of cold temperature limiting o
basemin TMIN_BASE phenology logistic function for phenology c
T TMIN TAU GSlI Change rate of actual to previous day cold )
tmin - phenology temperature limiting function value for phenology
sl LIGHT SL GSI Slope of light limiting logistic function for 1/£W/
light = phenology phenology m°)
_ GSI Inflection point of light limiting logistic function for 2
baseiignt LIGHT_BASE phenology phenology W/m
‘ GSlI Change rate of actual to previous day light )
Tiight LIGHT_TAU phenology limiting function value for phenology
GSI Slope of water limiting logistic function for o
Slwater WATER_SL phenology phenology 1%
GSI Inflection point of water limiting logistic function o
basewaer ~ WATER_BASE phenology for phenology %
GSlI Change rate of actual to previous day water
Twater WATER_TAU phenology limiting function value for phenology ]
sl TMAX SL GSI Slope of heat limiting logistic function for 1°C
heat — phenology phenology
GSI Inflection point of heat limiting logistic function for
baseneat TMAX_BASE phenology phenology C
T TMAX TAU GSlI Change rate of actual to previous day heat
heat - -

phenology

limiting function value for phenology




Table D2: Prior parameter values of LPJmL-OP (OP.prior). The values in brackets are ranges
of uniform parameter distributions that were used during optimization. Note: * The parameter
GDDbase was changed to 0°C. This value gave better agreements between simulated and
observed seasonal FAPAR dynamics than the original value of 5°C. Nevertheless, GDDbase
was not included in optimization experiments because this parameter is highly correlated with
the parameter ramp.
TrBE TrBR TeNE TeBE TeBS BoNE BoBS BoNS TeH TrH
Oa 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

(0.1-  (01-  (©A1-  (01-  (©1-  (01-  (01-  (©1-  (01-  (0.1-
0.9) 0.9) 0.9) 0.9) 0.9) 0.9) 0.9) 0.9) 0.9) 0.9)

Bieat 0.15 0.15 0.15 0.15 0.16 0.14 0.15 0.12 0.14 0.15
(01-  (0.1-  (0.06- (0.09- (0.086- (0.05- (0.09- (0.1-  (0.072- (0.09-
0.2) 0.2) 0.23) 023) 023 023 021) 015 022  0.21)

Bstem 0.15 0.15 0.13 0.15 0.13 0.14 0.14 0.13 - -
(0.018- (0.073- (0- (0.029- (0.038- (0- (0.059-  (0.052-
029) 023) 031) 028 023) 031 023  0.32)

Bitter 0.15 0.14 0.13 0.15 0.14 0.13 0.14 0.12 0.14 0.13

(0.018- (0.058- (0.047- (0.044- (0.085- (0.035- (0.078- (0.088- (0.027- (0.02-
029) 027) 021) 029 0.2 0.26) 022) 023) 038)  0.28)

sfc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
(©.1-  (01-  (01-  (01-  (01-  (01-  (01-  (01-  (0.1- (0.1
0.9) 0.9) 0.9) 0.9) 0.9) 0.9) 0.9) 0.9) 0.9) 0.9)
K 05 05 05 05 05 05 05 05 05 05
(0.1-  (01-  (01-  (01-  (01-  (01-  (01-  (01-  (0.1- (0.1
0.9) 0.9) 0.9) 0.9) 0.9) 0.9) 0.9) 0.9) 0.9) 0.9)
GDDpase  — - - - 0 - 0 0 0 0
Wscalmn - 03(0- - - - - - - - -
1)
Ramp - - - - 300 (0- - 200 (0- 200 (0- 100 (0- 100 (0-
1000) 1000)  1000)  1000)  1000)
aphenmn - - = - 10(1- - 10(1- 10(1- - -
600) 600)  600)
aphenmax  — - = = 210 (1- - 210 (1- 210 (1- - -
600) 600)  600)

Table D3: Posterior parameter values for LPJmL-OP based on grid cell-level optimization
experiments (OP.gc). Parameters written in italics were derived as the median value of the
single grid cell optimization experiments whereas all other parameters were derived from
prior parameter sources. For the parameter ramp no plausible parameter was found. The
parameter GDDbase was changed to 0 but not included in the optimization.

TrBE TrBR TeNE TeBE TeBS BoNE BoBS BoNS TeH TrH

Oa 0.6 0.56 0.38 0.41 0.38 0.28 0.34 0.27 0.32 0.39
Bieaf 0.13 0.1 0.06 0.1 0.16 0.05 0.18 0.11 0.08 0.15
_Bstem 0.15 0.07 0.13 0.15 0.04 0.14 0.06 0.05 - -
_Buter 0.15 0.06 0.13 0.15 0.09 0.13 0.08 0.09 0.1 0.14
sfc 0.4 0.4 0.1 0.4 0.4 0.1 0.15 0.18 0.4 0.4
Kk 0.36 0.73 0.41 0.44 0.74 0.71 0.51 0.88 0.39 0.46
GDDpase -~ - - - 0 - 0 0 0 0
Wscalpn - 0.85 - - - - - - - -
Ramp -- - - - 300 - 200 200 100 100
aphenmin - - - - 10 - 10 10 - -

aphenmax - - - - 201.97 - 181.62 105.78 -- --




Table D4: Prior parameter values for LPJmL-GSI (GSl.prior). Parameters marked with * were
identified as insensitive and were not included in the optimization. The values in brackets are
ranges of uniform parameter distributions that were used during optimization. The values for
the first 6 parameters were derived from the single grid-cell optimization experiments of
LPJmL-OP (Table 3).

TrBBE TrBR TeNE TeBE TeBS BoNE BoBS BoNS  TrH :,iﬂ
da 0.6 056 038  0.41 0.38 028 034 027  0.39 0.32
(02-  (01-  (023- (01-  (0.15- (0.16-  (0.15-  (0.16-  (0.21-  (0.1-

0.8) 0.9) 049) 0.9) 0.6) 057) 061) 055  0.83)  0.83)
Bleat 0.13 0.1 0.06 0.1 0.16 005 0.18  0.11 0.15  0.08

(0.1- (0.05-  (0.01- (0.09- (0.13- (0.01-  (0.09- (0.1- ((5.09- (0.072-
0.2) 0.2) 0.23) 0.23) 0.19) 0.23) 0.21) 0.14) 0.21) 0.22)

Bstem 0.15 0.07 0.13 0.15 0.04 0.14 0.06 005 - -
(0.018- (0.06-  (0- (0.029- (0.038- (0- (0.059-  (0.04-
0.29) 0.23) 031) 028 023 031 023 032

Biiter 0.15 0.06 0.13 0.15 0.09 0.13 0.08 0.09 0.14 0.1

(0.054- (0.058- (0.047- (0.044- (0.085- (0.035- (0.078- (0.088- (0.02-  (0.027-
0.29) 0.27) 021) 029 0.2 0.26) 022) 023) 028  0.38)

sfc 0.4* 0.4* 0.1 0.4* 0.4 0.1 015  0.18* 04 0.4
(0.01- (0.1-  (0.01-  (0.1- (0.1-
0.9) 0.9) 0.9) 0.9) 0.9)
K 0.36 073 041 044 074 0.71 0.51 0.88 046 0.39
(02-  (©1-  (©1-  (01-  (01-  (01-  (0.1-  (0.1-  (0.1-  (0.1-
0.9) 0.9) 0.9) 0.9) 0.9) 0.9) 0.9) 0.9) 0.9) 0.9)
Slimin 0.24 024* 024 024 024 024 024 024 024 0.24
(0.1-2) (01-2)  (0.1-2) (0.1-2) (0.1-2) (0.1-2) (0.1-2) (0.1-2) (0.1-2)
basemn 8.8 (0- 88(0- -33(- -06(- 74(5 37(6- 22(0- -4(6- 88(0- 0.7 (-3
16) 16) 6-6) 3-1) 9) 6) 5) 6) 16) 5)
Timin 0.2* 0.2* 0.2* 0.2* 0.2* 0.2* 0.2 0.2 0.2* 0.2
Sheat 0.24 024 024 024 024 024 024 024" 0.24 0.24*
(0.01-  (0.01- (0.01- (0.01-  (0.01- (0.01-
3) 3) 3) 3) 3) 3)
baseneart 35 (25- 35 (25- 35(25- 35(25- 35(25- 35(25- 35(25- 35 (25 35 (25 35 (25-
45) 45) 45) 45) 45) 45) 45) 45) 45) 45)
Theat 0.2 0.2* 0.2 0.2 0.2* 0.2 0.2 0.2 0.2 0.2*
(0.01- (0.01- (0.01- (0.01-
0.9) 0.9) 0.9) 0.9)
Shignt 57 23* 20" 0.2 58* 14* 101 95* 41 23*
(0.05- (0.05- (0.05- (0.05-
157) 40) 220) 130)
baseign 125 (1- 62 (1- 73(1- 23(1- 123 57 (1- 166 156 104 (1- 67 (1-
200)  200)  200)  50) (50- 100)  (50- (130-  150)  180)
200) 200) 180)
Tight 0.2 0.2* 0.2 0.2 0.2* 0.2* 0.2 0.2 0.2 0.2
(0.01- (0.01-  (0.01-
0.9) 0.9) 0.9)
Shyater 5(01- 5(0.1- 5 5 5(0.1- 5 5(0.1- 5 5(0.1- 5(0.1-
10) 10) 10) 10) 10) 10)
basewaer 20 (1- 20 (1- 20(1- 20(1- 20(1- 20(1- 20(1- 20(1- 20(1- 20 (1-
99) 99) 99) 99) 99) 99) 99) 99) 99) 99)
Twater 0.8 0.8 0.8* 0.8 0.8 0.8 0.8* 0.8* 0.8 0.8
(0.01-  (0.01- (0.01-  (0.01-
0.99)  0.99) 0.99)  0.99)

Table DS: Final parameters for LPJmL-GSI. Parameters written in italics were derived from
PFT-level optimization experiments (GSI.pft) whereas all other parameters were derived from
prior parameter sources as described in Figure D1.

TrBE TrBBR TeNE TeBE TeBS BoNE BoBS BoNS TrH TeH PoH




Qa 0.63 0.52 0.44 0.45 0.61 0.22 0.41 0.34 0.40 0.32 0.43

Breaf 0.13 0.12 0.12 0.12 0.18 0.10 0.16 0.12 0.24 0.18 0.07
Bstem 0.10 0.10 0.04 0.04 0.04 0.06 0.06 0.04 0.15 0.15 0.15
Biitter 0.10 0.10 0.05 0.10 0.14 0.01 0.00 0.01 0.12 0.07 0.03
k 0.52 0.74 0.47 0.70 0.60 0.44 0.41 0.66 0.50 0.50 0.50
Shmin 1.01 0.24 0.22 0.55 0.26 0.10 0.22 0.15 0.91 0.31 0.13
basemin 8.30 766 -781 -0.63 1369 -7.52 205 417 6.42 4.98 2.79
Ttmin 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.01 0.20
Shheat 1.86 1.63 1.83 0.98 1.74 0.24 1.74 0.24 1.47 0.24 0.24
baseneat 38.64 38.64 3526 41.12 4151 27.32 4151 4460 29.16 32.04 26.12
Theat 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
Slignt 7717 23.00 20.00 18.83 58.00 14.00 58.00 95.00 64.23 23.00 23.00
baseiignt 55.53 13.01 4.87 39.32 59.78 3.04 59.78 130.1 69.90 75.94 50.00
Tiight 0.52 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.40 0.22 0.38
Shuater 5.14 7.97 5.00 5.00 5.24 5.00 5.24 5.00 0.10 0.52 0.88
basewater 5.00 22.21 8.61 8.82  20.96 0.01  20.96 234 41.72 53.07 1.00
Twater 0.44 0.13 0.80 0.80 0.80 0.80 0.80 0.80 0.17 0.01 0.94

Table E1: Global total carbon fluxes and stocks from data-oriented estimates and from LPJmL
simulations. LPJmL-OP-Standard and LPJmL-GSI-Standard are LPJmL model runs with
settings as in (Schaphoff et al., 2013), i.e. without the use of the BoNS and PoH PFTs and
with using simulated fires instead of prescribed observed burnt areas. Data sources: 1) (Beer
et al., 2010; Jung et al., 2011), 2) (van der Werf et al., 2010), 3) (Saatchi et al., 2011; Thurner
et al., 2014).

Gross Ecosystem Fire carbon Biomass Soil organic
primary respiration emissions (PgC) carbon
production (PgC a-1) (PgC a-1) (PgC)
(PgC a-1)
Data estimate 124.7" 100-110” 2.07 451.2%
Data lower 110.7"7 208.8”
uncertainty
Data upper 138.3" 695.9%
uncertainty
LPJmL settings as in
this study:
LPJmL-OP-prior 161.3 150.7 1.93 674.1 2723
LPJmL-OP-gc 153.8 143.9 2.45 581.1 2503
LPJmL-GSI 145.8 141.4 1.65 546.4 2508
LPJmL settings as in
Schaphoff et al.
(2013):
LPJmL-OP-Standard 138.9 125.8 3.48 597.8 2101
LPJmL-GSI-Standard 120.4 115.1 3.23 582.1 1392
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Figure 6: Latitudinal gradients of (a) gross primary production (GPP), (b) evapotranspiration,
(c) biomass and (d) tree cover from data-oriented estimates and from LPJmL model
simulations. Gradients were spatially averaged (median) from all 0.5° grid cells for latitudinal

bands of 1° width. (a)
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data-oriented estimates.
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Figure 7: Comparison of mean annual FAPAR from LPJmL and remote sensing datasets. (a)

Difference in mean annual FAPAR between
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. (b) Difference in mean annual FAPAR between LPJmL-GSI and GIMMS3g. (c) Global

spatial-averaged gradients of mean annual
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from LPJmL and data sets. The uncertainty of the GL2 VGT FAPAR dataset is shown as
blue area. Dashed lines are dry regions with mean annual P/PET < 15 and solid lines are wet
regions with mean annual P/PET >= 15.
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Figure 8: Comparison of the mean seasonal FAPAR cycle from GIMMS3g, GL2 VGT and
LPJmL spatially averaged for regions with the same dominant PFT. The PFTs for which time
series were averaged are shown in Figure 3. Numbers in the figures are correlation
coefficients between GIMMS3g and the corresponding time series from GL2 VGT or from
LPJmL simulations. The significance of the correlation is indicated as point symbol: *** (p
<=0.001), ** (p <=0.01), * (p <= 0.05), . (p <=0.1).

a) Best model run for monthly FAPAR b) ©
— = Sl
T o
90 o
=
8 < | i
g e A VI
S s X[ ; \
@ Cor<0.2 (10%) S o
&- ® LPJmL-OP-dyn (0.8%) 83 —— SllGagThaNGT
S 2 yn ( —— GIMMS3g ~ LPJmL-OP—prior
LPJmL-OP-gc (2%) —— GIMMS3g ~ LPJmL-OP-gc
S5 m Lhumi-GsI 60%) = & — GIMNS3g - LPUmL-G}
B LPJmL-OP-dyn + LPJmL-OP-gc (8%) i . T
B LPJmL-OP-dyn + LPJmL-GSI (5%) -20  -10 0 10 20 3(
W LPJmL-OF-~ge + LPJmL-GSI (10%) Mean annual temperature (°C)

Figure 9: Evaluation of monthly FAPAR dynamics (1982-2011). (a) Best LPJmL model run
regarding the correlation coefficient between monthly LPJmL FAPAR and GIMMS3g
FAPAR. If one model run is shown the correlation coefficient of this best model is significant

higher than of the second best model run.
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(b) Global spatial-averaged gradients of the correlation coefficient between monthly FAPAR
time series. Dashed lines are dry areas with mean annual P/PET < 15 and solid lines are wet

areas with mean annual P/PET >= 15.
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10: Evaluation of mean annual FAPAR dynamics (1982-2011). (a) Best LPJmL model run
regarding the correlation coefficient between mean annual LPJmL FAPAR and GIMMS3g
FAPAR. If one model run is shown the correlation coefficient of this best model is significant
higher than of the second best model run. If two model runs are shown the correlation
coefficients of the first and second best model runs are not significantly different from each
other (p > 0.05). (b) Global spatial-averaged gradients of the correlation coefficient between
annual FAPAR time series. Dashed lines are dry areas with mean annual P/PET < 15 and
solid lines are wet areas with mean annual P/PET >= 15.
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Figure Al: Effects on FAPAR in LPJmL for an example grid cell in Siberia. FAPAR in
LPJmL is computed from foliar projective cover (FPC), from snow coverage in the green

canopy (Fsow), leaf albedo (Biear) and phenology status (Phen).
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Figure B1: Standard deviation of mean annual FAPAR from the GIMMS3g and GL2 FAPAR
datasets in 1982-2011. The annual mean FAPAR was calculated for each year from each
monthly FAPAR value for months with monthly mean air temperatures > 0°C. Areas with
large differences are highlighted with circles.
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Figure B2: Correlation between mean annual FAPAR time series from the GIMMS3g and
GL2 (AVHRR+VGT) FAPAR datasets in 1982-2011. The map shows the Pearson correlation
coefficient between both datasets. Areas with large differences are highlighted with circles.
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Figure B3: Comparison of mean annual FAPAR from different datasets averaged for the
extent of boreal needle-leaved evergreen forests.
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Figure B4: Monthly quantile regressions between GL2 VGT FAPAR and the GL2 VGT

FAPAR fitted to the quantile 0.95. Each monthly quantile regression was applied to the

GIMMS3g FAPAR dataset to estimate uncertainties for this dataset. Using 0.95 quantile

regressions provides conservative uncertainty estimates for the GIMMS3g FAPAR dataset.
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Figure C1: Reclassification of the Koeppen-Geiger climate classification in bioclimatic zones.
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Figure C2: Comparison of total forest coverage from SYNMAP and MODIS tree coverage for
a region in eastern Siberia.
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Figure C3: Observation-based maps of the foliar projective cover of plant functional types
(agricultural areas are included in the TrH and TeH PFTs).
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Figure C4: Comparison between simulated and observed PFT distributions for the year 2000.
The maps are difference maps between simulated FPC values from LPJmL-OP and observed
FPC values. The scatter plots show observed FPC values on the x-axis and simulated FPC
values on the y-axis. Left: LPJmL-OP with dynamic vegetation and prescribed burnt areas.
Right: LPJmL-OP with prescribed land cover and prescribed burnt areas.
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Figure D1: Information sources for prior and posterior parameter sets and overview of model
optimization experiments. Grey boxes indicate model parameters or parameter sets. White
boxes are information sources for parameters. Yellow boxes are optimization experiments.
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Figure D2: Distribution of the cost for several grid cells in prior model runs and optimization
experiments grouped by plant functional types and biomes. (a) Cost for LPJmL-OP with
default parameters (a, OP.prior), after grid cell-level optimizations (b, OP.gc), cost for
LPJmL-GSI with prior parameters (¢, GSl.prior), after grid cell-level optimizations (d,
GSl.gc) and after PFT-level optimizations (e, GSlLpft). Biomes are Tr (tropical), Te
(temperate) and Bo (boreal/polar). (b) Legend for the plot. Each distribution is plotted
according to usual boxplot statistics. The point symbols indicate the plant functional type. The
significance flag on top of each distribution shows if a distribution is significant different (p
<= 0.01) to the corresponding distribution of the same PFT in another optimization
experiment. The significance is based on the Wilcoxon rank-sum test. For example “acd”
indicates a significant difference to the main categories a (OP.prior), ¢ (GSl.prior) and d
(GSI.gc) but no significant difference to b (OP.gc) and e (GSIL.pft).
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Figure D3: Distribution of the percent bias between LPJmL and MTE mean annual GPP
(1982-2011) for several grid cells in prior model runs and optimization experiments grouped
by plant functional types and biomes. See Figure D2 for a further explanation of this figure.
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Figure D4: Distribution of the percent bias between LPJmL and MODIS monthly growing
season albedo (2000-2011) for several grid cells in prior model runs and optimization
experiments grouped by plant functional types and biomes. See Figure D2 for a further
explanation of this figure.
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Figure D5: Prior and optimized values for the parameter aa (fraction of radiation absorbed at
leaf level relative to canopy level) grouped by plant functional types and biomes. The
distribution of the parameter in the optimization experiments OP.gc and GSI.gc represents the
spatial variability of the parameter from different grid cell-level optimization experiments.
See Figure D2 for a further explanation of this figure.
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Figure D6: Prior and optimized values for the parameter Bleaf (leaf albedo) grouped by plant
functional types and biomes. The distribution of the parameter in the optimization
experiments OP.gc and GSIl.gc represents the spatial variability of the parameter from
different grid cell-level optimization experiments. See Figure D2 for a further explanation of
this figure.



LIGHTEXTCOEFF

0.8

0.6

0.4

0.2

S, Y. § At
i : o P
: . A . - .
: A 5 ¢
T 1 To |7 A
_._ ! D
A
A0 AOA o | : *
+ “’5 r's
9: @ A
. A 0
A aE
] : [ ] 1 -
E s o '\ A A
Q?f: Q;?cj (;bb Q‘fb‘b\ Q@fg’\ (r§3 Q?:\\l\ ‘*3,'\\\ ‘34‘3\ Q?‘ C Q(?\Q (bq, Q?‘,"\ Q’PP\*\
Yo A "-‘-Q),_\u Q'Q?;b '-?‘Q,_\bt ‘3'62)% N & Q'qub e S
| |
T I — T — T T T T T I T I T
Tr Te Bo Tr Te Bo Tr Te Bo Tr Te Bo Tr Te Bo
OP.prior OP.gc GSl.prior GSl.gc GSl.pft

Figure D7: Prior and optimized values for the parameter k (light extinction coefficient)
grouped by plant functional types and biomes. The distribution of the parameter in the
optimization experiments OP.gc and GSI.gc represents the spatial variability of the parameter
from different grid cell-level optimization experiments. See Figure D2 for a further
explanation of this figure.
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Figure E1: Comparison of patterns of mean annual total gross primary production from
LPJmL and the data-oriented MTE estimate for the period 1982-2011. (a) Difference in mean
annual total GPP between MTE and LPJmL-OP-prior. (b) Difference in mean annual total
GPP between MTE and LPJmL-GSI. (c) Global spatial-averaged gradients of mean annual
GPP against mean annual temperature. Dashed lines are dry areas with mean annual P/PET <
15 and solid lines are wet areas with mean annual P/PET >= 15. The red area represents the
uncertainty of the data-oriented GPP estimate expressed as the inter-quartile range of the
MTE ensemble.
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Figure E2: Comparison of the mean seasonal GPP cycle (averaged over 1982-2011) from
MTE and LPJmL spatially averaged for regions with the same dominant PFT.
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Figure E3: Comparison of biomass from data-oriented estimates (Thurner and Saatchi
datasets) and from LPJmL (averaged 2009-2011). (a) Difference in biomass between LPJmL-
OP-prior and datasets. (b) Difference in biomass between LPJmL-GSI and datasets. (c)
Global spatial-averaged gradients of biomass against mean annual temperature. Dashed lines
are dry areas with mean annual P/PET < 15 and solid lines are wet areas with mean annual
P/PET >= 15. The red area represents the uncertainty of the data-based biomass estimates
expressed as the 0.05 to 0.95 quantile range of the data ensemble.
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Figure E4: Correlation coefficients between monthly FAPAR time series from GIMMS3g,
GL2 VGT datasets and LPJmL model simulations.
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Figure ES5: Correlation coefficients between annual FAPAR time series (annual mean
averaged from monthly values with air temperatures > 0°C) from GIMMS3g, GL2 VGT

datasets and LPJmL model simulations.





