

Processes determining the marine alkalinity and calcium carbonate saturation state distributions

Carter, B. R.¹, J. R. Toggweiler², R. M. Key¹, and J. L. Sarmiento¹

Brendan Carter (brcarter@princeton.edu)

J.R. Toggweiler (Robbie.Toggweiler@noaa.gov)

Robert M. Key (key@princeton.edu)

Jorge L. Sarmiento (jls@princeton.edu)

¹ Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ, USA

² Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, P.O. Box 308, Princeton NJ, 08542, USA

1 Abstract

2 We introduce a composite tracer for the marine system, Alk^* , that has a global
3 distribution primarily determined by CaCO_3 precipitation and dissolution. Alk^* is also affected
4 by riverine alkalinity from dissolved terrestrial carbonate minerals. We estimate that the Arctic
5 receives approximately twice the riverine alkalinity per unit area as the Atlantic, and eight times
6 that of the other oceans. Riverine inputs broadly elevate Alk^* in the Arctic surface and
7 particularly near river mouths. Strong net carbonate precipitation results in low Alk^* in
8 subtropical gyres, especially in the Indian and Atlantic Oceans. Upwelling of dissolved CaCO_3
9 rich deep water elevates Northern Pacific and Southern Ocean Alk^* . We use the Alk^*
10 distribution to estimate the variability of the calcite saturation state resulting from CaCO_3 cycling
11 and other processes. We show that regional differences in surface calcite saturation state are due
12 primarily to the effect of temperature differences on CO_2 solubility and, to a lesser extent,
13 differences in freshwater content and air-sea disequilibria. The variations in net calcium
14 carbonate cycling revealed by Alk^* play a comparatively minor role in determining the calcium
15 carbonate saturation state.

16

17 1. Introduction

18 Our goal is to use high-quality total alkalinity (A_T) observations to examine the effects of
19 calcium carbonate cycling on marine A_T and calcium carbonate saturation states. This study is
20 motivated in part by ocean acidification. With marine calcite saturation states decreasing due to
21 anthropogenic carbon uptake (Orr et al., 2005), it is important to understand the degree to which
22 carbonate cycling impacts the calcium carbonate saturation state.

23 Carbonate saturation state is a measure of how supersaturated seawater is with respect to

24 a given mineral form of calcium carbonate. It is expressed for calcite as the ratio Ω_C between
25 the product of Ca^{2+} and CO_3^{2-} ion concentrations and the calcite thermodynamic equilibrium
26 solubility product. Values of Ω_C greater than one indicate calcite precipitation is favored
27 thermodynamically over calcite dissolution, and the reverse is true for values less than one.

28 Marine calcium carbonate cycling includes both internal and external calcium carbonate
29 sources and sinks. Internal cycling refers to net formation of 67-300 Tmoles $A_T \text{ yr}^{-1}$ worth of
30 calcium carbonate in the surface ocean (Berelson et al., 2007) and net dissolution of most of this
31 calcium carbonate at depth. External marine carbonate cycling refers to inputs of carbonate
32 minerals dissolved in rivers, sediment pore waters, hydrothermal vent fluids, and submarine
33 groundwater discharge, and to loss due to biogenic carbonate mineral burial and authigenic
34 mineralization in sediments. Rivers add 33 Tmoles $A_T \text{ yr}^{-1}$ worth of dissolved bicarbonate to the
35 ocean (Cai et al., 2008). Wolery and Sleep (1988) estimate that hydrothermal vents add an
36 additional 6.6 Tmoles $A_T \text{ yr}^{-1}$, though deVilliers (1998) argues the hydrothermal contribution
37 may be as high as 30 Tmoles $A_T \text{ yr}^{-1}$. Submarine groundwater discharge is poorly constrained,
38 but is thought to exceed riverine inputs in some areas (Moore, 2010).

39 We investigate calcium carbonate cycling using the global A_T distribution in a dataset we
40 created by merging the PACIFICA (Suzuki et al., 2013), GLODAP, and CARINA discrete data
41 products (Key et al. 2004; 2010; Velo et al., 2009). We have combined and gridded these data
42 products using methods detailed in Supplementary Materials document SA. We use our gridded
43 dataset in our calculations to limit sampling biases and to enable us to make volume-weighted
44 mean property estimates.

45 Dickson (1981) defines total alkalinity as the concentration excess “of proton acceptors
46 formed from weak acids ($\text{pK} \leq 4.5$) relative to proton donors (weak bases with $\text{pK} > 4.5$)” at a

47 reference temperature, pressure, and ionic strength. A_T can be thought of as a measure of how
48 well buffered seawater is against changes in pH. This operational definition gives A_T (expressed
49 in mol kg^{-1}) several properties that make it an especially useful carbonate system parameter for
50 examining carbonate cycling:

- 51 1. It mixes conservatively,
- 52 2. ... and is therefore diluted and concentrated linearly by evaporation and precipitation.
- 53 3. It responds in predictable ways to calcium carbonate cycling.
- 54 4. ... as well as organic matter formation and remineralization.
- 55 5. It is not changed by air-sea exchange of heat or carbon dioxide.
- 56 6. It is however affected by anaerobic redox reactions (Chen, 2002).

57 We are primarily interested in calcium carbonate cycling, item 3 in our list. In section 2 of this
58 paper we therefore define a tracer we call Alk^* that removes the majority of the influences of
59 organic matter cycling (item 4), freshwater cycling (item 2), and non-sedimentary anaerobic
60 redox reactions (item 6) while still mixing conservatively, remaining insensitive to gas exchange,
61 and responding to calcium carbonate cycling. In section 3 we discuss processes that govern the
62 Alk^* distribution globally, by ocean basin, and regionally. In section 4 we define a metric to
63 quantify the influence of various processes on the marine calcite saturation state. We use this
64 metric with our gridded dataset and Alk^* to determine the relative importance of the various
65 controls on calcite saturation state in the ocean and at the ocean surface. We summarize our
66 findings in section 5.

67

68 **2. The Alk^* tracer**

69 In defining Alk^* , we take advantage of the potential alkalinity (Brewer et al., 1975)

70 concept to remove the majority of the influence of organic matter cycling and denitrification, and
 71 use a specific salinity normalization scheme (Robbins, 2001) to remove the influence of
 72 freshwater cycling. We detail the Alk^* definition and the reasoning behind it in this section.

73 The influence of organic matter cycling on A_T is due primarily to the biologically-driven
 74 marine nitrogen cycle. Nitrate uptake for anaerobic denitrification and the production of amino
 75 acids occurs in a ~1:1 mole ratio with the release of molecules that increase A_T (Chen, 2002).

76 Similarly, nitrate from fixation of nitrogen gas and remineralization of amino nitrogen is released
 77 in a 1:1 mole ratio with acids that titrate away A_T (Wolf-Gladrow et al., 2007). This observation
 78 led Brewer et al. (1975) to propose the idea of “potential alkalinity” as the sum of A_T and nitrate
 79 with the aim of creating a tracer that responds to the cycling of calcium carbonates without
 80 changing in response to organic matter cycling. Feely et al. (2002) since used a variant that
 81 relies on the empirical relationship between dissolved calcium concentrations, A_T , and nitrate
 82 determined by Kanamori and Ikegami (1982). This variant has the advantage of implicitly
 83 accounting for the A_T changes created by the exchange of numerous other components of marine
 84 organic matter besides nitrate (e.g. sulfate and phosphate). We thus use the ratio found by
 85 Kanamori and Ikegami (1982) to define potential alkalinity (A_p).

$$86 \quad A_p = A_T + 1.26 * [\text{NO}_3^-] \quad (1)$$

87 While the empirical Kanamori and Ikegami (1982) ratio of 1.26 may be specific to the elemental
 88 ratios of the North Pacific, Wolf-Gladrow et al. (2007) provide a theoretical derivation from
 89 Redfield ratios and obtain a similar value of 1.36.

90 The sensitivity of the A_T distribution to freshwater cycling is due primarily to the dilution
 91 or concentration of the large background A_T fraction that does not participate in carbonate
 92 cycling on timescales of ocean mixing. This background fraction behaves conservatively, so we

93 call it conservative potential alkalinity (A_p^C) and estimate it directly from salinity as:

94

$$A_p^C \equiv S \frac{\overline{A_p}}{\overline{S}} \quad (2)$$

95 Here, terms with a bar are reference values chosen as the mean value for those properties in the
 96 top 20 meters of the ocean. We obtain a volume-weighted surface $\overline{A_p}$ ($2305 \mu\text{mol kg}^{-1}$) to \overline{S}
 97 (34.71) ratio of $66.40 \mu\text{mol kg}^{-1}$ from our gridded dataset. The mean surface values are chosen
 98 in an effort to best capture the impact of freshwater cycling where precipitation and evaporation
 99 occur.

100 Robbins (2001) showed that subtracting an estimate of the conservative portion of a
 101 tracer, such as A_p^C , produces a salinity-normalized composite tracer that mixes conservatively.
 102 This scheme also retains the 2:1 change of A_T to dissolved inorganic carbon (C_T) with carbonate
 103 cycling. We follow this approach in our definition of Alk^* . In Supplementary Materials
 104 document SB we estimate this approach removes 97.5% of the influence of freshwater cycling
 105 on potential alkalinity and reduces the influence of freshwater cycling on Alk^* to less than 1% of
 106 the Alk^* variability. In Supplementary Materials document SC we demonstrate that Alk^* mixes
 107 conservatively, and briefly contrast Alk^* to traditionally normalized potential alkalinity which
 108 does not mix conservatively (Jiang et al., 2014).

109 In total, we define Alk^* as the deviation of potential alkalinity from A_p^C ,

$$Alk^* \equiv A_p - A_p^C \quad (3)$$

110

$$\equiv A_p - \frac{\overline{A_p}}{\overline{S}} S \quad (4)$$

$$\equiv A_p - 66.4 \times S \quad (5)$$

111 where Alk^* has the same units as A_T ($\mu\text{mol kg}^{-1}$). The Alk^* distribution is attributable primarily
 112 to carbonate cycling plus the small (in most places) residual variation due to freshwater cycling

113 that is not removed by subtracting A_p^C . However, hydrothermal vent fluid and non-
114 denitrification anaerobic redox chemistry may substantively affect alkalinity distributions in
115 certain marine environments, and Alk^* distributions could not be attributed purely to internal and
116 external calcium carbonate cycling in these locations.

117 Mean global surface Alk^* is zero by definition, and thus Alk^* can have negative as well
118 as positive values. For reference, more than 95% of our gridded Alk^* dataset falls between -35
119 and $220 \mu\text{mol kg}^{-1}$. Comparing gridded Alk^* to Alk^* from measurements suggests a standard
120 disagreement of order $10 \mu\text{mol kg}^{-1}$. We adopt this number as an estimate of standard gridded
121 Alk^* error despite noting there are reasons to suspect that this value could be either an
122 underestimate (correlated errors) or an overestimate (we are directly comparing instantaneous
123 point measurements to estimates for annual averages for a grid cell).

124

125 **3. Alk^* distributions**

126 We consider Alk^* distributions globally, by ocean basin, and regionally in the context of
127 sources and sinks of the tracer both globally and regionally. We pay special attention to riverine
128 Alk^* because it is easily identified where it accumulates near river mouths.

129

130 *3.1 Global distribution of Alk^**

131 Figure 1 maps surface Alk^* (top 50 m) at the measurement stations. We provide this
132 figure to show where we have viable Alk^* estimates and to demonstrate that our gridded data
133 product adequately captures the measured Alk^* distribution. Figure 2 maps gridded global
134 surface A_T , salinity, Alk^* , and phosphate distributions and masks the regions that are lacking data
135 in Fig. 1.

136 The similarity of the A_T (Fig. 2a) and salinity (Fig. 2b) distributions demonstrates the
137 strong influence of freshwater cycling on the surface marine A_T distribution (see also: Millero et
138 al. 1998, Jiang et al., 2014). The dissimilarity between Alk^* (Fig. 2c) and salinity (Fig. 2b)
139 suggests Alk^* removes the majority of this influence. The phosphate (Fig. 2d) and Alk^* (Fig. 2c)
140 distributions are similar at the surface. They are also similar at depth: Figures 3 and 4 show
141 zonally-averaged gridded depth sections of Alk^* and phosphate. Alk^* and phosphate
142 concentrations are low in the deep Arctic Ocean (Figs. 3d, and 4d), intermediate in the deep
143 Atlantic Ocean (Figs. 3a and 4a), and high in the deep North Pacific (Figs. 3b and 4b) and deep
144 North Indian (Figs. 3c and 4c) Oceans. Alk^* and phosphate distributions are similar because
145 similar processes shape them: the hard and soft tissue pumps transport A_T and phosphate,
146 respectively, from the surface to depth. The “oldest” water therefore has the highest net
147 phosphate and Alk^* accumulation. High surface phosphate and Alk^* in the Southern Ocean and
148 North Pacific in Figs. 2, 3, and 4 are due to upwelled old deep waters.

149 Several qualitative differences between Alk^* and phosphate distributions are visible in
150 Figs. 2c, 2d, 3, and 4. Surface phosphate is low in the Bay of Bengal and high in the Arabian
151 Sea (Fig. 2d), while the opposite is true for Alk^* (Fig. 2c). Also, Alk^* reaches its highest surface
152 concentration in the Arctic (Figs. 2c and 3d) where phosphate is not greatly elevated (Figs. 2d
153 and 4d). These surface differences are due to regional riverine Alk^* inputs (Section 3.3).
154 Another difference is that Alk^* reaches a maximum below 2000 m in all ocean basins except the
155 Arctic, while phosphate maxima are above 2000 m. We attribute the deeper Alk^* maxima to
156 deeper dissolution of calcium carbonates than organic matter remineralization. Finally, Alk^*
157 values are higher in the deep Indian Ocean than in the deep Pacific. This is likely due to elevated
158 biogenic carbonate export along the coast of Africa and in the Arabian Sea (Sarmiento et al.,

159 2002; Honjo et al., 2008).

160

161 *3.2 Alk* by ocean basin*

162 In Fig. 5 we provide 2-D color histograms of discrete surface Alk^* and salinity
163 measurements for the five major ocean basins. Figure 5 also indicates a single volume-weighted
164 mean gridded Alk^* for each basin (in writing). We attribute the decrease in Alk^* as salinity
165 increases—especially visible in the low-salinity bins in the Arctic Ocean (Fig. 5d)—to mixing
166 between high- Alk^* low-salinity river water and low- Alk^* high-salinity open ocean water. Net
167 precipitation in the tropics and net evaporation in the subtropics widens the histograms across a
168 range of salinities and alkalinites without affecting Alk^* in Figs. 5a, 5b, and 5c. The Alk^*
169 elevation associated with upwelled water is most visible in Fig. 5e where Upper Circumpolar
170 Deep Water upwelling near the Polar Front results in high-frequency (i.e. warm colored)
171 histogram bins at high- Alk^* . Similarly, the high-frequency Alk^* bins in Fig. 5b with salinity
172 between 32.5 and 33.5 are from the North Pacific Subpolar Gyre, and are due to upwelled old
173 high- Alk^* water (cf. the Si^* tracer in Sarmiento et al. (2004)). River water contributions can be
174 most easily seen in a scattering of low-frequency (cool colored) high- Alk^* and low-salinity bins
175 in the Arctic Ocean.

176 The surface Southern Ocean has the highest Alk^* followed by the Arctic and the Pacific.
177 The Indian and Atlantic have similar and low mean Alk^* . The high mean Southern Ocean Alk^*
178 is due to upwelling. The high mean Arctic surface Alk^* is due to riverine input. The Atlantic
179 and the Arctic together receive ~65% of all river water (Dai and Trenberth, 2002). We construct
180 a budget for terrestrial A_T sources to the various surface ocean basins using the following
181 assumptions:

182 1. the A_T of 25 large rivers are as given by Cai et al. (2008),
183 2. the volume discharge rates of 200 large rivers are as given by Dai and Trenberth
184 (2002),
185 3. groundwater and runoff enter each ocean in the same proportion as river water from
186 these 200 rivers,
187 4. the A_T of all water types that we do not know from assumption 1. is the $1100 \mu\text{mol}$
188 kg^{-1} global mean value estimated by Cai et al. (2008), and
189 5. 40°N is the boundary between the Atlantic and the Arctic and 40°S is the boundary
190 between the Southern and the Atlantic Oceans (based upon the region of elevated
191 surface phosphate in Fig. 2d),

192 Our detailed budget is provided as Supplementary Materials file SD. We estimate 40% of
193 continentally derived A_T enters the Atlantic, 20% enters the Arctic, and 40% enters all remaining
194 ocean basins. These ocean areas represent 17%, 5%, and 78% of the total surface ocean area in
195 our gridded dataset respectively, so the Arctic receives approximately twice as much riverine A_T
196 per unit area as the Atlantic, and 8 times the rest of the world ocean. The Atlantic has the lowest
197 open-ocean surface Alk^* value and low basin mean surface Alk^* despite the large riverine
198 sources. The large riverine A_T input must therefore be more than balanced by strong net calcium
199 carbonate formation. The Indian Ocean has comparably low mean surface Alk^* to the Atlantic,
200 but a smaller riverine source. Mean Alk^* is higher in the Pacific than the Atlantic and Indian,
201 even when neglecting the region north of 40°N as we do for the Atlantic ($Alk^* = -16.5 \mu\text{mol}$
202 kg^{-1} when omitted vs. $-22.9 \mu\text{mol kg}^{-1}$ for the Atlantic and $-22.2 \mu\text{mol kg}^{-1}$ for the Indian).
203 The difference between the Pacific and the other basins is significant when considering the large
204 number of grid cell Alk^* values averaged (> 6000 in the Atlantic), and the small estimated

205 uncertainty for each value ($\sim 10 \mu\text{mol kg}^{-1}$). Considering the weak Pacific riverine input, this
206 suggests that, relative to other ocean basins, there are either larger Alk^* inputs from exchange
207 with other basins and deeper waters or smaller Pacific basin mean net calcium carbonate
208 formation.

209

210 *3.3 Riverine Alk^* regionally*

211 For river water with negligible salinity, Alk^* equals the potential alkalinity. This
212 averages around $1100 \mu\text{mol kg}^{-1}$ globally (Cai et al., 2008), but is greater than $3000 \mu\text{mol kg}^{-1}$
213 for some rivers (Beldowski et al., 2010). Evidence suggests that riverine A_T is increasing due to
214 human activities (Kaushal et al., 2013).

215 The most visible riverine Alk^* signals are in the Arctic due to the large riverine runoff
216 into this comparatively small basin and the confinement of this low-density riverine water to the
217 surface (Jones et al., 2008; Yamamoto-Kawai et al., 2009; Azetsu-Scott et al., 2010). Figure 3d
218 shows the high Arctic Alk^* plume is confined to the top $\sim 200 \text{ m}$. Figure 1 shows that these high
219 Alk^* values extend along the coast of Greenland and through the Labrador Sea. Alk^* decreases
220 with increasing salinity in this region (Fig. 5d) due to mixing between the fresh high Alk^* surface
221 Arctic waters and the salty lower Alk^* waters of the surface Atlantic. Gascard et al. (2004a, b)
222 suggest that waters along the coast of Norway are part of the Norwegian Coastal Current, and
223 originate in the Baltic and North Seas where there are also strong riverine inputs (Thomas et al.,
224 2005).

225 Elevated Alk^* can also be seen in the Bay of Bengal with surface values $\sim 100 \mu\text{mol kg}^{-1}$
226 higher than those in the central Indian Ocean. This bay has two high A_T rivers that join and flow
227 into it, the Brahmaputra ($A_T = 1114 \mu\text{mol kg}^{-1}$) and the Ganges ($A_T = 1966 \mu\text{mol kg}^{-1}$) (Cai et al.,

228 2008). Figure 6b provides an Alk^* depth section for this region. The riverine Alk^* plume can be
229 clearly seen in the top 50 m. No similar increase is seen in the Arabian Sea (Fig. 6a) where the
230 Indus River ($1681 \mu\text{mol kg}^{-1}$) discharges only $\sim 1/10$ th of the combined volume of the
231 Brahmaputra and the Ganges.

232 The Amazon River is the largest single riverine marine A_T source. This river has low A_T
233 ($369 \mu\text{mol kg}^{-1}$ (Cai et al., 2008)), but has the largest water discharge volume of any river,
234 exceeding the second largest—the Congo—by a factor of ~ 5 (Dai and Trenberth, 2002).
235 Consequently, the Amazon discharges approximately 50% more A_T per year than the river with
236 the second largest A_T discharge, the Changjiang (Cai et al., 2008). The Amazon's influence can
237 be seen as a region of abnormally low salinity and A_T in Fig. 2a and b. Despite the high
238 discharge volume, the influence is only barely visible as a region of elevated Alk^* in Fig. 2c due
239 to the comparatively low Amazon Alk^* . However, the influence of the Amazon on Alk^* can be
240 seen in the seasonal Alk^* cycle in the Amazon plume. Figure 7 provides a map of Alk^* for this
241 region scaled to show the influence of this low Alk^* river in the Northern Hemisphere (a) winter
242 and (b) summer months. The higher Alk^* found for summer months is consistent with Amazon
243 discharge and A_T seasonality (Cooley et al., 2007) and Moore et al.'s (1986) radium isotope
244 based finding that Amazon River outflow comprises 20-34% of surface water in this region in
245 July compared to only 5-9% in December.

246

247 *3.4 Regional abiotic carbonate cycling*

248 The Red Sea portion of Fig. 6a is strongly depleted in Alk^* , and contains the lowest
249 single Alk^* measurement in our dataset, $-247 \mu\text{mol kg}^{-1}$. The GEOSECS expedition Red Sea
250 alkalinity measurements (Craig and Turekian, 1980) predate alkalinity reference materials

251 (Dickson et al., 2007), but are supported by more recent measurements (Silverman et al., 2007).
252 Like Jiang et al. (2014), we attribute low Red Sea Alk^* to exceptionally active calcium carbonate
253 formation. Brewer and Dyrssen (1985) provide seawater chemistry measurements from the
254 neighboring Persian Gulf that suggest strong calcium carbonate formation results in low Alk^*
255 there as well ($< -240 \mu\text{mol kg}^{-1}$ along the Trucial Coast).

256 The Red Sea is one of the only regions where Ω_C is sufficiently high for abiotic
257 carbonate precipitation to significantly contribute to overall carbonate precipitation (Milliman et
258 al. 1969; Silverman et al., 2007). Notably, saturation state remains high at depth in the Red Sea
259 (see Section 4.2). In this region, biogenic aragonitic corals and pteropod shells are progressively
260 removed with depth in sediments, and pores left behind are filled in with high-magnesium calcite
261 cement (Gevirtz and Friedman, 1966; Almogi-Labin et al., 1986). We hypothesize biogenic
262 carbonates are dissolved by CO_2 from sedimentary organic matter remineralization, as occurs
263 elsewhere (e.g. Hales and Emerson, 1997; Hales, 2003; Boudreau, 2013), and that high deep Red
264 Sea Ω_C leads to abiotic re-calcification in sediment pores. Morse et al. (2006) find that synthetic
265 high magnesium calcite—unlike biogenic high magnesium calcite—is less soluble than
266 aragonite, so this substitution is favored thermodynamically if the abiotic mineral forms similarly
267 to the synthetic mineral.

268 Calcium carbonate has recently been found as metastable ikaite (a hydrated mineral with
269 the formula $\text{CaCO}_3 \cdot 6\text{H}_2\text{O}$) in natural sea ice (Dieckmann et al., 2008). Ikaite cycling provides
270 a competing explanation for the high Arctic surface Alk^* values if high A_T low-salinity ikaite-
271 rich ice melt becomes separated from low A_T high-salinity rejected brines. However, riverine A_T
272 inputs better explain the magnitude of the feature: The $\sim 5 \text{ mg ikaite L}^{-1}$ sea ice that Dieckmann
273 et al. (2008) found in the Antarctic could only enrich A_T of the surface 100 m by $\sim 1 \mu\text{mol kg}^{-1}$

274 for each meter of ice melted, and Arctic surface 100 m Alk^* is elevated by 59 $\mu\text{mol kg}^{-1}$ relative
 275 to the deeper Arctic in our gridded dataset. By contrast, Jones et al. (2008) estimate a ~5%
 276 average riverine end-member contribution to the shallowest 100 m of this region, which accounts
 277 for ~55 $\mu\text{mol kg}^{-1}$ Alk^* enrichment. Also, surface Alk^* in the Southern Ocean—which has sea
 278 ice but lacks major rivers—is not similarly elevated relative to surface phosphate (Fig. 2) or deep
 279 Alk^* (Fig. 3).

280

281 **4. Controls on the calcite saturation state**

282 The Alk^* tracer provides an opportunity to estimate the impact of carbonate cycling on
 283 Ω_C . In addition to (1) carbonate cycling, Ω_C is affected by (2) organic matter cycling, (3)
 284 freshwater cycling, (4) pressure changes on seawater, (5) heating and cooling, and (6) A_T
 285 changes from nitrogen fixation and denitrification. For each of these six processes, we estimate
 286 the standard deviation of the net influence of the process globally by considering the standard
 287 deviation of a “reference” tracer R_i for the process, “ σ_{R_i} ”, where R_i is Alk^* for CaCO_3 cycling,
 288 phosphate for organic matter cycling, salinity for freshwater cycling, pressure for pressure
 289 changes, temperature for heating and cooling, and N^* (Gruber and Sarmiento, 1997) for nitrogen
 290 fixation and denitrification. We use the standard deviation of the reference tracer as a measure
 291 of the oceanic range of the net influence of the corresponding process. We measure the impact
 292 of this range on Ω_C using a metric M , which we define as:

293
$$M_i = \sigma_{R_i} |S_{R_i}| \quad (6)$$

294 where S_{R_i} is the Ω_C sensitivity to a unit process change in R_i , which we estimate in Appendix A.
 295 We are interested in the relative importance I of our 6 processes, so we also calculate the

296 percentage that each metric value estimate contributes to the sum of all 6 metric value estimates:

297

$$I_i = 100\% \times \frac{M_i}{\sum_{i=1}^6 M_i} \quad (7)$$

298 We derive and estimate our metric and its uncertainty in Appendix A. We carry out our analysis
 299 for the full water column assuming it to be isolated from the atmosphere (section 4.1), and also
 300 for just the top 50 m of the water column assuming it to be well-equilibrated with the atmosphere
 301 (section 4.2). Finally, we consider how equilibration with an atmosphere with a changing $p\text{CO}_2$
 302 alters surface Ω_{C} .

303

304 *4.1 Process importance in atmospherically-isolated mean seawater from all ocean depths*

305 Our metric M_i is an estimate of the standard deviation of the global distribution of Ω_{C}
 306 resulting from the i th process. Our relative process importance metric I_i is an estimate of the
 307 percentage of overall variability of the Ω_{C} distribution that can be attributed to that process. We
 308 provide M and I values for mean seawater from the full water column alongside the R_i , S_{R_i} , and
 309 σ_{R_i} values used to estimate them in Table 1. These calculations assume that the seawater is
 310 isolated from the atmosphere.

311 Relative process importance estimates I indicate organic matter cycling (48%) is the
 312 dominant process controlling Ω_{C} for mean seawater. Changing pressure (28%) is the second
 313 most important process, followed by calcium carbonate cycling (17%), temperature changes
 314 (4%), nitrogen fixation and denitrification (1.21%), and freshwater cycling (0.78%).

315

316 *4.2 Process importance in well-equilibrated surface seawater*

317 In Table 2 we provide M_i values for well-equilibrated seawater in the top 50 m of the
318 ocean alongside the $R_i, \sigma_{R_i}, S_{R_i}$ used to estimate them. These surface seawater M_i values are
319 calculated assuming the water remains equilibrated with an atmosphere with 400 μatm $p\text{CO}_2$.
320 We test the validity of this assumption by also estimating M for the observed global $p\text{CO}_2$
321 variability in the Takahashi et al. (2009) global data product. This test reveals transient air-sea
322 disequilibria are indeed important for surface ocean Ω_C , but only as a secondary factor when
323 considered globally. Despite this, it is important to recognize that air-sea equilibration following
324 a process is not instantaneous, and that the S_{R_i} value estimates in section 4.1 may be better for
325 estimating short term changes following fast acting processes such as spring blooms (e.g. Tynan
326 et al., 2014) or upwelling events (e.g. Feely et al., 1988). We omit the disequilibrium M value
327 estimate from the denominator of Eq. (7) to allow I values for surface seawater to be compared
328 to I values from mean seawater globally.

329 Warming and cooling are the dominant processes controlling Ω_C for well-equilibrated
330 surface seawater (76%). The large increase in M for warming and cooling relative to the value
331 calculated for mean seawater is due to lower equilibrium C_T at higher temperatures. Freshwater
332 cycling is the second most important process (13%), followed by carbonate cycling (8%),
333 organic matter cycling (2%), pressure changes (1%), and denitrification and nitrogen fixation
334 (0.4%). The increased importance of freshwater cycling compared to section 4.1 is because
335 freshwater dilutes C_T by more than the equilibrium C_T decreases from A_T dilution, so carbon
336 uptake tends to follow freshwater precipitation and carbon outgassing follows evaporation.
337 Carbonate cycling is less important because A_T decreases with carbonate precipitation lead to
338 lower C_T at equilibrium. Organic matter cycling is much less important because atmospheric re-
339 equilibration mostly negates the large changes in C_T . Pressure changes are negligible because

340 we only consider water in the surface 50 m. Our air-sea disequilibrium M estimate suggests
 341 surface disequilibria are comparably important to freshwater cycling for surface Ω_C but
 342 substantially less important than temperature changes (this would correspond to an I value of
 343 ~14%).

344 The dominance of warming and cooling and freshwater cycling over carbonate cycling is
 345 most evident in the Red Sea where high temperatures (>25 °C) and high salinities (>40) lead to
 346 surface Ω_C exceeding 6 despite extremely low Alk^* (<−200 $\mu\text{mol kg}^{-1}$). The deep Red Sea is
 347 also unusual for having deep water that was warm when it last left contact with the atmosphere
 348 (the Red Sea is >20 °C at >1000 m depth). This provides high initial deep Ω_C that—combined
 349 with decreased influence of pressure changes at higher temperatures—keeps deep Red Sea $\Omega_C >$
 350 3. Similarly, the lowest surface Ω_C values are in the Arctic where there are low temperatures,
 351 low salinity, and high Alk^* from riverine inputs. The importance of warming and cooling is also
 352 suggested by the correlation between global surface Ω_C and the surface temperature ($R^2 = 0.96$).
 353 These properties are plotted in Fig. 8.

354

355 **5. Conclusions**

356 Alk^* isolates the portion of the A_T signal that varies in response to calcium carbonate
 357 cycling and exchanges with terrestrial and sedimentary environments from the portion that varies
 358 in response to freshwater and organic matter cycling. The salinity normalization we use has the
 359 advantage over previous salinity normalizations that it allows our tracer to mix linearly and to
 360 change in a 2:1 ratio with C_T in response to carbonate cycling. We highlight the following
 361 insights from Alk^* :

362 (1) *Alk* distribution:* The Alk^* distribution clearly shows the influence of biological

363 cycling including such features as the very low Alk^* in the Red Sea due to the high calcium
364 carbonate precipitation there. We also find evidence of strong riverine A_T sources in the Bay of
365 Bengal and in the Arctic. We show river inputs likely dominate over the small influences of
366 ikaite cycling on the Arctic alkalinity distribution.

367 (2) *Influence of calcium carbonate cycling on marine calcite saturation state: Alk^* allows*
368 us to quantify the net influence of calcium carbonate cycling on marine Ω_C . For well-
369 equilibrated surface waters, carbonate cycling is less influential for Ω_C than gas exchange driven
370 by warming and cooling and freshwater cycling. At depth, the carbonate cycling signal is
371 smaller than the signal from organic matter cycling and from pressure changes. Temperature is
372 the dominant control on Ω_C of surface waters in equilibrium with the atmosphere. This accounts
373 for the low calcite saturation states in the cold surface of the Arctic and Southern Oceans despite
374 high regional Alk^* , and high Ω_C in the warm subtropics despite low regional Alk^* .

375 We intend to use Alk^* for two future projects. First, Alk^* is superior to A_T for monitoring
376 and modeling changes in marine chemistry resulting from changes in carbonate cycling with
377 ocean acidification. A_T varies substantially in response to freshwater cycling, so Alk^* trends may
378 be able to be detected sooner and more confidently attributed to changes in calcium carbonate
379 cycling than trends in A_T (Ilyina et al., 2009). Secondly, we will estimate global steady state
380 Alk^* distributions using Alk^* sources and sinks from varied biogeochemical ocean circulation
381 models alongside independent water mixing and transport estimates (e.g. Khatiwala et al., 2005;
382 Khatiwala, 2007). We will interpret findings in the context of two hypotheses proposed to
383 explain evidence for calcium carbonate dissolution above the aragonite saturation horizon: (1)
384 that organic matter remineralization creates undersaturated microenvironments that promote
385 carbonate dissolution in portions of the water column which are chemically supersaturated in

386 bulk, and (2) that high-magnesium calcite and other impure minerals allow chemical dissolution
387 above the saturation horizon.

388

389 **Acknowledgements**

390 We thank Eun Young Kwon for contributions to early versions of this research. We also
391 thank the US National Science Foundation for research support (ANT-1040957), as well as the
392 numerous scientists and crew that contributed to the datasets used in this study. R. Key was
393 supported by CICS grant NA08OAR432052. We also thank Dr. Judith Hauck and three
394 anonymous reviewers for their helpful and constructive reviews.

395

396 **References**

397 Almogi-Labin, A., B. Luz, and J. Duplessy (1986), Quaternary paleo-oceanography, pteropod
398 preservation and stable-isotope record of the Red Sea, *Palaeogeogr., Palaeoclimateol.,*
399 *Palaeoecol.*, 57, 195-211, doi: 10.1016/0031-0182(86)90013-1.

400 Anderson, L. A. and J. L. Sarmiento (1994), Redfield ratios of remineralization determined by
401 nutrient data analysis, *Global Biogeochem. Cycles*, 8, 65-80, doi: 10.1029/93GB03318.

402 Azetsu-Scott, K., A. Clarke, K. Falkner, J. Hamilton, E. P. Jones, C. Lee, B. Petrie, S.
403 Prinsenberg, M. Starr, and P. Yeats (2010), Calcium carbonate saturation states in the waters
404 of the Canadian Arctic Archipelago and the Labrador Sea, *J. Geophys. Res. Oceans*, 115,
405 C11. doi: 10.1029/2009JC005917.

406 Beldowski, J., A. Löffler, B. Schneider, and L. Joensuu (2010), Distribution and biogeochemical
407 control of total CO₂ and total alkalinity in the Baltic Sea, *J. Mar. Sys.*, 81, 252-259.

408 [doi:10.1016/j.jmarsys.2009.12.020](https://doi.org/10.1016/j.jmarsys.2009.12.020).

409 Berelson, W. M., W. M. Balch, R. Najjar, R. A. Feely, C. Sabine, and K. Lee (2007), Relating
410 estimates of CaCO_3 production, export, and dissolution in the water column to measurements
411 of CaCO_3 rain into sediment traps and dissolution on the sea floor: A revised global
412 carbonate budget, *Global Biogeochem. Cycles*, 21, GB1024, doi: 10.1029/2006GB002803.

413 Boudreau, B. P. (2013), Carbonate dissolution rates at the deep ocean floor, *Geophys. Res. Lett.*,
414 40, 1-5, doi: 10.1029/2012GL054231.

415 Brewer, P. G., and D. Dyrsen (1985), Chemical oceanography of the Persian Gulf. *Prog.*
416 *Oceanogr.*, 14, 41-55, [doi:10.1016/0079-6611\(85\)90004-7](https://doi.org/10.1016/0079-6611(85)90004-7).

417 Brewer, P. G., G. T. F. Wong, M. P. Bacon, D. W. Spencer (1975), An oceanic calcium
418 problem? *Earth and Planet. Sci. Lett.*, 26 (1), 81-87, doi: 10.1016/0012-821X(75)90179-X.

419 Cai, W.-J. X. Guo, C. A. Chen, M. Dai, L. Zhang, W. Zhai, S. E. Lohrenz, K. Yin, P. J. Harrison,
420 Y. Wang (2008), A comparative overview of weathering intensity and HCO_3^- flux in the
421 world's major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and
422 Mississippi Rivers, *Continental Shelf Res.*, 28, 1538-1549, [doi:10.1016/jcsr.2007.10.014](https://doi.org/10.1016/jcsr.2007.10.014).

423 Chen, C.-T. A. (2002), Shelf-vs. dissolution-generated alkalinity above the chemical lysocline,
424 *Deep Sea Res. II*, 49 (24–25), 5365-5375, doi: 10.1016/S0967-0645(02)00196-0.

425 Cooley, S. R., V. J. Coles, A. Subramaniam, and P. P. Yager (2007), Seasonal variations in the
426 Amazon plume-related atmospheric carbon sink, *Global Biogeo. Chem. Cycles.*, 21 (3),
427 GB3014, doi: 10.1029/2006GB002831.

428 Craig, H., and K.K. Turekian (1980), The GEOSECS program 1976-1979, *Earth Planet. Sci.*
429 *Lett.*, 49, 263-265, doi: 10.1016/j.bb.2011.03.031.

430 Dai, A. and K. E. Trenberth (2002), Estimates of freshwater discharge from continents: latitudi-
431 nal and seasonal variations, *J. Hydrometeorology*, 3, 660-687,

432 doi: [http://dx.doi.org/10.1175/1525-7541\(2002\)003<0660:EOFDFC>2.0.CO;2](http://dx.doi.org/10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2).

433 Dickson, A.G. (1981), An exact definition of total alkalinity and a procedure for the estimation
434 of alkalinity and total inorganic carbon from titration data, *Deep Sea Res. A*, 28 (6), 609-623,
435 doi: 10.1016/0198-0149(81)90121-7.

436 Dickson, A. G. and F. J. Millero (1987), A comparison of the equilibrium constants for the
437 dissociation of carbonic acid in seawater media. *Deep-Sea Res. A*, 34, 1733-1743,
438 doi:[10.1016/0198-0149\(87\)90021-5](https://doi.org/10.1016/0198-0149(87)90021-5).

439 Dieckmann, G.S., G. Nehrke, S. Papadimitriou, J. Göttlicher, R. Steininger, H. Kennedy, D.
440 Wolf-Gladrow, and D. N. Thomas (2008), Calcium carbonate as ikaite crystals in Antarctic
441 sea ice. *Geophys. Res. Lett.* , 35, LO8051, doi:10.1029/2008GL033540.

442 Feely, R. A., C. L. Sabine, K. Lee, F. J. Millero, M. F. Lamb, D. Greeley, J. L. Bullister, R. M.
443 Key, T. H. Peng, and A. Kozyr (2002), In situ calcium carbonate dissolution in the Pacific
444 Ocean. *Global Biogeochem. Cycles*, 16, 1144, doi: 10.1029/2002GB001866.

445 Feely, R. A., R.H. Byrne, J. G. Acker, P. R. Betzer, C. A. Chen, J. F. Gendron, and M. F. Lamb
446 (1988), Winter-summer variations of calcite and aragonite saturation in the northeast
447 Pacific. *Mar. Chem.* 25, 3, 227-241, doi:[10.1016/0304-4203\(88\)90052-7](https://doi.org/10.1016/0304-4203(88)90052-7).

448 Fofonof, N. P., and R. C. Millard (1983), Algorithms for computations of fundamental properties
449 of seawater. UNESCO Technical Papers in Marine Science No. 44, 53 pp.

450 Gascard, J. C., G. Raisbeck, S. Sequeira, F. Yiou, and K. Mork (2004), Correction to 'The
451 Norwegian Atlantic Current in the Lofoten basin inferred from hydrological and tracer
452 data(I-129) and its interaction with the Norwegian Coastal Current'. *Geophys. Res.*
453 *Lett.*, 31(8), doi: 10.1029/2003GL018303.

454 Gascard, J. C., G. Raisbeck, S. Sequeira, F. Yiou, and K. Mork (2004), Correction to

455 2003GL01803, *Geophys. Res. Lett.*, 31, L08302, doi:10.1029/2004GL020006, 2004.

456 Gevirtz, J. L., and G. M. Friedman (1966), Deep-Sea carbonate sediments of the Red Sea and
457 their implications on marine lithification, *J. Sed. Petrol.*, 36, 143-151.

458 Gruber, N., and J. L. Sarmiento (1997), Global patterns of marine nitrogen fixation and
459 denitrification, *Global Biogeochem. Cycles*, 11(2), 235-266, doi: 10.1029/97GB00077.

460 Hales, B. (2003), Respiration, dissolution, and the lysocline. *Paleoceanogr.*, 18(4), 1099, doi:
461 10.1029/2003PA000915.

462 Hales, B., and S. Emerson (1997), Calcite dissolution in sediments of the Ceara Rise: In situ
463 measurements of porewater O₂, pH, and CO₂ (aq). *Geochim. Cosmochim. Acta*, 61(3), 501-
464 514, [doi:10.1016/S0016-7037\(96\)00366-3](https://doi.org/10.1016/S0016-7037(96)00366-3).

465 Honjo, S., S. J. Manganini, R. A. Krishfield, and R. Francois (2008), Particulate organic carbon
466 fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global
467 sediment trap programs since 1983, *Prog. Oceanogr.*, 76(3), 217-285,
468 [doi:10.1016/j.pocean.2007.11.003](https://doi.org/10.1016/j.pocean.2007.11.003).

469 Ilyina, T. R. E. Zeebe, E. Maier-Reimer, and C. Heinze (2009), Early detection of ocean
470 acidification effects on marine calcification, *Global Biogeochem. Cycles*, 23, GB1008, doi:
471 10.1029/2008GB003278.

472 Jiang, Z. P., T. Tyrrell, D.J. Hydes, M. Dai, and S.E. Hartman (2014), Variability of alkalinity
473 and the alkalinity-salinity relationship in the tropical and subtropical surface ocean. *Global
474 Biogeochem. Cycles*, 28(7), 729-742, doi: 10.1002/2013GB004678.

475 Jones, E. P., L. G. Anderson, S. Jutterström, L. Mintrop, and J. H. Swift (2008), Pacific
476 freshwater, river water and sea ice meltwater across Arctic Ocean basins: Results from the
477 2005 Beringia Expedition, *J. Geophys. Res. Oceans*, 113(C8), doi: 10.1029/2007JC004124.

478 Kanamori, S. and H. Ikegami (1982), Calcium-alkalinity relationship in the North Pacific, *J.*
479 *Oceanogr.*, 38, 57-62, doi: 10.1007/BF02110291

480 Kaushal, S. S., G. E. Likens, R. M. Utz, M. L. Pace, M. Grese, and M. Yepsen (2013), Increased
481 river alkalinization in the Eastern U.S., *Envi. Sci. Tech.*, 47, 10302-10311, doi:
482 10.1021/es401046s.

483 Key, R. M., A. Kozyr, C. L. Sabine, K. Lee, R. Wanninkhof, J. L. Bullister, R. A. Feely, F. J.
484 Millero, C. Mordy, and T. H. Peng (2004), A global ocean carbon climatology: Results from
485 Global Data Analysis Project (GLODAP), *Global Biogeochem. Cycles*, 18, GB4031, doi:
486 10.1029/2004GB002247.

487 Key, R. M., T. Tanhua, A. Olsen, M. Hoppema, S. Jutterström, C. Schirnick, S. van Heuven, X.
488 Lin, D. Wallace and L. Mintrop (2009), The CARINA data synthesis project: Introduction
489 and overview, *Earth Sys. Sci. Data*, 2(1), 579-624, doi:10.5194/essdd-2-579-2009.

490 Khatiwala, S., M. Visbeck, and M. A. Cane, (2005), Accelerated simulation of passive tracers in
491 ocean circulation models, *Ocean Modelling*, 9(1), 51-69, [doi:10.1016/j.ocemod.2004.04.002](https://doi.org/10.1016/j.ocemod.2004.04.002).

492 Khatiwala, S. (2007), A computational framework for simulation of biogeochemical tracers in
493 the ocean, *Global Biogeochemical Cycles*, 21(3), GB3001, doi: 10.1029/2007GB002923.

494 Mehrbach, C., C. H. Culberson, J. E. Hawley, and R. M. Pytkowicz (1973), Measurement of the
495 apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, *Limnol.*
496 *Oceanogr.*, 18, 897-907.

497 Millero, F. J., K. Lee, and M. Roche, (1998), Distribution of alkalinity in the surface waters of
498 the major oceans, *Marine Chemistry*, 60, 111-130, [doi:10.1016/S0304-4203\(97\)00084-4](https://doi.org/10.1016/S0304-4203(97)00084-4).

499 Milliman, J. D., D. A. Ross, and T. L. Ku (1969), Precipitation and lithification of deep-sea
500 carbonates in the Red Sea, *J. Sed Res.*, 39(2), 724-736, doi: 10.1306/74D71CFD-2B21-

501 11D7-8648000102C1865D.

502 Morse, J. W., A. J. Andersson, F. T. Mackenzie (2006), Initial responses of carbonate-rich shelf
503 sediments to rising atmospheric $p\text{CO}_2$ and “ocean acidification”: Role of high Mg-calcites.
504 *Geochim. Cosmochim. Acta.*, 70 (23), 5814-5830, [doi:10.1016/j.gca.2006.08.017](https://doi.org/10.1016/j.gca.2006.08.017).

505 Moore, W. S. (2010), The effect of submarine groundwater discharge on the ocean. *Marine Sci.*,
506 2, 59-88, doi: 10.1146/annurev-marine-120308-081019

507 Moore, W. S., J. L. Sarmiento, and R. M. Key (1986), Tracing the Amazon component of surface
508 Atlantic water using ^{228}Ra , salinity, and silica. *J. Geophys. Res.*, 91 (C2), 2574-2580,
509 doi: 10.1029/JC091iC02p02574.

510 Orr, J. C., V. J. Fabry, O. Aumont, L. Bopp, S. C. Doney, R. A. Feely, A. Gnanadesikan, N.
511 Gruber, A. Ishida, F. Joos, R. M. Key, K. Lindsay, E. Maier-Reimer, R. Matear, P. Monfray,
512 A. Mouchet, R. G. Najjar, G. Plattner, K. B. Rodgers, C. L. Sabine, J. L. Sarmiento, R.
513 Schlitzer, R. D. Slater, I. J. Totterdell, M. Weirig, Y. Yamanaka, and A. Yool, (2005),
514 Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying
515 organisms. *Nature*, 437, 681-686, doi:10.1038/nature04095.

516 Robbins, P. E. (2001), Oceanic carbon transport carried by freshwater divergence: Are salinity
517 normalizations useful?. *J. Geophys. Res.*, 106(C12), 30939-30, doi: 10.1029/2000JC000451.

518 Sarmiento, J. L., J. Dunne, A. Gnanadesikan, R.M. Key, K. Matsumoto, R. Slater (2002), A new
519 estimate of the CaCO_3 to organic carbon export ratio. *Global Biogeochem. Cy.*, 16(4), 1107,
520 doi: 10.1029/2002GB001919.

521 Sarmiento, J. L., N. Gruber, M. A. Brzezinski, and J. P. Dunne (2004), High-latitude controls of
522 thermocline nutrients and low latitude biological productivity. *Nature*, 427(6969), 56-60,
523 doi:10.1038/nature02127.

524 Silverman, J. B. Lazar, and J. Erez (2007), Effect of aragonite saturation, temperature, and
525 nutrients on the community calcification rate of a coral reef, *J. Geophys. Res.*, **112**,
526 CO05004, doi: 10.1029/2006JC003770.

527 Suzuki, T., M. Ishii, M. Aoyama, J. R. Christian, K. Enyo, T. Kawano, R. M. Key, N. Kosugi, A.
528 Kozyr, L. A. Miller, A. Murata, T. Nakano, T. Ono, T. Saino, K. Sasaki, D. Sasano, Y.
529 Takatani, M. Wakita and C. Sabine (2013), PACIFICA Data Synthesis Project.
530 ORNL/CDIAC-159, NDP-092. Carbon Dioxide Information Analysis Center, Oak Ridge
531 National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee.
532 doi:10.3334/CDIAC/OTG.PACIFICA_NDP092.

533 Takahashi, T., S. C. Sutherland, R. Wanninkhof, C. Sweeney, R. A. Feely, D. W. Chipman, B.
534 Hales, G. Friederich, F. Chavez, C. Sabine, A. Watson, D. C. E. Bakker, U. Schuster, N.
535 Metzl, H. Yoshikawa-Inoue, M. Ishii, T. Midorikawa, Y. Nojiri, A. Körtzinger, T. Steinhoff,
536 M. Hoppema, J. Olafsson, T. S. Arnarson, B. Tilbrook, T. Johannessen, A. Olsen, R.
537 Bellerby, C. S. Wong, B. Delille, N. R. Bates, and J. W. deBarr, (2009), Climatological mean
538 and decadal change in surface ocean pCO₂, and net sea–air CO₂ flux over the global
539 oceans, *Deep Sea Res. II*, **56**(8), 554-577, [doi:10.1016/j.dsr2.2008.12.009](https://doi.org/10.1016/j.dsr2.2008.12.009).

540 Thomas, H., Y. Bozec, H. J. De Baar, K. Elkalay, M. Frankignoulle, L. S. Schiettecatte, G.
541 Kattner, and A. V. Borges (2005), The carbon budget of the North Sea. *Biogeosci.*, **2**(1), 87-
542 96, doi: 10.5194/bg-2-87-2005.

543 Tynan, E., T. Tyrrell, and E. P. Achterberg (2014), Controls on the seasonal variability of
544 calcium carbonate saturation states in the Atlantic gateway to the Arctic Ocean. *Mar. Chem.*
545 158 (2014) 1-9, doi: 10.1016/j.marchem.2013.10.010.

546 van Heuven, S., D. Pierrot, E. Lewis, and D. Wallace (2009), MATLAB Program developed for

547 CO₂ system calculations, *ORNL/CDIAC-105b, Carbon Dioxide Information Analysis Center,*
548 *Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee.*

549 Velo, A., F. F. Perez, P. Brown, T. Tanhua, U. Schuster, and R. M. Key (2009), CARINA
550 alkalinity data in the Atlantic Ocean, *Earth Syst. Sci. Data*, 1, 45-61, doi:10.5194/essd-1-45-
551 2009.

552 de Villiers, S. (1998), Excess dissolved calcium in the ocean: a hydrothermal hypothesis, *Earth*
553 *and Plan. Sci. Lett.*, 164(3-4), 624-641, [doi:10.1016/S0012-821X\(98\)00232-5](https://doi.org/10.1016/S0012-821X(98)00232-5).

554 Wolery, T. J., and N. H. Sleep (1988), Interactions of geochemical cycles with the mantle. In:
555 Gregor, C. B., R. M. Garrels, F. T. Mackenzie, and J. B. Maynard (eds) Chemical cycles in
556 the evolution of the earth. Wiley, New York, 77-103.

557 Wolf-Gladrow, D. A., R. E. Zeebe, C. Klaas, A. Körtzinger, and A. G. Dickson (2007), Total
558 alkalinity: The explicit conservative expression and its application to biogeochemical
559 processes. *Marine chemistry*, 106(1), 287-300, [doi:10.1016/j.marchem.2007.01.006](https://doi.org/10.1016/j.marchem.2007.01.006).

560 Yamamoto-Kawai, M., F. A. McLaughlin, E. C. Carmack, S. Nishino, and K. Shimada (2009),
561 Aragonite undersaturation in the Arctic Ocean; effects of ocean acidification and sea ice
562 melt, *Science*, 326, 1098, doi:10.1126/science.1174190.

563 **Appendix A: Definition of the process importance metric M**

564 In simplest terms, our metric is the product of the Ω_C sensitivity to a process and the
 565 variability of the net influence of the process globally. The difficulty in this calculation lies in
 566 quantifying the “net influence of a process.” We first show how we change coordinates so we
 567 can use reference tracers as a proxy measurement for these net influences.

568 Our metric for Ω_C variability resulting from the i th process is expressed as M_i :

569

$$M_i = \sigma_{P_i} \left| \frac{\partial \Omega_C}{\partial P_i} \right| \quad (\text{A1})$$

570 where P_i is an abstract variable representing the net process influence (that we will later factor

571 out), and $\frac{\partial \Omega_C}{\partial P_i}$ is the Ω_C sensitivity to the process. We expand $\frac{\partial \Omega_C}{\partial P_i}$ using the chain rule to

572 include a term for Ω_C sensitivity to changes in the reference tracer R_i (see section 4) and a term

573 $\frac{\partial R_i}{\partial P_i}$ representing changes in R_i resulting from the i th process:

574

$$\frac{\partial \Omega_C}{\partial P_i} = \frac{\partial \Omega_C}{\partial R_i} \frac{\partial R_i}{\partial P_i} \quad (\text{A2})$$

575 In practice, we calculate Ω_C as a function of $j = 7$ properties: (1) pressure, (2)

576 temperature, (3) salinity, (4) phosphate, (5) silicate, (6) A_T , and (7) C_T for mean seawater and

577 $p\text{CO}_2$ for surface seawater, so we use the chain rule again to expand the $\frac{\partial \Omega_C}{\partial R_i}$ terms as follows:

578

$$\frac{\partial \Omega_C}{\partial R_i} = \sum_{j=1}^7 \frac{\partial \Omega_C}{\partial X_j} \frac{\partial X_{j,i}}{\partial R_i} \quad (\text{A3})$$

579 Here, the $\frac{\partial X_{j,i}}{\partial R_i}$ are assumed terms (assumptions detailed shortly) that relate the effect of the i th

580 process on the j th property to the effect of the process on R_i , and the $\frac{\partial\Omega}{\partial X_j}$ terms reflect Ω_C

581 sensitivity to changes in the j properties used to calculate it.

582 We make assumptions regarding the $\frac{\partial X_{j,i}}{\partial X_R}$ terms: we relate changes in temperature from

583 sinking or shoaling to changes in pressure using the potential temperature (θ) routines of
 584 Fofonoff and Millard (1983); we assume freshwater cycling linearly concentrates A_T , C_T ,
 585 phosphate, and silicate by the same ratio that it changes salinity; we relate C_T , phosphate, and A_T
 586 changes from organic matter formation to changes in phosphate using the remineralization ratios
 587 found by Anderson and Sarmiento (1994) and the empirical relationship of Kanamori and
 588 Ikegami (1982); we also use Kanamori and Ikegami (1982)'s constant to relate changes in A_T
 589 from nitrogen fixation and denitrification to changes in N^* from these processes; and we assume
 590 that an increase in A_T from calcium carbonate dissolution equals the Alk^* increase, and that the
 591 corresponding increase in C_T equals half of this Alk^* increase. We neglect any changes in C_T
 592 from denitrification and nitrogen fixation because these changes are better thought of as organic
 593 matter cycling occurring alongside nitrogen cycling.

594 We estimate $\frac{\partial\Omega}{\partial X_j}$ property sensitivity terms as the differences between Ω_C calculated

595 before and after augmenting j th property by 1 unit. Ω_C is calculated with the MATLAB
 596 CO2SYS routines written by van Heuven et al. (2009) using the carbonate system equilibrium
 597 constants of Mehrbach et al. (1973), as refit by Dickson and Millero (1987). Seawater pCO_2 is
 598 used in place of C_T for the surface seawater calculations (when $j = 7$) to calculate the change in
 599 Ω_C that remains after the surface seawater is allowed to equilibrate with the atmosphere.

600 We assume that the distributions of our R_i reference properties are linearly related to the
 601 P_i net activities of their associated processes. This assumption implies:

602

$$\sigma_P = \sigma_{R_i} \left| \frac{\partial P_i}{\partial R_i} \right| \quad (\text{A4})$$

603 We can then substitute Eq. (A3) into Eq. (A2), and substitute this combined equation for $\frac{\partial \Omega_C}{\partial P_i}$
 604 and (A4) into Eq. (A1). We then cancel the $\frac{\partial P_i}{\partial R_i}$ and $\frac{\partial R_i}{\partial P_i}$ terms to obtain:

605

$$M_i = \sigma_{R_i} \left| \sum_{j=1}^7 \frac{\partial \Omega_C}{\partial X_j} \frac{\partial X_{j,i}}{\partial R_i} \right| \quad (\text{A5})$$

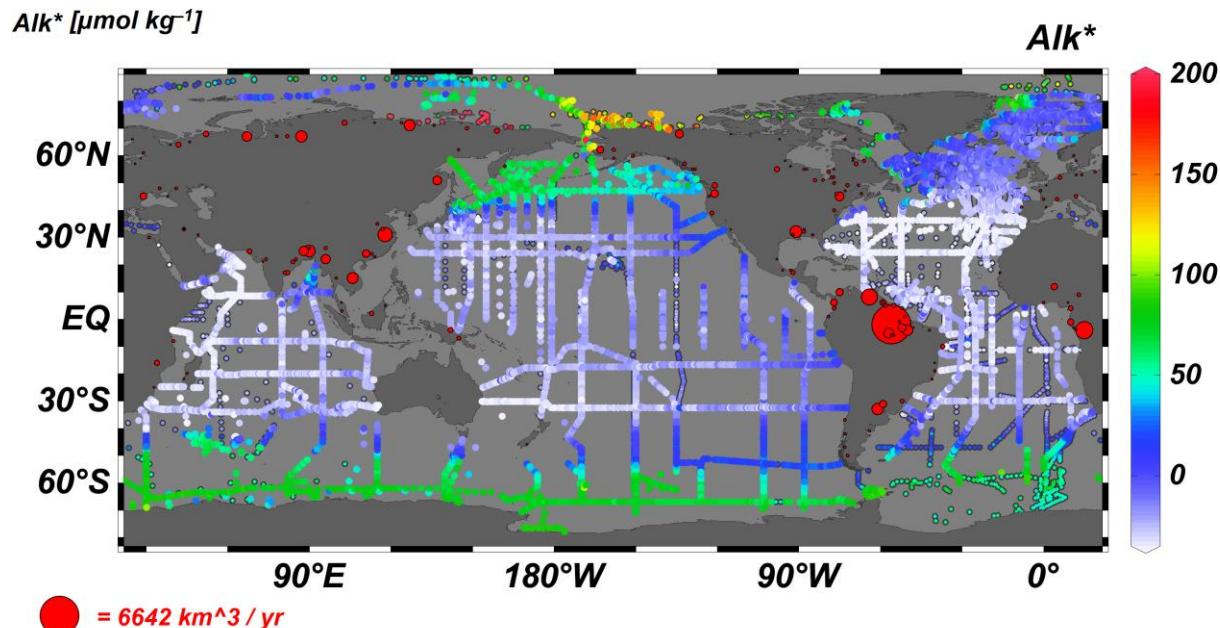
606 We then define Ω_C sensitivity S_{R_i} as:

607

$$S_{R_i} = \left| \sum_{j=1}^7 \frac{\partial \Omega_C}{\partial X_j} \frac{\partial X_{j,i}}{\partial R_i} \right| \quad (\text{A6})$$

608 where S_{R_i} is the Ω_C sensitivity to a change in the i th process scaled to a unit change in the
 609 reference variable for that process. We can then substitute Eq. (A6) into Eq. (A5) to obtain Eq.

610 6. We use Eqn. (A6) to define S_{R_i} and Eqn. 6 to calculate M . We provide the $\frac{\partial \Omega_C}{\partial X_j}$ and $\frac{\partial X_{j,i}}{\partial R_i}$

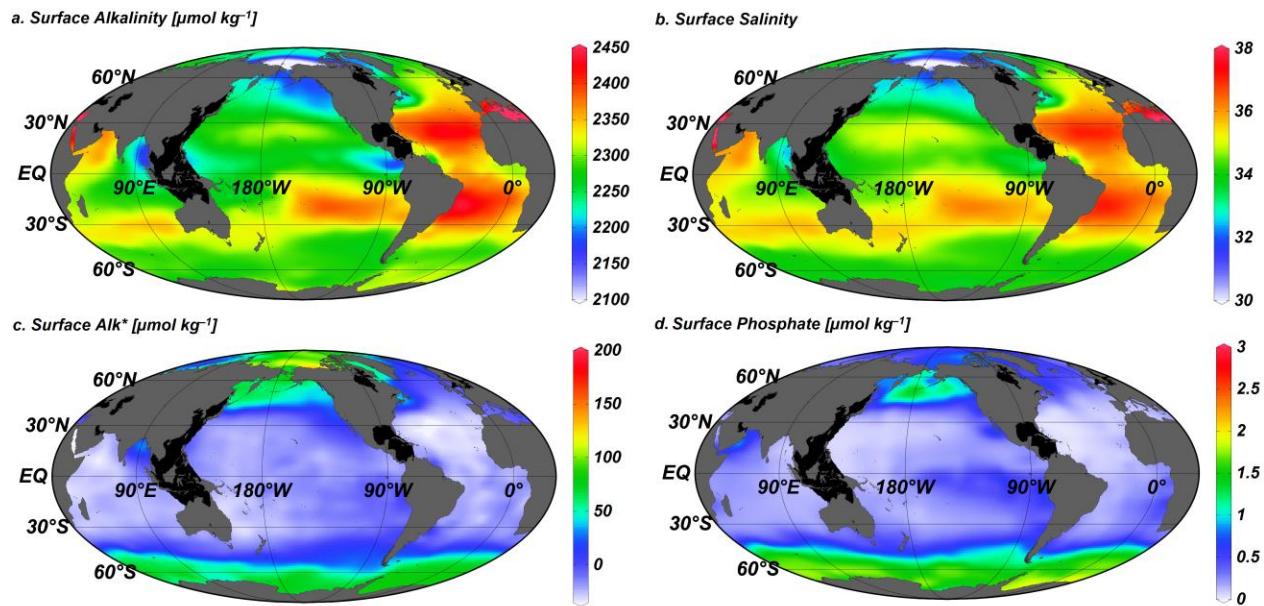

611 values we use to estimate S_{R_i} for atmospherically isolated seawater from all depths in Table A1
 612 and for well-equilibrated surface seawater in Table A3. We perform a sample I and M
 613 calculation in Supplementary Materials document SE.

614 We use a Monte Carlo analysis to estimate variability and uncertainty in our metric M
 615 and our percent relative process importance I calculations. We calculate the standard deviations,
 616 σ_M and σ_I , of pools of 1000 M and I estimates calculated after adjusting the seawater properties

617 X_i with a normally-distributed perturbation with a standard deviation equal to the property
 618 standard deviation from the gridded dataset. We find $\frac{\sigma_I}{I}$ is typically much smaller than $\frac{\sigma_M}{M}$.
 619 This is because Ω_C sensitivity is typically proportional to the Ω_C itself, so individual Monte
 620 Carlo M estimates vary with the initial Ω_C and one another. Our σ_M estimates are therefore
 621 better thought of as measures of the ranges of sensitivities found in the modern ocean, while σ_I
 622 represent variability in the relative importance of processes. We provide σ_M and σ_I for
 623 atmospherically isolated seawater globally in Table A2, and for well-equilibrated surface
 624 seawater in Table A4.

625

626


Figure 1. A map of station locations at which we use measurements to estimate Alk^* (in $\mu\text{mol kg}^{-1}$). Dot color indicates surface Alk^* . Points with black borders indicate that either A_T was measured prior to 1992 (i.e. before reference materials were commonly used) or that no nitrate value was reported (in which case a nitrate concentration of $5 \mu\text{mol kg}^{-1}$ is assumed). Red dots on land indicate the mouth locations and mean annual discharge volumes (indicated by dot size) of 200 large rivers, as given by Dai and Trenberth (2002).

627

628

629

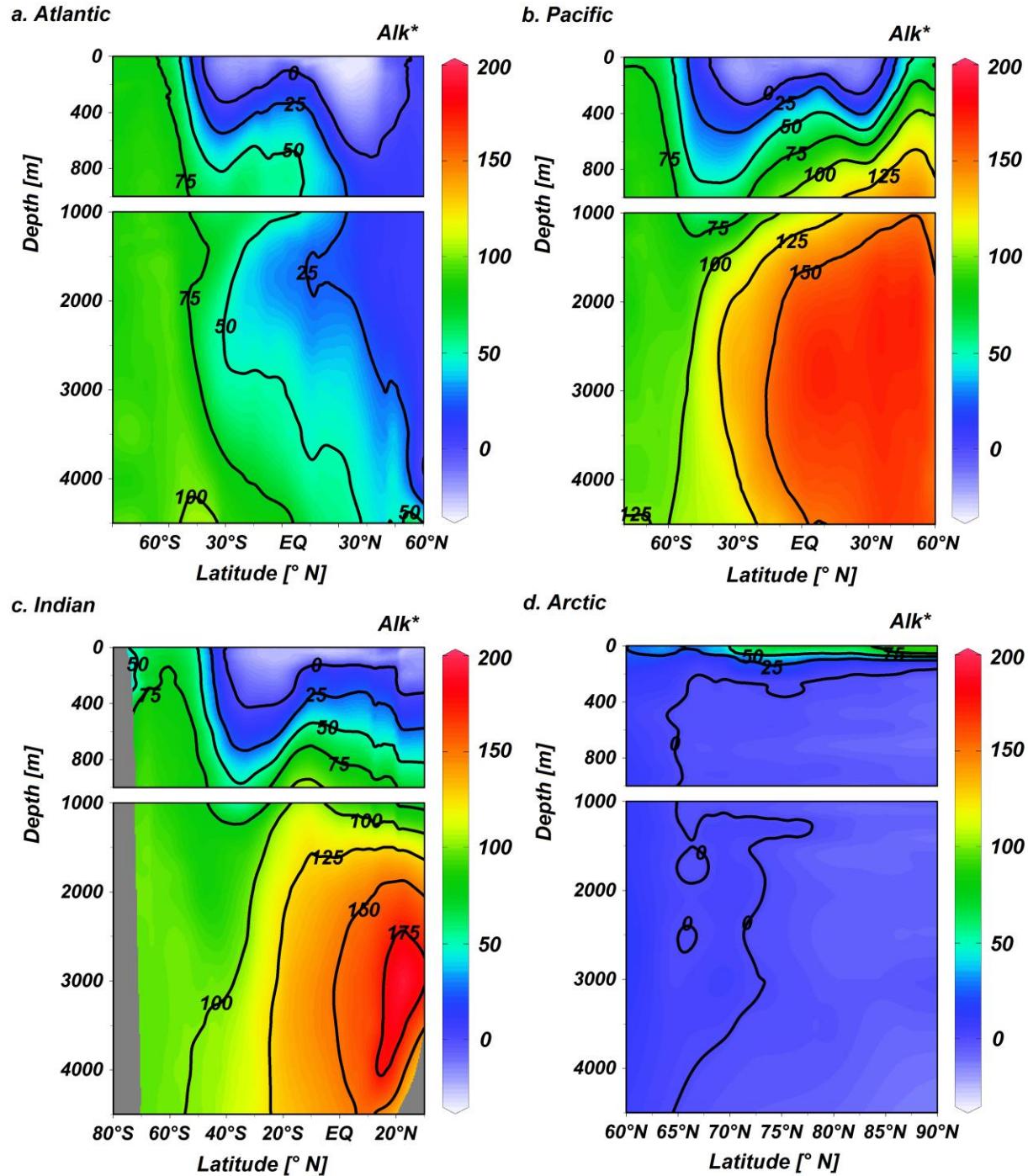
630

Figure 2. Global (a) total alkalinity A_T , (b) salinity, (c) Alk^* , and (d) phosphate distributions at the surface (10 m depth surface) from our gridded CARINA, PACIFICA, and GLODAP bottle data product detailed in Supplementary Materials document SA. Areas with exceptionally poor coverage in the data used to produce the gridded product are blacked out.

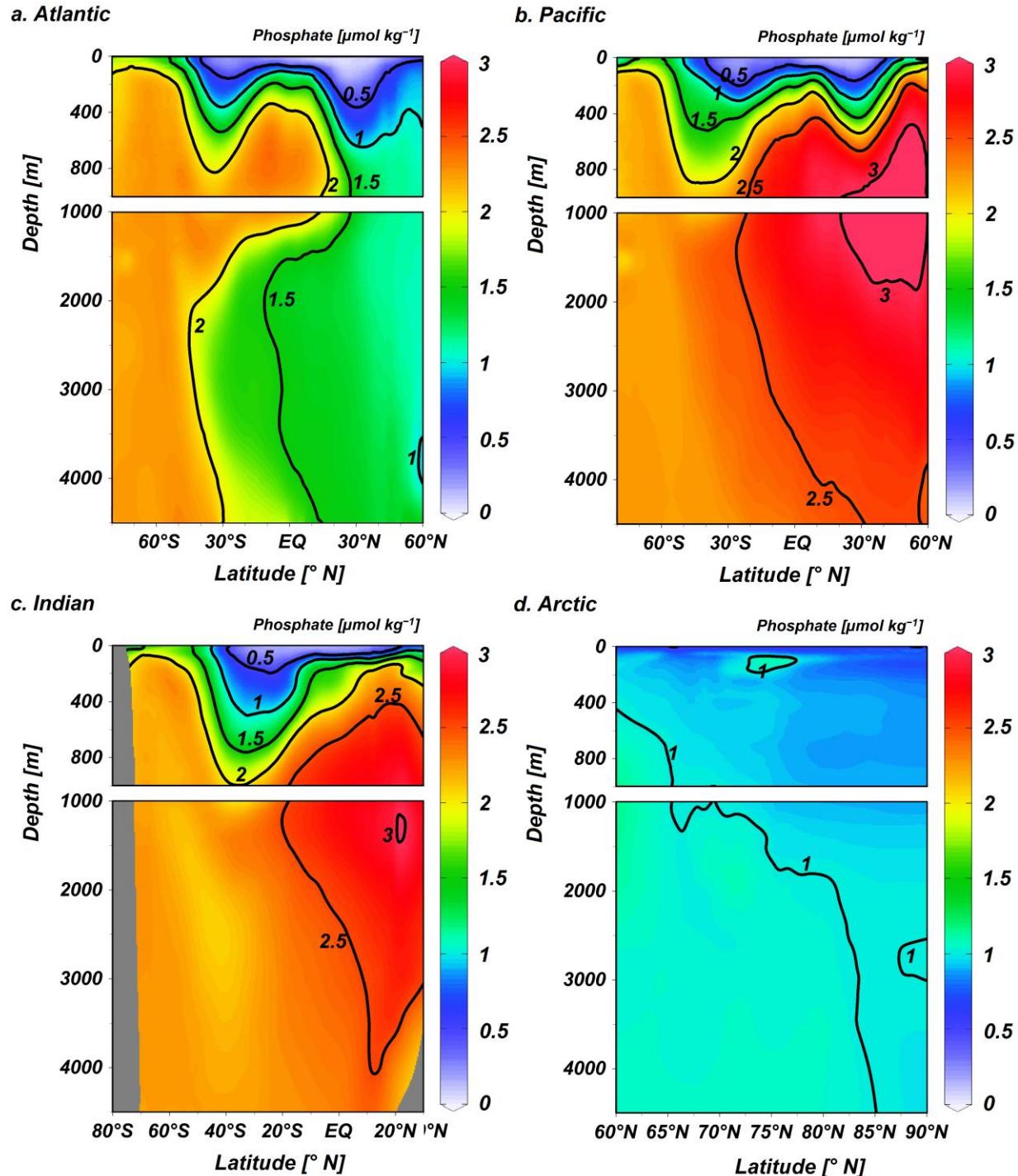
631

632

633


634

635


636

637

638

Figure 3. Zonal mean gridded Alk^* (in $\mu\text{mol kg}^{-1}$) in the (a) Atlantic, (b) Pacific, (c) Indian, and (d) the Arctic oceans plotted against latitude and depth.

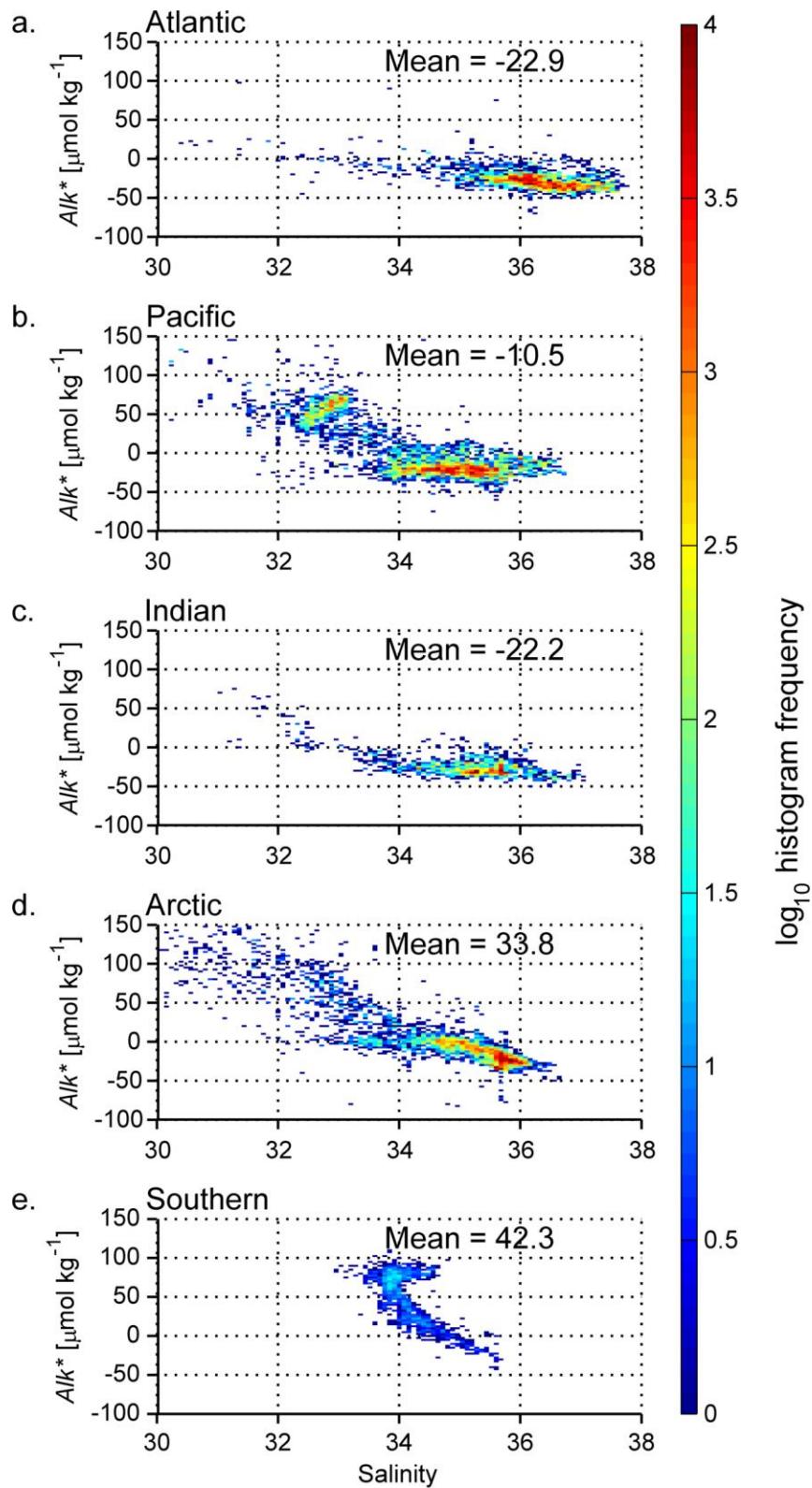


Figure 4. Zonal mean gridded phosphate (in $\mu\text{mol kg}^{-1}$) in the (a) Atlantic, (b) Pacific, (c) Indian, and (d) the Arctic oceans plotted against latitude and depth.

640

641

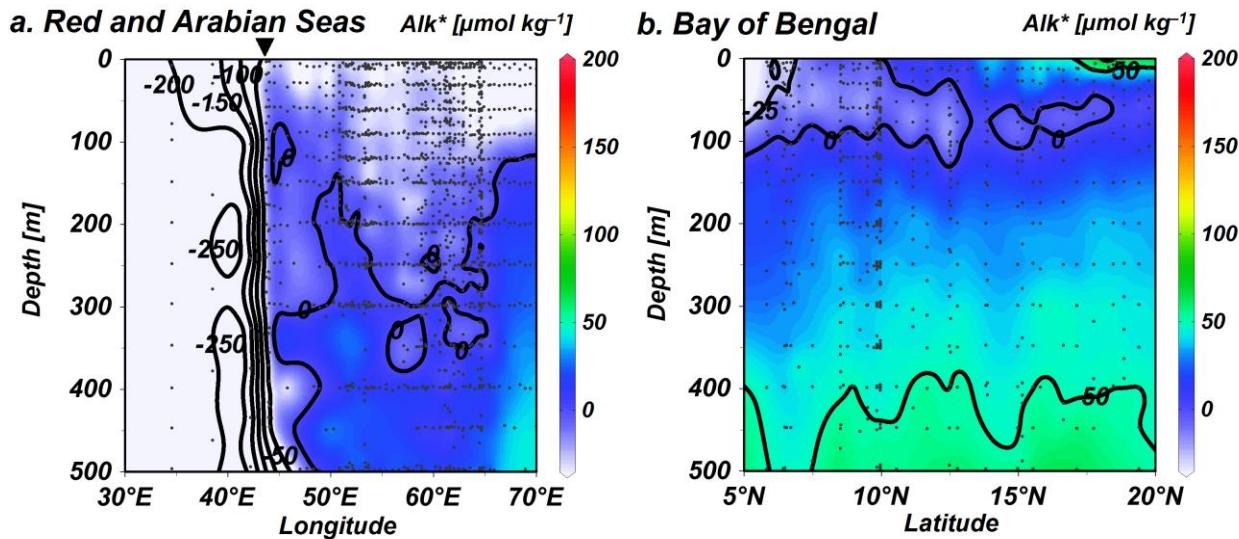
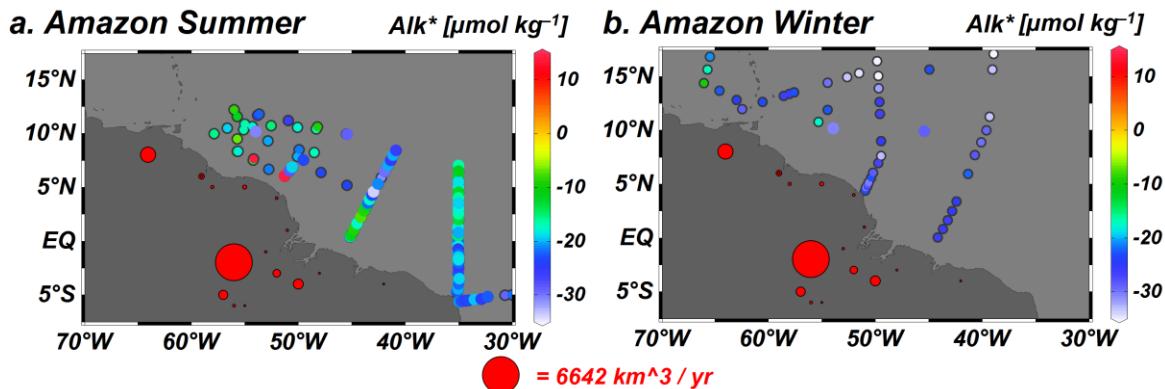

642

Figure 5. 2-D histograms indicating the log (base 10) of the number of measurements that fall within bins of Alk^* vs. salinity with color. Data are limited to the top 50 m of the (a) Atlantic, (b) Pacific, (c) Indian, (d) Arctic, and (e) Southern Oceans. Where basins connect, the boundary between the Atlantic and the Arctic oceans is 40°N, between the Atlantic and the Indian is 20° E,

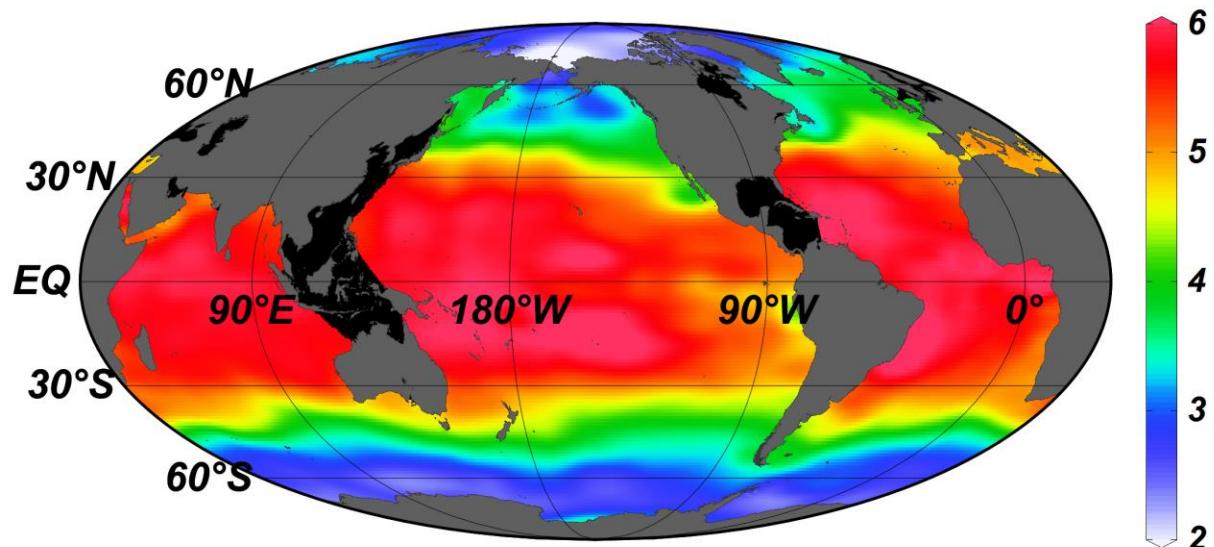

between the Indian and the Pacific is 131° E, between the Pacific and the Atlantic is 70° W, and between the Southern Ocean and the other oceans is 40° S.

643

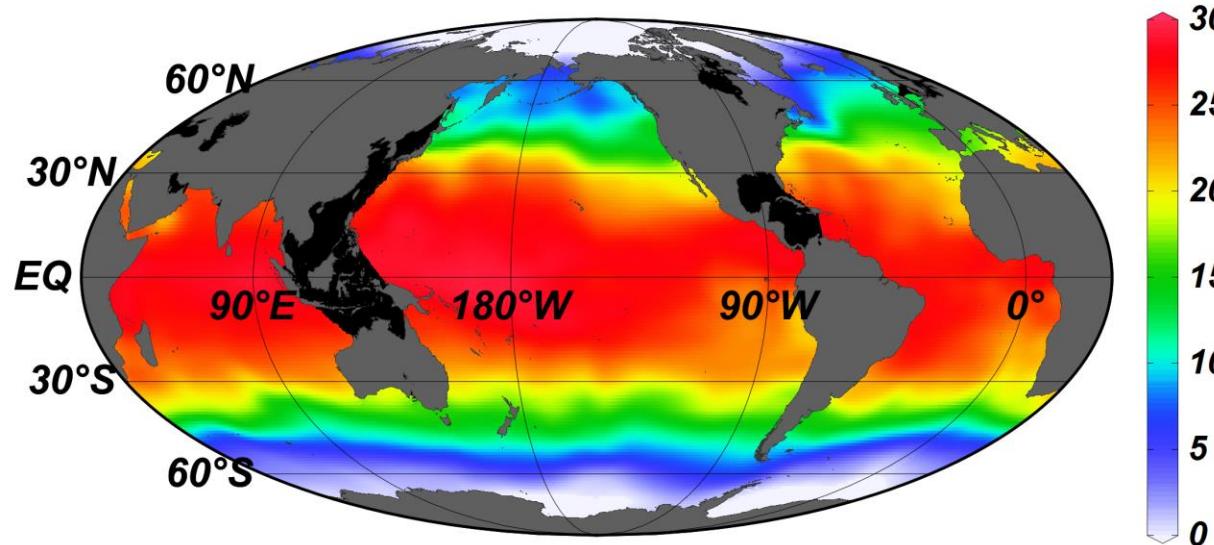
Figure 6. Alk^* distributions (in $\mu\text{mol kg}^{-1}$) (a) between 5° and 30°N in the Red and Arabian Seas shown against longitude, and (b) between 75° and 100°E in the Bay of Bengal plotted against latitude. Small black dots indicate where data is present. The inverted triangle above (a) indicates the longitude of the mouth of the Red Sea.

644

Figure 7. Alk^* (in $\mu\text{mol kg}^{-1}$) in top 50 m of the ocean near the Amazon River outflow plotted in color, though with a narrower color scale than is used for all other plots. Panel (a) is limited to data collected in November through January, and in panel (b) is limited to measurements from May through July. Points with black borders indicate that either the A_T was measured prior to 1992 (before reference materials were commonly used) or that no nitrate value was reported (in which case a nitrate concentration of $5 \mu\text{mol kg}^{-1}$ is assumed). Red dots on land indicate the mouth locations and mean annual discharge volumes (indicated by dot size) of large rivers, as given by Dai and Trenberth (2002).


645

646


647

648

a. Surface Calcite Saturation

b. Surface Temperature [°C]

Figure 8. Gridded global (a) calcite saturation state Ω_C , and (b) temperature at the surface (10 m depth surface) of our gridded CARINA, PACIFICA, and GLODAP bottle data product. Areas with exceptionally poor coverage in the data used to produce the gridded product are blacked out.

649

650

651

652

653

654

Table 1. Metric estimates M_i , relative process importance percentages I_i , Ω_C sensitivities S_{R_i} to unit changes in the R_i reference properties, and reference property standard deviations σ_{R_i} for the $i = 6$ processes in atmospherically isolated mean seawater from all ocean depths. See Appendix A for details on how these terms are estimated and explanation of how M_i and I_i uncertainties are obtained.

Process	i	R_i	S_{R_i}	σ_{R_i}	M_i	I_i
Carbonate cycling	1	Alk^*	0.0043	53.5 $\mu\text{mol/kg}$	0.23	17%
Org. matter cycling	2	Phosphate	-0.0069	0.60 $\mu\text{mol/kg}$	0.66	48%
Freshwater cycling	3	Salinity	0.032	0.27	0.011	0.78%
Sinking / shoaling	4	Pressure	-0.00028	1411 db	0.4	28%
Warming / cooling	5	Temp.	0.014	4.20 $^{\circ}\text{C}$	0.06	4%
Denit./nit. fix.	6	N*	-0.010	1.6 $\mu\text{mol/kg}$	0.017	1.2%

655

656

Table 2. Metric estimates M_i , relative process importance percentages I_i , Ω_C sensitivities S_{R_i} to unit changes in the R_i reference properties, and reference property standard deviations σ_{I_i} for the $i = 6$ processes in well-equilibrated surface seawater. See Appendix A for details on how these terms are estimated and explanation of how M_i and I_i uncertainties are obtained.

Process	i	R_i	S_{R_i}	σ_{R_i}	M_i	I_i
Carbonate cycling	1	Alk*	0.0034	36.9 $\mu\text{mol/kg}$	0.13	7.8%
Org. matter cycling	2	Phosphate	-0.0045	0.51 $\mu\text{mol/kg}$	0.037	2.3%
Freshwater cycling	3	Salinity	0.20	0.86	0.22	13.2%
Sinking / shoaling	4	Pressure	-0.00083	15 db	0.011	0.70%
Warming / cooling	5	Temp.	0.14	8.8 $^{\circ}\text{C}$	1.2	76%
Denit / nit. fix.	6	N*	-0.0043	1.5 $\mu\text{mol/kg}$	0.006	0.40%
$p\text{CO}_2$ disequilibria	†	$p\text{CO}_2$	-0.0086	27 μatm^*	0.23	†

* standard deviation of the Takahashi et al. (2009) revised global monthly $p\text{CO}_2$ climatology

† the M value for disequilibria is only calculated to test our assumption of surface seawater air-sea equilibration, and is omitted from calculations of I_i for comparison with Table 1.

659

660

Table A1. $\frac{\partial\Omega_C}{\partial X_j}$ (bold text) and $\frac{\partial X_{j,i}}{\partial R_i}$ (italic text) terms used in Eq. (A5) for atmospherically isolated mean seawater from all ocean depths. These terms are specific to the $j = 7$ (columns) properties we use to calculate Ω_C and $i = 6$ (rows) processes we consider. Units for $\frac{\partial\Omega_C}{\partial X_j}$ are

the inverse of the listed X_j units. Units for $\frac{\partial X_{j,i}}{\partial R_i}$ are the X_j units divided by the R_i units given in Table 1.

Properties	Pressure	Temp	Salinity	Phos.	Silicate	A_T	C_T
X_j units	db	°C		μmol/kg	μmol/kg	μmol/kg	μmol/kg
j	1	2	3	4	5	6	7
Mean seawater values	2235	3.7	34.71	2.15	49.0	2362	2254
$\frac{\partial\Omega_C}{\partial X_j}$	-0.00028	0.014	-0.011	-0.0085	-0.00012	0.0082	-0.0079
Process	i	$\frac{\partial X_{1,i}}{\partial R_i}$	$\frac{\partial X_{2,i}}{\partial R_i}$	$\frac{\partial X_{3,i}}{\partial R_i}$	$\frac{\partial X_{4,i}}{\partial R_i}$	$\frac{\partial X_{5,i}}{\partial R_i}$	$\frac{\partial X_{6,i}}{\partial R_i}$
Carbonate cycling	1	-	-	-	-	-	1
Org. matter cycling	2	-	-	-	1	-	-20.16
Freshwater cycling	3	-	-	1	0.062	1.4	68
Sinking / shoaling	4	1	0.00010	-	-	-	-
Warming / cooling	5	-	1	-	-	-	-
Denit ./ nit. fix.	6	-	-	-	-	-	-1.26

661

662

663

664

Table A2. Monte Carlo derived estimates for M_i variability (σ_{M_i}) and I_i variability (σ_{I_i}) for atmospherically-isolated mean seawater from all ocean depths.

Process	i	σ_{M_i}	σ_{I_i}
Carbonate cycling	1	0.09	1%
Org. matter cycling	2	0.2	3%
Freshwater cycling	3	0.006	0.08%
Sinking / shoaling	4	0.2	5%
Warming / cooling	5	0.02	2%
Denit. / nit. fix.	6	0.006	0.1%

665

666

667

Table A3. $\frac{\partial \Omega_C}{\partial X_j}$ (bold text) and $\frac{\partial X_{j,i}}{\partial R_i}$ (italic text) terms used in Eq. (A5) for well-equilibrated surface seawater. These terms are specific to the $j = 7$ (columns) properties we use to calculate Ω_C and $i = 6$ (rows) processes we consider. Units for $\frac{\partial \Omega_C}{\partial X_j}$ are the inverse of the listed X_j units. Units for $\frac{\partial X_{j,i}}{\partial R_i}$ are the X_j units divided by the R_i units given in Table 2.

Properties units	Pressure db	Temp °C	Salinity	Phos. μmol/kg	Silicate μmol/kg	A_T μmol/kg	pCO_2 μatm
j	1	2	3	4	5	6	7
Mean seawater values	25	18.3	34.82	0.51	2.5	2305	350
$\frac{\partial \Omega_C}{\partial X_j}$	-0.00084	0.14	-0.022	-0.0038	-0.00013	0.0034	-0.0086
Process	i	$\frac{\partial X_{1,i}}{\partial R_i}$	$\frac{\partial X_{2,i}}{\partial R_i}$	$\frac{\partial X_{3,i}}{\partial R_i}$	$\frac{\partial X_{4,i}}{\partial R_i}$	$\frac{\partial X_{5,i}}{\partial R_i}$	$\frac{\partial X_{6,i}}{\partial R_i}$
Carbonate cycling	1	-	-	-	-	-	<i>1</i>
Org. matter cycling	2	-	-	-	<i>1</i>	-	-20.16
Freshwater cycling	3	-	-	<i>1</i>	0.015	0.072	65.9
Sinking / shoaling	4	<i>1</i>	<i>0.00010</i>	-	-	-	-
Warming / cooling	5	-	<i>1</i>	-	-	-	-
Denit./nit. fix.	6	-	-	-	-	-	-1.26

668

669

Table A4. Monte Carlo derived estimates for M_i variability (σ_{M_i}) and I_i variability (σ_{I_i}) for well-equilibrated surface seawater.

Process	i	σ_{M_i}	σ_{I_i}
Carbonate cycling	1	0.03	0.8%
Org. matter cycling	2	0.01	0.2%
Freshwater cycling	3	0.04	0.5%
Sinking / shoaling	4	0.001	0.03%
Warming / cooling	5	0.2	1%
Denit. / nit. fix	6	0.002	0.04%
$p\text{CO}_2$ disequilibria	†	0.05	†

† disequilibria are included only as a test of our assumption of surface seawater air-sea equilibration, so these M_i values are omitted from calculations of I

670

671

672