1	Moderate forest disturbance as a stringent test for gap and big-leaf models
2	
3	Ben Bond-Lamberty ¹ , Justin Fisk ² , Jennifer A. Holm ³ , Vanessa Bailey ⁴ , and Christopher
4	M. Gough ⁵
5	
6	1. Pacific Northwest National Laboratory, Joint Global Change Research Institute at the
7	University of Maryland–College Park, 5825 University Research Court, Suite 3500,
8	College Park, MD 20740, USA
9	2. Department of Geographical Sciences, 1150 LeFrak, University of Maryland
10	College Park, MD 20742, USA
11	3. Climate Sciences Department, Lawrence Berkeley National Laboratory, 1 Cyclotron
12	Rd., MS 74-0171, Berkeley, CA 94720, USA
13	4. Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352,
14	USA
15	5. Virginia Commonwealth University, Department of Biology, Box 842012, 1000 West
16	Cary Street, Richmond, Virginia 23284-2012 USA
17	
18	Submitted to Biogeosciences special issue "Impacts of extreme climate events and
19	disturbances on carbon dynamics" June 27, 2014
20	Revised version submitted October 24, 2014

21 Abstract

22 Disturbance-induced tree mortality is a key factor regulating the carbon balance 23 of a forest, but tree mortality and its subsequent effects are poorly represented processes 24 in terrestrial ecosystem models. In is thus unclear whether models can robustly simulate 25 moderate (non-catastrophic) disturbances, which tend to increase biological and structural 26 complexity and are increasingly common in aging U.S. forests. We tested whether three 27 forest ecosystem models-Biome-BGC, a classic big-leaf model, and the ZELIG and ED 28 gap-oriented models—could reproduce the resilience to moderate disturbance observed in 29 an experimentally manipulated forest (the Forest Accelerated Succession Experiment in 30 northern Michigan, USA, in which 38% of canopy dominants were stem girdled and 31 compared to control plots). Each model was parameterized, spun up, and disturbed 32 following similar protocols, and run for 5 years post-disturbance. The models replicated 33 observed declines in aboveground biomass well. Biome-BGC captured the timing and 34 rebound of observed leaf area index (LAI), while ZELIG and ED correctly estimated the 35 magnitude of LAI decline. None of the models fully captured the observed post-36 disturbance C fluxes. Biome-BGC net primary production (NPP) was correctly resilient, 37 but for the wrong reasons, and could not match the absolute observational values. ZELIG 38 and ED, in contrast, exhibited large, unobserved drops in NPP and net ecosystem 39 production. The biological mechanisms proposed to explain the observed rapid resilience 40 of the C cycle are typically not incorporated by these or other models. As a result we 41 expect that most ecosystem models will not simulate well the gradual and less extensive 42 tree mortality characteristic of moderate disturbances.

44 Introduction

45	Natural and anthropogenic disturbances have numerous effects on the carbon (C)
46	and energy dynamics in forested ecosystems, and result in a variety of feedbacks between
47	terrestrial ecosystems and climate (Goetz et al., 2012). In particular, disturbance-induced
48	tree mortality is a key factor regulating the forest C balance, but a complicated one due to
49	high temporal and spatial heterogeneity (Vanderwel et al., 2013). Partly as a result,
50	mortality and disturbance are poorly represented processes in terrestrial ecosystem
51	models (Medvigy and Moorcroft, 2012; Peters et al., 2013; Dietze and Matthes, 2014).
52	Most North American forests are at some stage of recovery from either natural or
53	anthropogenic disturbance (Pan et al., 2011). In the U.S. upper Midwest and northeast,
54	low-severity disturbance is increasing in frequency and extent in regional forests, which
55	have regrown following stand-replacing disturbances over a century ago (Frelich and
56	Reich, 1995). The resulting cohort of fast-growing, deciduous trees is now past maturity
57	and beginning to decline, while longer-lived species representation is increasing (Gough
58	et al., 2010b). At the same time, forest disturbances in the region are transitioning away
59	from severe events that historically caused complete stand replacement, towards more
60	subtle disturbances that result in only partial canopy defoliation or loss of selected
61	species (Pregitzer and Euskirchen, 2004; Williams et al., 2012; Birdsey et al., 2006).
62	These subtler disturbances include partial harvests, wind, pathogenic insects, diseases,
63	and age-related senescence (e.g., Caspersen et al., 2000), which contribute to a gradient
64	of disturbance intensities across the landscape. Unlike stand-replacing disturbance,
65	moderate disturbances tend to increase biological and structural complexity, and

66 consequently are expected to have entirely different functional consequences for

67 ecosystems (Nave et al., 2011; Peters et al., 2013).

68 Moderate disturbances have mixed effects on successional trajectories of forest C 69 production and storage (Birdsey et al., 2006; Knohl et al., 2002; Vanderwel et al., 2013). 70 In many forests, C storage shows unexpected resilience or even resistance to partial 71 canopy defoliation (Hicke et al., 2011; Gough et al., 2013) or thinning (Granier et al., 72 2008). The reasons and mechanisms for different functional responses to moderate 73 disturbance are not clear, but these results have large potential implications, as the long-74 assumed future decline of production in aging stands is expected to reduce continental C 75 sink strength (Birdsey et al., 2006). Recent empirical evidence indicates however that net 76 ecosystem production (NEP, the ecosystem carbon balance) may be sustained or even 77 increase in older forests that experience moderate disturbance (Luyssaert et al., 2008). 78 For example, NEP in the ~100-yr-old Harvard Forest has more than doubled in the last 18 79 years (Keenan et al., 2012). More broadly, recent syntheses of North America's mixed 80 temperate forests found no evidence for a substantial decline in NEP or net primary 81 production (NPP) with age (He et al., 2012; Amiro et al., 2010). 82 Many ecosystem-scale models, designed for and tested in early- to mid-83 successional forests with low biological and structural complexity, can be expected to 84 have trouble reproducing these results (Landsberg and Waring, 1997; Raulier, 1999; Law 85 et al., 2003; Li et al., 2003; Zhao et al., 2009). Such models are typically developed from, 86 and tested most thoroughly against, classic primary- and secondary-succession scenarios 87 featuring stand-replacing or at least gap-size disturbances (Peters et al., 2013; Weng et 88 al., 2012). Most model experiments using moderate (non-catastrophic) disturbance

89	intensities have been performed in the context of timber management, e.g. assessing the
90	sustainability of harvesting for a particular ecosystem or region (e.g., Peng et al., 2002;
91	Rolff and Ågren, 1999). As a result, it is unclear whether most ecosystem models will be
92	able to correctly simulate naturally occurring disturbances in mature forests, which may
93	be spatially more heterogeneous and generally do not involve biomass removals. This is
94	particularly important given the rapidly aging distribution of eastern U.S. forests (USDA,
95	2013; Radeloff et al., 2012).

96 With moderate disturbances increasing in aging North American forests, and only 97 an emerging understanding of the mechanisms underpinning such forests' resilience to 98 disturbance, it is clearly important to understand how, and how well, forest models 99 simulate these events. Doing so not only provides a quantitative assessment of model 100 performance, but also may help identify knowledge gaps and processes missing or not 101 properly implemented in ecosystem models more generally. This study tested three forest ecosystem models-a classic big-leaf model and two gap models-to understand how 102 103 well they reproduce observed resilience to moderate disturbance in an experimentally 104 manipulated forest, and explore specific mechanisms limiting model skill. 105

106 Methods

107 Site description

The study site is the University of Michigan Biological Station (UMBS, 45° 35.5'
N, 84° 43' W), nested within a secondary successional forest that is comprised of bigtooth

110 aspen (Populus grandidentata), northern red oak (Quercus rubra), red maple (Acer

111 *rubrum*), paper birch (*Betula papyrifera*), and eastern white pine (*Pinus strobus*).

112	Average overstory tree age in 2013 was 95 years. NEP in the unmanipulated footprint of
113	the UMBS control tower (US-UMBS) was 0.80-1.98 Mg C ha ⁻¹ yr ⁻¹ from 1999 to 2006,
114	averaging 1.58 Mg C ha ⁻¹ yr ⁻¹ with substantial landscape variation (Gough et al., 2009).
115	The forest was heavily logged in the late 1800s and early 1900s, and disturbed by fire
116	until 1923; its present-day plant composition is typical of many forests in the upper Great
117	Lakes region (Gough et al., 2007).
118	
119	The Forest Accelerated Succession Experiment
120	The Forest Accelerated Succession Experiment (FASET) is an ongoing
121	experiment in which >6,700 aspen and birch trees (equivalent to 38% of stand basal area)
122	were stem girdled in 2008 within a 39 ha area. FASET is investigating how C storage and
123	fluxes change following moderate disturbance as Great Lakes forests transition from an
124	assemblage of early successional canopy trees to later successional canopy dominants.
125	The experiment's overarching hypothesis is that forest NEP will be resilient following
126	partial canopy defoliation and subsequently increase as canopies become more
127	biologically and structurally complex, and as nitrogen (N) not taken up by senescing
128	aspen and birch trees is redistributed to other, longer-lived species assuming canopy
129	dominance. The experiment employs a suite of paired C cycling measurements within
130	separate treatment and control meteorological flux tower footprints. The C cycling
131	parameters reported here for the control and treatment forests are aboveground biomass
132	(AGB), leaf area index (LAI), total (above- and belowground) NPP, and NEP. Site
133	methodological approaches for the derivation of each are described by Gough et. al.
134	(2013; 2008), but briefly, AGB was estimated biometrically, using dendrometers and site-

specific allometry; LAI from litter traps; NPP from biometry and fine root cores; andNEP from eddy covariance.

137 FASET results were most recently summarized by Gough et al. (2013). Briefly, 138 the girdling treatment successfully expedited mortality of early successional aspen and 139 birch, promoting an emerging canopy that approximates projected regional changes in 140 forest composition and structure (e.g., Wolter and White, 2002). In the first four years 141 following disturbance, net primary and net ecosystem production were not significantly 142 different in the control and treatment forests even though LAI in the latter declined by up 143 to 44% (summarized in Figure 1). This high resilience of the C cycle was attributed to 144 high N retention and rapid reallocation of this limiting resource in support of new leaf 145 area production as aspen and birch declined (Nave et al., 2011). Decadal records of tree 146 growth indicate that resilience to age-related declines in NPP is highest where a diversity 147 of canopy tree species is present, because later successional species rapidly compensate 148 for declining growth of early successional species (Gough et al., 2010b). Investigators are 149 also finding that resilience of forest production to disturbance is dependent upon canopy 150 structural reorganizations that enhance C uptake by increasing light-use efficiency 151 (Hardiman et al., 2011; Gough et al., 2013).

152

153 Model descriptions

We tested three complementary models for their ability to replicate disturbancerelated changes in production and LAI observed in FASET; model attributes and differences are summarized in **Table 1**. The first was a version of Biome-BGC (Running

and Hunt, 1993; Thornton et al., 2002). This model has coupled water, carbon, and

158	nitrogen cycles (Thornton and Zimmermann 2007), uses a Farquhar photosynthesis
159	submodel linked to prognostic leaf area, and runs on a daily timestep. The model
160	partitions NPP into the leaves, roots and stems using dynamic allocation patterns,
161	accounting for nitrogen and water limitations. It has been widely used for simulating
162	carbon flows in forest ecosystems (Kimball et al., 1997; Pietsch et al., 2003; Tatarinov
163	and Cienciala, 2009; Warren et al., 2011). We used a version of the model that
164	incorporates an explicit disturbance mechanism (Bond-Lamberty et al., 2007).
165	The second model tested was ZELIG, a gap model based on the original
166	principles of the JABOWA (Botkin et al., 1972) and FORET (Shugart and West, 1977)
167	models. ZELIG simulates the growth, death, and regeneration of individual trees (Urban,
168	1990; Urban et al., 1991) in a two-dimensional grid of 400 m ² cells (i.e., gaps)
169	representing the forest canopy. Trees in each cell influence the availability of resources in
170	adjacent cells, although direct tree-to-tree interactions are not represented (Taylor et al.,
171	2009). ZELIG's main routines include growth, mortality, regeneration, and tracking
172	environmental conditions. In each model timestep, forest processes (e.g., seedling
173	establishment rate, diameter increment, survival rate) are reduced from their maximum
174	potential rates based on available resources. Potential tree regeneration, growth, and
175	survival are functions of light conditions, soil moisture, level of soil fertility resources,
176	and temperature. The model runs on a monthly timestep. Specific details on the
177	methodical approaches used in the model can be found in Urban et al. (1990; 1991) and
178	Larocque et al. (2006). ZELIG has been applied over many large-scale and diverse
179	landscapes (see list and further references in Holm et al., 2012).

180	The third model was ED, a terrestrial biosphere model that uses size- and age-
181	structure partial differential equations (PDEs) (Moorcroft et al., 2001) to approximate the
182	behavior of a stochastic gap model at medium to large scales. It combines an individual-
183	based gap model, describing a particular plant community, with biogeochemical
184	simulation of carbon, water, and nitrogen fluxes. Modeled processes include leaf-level
185	photosynthesis, explicit competition for water and mortality, and C and N allocation
186	above- and belowground (Moorcroft et al., 2001). Much of the soil model is based on that
187	of CENTURY (Parton et al., 1987). ED then models subgrid (~10 ha) disturbance
188	heterogeneity using its PDEs to approximate the behavior of a spatially distributed
189	ensemble of individual plants, and has been used for a variety of optimization and data
190	assimilation exercises (Medvigy et al., 2009).
191	It is important to note the complementary nature of these models: one is a classic
192	"big leaf" biogeochemical model focusing on process representation in a non-spatial
193	framework, another a gap model representative of its class, and the third emphasizes
194	mathematical scaling of a gap model across time and space. In addition, Biome-BGC's
195	algorithms underlie the current version of the Community Land Model (CLM) (e.g.,
196	Bonan and Levis, 2010), while work is underway to make ED's algorithms an optional
197	component in the next version of CLM. This provides a strong framework and motivation
198	for examining whether the high C cycling resilience observed following FASET's
199	moderate disturbance can be reproduced in modeling experiments.
200	

201 Parameters and optimization

202	Biome-BGC was subjected to a pre-experiment optimization exercise, with the
203	goal of algorithmically adjusting its parameters, within observational ranges, such that
204	model output best matched the pre-experiment carbon stocks and pools of the UMBS
205	forest. The choice of parameters to include was based on three factors: the known
206	sensitivities of Biome-BGC (White et al., 2000); our a priori knowledge of the FASET
207	research site and possible physiological mechanisms underlying forest resilience to
208	disturbance (Gough et al., 2013); and known uncertainties in measured data (C.M. Gough
209	et al., unpublished data). The final set of optimized parameters is shown in Table 2.
210	Constraining against observed C stocks can provide significant improvements in model
211	performance (Carvalhais et al., 2010); in this study, slow-turnover soil C, tree stem C,
212	and NPP were used as constraining variables. For the parameter-space search itself we
213	used a variant of the Simplex algorithm (Nelder and Mead, 1965) that uses a randomly
214	oriented set of basis vectors instead of fixed coordinate axes, as implemented
215	(gsl_multimin_fminimizer_nmsimplex2rand) in Gnu Scientific Library version GSL-1.16
216	(Gough, 2009). For each combination of parameter values selected by the algorithm,
217	Biome-BGC was 'spun up', i.e. its slow soil pools were brought to equilibrium, and the C
218	pools noted above compared to observed soil C values. A linear cost function ranked
219	model performance, imposing a large penalty if a parameter varied more than 2σ from its
220	observed mean.
221	ZELIG was parameterized with species-specific and site-specific parameters
222	representative of the UMBS study site. The silvicultural and biological parameters for
223	each of the 8 temperate tree species required for ZELIG are listed in Table 3, with

species data collected in previous studies (Larocque et al., 2006; Leemans and Prentice,

225	1989; Holm et al., 2013). Soil field capacity (cm) and wilting point (cm) were determined
226	from measurements at the study site (unpublished data). We used allometric equations to
227	estimate aboveground biomass (AGB, Mg C ha ⁻¹), which were generated from on-site
228	harvests at the UMBS site or from general allometric equations typical of northeastern
229	trees (Gough et al., 2008).
230	ED's parameters were used from the versions developed for studying both
231	anthropogenic and natural disturbance across U.S. forests (Hurtt et al., 2002; Fisk et al.,
232	2013). This configuration uses two tree functional types, a cold deciduous and an
233	evergreen. Allometric equations, leaf characteristics, and phenology parameters are
234	described in Hurtt et al. (2002) and summarized in Table 4.
235	For the main modeling experiment, Biome-BGC and ZELIG were driven by
236	identical reanalysis daily climate (NCEP, Kanamitsu et al., 2002), from 1970-2012 data
237	with mean values of air temperature (5.1 $^{\circ}$ C) and precipitation (575 mm yr ⁻¹). In contrast,
238	ED used a climatology (i.e. with no year-to-year variation) comprised of the average
239	monthly diurnal cycle for light, temperature and humidity, and mean monthly
240	precipitation from the slightly warmer (mean 6.5 °C) North American Regional
241	Reanalysis for 1979-2010 (NARR, 2013). We recognize that using different climatic
242	inputs is not ideal, but Biome-BGC and ZELIG both took steps that made their results
243	comparable to those of ED. For Biome-BGC, we used ensembling (Thornton et al., 2002)
244	to characterize the mean climate and effect of interannual climate variability on model
245	outputs, reporting model outputs as means \pm standard deviation computed by running the
246	model starting at each successive year in the climate data. For ZELIG, each year the
247	model stochastically generated new monthly temperature and precipitation, based on the

range provided by the NCEP data, thus also diminishing the effect of year-to-year

variability in the input data. In summary, all model results are reported based on mean

250 climatic conditions, not exact year-to-year changes.

251

252 Modeling experiment

253 As far as possible, we used the same experimental protocol with each of the three 254 models. The models were spun up, i.e. brought to a steady state with a mature forest, and 255 then the entire site was clear-cut, with all trees removed, i.e. harvested and the biomass 256 taken away. This approximates the known stand-replacing disturbances of the early 20th 257 century (Gough et al., 2007) in the UMBS forest. The models then allowed the forest to 258 recover over 90 years before imposing 13-14% harvests of basal area (ED and ZELIG) 259 and biomass (Biome-BGC) in 2008, 2009, and 2010. This approach was used, as opposed 260 to a single $\sim 40\%$ cut in 2008, to better mimic the slow death of girdled trees observed 261 over 2-3 years in the FASET study, as lagged mortality has been shown to exert strong 262 influence on modeling of forest disturbances (Dietze and Matthes, 2014). None of the 263 models allowed for tree girdling, and we used harvests as a second-best alternative; under 264 this protocol, the models remove tree stems while allowing leaves and fine litter to decay 265 on-site. This was consistent with our observations that girdled trees in FASET did not 266 senesce at once and remained standing for multiple years without significantly decaying 267 (Gough et al., 2013).

As ZELIG is an individual-based, species-specific forest demographic model, we had the ability to more precisely replicate the FASET experiment by only harvesting aspen and birch trees in the forest simulator. This allowed the remaining species to

271	continue growing, starting from their trajectories prior to the harvest but subject to less
272	competition due to the removal of aspen and birch trees. Prior to beginning the girdling
273	experiment, early-successional aspen and birch accounted for 49% of the basal area in
274	ZELIG (versus 38% in the FASET study site), and these species were preferentially
275	removed to match the 13-14% annual harvests used by the two other models. Although
276	ED also tracks the dynamics of individual trees, the configuration used here was limited
277	to two tree functional types (cf. Table 4). This precluded species specific girdling;
278	instead, 13-14% of the basal area across all individuals was harvested annually for the 3-
279	year period.
280	The disturbances occurred on May 1 in all models, replicating the timing of the
281	girdling treatment just prior to spring leaf-out (Gough et al., 2013). We examined four
282	primary model outputs at an annual resolution: NPP (Mg C ha ⁻¹ yr ⁻¹), NEP (Mg C ha ⁻¹ yr ⁻¹)
283	¹), maximum LAI (unitless), and aboveground biomass (Mg C ha ⁻¹), comparing them to
284	observed data for 0 to 4 years after disturbance. We particularly focused on the models'
285	structure and flux dynamics, i.e. whether they could replicate the relative changes
286	observed in FASET.
287	

288 Results

Summarizing the models' absolute performance provides a useful context for
evaluating their relative changes dicussed below. Pretreatment (i.e., control plots in 20078) aboveground biomass and LAI were 81.2±25.4 Mg C ha⁻¹ and 4.3±1.3, respectively.
The models' comparable values ranged from 51 (Biome-BGC) to 101 (ED) to 109
(ZELIG) Mg C ha⁻¹, for biomass, and 1.5 to 4.9 to 6.4 for LAI, respectively. Biome-

294	BGC's forest, in other words, was significantly smaller than the observed data; ZELIG's
295	slightly larger; and that simulated by ED roughly comparable. Observed pretreatment C
296	fluxes were 6.6 and 2.2 Mg C ha ⁻¹ yr ⁻¹ for NPP and NEP, respectively. Control forest
297	NPP values of both Biome-BGC and ZELIG were low (2.6 and 3.7 Mg C ha ⁻¹ yr ⁻¹
298	respectively), while ED was 8.2 Mg C ha ⁻¹ yr ⁻¹ . ZELIG was very close (2.1 Mg C ha ⁻¹ yr ⁻¹
299	¹) to the observed NEP value, with ED and Biome-BGC much smaller (1.4 and 0.3 Mg C
300	ha ⁻¹ yr ⁻¹ respectively). In summary, pretreatment carbon stocks and fluxes varied
301	significantly among the models, with Biome-BGC consistently low-a smaller forest
302	producing and sequestering less C. The other two models varied in their fidelity to
303	observations, with only ED able to achieve observed NPP, while ZELIG was closest to
304	overall C balance.
305	Aboveground biomass declined by 35-36% between 2006 and 2010 in the FASET
306	experiment. The models tracked this well (Figure 2a), although the decline occurred
307	more slowly because of the protocol used in this modeling experiment (i.e., three
308	successive years of 13-14% cut instead of a single large girdling event). Leaf area index
309	was less well reproduced: ED and ZELIG came close to capturing the magnitude of the
310	observed decline (-30% and 33%, respectively, compared to -37 to -44% observed), but
311	not the observed rebound of LAI by 2011 (Figure 2b). Leaf area in Biome-BGC, in
312	contrast, captured the timing and rebound of observed LAI, but not its magnitude, as LAI
313	only declined by 13% in the model.
314	None of the models fully captured the main C flux dynamics observed in FASET.
315	Observed net primary production did not significantly differ between treatment and
316	control plots (Figure 1d), but the models all exhibited NPP declines, by up to 3%

317	(Biome-BGC), 10% (ED), and 14% (ZELIG). All models' treatment NPP had, however,
318	recovered to control levels by 2012 (Figure 2d). Net ecosystem production was also
319	unchanged in the observations, while Biome-BGC NEP declined by 23-27% (Figure 2c).
320	ED and ZELIG recorded even larger drops, of 79% and 43% respectively, although NEP
321	had, like NPP, recovered to control levels four year following disturbance in all models.
322	The models' skill-i.e., how well they replicated both the magnitude and timing of
323	all observed variables (AGB, LAI, NPP, NEP)-is summarized in Figure 3, a Taylor plot
324	(Taylor, 2001) that is useful for summarizing both multiple aspects of complex models
325	and relative skill. Here, all models exhibited low correlation (0.04-0.34) with
326	observations, high root-mean-square difference (10-20%) between simulated and
327	observed values, and high standard deviation, implying overall low model skill.
328	In ZELIG, aspen and birch exhibited low to moderate resilience (i.e. full recovery
329	to pretreatment basal area was not achieved) following moderate forest disturbance. The
330	model also predicted which species thrived or declined post-disturbance (Figure 4). Of
331	the two treatment species that were girdled, aspen showed a stronger resilience and
332	recovered to 71% of pretreatment basal area after four years, increasing by $3.1 \text{ m}^2 \text{ ha}^{-1}$. In
333	contrast, birch remained at post-treatment basal area over the next 60 years, increasing by
334	only 0.2 m ² ha ⁻¹ . The ZELIG forest became dominated by red oak (Figure 4), with that
335	species' basal area increasing nearly two-fold, followed by sugar maple and white pine,
336	which increased by 72% and 6% respectively. Thirty years after disturbance, the total
337	basal area as predicted by ZELIG was 33.6 versus 32.7 m ² ha ⁻¹ pretreatment, and
338	recovery of basal area (a proxy for recovery of biomass) was achieved, even though

339 ZELIG failed to capture the observed high resilience in C fluxes during the first four340 years after disturbance.

341 Similarly, the reduction in number of individuals in ED resulted in a direct
342 reduction in LAI, due to the strict allometric relationships used. Because NPP and NEP
343 are so closely tied to LAI in ED, this resulted in low resistance to the disturbance event.
344

345 Discussion

346 Relatively few previous studies have examined how well models can simulate 347 non-catastrophic forest disturbance. Peters et al. (2013) used the PnET-CN model to 348 examine how disturbance type, intensity, and frequency influenced forest NPP for forest 349 stands across the upper Midwest, and found that increasing intensity, similar to FASET's 350 finding, had no effect for deciduous species, but did decrease evergreen NPP. This agrees 351 with Biome-BGC's behavior, in which broadleaf deciduous trees (such as simulated here) 352 are less sensitive to moderate disturbance than are every every conifers (Thornton et al., 353 2002). Other studies looking at how disturbance intensity affects forest dynamics have generally focused on timber harvesting (Peng et al., 2002; Rolff and Ågren, 1999). 354

355

356 Model mechanisms and behaviors

357 Gough et al. (2013) proposed several mechanisms supporting sustained C uptake 358 and storage (in particular the fluxes NPP and NEP) after the FASET disturbance:

359 enhancement of canopy light use efficiency, maintenance of light absorption as later

360 successional species take advantage of increased light availability, and redistribution of N

361 from senescent to early successional trees (Nave et al., 2011). The three models used in

362	this study are highly variable in their assumptions, parameters, and processes, and it is
363	instructive to understand how and why each had difficulty reproducing the FASET results
364	with respect to these proposed mechanisms.
365	All the models here, along with most others (e.g. Potter et al., 2003), assume a
366	fixed light use efficiency: trees in the model can produce more or less leaf area,
367	intercepting more or less radiation, but that area will produce a fixed amount of
368	photosynthate under particular environmental conditions of light, temperature, etc. In
369	reality trees can produce leaves with different structural, chemical, and photosynthetic
370	characteristics (e.g., Sardans et al., 2012). These changes, integrated across leaves within
371	a forest canopy, would likely result in different post-disturbance biotic and abiotic
372	dynamics; FASET has already shown the assumption of a fixed light use efficiency
373	(LUE) not to be true at the stand level (Gough et al., 2013).
374	Maintenance of canopy light absorption in the FASET forest depends on a
375	structurally heterogeneous canopy so that subdominant trees quickly increase their
376	absorption following the girdling of canopy dominants (Gough et al., 2013). We would
377	have expected, a priori, that ZELIG would be best able to simulate this dynamic, as it
378	models a wide range of competing tree species, both early and late-successional,
379	competing in the same forest (Figure 4). Biome-BGC best maintained NPP and NEP, but
380	for the wrong reason: too-resilient leaf area (Figure 2b), rather than by increasing LUE
381	when LAI declined in the FASET study. We note however that the Biome-BGC
382	phenology submodel was quite accurate (cf. Gough et al., 2010a), a critical first step to

383 accurately simulate stand C dynamics (Richardson et al., 2012).

384	The proximal reason for Biome-BGC's too-strong resilience is that the fraction of
385	photosynthetically active radiation aborbed by the canopy, FPAR, does not diminish
386	change linearly with LAI changes. Radiation transmission and absorption through
387	canopies is a complex, computationally expensive process, and the three models studied
388	here all use a common simplification: Beer's law (Campbell and Norman, 1998), which
389	models it as an exponential decrease downwards through the canopy. Biome-BGC,
390	ZELIG, and ED also all assume a (mostly) equal extinction coefficient, and this implies
391	that the models' FPAR declines theoretically peaked at 3%, 12%, and 8%, respectively
392	(Figure 5), compared to 6% as measured in the field (Gough et al., 2013). The
393	mathematical form of Beer's law means that FPAR declines are smallest at low and high
394	LAI values. For Biome-BGC, with its low-biomass forest, this meant relatively small
395	FPAR declines with disturbance; small to moderate quantities of stored C and N lost to
396	disturbance; and enough stored C resources to fully leaf out the canopy and support
397	photosynthesis over the growing season.
398	ZELIG and ED both matched the observed LAI decline, and reasonably
399	approximated FPAR as well, but exhibited large declines in NPP and NEP for both
400	models. In ZELIG, even with the post-disturbance increase in available light, the
401	remaining subdominant species were not able to quickly increase their growth to make up
402	the difference in NPP loss. This may be due to the inherent growth and life history
403	strategies of these subdominant species, which is accounted for in the species
404	parameterization and initialization of ZELIG (Table 3). Only one species, red oak,
405	recovered quickly (Figure 4), while the remaining dominant species and subdominant
406	species could not contribute to an increase in NPP and NEP. Based on the current model

407	structure of ZELIG, leaf production and leaf loss are tightly linked with NPP and NEP;
408	therefore the decline in LAI corresponded to a resulting decline in C fluxes.
409	In a separate study, ZELIG-TROP, a modified version of ZELIG that simulates
410	tropical forests, was successful at replicating a non-significant change in NPP as a result
411	of gradual, less extensive tree mortality (Holm et al., 2014). That study used a continual
412	low-level elevated mortality rate as a treatment, i.e. doubling annual background
413	mortality rate, and ZELIG-TROP predicted highly resilient NPP. However, following a
414	one-time dramatic disturbance event (removing 20% of basal area) NPP also declined,
415	matching the modeled results seen here. Thus the ZELIG results are characteristic of the
416	model and not dependent on the particular forest type, soils, or climate of the FASET
417	experiment.
418	In ED, despite the increase in light availability following disturbance, the
419	remaining undisturbed trees were not able to respond sufficiently to offset NPP loss. This
420	may be in part to the limited number of plant functional types used here not representing
421	the competition of early and late successional species. Additionally, ED's scaling of
422	individual trees to stand dynamics does not maintain the full level of canopy complexity,
423	which may be required for resilience to a disturbance of this type.
424	Among the models tested here, nitrogen redistribution and limitation was only
425	possible in Biome-BGC, as ZELIG lacks an N cycle, and ED's integrated N cycle was
426	not parameterized or enabled in this study. Biome-BGC's integrated N cycle
427	encompasses N fixation, deposition, and leaching, plant growth, and microbial
428	decomposition, and should, in theory, constrain C uptake in many circumstances
429	(Thornton et al., 2007). Such an effect was not noticeable here, however, as equal

430 percentages of C and N were removed in the Biome-BGC disturbances (data not shown);

431 this implies leaching/loss, i.e. a lack of N conservation as opposed to what was observed

432 in FASET (Nave et al., 2011). This may also partly be an artifact, as all models used stem

433 biomass removals to simulate the real-world girdling (although in Biome-BGC leaves

434 were transferred to the litter pool, providing some N reallocation). We speculate,

435 however, that excessive N limitation was a factor in the model's inability to match the C

436 stock and flux values of the UMBS forest.

437 In summary, the biological mechanisms proposed (Gough et al., 2013) to explain 438 the carbon-cycle resilience of a mid-successional forest to disturbance are ones that most 439 models either do not simulate (integrated C and N cycles, changing light use efficiency) 440 or do so only crudely (canopy structure, heterotrophic respiration). At fine spatial scales, 441 factors such as canopy structure can be simulated, but the computational demands are 442 large and thus impractical for larger-scale models (Caspersen et al., 2011), consideration 443 that inspired the development of models such as ED (Moorcroft et al., 2001). Similarly, 444 how to translate the N-recycling microbial dynamics into ecosystem- to global-scale 445 models is an area of intense research (Wieder et al., 2013), as most models (including 446 those tested here) use a few conceptual soil pools following simple first-order kinetics. C-447 N integration inside such models is increasingly common (Zaehle et al., 2014; Thornton 448 et al., 2007), enabling N redistribution and limitation dynamics, and should improve 449 future simulations of moderate disturbances.

450

451 Conclusions

452	The FASET results were unexpected and intriguing (Nave et al., 2011; Gough et
453	al., 2013; Hardiman et al., 2013). How well can current forest models simulate such
454	moderate, i.e. not stand-replacing, disturbances? Not all disturbances, even of the same
455	severity, equally affect biogeochemical processes that support recovery-for example,
456	slow versus immediate tree death have very different consequences (Franklin et al.,
457	1987). Our results suggest that most ecosystem models, developed to simulate processes
458	following stand-replacing disturbances, will not simulate gradual death scenarios well
459	(McDowell et al., 2013), specifically nonlinear or threshold responses of the carbon cycle
460	in disturbance intensity (Stuart-Haëntjens et al., 2014) over short timescales. Their skill
461	over longer (decadal) periods remains an open question. This is particularly important as
462	the moderate disturbances associated with slow tree death (insect outbreaks, fungal
463	pathogens) are on the rise worldwide (Allen et al., 2010) and in aging U.S. forests. It is
464	thus increasingly important to confront models with non-catastrophic disturbance
465	scenarios.
166	

467 Acknowledgements

468 BBL and VLB were supported by the Office of Science of the U.S. Department of

469 Energy, as part of the Terrestrial Ecosystem Sciences Program. JAH was supported by

470 Jeffrey Chambers for part of this work. CMG and FASET were supported by the Climate

471 and Environmental Sciences Division, Office of Science, U.S. Department of Energy

472 (DOE) [Award No. DE-SC0006708]. We acknowledge the University of Michigan

473 Biological Station for infrastructure and logistics support, and are grateful for the

474 insightful comments of two anonymous referees.

References

477	Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N. G.,
478	Vennetier, M., Kitzberger, T., Ringling, A., Breshears, D. D., Hogg, E. H.,
479	Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, JH.,
480	Allard, G., Running, S. W., Semerci, A., and Cobb, N.: A global overview of
481	drought and heat-induced tree mortality reveals emerging climate change risks for
482	forests, Forest Ecol. Manage., 259, 660-684, 10.1016/j.foreco.2009.09.001, 2010.
483	Amiro, B. D., Barr, A. G., Barr, J. G., Black, T. A., Bracho, R., Brown, M., Chen, J. M.,
484	Clark, K. L., Davis, K. J., Desai, A. R., Dore, S., Engel, V., Fuentes, J. D.,
485	Goldstein, A. H., Goulden, M. L., Kolb, T. E., Lavigne, M. B., Law, B. E.,
486	Margolis, H. A., Martin, T. A., McCaughey, J. H., Misson, L., Montes-Helu, M.
487	C., Noormets, A., Randerson, J. T., Starr, G., and Xiao, J.: Ecosystem carbon
488	dioxide fluxes after disturbance in forests of North America, J. Geophys. Res
489	Biogeosci., 115, G00K02, <u>10.1029/2010JG001390</u> , 2010.
490	Birdsey, R. A., Pregitzer, K. S., and Lucier, A.: Forest carbon management in the United
491	States: 1600-2100, Journal of Environmental Quality, 35, 1461-1469,
492	10.2134/jeq2005.0162, 2006.
493	Bonan, G. B., and Levis, S.: Quantifying carbon-nitrogen feedbacks in the Community
494	Land Model (CLM4), Geophys. Res. Lett., 37, L07401, 10.1029/2010GL042430,
495	2010.
496	Bond-Lamberty, B., Peckham, S. D., Ahl, D. E., and Gower, S. T.: The dominance of fire
497	in determining carbon balance of the central Canadian boreal forest, Nature, 450,

- 498 89-92, <u>10.1038/nature06272</u>, 2007.
- Botkin, D. B., Janak, J. F., and Wallis, J. R.: Rationale, limitations and assumptions of a
 northeastern forest growth simulator, IBM Journal of Research and Development,
- 501 16, 101-116, 1972.
- 502 Campbell, G. S., and Norman, J. M.: An Introduction to Environmental Biophysics,
 503 Springer-Verlag, New York, 286 pp., 1998.
- 504 Carvalhais, N., Reichstein, M., Ciais, P., Collatz, G. J., Mahecha, M. D., Montagnani, L.,
- 505 Papale, D., Rambal, S., and Seixas, J.: Identification of vegetation and soil carbon
- 506 pools out of equilibrium in a process model via eddy covariance and biometric
- 507 constraints, Global Change Biol., 16, 2813-2829, 10.1111/j.1365-
- 508 2486.2010.02173.x, 2010.
- 509 Caspersen, J. P., Pacala, S. W., Jenkins, J. C., Hurtt, G. C., Moorcroft, P. R., and Birdsey,

510 R. A.: Contributions of land-use history to carbon accumulation in U.S. forests,

511 Science, 290, 1148-1151, 10.1126/science.290.5494.1148, 2000.

- 512 Caspersen, J. P., Vanderwel, M. C., Cole, W. G., and Purves, D.: How stand productivity
- 513 results from size- and competition-dependent growth and mortality, PLOS ONE,

514 6, e28660, 10.1371/journal.pone.0028660, 2011.

- 515 Dietze, M. C., and Matthes, J. H.: A general ecophysiological framework for modelling 516 the impact of pests and pathogens on forest ecosystems., Ecology Letters, 17,
- 517 1418-1426, 10.1111/ele.12345, 2014.
- 518 Fisk, J. P., Hurtt, G. C., Chambers, J. Q., Zeng, H., Dolan, K. A., and Negrón-Juárez, R.
- 519 I.: The impacts of tropical cyclones on the net carbon balance of eastern US
- 520 forests (1851–2000), Environ. Res. Lett., 8, 045017, 10.1088/1748-

- 521 9326/8/4/045017, 2013.
- Franklin, J. F., Shugart, H. H., and Harmon, M. E.: Tree death as an ecological process:
 the causes, consequences and variability of tree mortality, BioScience, 37, 550556, 10.2307/1310665, 1987.
- Frelich, L. E., and Reich, P. B.: Spatial patterns and succession in a Minnesota southernboreal forest, Ecological Monographs, 65, 325-346, 1995.
- 527 Goetz, S. J., Bond-Lamberty, B., Harmon, M. E., Hicke, J. A., Houghton, R. A.,
- 528 Kasischke, E. S., Law, B. E., McNulty, S. G., Meddens, A. J. H., Mildrexler, D.,
- 529 O'Halloran, T. L., and Pfeifer, E. M.: Observations and assessment of forest
- 530 carbon recovery following disturbance in North America, J. Geophys. Res.-

531 Biogeosci., 117, G02022, 10.1029/2011JG001733, 2012.

- 532 Gough, C. M., Vogel, C. S., Kazanski, C., Nagel, L., Flower, C. E., and Curtis, P. S.:
- 533 Coarse woody debris and the carbon balance of a north temperate forest, Forest 534 Ecol. Manage., 244, 60-67, 10.1016/j.foreco.2007.03.039, 2007.
- 535 Gough, C. M., Vogel, C. S., Schmid, H. P., and Curtis, P. S.: Multi-year convergence of
- 536 biometric and meteorological estimates of forest carbon storage, Agric. Forest
- 537 Meteorol., 148, 158-170, 10.1016/j.agrformet.2007.08.004, 2008.
- 538 Gough, C. M., Flower, C. E., Vogel, C. S., Dragoni, D., and Curtis, P. S.: Whole-
- 539 ecosystem labile carbon production in a north temperate deciduous forest, Agric.
 540 Forest Meteorol., 149, 1531-1540, 10.1016/j.agrformet.2009.04.006, 2009.
- 541 Gough, C. M., Flower, C. E., Vogel, C. S., and Curtis, P. S.: Phenological and
- 542 Temperature Controls on the Temporal Non-Structural Carbohydrate Dynamics of
- 543 Populus grandidentata and Quercus rubra, Forests, 1, 65-81, 10.3390/f1010065,

545	Gough, C. M., Vogel, C. S., Hardiman, B., and Curtis, P. S.: Wood net primary
546	production resilience in an unmanaged forest transitioning from early to middle
547	succession, Forest Ecol. Manage., 260, 36-41, 10.1016/j.foreco.2010.03.027
548	2010b.
549	Gough, C. M., Hardiman, B., Nave, L. E., Bohrer, G., Maurer, K. D., Vogel, C. S.,
550	Nadelhoffer, K. J., and Curtis, P. S.: Sustained carbon uptake and storage
551	following moderate disturbance in a Great Lakes forest, Ecol. Appl., 23, 1202-
552	1215, 10.1890/12-1554.1, 2013.
553	Granier, A., Breda, N., Longdoz, B., Gross, P., and Ngao, J.: Ten years of fluxes and
554	stand growth in a young beech forest at Hesse, north-eastern France, Ann. For.
555	Sci., 65, art. no. 704, 10.1051/forest:2008052, 2008.
556	Hardiman, B., Bohrer, G., Gough, C. M., Vogel, C. S., and Curtis, P. S.: The role of
557	canopy structural complexity in wood net primary production of a maturing
558	northern deciduous forest Ecology, 92, 1818-1827, 10.1890/10-2192.1, 2011.
559	Hardiman, B., Gough, C. M., Halperin, A., Hofmeister, K. L., Nave, L. E., Bohrer, G.,
560	and Curtis, P. S.: Maintaining high rates of carbon storage in old forests: A
561	mechanism linking canopy structure to forest function, Forest Ecol. Manage., 298,
562	111-119, 10.1016/j.foreco.2013.02.031, 2013.
563	He, L., Chen, J. M., Pan, Y., Birdsey, R. A., and Kattge, J.: Relationships between net
564	primary productivity and forest stand age in U.S. forests, Glob. Biogeochem.
565	Cycles, 26, GB3009, 10.1029/2010GB003942, 2012.

566 Hicke, J. A., Allen, C. D., Desai, A. R., Dietze, M. C., Hall, R. J., Hogg, E. H., Kashian,

567	D. M., Moore, D. J. P., Raffa, K. F., Sturrock, R. N., and Vogelmann, J. E.:
568	Effects of biotic disturbances on forest carbon cycling in the United States and
569	Canada, Global Change Biol., 18, 7-34, 10.1111/j.1365-2486.2011.02543.x, 2011.
570	Holm, J. A., Shugart, H. H., Van Bloem, S. J., and Larocque, G. R.: Gap model
571	development, validation, and application to succession of secondary subtropical
572	dry forests of Puerto Rico, Ecol. Model., 233, 70-82,
573	10.1016/j.ecolmodel.2012.03.014, 2012.
574	Holm, J. A., Thompson, J. R., McShea, W. J., and Bourg, N. A.: Interactive effects of
575	chronic deer browsing and canopy gap disturbance on forest successional
576	dynamics, Ecosphere, 4, art. 44, 10.1890/es13-00223.1, 2013.
577	Holm, J. A., Chambers, J. Q., Collins, W. D., and Higuchi, N.: Forest response to
578	increased disturbance in the Central Amazon and comparison to Western Amazon
579	forests, Biogeosciences Discussion, 11, 7721-7773, 10.5194/bgd-11-7721-2014,
580	2014.
581	Hurtt, G. C., Pacala, S. W., Moorcroft, P. R., Caspersen, J. P., Shevliakova, E.,
582	Houghton, R. A., and Moore III, B.: Projecting the future of the U.S. carbon sink,
583	Proc. Nat. Acad. Sci., 99, 1389-1394, 10.1073/pnas.012249999, 2002.
584	Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, SK., Hnilo, J. J., Fiorino, M., and
585	Potter, G. L.: NCEP-DOE AMIP-II Reanalysis (R-2), Bulletin of the American
586	Meteorological Society, 83, 1631-1643, 10.1175/BAMS-83-11-1631, 2002.
587	Keenan, T. F., Davidson, E. A., Moffat, A. M., Munger, J. W., and Richardson, A. D.:
588	Using model-data fusion to interpret past trends, and quantify uncertainties in
589	future projections, of terrestrial ecosystem carbon cycling, Global Change Biol.,

590	18, 2555-2569, 10.1111/j.1365-2486.2012.02684.x, 2012.
591	Kimball, J. S., Thornton, P. E., White, M. A., and Running, S. W.: Simulating forest
592	productivity and surface-atmosphere carbon exchange in the BOREAS study
593	region, Tree Physiol., 17, 589-599, 1997.
594	Knohl, A., Kolle, O., Minayeva, T. Y., Milyukova, I. M., Vygodskaya, N. N., Foken, T.,
595	and Schulze, ED.: Carbon dioxide exchange of a Russian boreal forest after
596	disturbance by wind throw, Global Change Biol., 8, 231-246, 2002.
597	Landsberg, J. J., and Waring, R. H.: A generalised model of forest productivity using
598	simplified concepts of radiation-use efficiency, carbon balance and partitioning,
599	Forest Ecol. Manage., 95, 209-228, 10.1016/S0378-1127(97)00026-1, 1997.
600	Larocque, G. R., Archambault, L., and Delisle, C.: Modelling forest succession in two
601	southeastern Canadian mixedwood ecosystem types using the ZELIG model,
602	Ecol. Model., 199, 350-362, 10.1016/j.ecolmodel.2006.05.010, 2006.
603	Law, B. E., Sun, O. J., Campbell, J. S., Van Tuyl, S., and Thornton, P. E.: Changes in
604	carbon storage and fluxes in a chronosequence of ponderosa pine, Global Change
605	Biol., 9, 510-524, 2003.
606	Leemans, R., and Prentice, I. C.: FORSKA: A general forest succession model,
607	Meddelanden, Vaxtbiologiska institutionen, Uppsala, Sweden, 2, 1-145, 1989.
608	Li, Z., Apps, M. J., Kurz, W. A., and Banfield, E.: Temporal changes of forest net
609	primary production and net ecosystem production in west central Canada
610	associated with natural and anthropogenic disturbances, Can. J. For. Res., 33,
611	2340-2351, 10.1139/x03-168, 2003.
612	Luyssaert, S., Schulze, ED., Börner, A., Knohl, A., Hessenmöller, D., Law, B. E., Ciais,

613	P., and Grace, J.: Old-growth forests as global carbon sinks, Nature, 455, 213-
614	215, 10.1038/nature07276, 2008.
615	McDowell, N. G., Fisher, R. A., Xu, C., Domec, JC., Höltta, T., Mackay, D. S., Sperry,
616	J. S., Boutz, A., Dickman, L. T., Gehres, N., Limousin, J. M., Macalady, A. K.,
617	Martínez-Vilalta, J., Mencuccini, M., Plaut, J. A., Ogée, J., Pangle, R. E., Rasse,
618	D. P., Ryan, M. G., Sevanto, S., Waring, R. H., Williams, A. P., Yepez, E. A., and
619	Pockman, W. T.: Evaluating theories of drought-induced vegetation mortality
620	using a multimodel-experiment framework, New Phytol., 200, 304-321,
621	10.1111/nph.12465, 2013.
622	Medvigy, D., Wofsy, S. C., Munger, J. W., Hollinger, D. Y., and Moorcroft, P. R.:
623	Mechanistic scaling of ecosystem function and dynamics in space and time:
624	Ecosystem Demography model version 2, J. Geophys. ResBiogeosci., 114,
625	G01002, 10.1029/2008JG000812, 2009.
626	Medvigy, D., and Moorcroft, P. R.: Predicting ecosystem dynamics at regional scales: an
627	evaluation of a terrestrial biosphere model for the forests of northeastern North
628	America, Philosophical Transactions of the Royal Society of London Series B,
629	367, 222-235, 10.1098/rstb.2011.0253, 2012.
630	Moorcroft, P. R., Hurtt, G. C., and Pacala, S. W.: A method for scaling vegetation
631	dynamics: the Ecosystem Demography model (ED), Ecological Monographs, 71,
632	557-586, 10.1890/0012-9615(2001)071[0557:AMFSVD]2.0.CO;2, 2001.
633	Nave, L. E., Gough, C. M., Maurer, K. D., Bohrer, G., Le Moine, J., Munoz, A. B.,
634	Nadelhoffer, K. J., Sparks, J. P., Strahm, B. D., Vogel, C. S., and Curtis, P. S.:
635	Disturbance and the resilience of coupled carbon and nitrogen cycling in a north

- 636 temperate forest, J. Geophys. Res.-Biogeosci., 116, G04016,
- 637 10.1029/2011JG001758, 2011.
- Nelder, J. A., and Mead, R.: A simplex method for function minimization, Computer
 Journal, 7, 308-313, doi:10.1093/comjnl/7.4.308, 1965.
- 640 Pan, Y., Chen, J. M., Birdsey, R. A., McCullough, K., He, L., and Deng, F.: Age
- structure and disturbance legacy of North American forests, Biogeosciences, 8,
 715-732, 10.5194/bg-8-715-2011, 2011.
- Parton, W. J., Schimel, D. S., Cole, C. V., and Ojima, D. S.: Analysis of factors
- 644 controlling soil organic matter levels in Great Plains grasslands, Soil Science
- 645 Society of America Journal, 51, 1173-1179, 1987.
- Peng, C., Jiang, H., Apps, M. J., and Zhang, Y.: Effects of harvesting regimes on carbon
 and nitrogen dynamics of boreal forests in central Canada: a process model
- 648 simulation, Ecol. Model., 155, 177-189, 10.1016/S0304-3800(02)00134-5, 2002.
- Peters, E. B., Wythers, K. R., Bradford, J. B., and Reich, P. B.: Influence of disturbance
 on temperate forest productivity, Ecosystems, 16, 95-110, 10.1007/s10021-0129599-y, 2013.
- 652 Pietsch, S. A., Hasenauer, H., Kucera, J., and Cermák, J.: Modeling effects of
- hydrological changes on the carbon and nitrogen balance of oaks in floodplains,
 Tree Physiol., 23, 735-746, 2003.
- 655 Potter, C. S., Klooster, S., Myneni, R. B., Genovese, V., Tan, P.-N., and Kumar, V.:
- 656 Continental-scale comparisons of terrestrial carbon sinks estimated from satellite
- data and ecosystem modeling 1982-1998, Global Planet. Change, 39, 201-213,
- 658 2003.

659	Pregitzer, K. S., and Euskirchen, E. S.: Carbon cycling and storage in world forests:
660	biome patterns relating to forest age, Global Change Biol., 10, 2052-2077,

661 10.1111/j.1365-2486.2004.00866.x, 2004.

- 662 Radeloff, V. C., Nelson, E., Plantinga, A. J., Lewis, D. J., Helmers, D., Lawler, J. J.,
- 663 Withey, J. C., Beaudry, F., Martinuzzi, S., Butsic, V., Lonsdorf, E., White, D. C.,
- and Polasky, S.: Economic-based projections of future land use in the
- 665 conterminous United States under alternative policy scenarios, Ecol. Appl., 22,
 666 1036-1049, 2012.
- Raulier, F.: Canopy photosynthesis of sugar maple (*Acer saccharum*): comparing big-leaf
 and multilayer extrapolations of leaf-level measurements., Tree Physiol., 19, 407420, 1999.
- 670 Richardson, A. D., Anderson, R. S., Arain, M. A., Barr, A. G., Bohrer, G., Chen, G.,

671 Chen, J. M., Ciais, P., Davis, K. J., Desai, A. R., Dietze, M. C., Dragoni, D.,

- 672 Garrity, S. R., Gough, C. M., Grant, R. F., Hollinger, D. Y., Margolis, H. A.,
- 673 McCaughey, J. H., Migliavacca, M., Monson, R. K., Munger, J. W., Poulter, B.,
- 674 Raczka, B. M., Ricciuto, D. M., Sahoo, A. K., Schaefer, K., Tian, H.-Q., Vargas,
- 675 R., Verbeeck, H., Xiao, J., and Xue, Y.: Terrestrial biosphere models need better
- 676 representation of vegetation phenology: results from the North American Carbon
- 677 Program Site Synthesis, Global Change Biol., 18, 566-584, 10.1111/j.1365-
- 678 2486.2011.02562.x, 2012.
- 679 Rolff, C., and Ågren, G. I.: Predicting effects of different harvesting intensities with a

model of nitrogen limited forest growth, Ecol. Model., 118, 193-211,

681 10.1016/S0304-3800(99)00043-5, 1999.

682	Running, S. W., and Hunt, R. E.: Generalization of a forest ecosystem process model for
683	other biomes, BIOME-BGC, and an application for global-scale models, in:
684	Scaling Physiologic Processes: Leaf to Globe, edited by: Ehleringer, J. R., and
685	Field, C. B., Academic Press, San Diego, CA, 141-158, 1993.
686	Sardans, J., Rivas-Ubach, A., and Peñuelas, J.: The C:N:P stoichiometry of organisms
687	and ecosystems in a changing world: A review and perspectives, Perspectives in
688	Plant Ecology and Evolution, 14, 33-47, 10.1016/j.ppees.2011.08.002, 2012.
689	Shugart, H. H., and West, D. C.: Development of an Appalachian deciduous forest
690	succession model and its application to assessment of the impact of the chestnut
691	blight, Journal of Environmental Management, 5, 161-179, 1977.
692	Stuart-Haëntjens, E. J., Curtis, P. S., Fahey, R. T., Vogel, C. S., and Gough, C. M.: Forest
693	net primary production exhibits a threshold response to increasing disturbance
694	severity Ecosystems, submitted, 2014.
695	Tatarinov, F. A., and Cienciala, E.: Long-term simulation of the effect of climate changes
696	on the growth of main Central-European forest tree species, Ecol. Model., 220,
697	3081-3088, 10.1016/j.ecolmodel.2009.01.029, 2009.
698	Taylor, A. R., Chen, H. Y. H., and VanDamme, L.: A review of forest succession models
699	and their suitability for forest management planning, Forest Science, 55, 23-36,
700	2009.
701	Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram,
702	J. Geophys. Res., 106, 7183-7192, 2001.
703	Thornton, P. E., Law, B. E., Gholz, H. L., Clark, K. L., Falge, E., Ellsworth, D. S.,
704	Goldstein, A. H., Monson, R. K., Hollinger, D. Y., Falk, M., Chen, J., and Sparks,

705	J. P.: Modeling and measuring the effects of disturbance history and climate on
706	carbon and water budgets in evergreen needleleaf forests, Agric. Forest Meteorol.,
707	113, 185-222, <u>10.1016/S0168-1923(02)00108-9</u> , 2002.
708	Thornton, P. E., Lamarque, JF., Rosenbloom, N. A., and Mahowald, N. M.: Influence of
709	carbon-nitrogen cycle coupling on land model response to CO2 fertilization and
710	climate variability, Glob. Biogeochem. Cycles, 21, Art. No. GB4018,
711	10.1029/2006GB002868, 2007.
712	Urban, D. L.: A Versatile Model to Simulate Forest Pattern: A User's Guide to ZELIG
713	Version 1.0., University of Virginia, Charlottesville, Virginia, 1990.
714	Urban, D. L., Bonan, G. B., Smith, T. M., and Shugart, H. H.: Spatial applications of gap
715	models, Forest Ecol. Manage., 42, 95-110, 10.1016/0378-1127(91)90067-6, 1991.
716	Vanderwel, M. C., Coomes, D. A., and Purves, D.: Quantifying variation in forest
717	disturbance, and its effects on aboveground biomass dynamics, across the eastern
718	United States, Global Change Biol., 19, 1504-1517, 10.1111/gcb.12152, 2013.
719	Warren, J. M., Pötzelsberger, E., Wullschleger, S. D., Thornton, P. E., Hasenauer, H., and
720	Norby, R. J.: Ecohydrologic impact of reduced stomatal conductance in forests
721	exposed to elevated CO2, Ecohydrology, 4, 196-210, 10.1002/eco.173, 2011.
722	Weng, E., Luo, Y., Wang, W., Wang, H., Hayes, D. J., McGuire, A. D., Hastings, A., and
723	Schimel, D. S.: Ecosystem carbon storage capacity as affected by disturbance
724	regimes: A general theoretical model, J. Geophys. ResBiogeosci., 117, G03014,
725	10.1029/2012JG002040, 2012.
726	White, M. A., Thornton, P. E., Running, S. W., and Nemani, R. R.: Parameterization and
727	sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: net primary

728	production controls, Earth Interact., 4, paper no. 3, 1-85, 2000.
729	Wieder, W. R., Bonan, G. B., and Allison, S. D.: Global soil carbon projections are
730	improved by modelling microbial processes, Nature Climate Change, 3, 909-912,
731	10.1038/NCLIMATE1951, 2013.
732	Williams, C. A., Collatz, G. J., Masek, J. G., and Goward, S. N.: Carbon consequences of
733	forest disturbance and recovery across the conterminous United States, Glob.
734	Biogeochem. Cycles, 26, GB1005, 10.1029/2010GB003947, 2012.
735	Wolter, P. T., and White, M. A.: Recent forest cover type transitions and landscape
736	structural changes in northeast Minnesota, USA, Landscape Ecology, 17, 133-
737	155, 2002.
738	Zaehle, S., Medlyn, B. E., De Kauwe, M., Walker, A. P., Dietze, M. C., Hickler, T., Luo,
739	Y., Wang, YP., El-Masri, B., Thornton, P. E., Jain, A. K., Wang, S., Warlind,
740	D., Weng, E., Parton, W. J., Iversen, C. M., Gallet-Budynek, A., McCarthy, H. R.,
741	Finzi, A. C., Hanson, P. J., Prentice, I. C., Oren, R., and Norby, R. J.: Evaluation
742	of 11 terrestrial carbon-nitrogen cycle models against observations from two
743	temperate Free-Air CO2 Enrichment studies, New Phytol., 202, 803-822,
744	10.1111/nph.12697, 2014.
745	Zhao, M., Xiang, W., Peng, C., and Tian, D.: Simulating age-related changes in carbon
746	storage and allocation in a Chinese fir plantation growing in southern China using
747	the 3-PG model, Forest Ecol. Manage., 257, 1520-1531,
748	10.1016/j.foreco.2008.12.025 2009.

Table 1. Comparison of the models used in this study.

	Model						
	Biome-BGC	ZELIG	ED				
Category	Big-leaf	Gap	Gap hybrid				
Timestep	Daily	Monthly	Hourly				
Spatial scale	Indeterminate	400 m ² cells (gaps)	Variable				
Nitrogen cycle?	Yes	No	No				
Soil model	4 pools		8 pools				
Phenology	Calculated based on	Seasonal heat sum					
	soil temperature						
Allocation	Fixed ratios	Fixed ratios	Allometric				
Canopy	Two layers, sun and	Species-specific	PFT-specific				
	shade						
GPP	Enzyme kinetic:	APAR and LUE	Enzyme kinetic:				
	Farquhar, Ball-Berry		Farquhar, Ball-Berry				
Respiration	Q ₁₀ , modified by	Modified by	Arrhenius, modified				
	temperature and	temperature	by temperature and				
	moisture		moisture				
Succession	None	Species-specific	PFT-specific				
Mortality	Fixed rate	Competition driven	From size- and age-				
			structure PDEs				

- 753 **Table 2.** Selected site-specific parameters used by Biome-BGC. Model inputs differ from
- observed because of the optimization procedure used (see Methods).

Parameter	Observed	Model	Units
	value (±se)	value	
Fine root C:N ratio	77	77.0	kg C kg N ⁻¹
Fine root:leaf C allocation	1.18	1.14	Ratio
Fraction of leaf N in Rubisco		0.12	Fraction
Leaf C:N ratio	25±3.4	25.0	kg C kg N^{-1}
Maximum stomatal conductance	0.03	0.0065	m s ⁻¹
Nitrogen deposition	0.00085	0.001	kg N m ⁻² yr ⁻¹
Specific leaf area		19.42	$m^2 kg C^{-1}$
Stem:leaf C allocation	1.16	1.16	Ratio
Whole plant mortality fraction	0.014	0.015	1 yr ⁻¹

- 757 in ZELIG, representing species found in the Upper Great Lakes. Species shown include
- 758 Populus grandidentata (POGR), Betula papyrifera (BEPA), Quercus rubra (QURU),
- 759 Pinus strobus (PIST), Acer saccharum (ACSA), Acer rubrum (ACRU), Populus
- 760 tremuloides (POTR), and Fagus grandifolia (FAGR). All species were assigned a
- 761 probability factor of stress mortality of 0.369, probability factor of natural mortality of
- 762 2.408, zone of seed influence of 200. Full explanations for all parameters can be found in
- the original ZELIG paper (Urban, 1990).

	Age	DBH	HT		DegD	DegD					
Species				G			L	D	Ν	RSER	Stock
	max	max	max		min	max					
POGR	150	70	30	42	800	3169	4	5	2	0.82	0.8
PIST	450	150	37	68	800	3183	3	2	3	0.90	0.7
QURU	400	100	30	92	800	4903	2	3	2	0.44	0.7
ACRU	150	100	30	244	800	6986	2	2	1	0.56	0.8
BEPA	140	100	25	160	800	2500	4	3	3	0.33	0.2
FAGR	366	80	30	100	800	5894	2	2	2	0.44	0.5
ACSA	400	150	40.1	89	800	3200	1	2	2	0.30	0.4
POTR	150	75	37	158	889	5556	4	3	2	0.50	0.4

764 Key: Age_{max}, maximum age for the species (yr); DBH_{max}, maximum diameter at breast

height (cm); HT_{max}, maximum height (m); G, growth rate scaling coefficient; DegD_{min},

- 766 minimum growing degree-day; DegD_{max}, maximum growing degree-day; Light (L),
- 767 Drought (D), Nutrient (N): light/shade tolerance class, maximum drought tolerance class,

- and soil nutrient tolerance class; RSER, relative seedling establishment rate; Stock,
- 769 regeneration stocking.

- 771 **Table 4.** Allometric and ecological parameters used in the ED model. The two plant
- functional types represent generic cold deciduous hardwood and evergreen needleleaf
- trees, respectively.

Parameter	Cold Deciduous	Evergreen	Units
V _{max}	12.5	12.5	μ mol m ⁻² s ⁻¹
Height computation ¹	$H = 2.34D^{0.64}$	H=1.04D ^{0.94}	m (H) and cm (D)
Max height	35	35	m
Specific leaf area	18.2	5.5	$m^2 kg C^{-1}$
Phenology temperature	10	-	°C
Density-independent	0.014	0.014	1 yr ⁻¹
mortality			

¹Height (H, m) is computed based on DBH (D, cm).

Figure 1. Observed data from FASET treatment and control forests. Panels include (a)

- aboveground biomass (AGB, in Mg C ha⁻¹), (b) leaf area index (LAI, unitless), (c) net
- ecosystem production (NEP, Mg C ha⁻¹), and (d) net primary production (NPP, Mg C ha⁻¹)
- ¹). Vertical shaded area shows approximate time of the girdling treatment described in the
- text. Error bars indicate ± 1 SD based on eight measurement plots (Gough et al., 2013).
- 781 Control and treatment sites had near-identical data in 2006 and 2007, and thus the latter
- 782 (dashed) line is not visible in those years.

785 Figure 2. Model performance in replicating the FASET experiment. Panels include (a)

- aboveground biomass (AGB, in Mg C ha⁻¹), (b) leaf area index (LAI, unitless), (c) net
- reconsistent production (NEP, Mg C ha⁻¹), and (d) net primary production (NPP, Mg C ha⁻¹)
- 788 ¹), expressed on a common normalized scale (relative change between treatment and
- 789 control). Vertical shaded area shows approximate time of the girdling treatment described
- in the text. Vertical lines show May 1 forest harvests imposed in the Biome-BGC, ED,

Figure 3. Taylor diagram (Taylor, 2001) summarizing model skill at predicting all

795 (AGB, LAI, NEP, NPP; cf. Figure 1) observed data, normalized relative to the control

forest. The standard deviation of the simulated data (colored by model) is gauged by the

radial distance from the origin, and can be compared to the observed data (circle on

horizontal axis); model correlation to observations is found by azimuthal position; and

the curves contours show root mean square error (%).

Standard deviation (% change from control)

- 801 Figure 4. Species-specific basal area trajectories simulated by ZELIG, before and after
- 802 the 2008-2010 tree removals mimicking the FASET experiment. Species codes are as in
- 803 **Table 1**.

- 806 Figure 5. Effect of disturbance effect on fraction of photosynthetically active radiation
- 807 absorbed by the canopy (FPAR). Observed line is based on data from Figure 4 in Gough
- 808 et al. (2013). Model lines show implied (i.e. theoretical, based on Beer's law) FPAR
- 809 based on the observed and modeled leaf area index values and a common extinction
- 810 coefficient of k=-0.45, the model mean.

