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Abstract

Based upon the well-understood carbonate system chemistry over global ocean sur-
face (above the wintertime thermocline and shallower than upper 100 m), we investi-
gated potentials of wintertime ocean surface DIC (dissolved inorganic carbon) to rise in
response to the decadal air–sea re-equilibration, and the corresponding anthropogenic5

CO2 accumulation rates. For a reference year 2000, the potentials of wintertime DIC
to rise in response to the rising atmospheric CO2 mole fraction ranged from 0.28 to
0.70 µmol kg−1 ppm−1 (ppm=parts of CO2 per million dry air) over the global open
ocean surface, while the global mean wintertime surface DIC increase rate was close
to 1.0 µmol kg−1 yr−1. The decadal anthropogenic CO2 accumulation rate within the10

surface ocean was estimated at 0.31×1015 g C yr−1 around the reference year 2000,
accounting for a non-negligible component (likely 12 to 14 %) of the recent oceanic sink
for anthropogenic CO2. From 1960s to 2000s, this rate likely increased by 47 % due to
the accelerated atmospheric CO2 rise. However, the ocean surface anthropogenic CO2
accumulation potential under a unit atmospheric CO2 rise may have declined by 16 %15

during the same period.

1 Introduction

Since the beginning of the industrial period in the late 18th century, large quantities
of anthropogenic carbon dioxide (CO2, a greenhouse gas species) were emitted to
the atmosphere, from fossil fuel combustion, cement production, and land use change20

(Le Quéré et al., 2013). Although global oceans have absorbed ∼ 48 % of the total
anthropogenic CO2 emissions (Sabine et al., 2004), and net global carbon uptake by
combined land and ocean carbon reservoirs has increased from 2.4±0.8 Pg C yr−1

(Pg= 1015 grams) in 1960s to 5.0±0.9 Pg C yr−1 in 2000s (Ballantyne et al., 2012),
atmospheric CO2 concentration (xCOair

2 , mole fraction in dry air) rises from a prein-25

dustrial value of 280 ppm (parts per million) to a present day value of 390 ppm
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(WMO/GAW, 2012). Based on the Mauna Loa station data released by NOAA/ESRL at
http://www.esrl.noaa.gov/gmd/ccgg/trends/, the decadal increase rates of atmospheric
CO2 concentration (δxCOair

2 ) also rise from relatively low rates of 0.8±0.4 ppm yr−1 in
1960s and 1.2±0.6 ppm yr−1 in 1970s to moderate rates of 1.6±0.4 ppm yr−1 in 1980s
and 1.5±0.7 ppm yr−1 in 1990s, and to a quite high rate of 1.9±0.4 ppm yr−1 in 2000s.5

Nowadays our understanding of natural carbon sinks and sources for atmospheric
CO2 is still insufficient to derive precise information for closing global carbon budget
and thereby predicting the climate change. Identifying the mechanisms and locations
responsible for the global carbon budget remains a huge challenge (Ballantyne et al.,
2012). The surface ocean uptake of anthropogenic CO2 is just the case.10

The surface ocean, located above the wintertime thermocline and shallower than
upper 100 m, is in direct contact with the atmosphere. It is expected to regain dy-
namic equilibrium with the rising atmospheric CO2 quickly (Revelle and Suess, 1957;
Oeschger et al., 1975; Broecker et al., 1979; Sundquist et al., 1979; Sundquist and
Plummer, 1981; Brewer, 1983; Wallace, 2001), with the mixed layer DIC residence time15

of ∼ 5 years as adopted by Craig (1957) and Bolin and Eriksson (1959). As a result,
a small but solid increase in concentration of dissolved inorganic carbon (DIC) has
been detected in the ocean surface in response to the atmospheric CO2 rise (Winn
et al., 1998; Gruber et al., 2002; Takahashi et al., 2003; Keeling et al., 2004; Bates
et al., 2012).20

This effect, chemical buffering capacity, has been traditionally characterized by Rev-
elle factor (RF), i.e. the ratio of fractional change in seawater partial pressure of CO2
(pCO2) to the fractional change in DIC after re-equilibration (Revelle and Suess, 1957;
Broecker et al., 1979; Sundquist et al., 1979; Li et al., 2001; Zeebe and Wolf-Gladrow,
2001; Denman et al., 2007). In the context of the oceanic mitigation of atmospheric25

CO2 rise, the air–sea re-equilibration induced ocean surface anthropogenic CO2 accu-
mulation (Requ) works to store the anthropogenic CO2 in the ocean surface in decadal
time scales, i.e. twice or several times the global mean residence time of ocean surface
DIC. Based on this well-understood carbonate system chemistry over global ocean sur-
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face, a simple method for estimating Requ under constant total alkalinity (TAlk) field has
been proposed by Sundquist and Plummer (1981). However, they do not finish the as-
sessment due to the insufficient knowledge about TAlk distributions and vertical mixing
within the ocean surface until 1990s.

Recently, using oceanic inorganic carbon measurements from international survey5

efforts and tracer-based separation techniques, the oceanic uptake rate of anthro-
pogenic CO2 has been constrained to 2.2±0.4 Pg C yr−1 in 1990s (Denman et al.,
2007), 2.3±0.6 Pg C yr−1 in 2000s (Khatiwala et al., 2009), and 2.5±0.5 Pg C yr−1 for
the period from 2002 to 2011 (Le Quéré et al., 2013). However, how does Requ con-
tribute to the present atmospheric CO2 rise mitigation? So far this question is still un-10

clear, although we know that the ocean surface anthropogenic CO2 accumulation has
reduced pH and carbonate ion concentrations in the ocean surface (e.g. Caldeira and
Wickett, 2003; Sabine et al., 2004; Doney et al., 2009a; Byrne et al., 2010; Bates et al.,
2012; Feely et al., 2012; Lauvset and Gruber, 2014), leading to ocean acidification.
Based on earlier simplified deduction and limited observation, a sea surface DIC in-15

creasing rate (δDIC) in response to the rising atmospheric CO2 had been suggested
at a level of 1.0 µmol kg−1 yr−1 in the past four decades (e.g. Sundquist et al., 1979;
Brewer, 1983; Winn et al., 1998; Takahashi et al., 2003; Keeling et al., 2004; Bates
et al., 2012). And an increasing rate of the surface ocean carbon pool of ∼ 0.3 Pg C yr−1

has been included in a schematic illustration of the global carbon cycle in 1990s20

(Houghton, 2007), though without any reasoning. If this value is correct, it accounts
for > 10 % of recent oceanic uptake rates of anthropogenic CO2. Unfortunately, it is
invalid to estimate the global Requ using a uniform δDIC (e.g. Brewer et al., 1997; Li
et al., 2001), since sea surface RF varies very much over the global ocean surface
(Sabine et al., 2004).25

In this study, we attempt to examine Requ over the global ocean surface, based on
the recently compiled distribution datasets of global ocean surface pCO2 (Takahashi
et al., 2009), surface TAlk (Key et al., 2004; Lee et al., 2006), and upper mixed layer
depth (MLD) (de Boyer Montégut et al., 2004). Along with the continually measured

11512

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/11509/2014/bgd-11-11509-2014-print.pdf
http://www.biogeosciences-discuss.net/11/11509/2014/bgd-11-11509-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
11, 11509–11532, 2014

Anthropogenic CO2

accumulation within
the ocean surface

W.-D. Zhai and
H.-D. Zhao

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

atmospheric CO2 concentrations at the Mauna Loa station (http://www.esrl.noaa.gov/
gmd/ccgg/trends/), we also attempt to evaluate the global Requ evolution from 1960s to
2000s, so as to assist future predictions of changes in this meaningful component of
oceanic carbon sink.

2 Materials and methods5

2.1 Primary data compilation

The monthly sea surface pCO2, temperature, and salinity have been compiled over
grid boxes of 4◦ (latitude)×5◦ (longitude) by Takahashi et al. (2009) for a reference
year 2000 (Version October 2009). Corresponding TAlk was reconstructed from the
sea surface temperature and salinity in the Takahashi et al. (2009) dataset, using Lee10

et al. (2006) relationships. Monthly MLD data were obtained from de Boyer Montégut
et al. (2004) with horizontal resolution of 2◦×2◦. They were reorganized over the Taka-
hashi et al. (2009) grid boxes. At every grid box, the midwinter month of the annual
maximum MLD was selected for calculation.

As shown in Fig. 1, totally 1571 grid boxes were synthesized in this study, cover-15

ing the total area of 304.4×106 km2, accounting for 93.23 % of the open ocean area
(326.5×106 km2). The latter value is adopted by Takahashi et al. (2009), which is
consistent with the recently-estimated global ocean surface area (361.8×106 km2) by
Charette and Smith (2010) minus the surface areas of continental shelves and deep
marginal seas (∼ 8 %).20

Sea surface DIC concentrations and RF values in the midwinter month were calcu-
lated from sea surface pCO2, temperature, salinity, and the corresponding sea surface
TAlk, using the calculation program CO2SYS.xls (Pelletier et al., 2011), which is an
updated version of the original CO2SYS.EXE (Lewis and Wallace, 1998). The dissoci-
ation constants for carbonic acid were those determined by Millero et al. (2006), and25

the dissociation constant for the HSO−
4 ion was determined as per Dickson (1990).
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As the sea surface pCO2 data have an uncertainty level of ±2.5 µatm (Takahashi
et al., 2009), and the global mean uncertainty in TAlk reconstruction is at a level of
±8 µmol kg−1 (Lee et al., 2006), the corresponding uncertainty in DIC was estimated
to be ±9 µmol kg−1 (Lenton et al., 2012). For the data quality assurance purpose, the
wintertime distributions of sea surface pCO2 for a reference year 2000, climatological5

wintertime TAlk and MLD, along with the corresponding months, and the calculated
wintertime sea surface DIC and RF for the reference year 2000, were all presented in
the Supplement. Generally, the reconstructed sea surface TAlk and thereby calculated
sea surface RF maps agreed well with those field-data based results (e.g. Key et al.,
2004; Sabine et al., 2004), giving confidence in the data reconstruction based on Lee10

et al. (2006) relationships and the calculation using the CO2SYS program.
Decadal mean xCOair

2 and δxCOair
2 data were based on the Mauna Loa station data

released by NOAA/ESRL at http://www.esrl.noaa.gov/gmd/ccgg/trends/. We assumed
that atmospheric CO2 was globally mixed well on this time scale, and thus the decadal
δxCOair

2 values above global oceans were the same everywhere.15

2.2 Ocean surface chemical buffering capacity assessments

To evaluate the sea surface δDIC in response to the δxCOair
2 at every grid box, we

rewrote the eloquent definition of RF (Broecker et al., 1979; Sundquist et al., 1979) as
δDIC/δ xCOair

2 = δDIC/δpCO2 ·(P −pH2O) = DIC/pCO2/RF ·(P −pH2O), where P is
the atmospheric pressure at sea level, pH2O is saturated water vapor pressure. During20

calculation, P was replaced by a constant value of 1.007 atm (i.e. approximately 1.020×
105 Pa in winter), while pH2O was calculated from SST and salinity using the Weiss and
Price (1980) equation. Both DIC and pCO2 were the wintertime ocean surface values,
and RF was determined by TAlk and pCO2. Clearly the ratio of δDIC to δxCOair

2 was
also a measure of the seawater chemical buffering capacity.25

According to a quasi-steady-state assumption, both ocean circulation and the alka-
linity field may have scarcely been changed in the past few centuries (Thomas et al.,
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2001; Caldeira et al., 2007; Bates et al., 2012). To illuminate the atmospheric forcing on
the ocean surface carbonate system, we defined “steady-state sea surface pCO2” in
a given decade by scaling Takahashi et al. (2009) data (for a reference year 2000) to the
change in xCOair

2 from the corresponding time period. Although the “steady-state sea
surface pCO2” is unnecessary to be exactly real, many researchers estimate a mean5

sea surface pCO2 growth rate close to the xCOair
2 value over the past several decades.

See Lenton et al. (2012), Lauvset and Gruber (2014), and references therein. Using
the “steady-state sea surface pCO2”, the climatological sea surface TAlk, temperature,
and salinity, we calculated out those “steady-state sea surface DIC” concentrations and
corresponding RF values at the arithmetically mean xCOair

2 levels in the preindustrial10

era, in 1960s, in 1970s, in 1980s, in 1990s, in 2000s, and in the IPCC IS92a scenario
where atmospheric CO2 increases to 723 ppm by the end of this century. And then the
δDIC to δxCOair

2 ratio was obtained for every xCOair
2 scenario.

2.3 Global Requ estimation

We examined the Requ following two procedures. For the reference year 2000, we cal-15

culated the δDIC potential at every grid box based on the above estimated δDIC to
δxCOair

2 ratio and the decadal mean δxCOair
2 datum between mid-1995 and mid-2005.

Thus we can obtain an integral estimate of the global Requ from
∑

(δDIC ·density ·MLD ·
area)/0.9323, where 0.9323 or 93.23 % is the proportion ratio of the synthesized grid
boxes in the total open ocean area (see Sect. 2.1). The climatological wintertime MLD20

ranged from 16 m in the equatorial zone to 520 m in high-latitude regions (de Boyer
Montégut et al., 2004). Although the convective mixing in high latitudes induces deep
water to outcrop at the surface, a box model considering this variability (Crane, 1982)
yields an insignificant difference from the Oeschger et al. (1975) two-layer diffusion
model of the oceans. This is because the preindustrial “natural” fluxes of CO2 into and25

out of global oceans, each approximately 70 Pg C yr−1, are nearly balanced, and in-
dividually several times the anthropogenic CO2 fluxes (Denman et al., 2007). In this
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study, if the wintertime MLD was deeper than 100 m at any grid box, we replaced it by
100 m, as this is the approximate MLD to be fully ventilated in a decade. Over the 1571
grid boxes under study, the area weighted effective wintertime MLD was estimated at
78 m.

For the decadal Requ estimation from 1960s to 2000s, the Sundquist and Plummer5

(1981) procedure was used. Briefly, we directly calculated out the wintertime “steady-
state sea surface DIC” pool in every decade from

∑
(DIC ·density ·MLD ·area)/0.9323,

where DIC was calculated using the climatological sea surface TAlk, temperature, salin-
ity, and the above-mentioned “steady-state sea surface pCO2” in the given decade.
Thus the difference of the two wintertime “steady-state sea surface DIC” pools in neigh-10

boring decades, i.e. the global Requ, was obtained.
In this study, we only calculated δDIC potential and Requ over decadal periods. This

is because the chemical buffering capacity slows down CO2 re-equilibration across the
air–sea interface (Zeebe and Wolf-Gladrow, 2001). In order to fully ventilate the oceanic
CO2 from a mean upper mixed layer, a time span of twice the Craig (1957) mixed layer15

DIC residence time (5×2 = 10 years) is needed.

3 Results and discussion

3.1 Potentials of ocean surface DIC to rise in response to the rising
atmospheric CO2

For the reference year 2000, the potential ratio of air–sea re-equilibration in-20

duced ocean surface δDIC (in wintertime) to δxCOair
2 ranged from 0.284 to

0.700 µmol kg−1 ppm−1 (Fig. 1a). Very low δDIC :δxCOair
2 ratios of 0.284 to

0.380 µmol kg−1 ppm−1 were calculated in the northern North Pacific and in the South-
ern Oceans, while very high ratios of 0.590 to 0.700 µmol kg−1 ppm−1 were obtained in
the western and central parts of those subtropical oceanic gyres. Figure 2 showed two25

positive correlations of δDIC :δxCOair
2 ratio vs. SST and of δDIC :δxCOair

2 ratio vs.
11516
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sea surface TAlk : DIC ratio. Clearly the ocean surface chemical buffering capacity was
mainly controlled by carbonate system (Li et al., 2001), rather than another possible
controlling factor of SST (Broecker et al., 1979; Sundquist et al., 1979; Sundquist and
Plummer, 1981; Zeebe and Wolf-Gladrow, 2001). Nowadays most wintertime surface
TAlk : DIC ratios in open oceans ranged from 1.045 in Southern Oceans to 1.180 in5

low-latitude areas (Fig. 3). In high-latitude regions, sea surface waters absorb a con-
siderable amount of CO2 from the atmosphere due to the high solubility of CO2 at low
temperatures, resulting in the low TAlk : DIC ratios. According to Egleston et al. (2010)
and Wang et al. (2013), a decrease in the seawater TAlk : DIC ratio to 1 : 1 leads to
the decline in chemical buffering capacity, thereby the very low δDIC :δxCOair

2 ratios10

were often observed in cold and high-latitude regions (Fig. 1a). In equatorial upwelling
areas in the eastern Pacific, relatively low sea surface δDIC :δxCOair

2 ratios of 0.383 to
0.500 µmol kg−1 ppm−1 were also revealed (Fig. 1a), due to the upwelling of high-pCO2
water from depth.

It is worthwhile to note that the air–sea re-equilibration of CO2 over ocean sur-15

face is obstructed by the slow gas exchange and/or disturbed by interannual changes
in vertical mixing modes (e.g. Gruber et al., 2002). Therefore, the above-estimated
δDIC :δxCOair

2 ratios may differ from the real. In the decadal time horizon, impacts of
the air–sea re-equilibration time (τ) must be considered. Following Zeebe and Wolf-
Gladrow (2001), τ(CO2) = MLD/k × (DIC/[CO∗

2]/RF), where k is the gas transfer ve-20

locity, and [CO∗
2] is the concentration of free CO2. During calculation, the effective MLD

ranged from 16 m to 100 m (see Sect. 2.3), while k was set to the global mean gas
transfer velocity value (3.50 m d−1) derived from radiocarbon measurements (Sweeney
et al., 2007). According to the estimation results presented in the Supplement, τ (CO2)
varied from 85 days in the equatorial zone and high-latitude regions to 677 days in mid-25

latitude regions, with an globally area-weighted average of 340 days. If we divided the
global mean τ (CO2) value of 340 days by 3 months (90 days) every winter, a residence
time of DIC in the surface ocean was estimated as 3.8 years, which was similar to the
value (∼ 5 years) adopted by earlier box model researchers (e.g. Craig, 1957; Bolin and
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Eriksson, 1959). This τ (CO2) value meant that the air–sea disequilibrium of DIC de-
clined, in the time span of 3.8 years, to 37 % (∼ 1/e) of its initial value (Zeebe and Wolf-
Gladrow, 2001). Therefore, in the time horizon of 10 years, the air–sea re-equilibration

induced real δDIC values were expected to reach 1−(0.37)(10/3.8) = 93 % of the poten-
tials. Even in the worst condition where τ(CO2) = 677 days, the air–sea re-equilibration5

induced real δDIC values were expected to reach 1− (0.37)(10/(667/90)) = 74 % of their
potentials.

To assess the real δDIC over the ocean surface, repeat observations of ocean sur-
face carbonate chemistry may help (e.g. Byrne et al., 2010; Feely et al., 2012). In this
study, however, long-term time series results from the two US JGOFS time series study10

sites located in the North Pacific and North Atlantic subtropical gyres, i.e. the Hawaii
Ocean Time series (HOT) and the Bermuda Atlantic Time-series Study (BATS), were
used as checking values.

Figure 1a shows that, the two US JGOFS time series study sites had
very high δDIC :δxCOair

2 ratios of 0.596 µmol kg−1 ppm−1 (HOT) and 0.63 to15

0.67 µmol kg−1 ppm−1 (BATS). Considering the decadal mean δxCOair
2 value of 1.91±

0.56 ppm yr−1 from mid-1995 to mid-2005 (based on the Mauna Loa station data
released by NOAA/ESRL at http://www.esrl.noaa.gov/gmd/ccgg/trends/), the corre-
sponding wintertime δDIC was expected to be 1.14 µmol kg−1 yr−1 (HOT) and 1.20
to 1.28 µmol kg−1 yr−1 (BATS) during this decade. Both were comparable to the20

field-measured increasing rates of sea surface salinity normalized DIC, i.e. 1.2±
0.1 µmol kg−1 yr−1 at HOT from 1988 to 2002 (Keeling et al., 2004) and 1.08±
0.06 µmol kg−1 yr−1 at BATS from 1983 to 2011 (Bates et al., 2012). At the BATS site,
although the wintertime τ (CO2) was estimated to be a very long time span of > 550
days (see the Supplement), the observed mixed layer DIC rise at the site only fell short25

of the potential δDIC by 10 % to 15 %. This gave us confidence in our ocean surface
chemical buffering capacity assessment and δDIC estimation, which should be close
to the real DIC rise rate on the decadal time scale.
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Over the global ocean surface, we worked out an area-weighted average of winter-
time ratio of potential δDIC :δxCOair

2 at 0.536 µmol kg−1 ppm−1 for the reference year
2000. Therefore, the global mean wintertime δDIC from mid-1995 to mid-2005 was ex-
pected to be 1.02 µmol kg−1 yr−1, nearly the same as the previously estimated rates in
the past four decades (e.g. Sundquist et al., 1979; Brewer, 1983; Winn et al., 1998; Gru-5

ber et al., 2002; Takahashi et al., 2003; Keeling et al., 2004; Bates et al., 2012). Note
that the decadal mean δxCOair

2 value has increased by 57 % from 1.21±0.53 ppm yr−1

in 1970s to 1.92±0.37 ppm yr−1 in 2000s, based on the Mauna Loa station data re-
leased by NOAA/ESRL at http://www.esrl.noaa.gov/gmd/ccgg/trends/. The nearly con-
sistent values of δDIC during the past decades showed a significant decline of ocean10

surface chemical buffering capacity (Fig. 4). As compared with the preindustrial sce-
nario where xCOair

2 was 280 ppm, the potential sea surface δDIC :δxCOair
2 ratio for the

reference year 2000 may have decreased by 31 % (Fig. 4). The decline of chemical
buffering capacity over the ocean surface is consistent with the general trend of the
ocean acidification.15

3.2 Ocean surface anthropogenic CO2 accumulation rates

Synthesizing the δDIC :δxCOair
2 and the MLD distribution data, under the decadal

mean δxCOair
2 forcing from mid-1995 to mid-2005, the global distribution of Requ dur-

ing the decade were presented in Fig. 1b. High values of 95 to 133 mmol m−2 yr−1

were obtained in mid-latitude areas, where both high δDIC :δxCOair
2 ratio and rela-20

tively deep MLD occurred. The equatorial zone showed very low Requ values of 15 to

65 mmol m−2 yr−1, as this zone was associated with low to moderate δDIC :δxCOair
2 ra-

tios and very shallow MLD. The North Pacific and Southern Oceans had moderate Requ

values of 65 to 95 mmol m−2 yr−1, due to the low δDIC :δxCOair
2 ratios and deep MLD.

As compared with annually net air–sea CO2 fluxes, typically from −1000 mmol m−2 yr−1
25
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(CO2 release from seawater) to 2000 mmol m−2 yr−1 (CO2 uptake by seawater) accord-
ing to Takahashi et al. (2009), Requ was usually one or two magnitude levels lower.

The globally area-weighted average of Requ during the decade from mid-1995 to mid-

2005 was estimated at 80±24 mmol m−2 yr−1. Given the surface area of global open
ocean of 326.5×106 km2 (Takahashi et al., 2009), the decadal mean value of global5

Requ from mid-1995 to mid-2005 was recalculated as 0.31 Pg C yr−1, suggesting that
Requ accounted for 12.4 to 14.1 % of recent oceanic anthropogenic CO2 uptake rates

(as estimated from 2.2±0.4 Pg C yr−1 to 2.5±0.5 Pg C yr−1 by different authors, see
Sect. 1).

During the past five decades, decadal average of xCOair
2 rises from 320±3 ppm in10

1960s to 331±4 ppm in 1970s, to 345±5 ppm in 1980s, to 360±5 ppm in 1990s,
and to 379±7 ppm in 2000s, based on the Mauna Loa station data released by
NOAA/ESRL at http://www.esrl.noaa.gov/gmd/ccgg/trends/. Correspondingly, the air–
sea re-equilibration associated upper (100 m) ocean pools of DIC potentially increased
(data not reported). The associated global open ocean Requ increased from earlier15

0.21 Pg C yr−1 (between 1960s and 1970s) to later 0.27 Pg C yr−1 (between 1970s and
1980s) and 0.26 Pg C yr−1 (between 1980s and 1990s) (Fig. 5). Between 1990s and
2000s, the DIC pool increase gave the same ocean surface anthropogenic CO2 ac-
cumulation rate of 0.31 Pg C yr−1 as the above RF-based Requ value. The global open
ocean Requ rise during the past five decades was primarily driven by the increase of20

δxCOair
2 from relatively low rates of 0.8±0.4 ppm yr−1 in 1960s to a very high rate of

1.9±0.4 ppm yr−1 in 2000s (see Sect. 1). However, the ratio of Requ :δxCOair
2 (i.e. spe-

cific Requ) steadily declined from earlier 0.198 Pg C ppm−1 (between 1960s and 1970s)

to recent 0.167 Pg C ppm−1 (between 1990s and 2000s) (Fig. 5). This change sug-
gested again that the chemical buffering capacity in the open ocean surface declined25

by 16 % during the past 50 years.
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In the IPCC IS92a scenario where atmospheric CO2 increases to 723 ppm by the
end of this century, the ocean surface TAlk : DIC ratio inevitably decreased (Fig. 3),
leading to a very low area-weighted averaged ratio of δDIC :δxCOair

2 in the global
ocean surface (0.217 µmol kg−1 ppm−1) (Fig. 4). The exhaustion of chemical buffering
capacity over the ocean surface may result in a decline of global open ocean Requ in5

the second half of this century, if the future δxCOair
2 value is no higher than 5 ppm yr−1.

This issue has been discussed earlier (e.g. Li et al., 2001; Sabine et al., 2004) and
needs more investigations.

To predict future changes in Requ, many natural uncertainties may come from our
quasi-steady-state assumption. Nowadays several large-scale circulation and/or bio-10

geochemical changes (e.g. changes in temperature, salinity, and/or dissolved oxygen)
have been detected in the ocean. See McNeil1 and Matear (2013) and references
therein. According to some modeling results, the strength of oceanic chemical buffer-
ing capacity is very dependent on the model ocean state (e.g. Smith and Marotzke,
2008), as it affects all the SST, MLD, pCO2, and the TAlk field. For example, deep15

ocean waters comprise excess carbonate-ion due to dissolution of calcium carbonate.
These water masses that have upwelled to the surface can effectively buffer anthro-
pogenic CO2 (Honjo, 1997). However, as a consequence of the future global warming,
the thermocline may become a more powerful boundary between ocean surface and
deep waters, leading to additional but unfavorable uncertainties on Requ. To lower these20

uncertainties, a 3-D global ocean carbon model with realistic physics is required (e.g.
Doney et al., 2004, 2009b).

4 Concluding remarks

We investigated potentials of ocean surface DIC to rise in response to the rising atmo-
spheric CO2 and the corresponding anthropogenic CO2 accumulation rates over the25

global open ocean surface. The air–sea re-equilibration of upper (100 m) oceans signif-
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icantly contributed to atmospheric CO2 rise mitigation, accounting for a non-negligible
component (likely 12.4 to 14.1 %) of the recent oceanic sink for anthropogenic CO2.
From 1960s to 2000s, owing to the increasing atmospheric CO2 rise rate, the anthro-
pogenic CO2 accumulation rate over the global open ocean surface likely increased by
47 %. However, the air–sea re-equilibration induced ocean surface anthropogenic CO25

accumulation potential under a unit atmospheric CO2 rise rate declined by 16 % dur-
ing the same period. By the end of this century, the ocean surface chemical buffering
capacity against the atmospheric CO2 rise may further decline by 78 %, if the possible
changes in ocean circulation and the ocean surface TAlk field were ignored.

The Supplement related to this article is available online at10

doi:10.5194/bgd-11-11509-2014-supplement.
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Figure 1. Wintertime distributions of sea surface chemical buffering capacity against the atmo-
spheric CO2 changes for a reference year 2000 (a) and the chemical buffering capacity induced
ocean surface anthropogenic CO2 uptake rate in the decade from mid-1995 to mid-2005 (b).
Stars with the colour of cyan in (a) are sites of the Hawaii Ocean Time series program (HOT)
and Bermuda Atlantic Time-series Study (BATS).
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Figure 2. Wintertime surface potential δDIC :δxCOair
2 ratio in global open oceans as functions

of sea surface temperature (a) and of sea surface TAlk : DIC ratio (b) for a reference year 2000.
Coloured close cycles show different latitude.
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Figure 3. Wintertime surface TAlk vs. DIC in global open oceans. Coloured close cycles show
the reference year 2000 data with different latitude, while the grey open circles denote a future
scenario with the high atmospheric CO2 level of 723 ppm at the end of this century, according
to the IS92a scenario given in Annex II of the IPCC Third Assessment Working Group I report
(http://www.ipcc-data.org/observ/ddc_co2.html).
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Figure 4. Area-weighted average of the wintertime ocean surface δDIC :δxCOair
2 ratio as

a function of the xCOair
2 level, where the low xCOair

2 of 280 ppm and the high xCOair
2 of

723 ppm denote the preindustrial scenario and the future scenario at the end of this cen-
tury, respectively, and the other xCOair

2 levels correspond to those decadal average values
from 1960s to 2000s. The grey curve shows the best fitted exponential curve, δDIC/δxCOair

2 =
1495.6× (xCOair

2 /ppm)−1.3439.
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Figure 5. Evolution of the chemical buffering capacity induced anthropogenic CO2 uptake rate
over ocean surface from 1960s to 2000s (columns) and the specific rate at the unit change in
atmospheric CO2 concentration (dots and the dashed line).
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