C.W. Hunt (Referee)

1 2 3

4 5 6

7

8 9

23

30

chunt@unh.edu Received and published: 18 August 2014

Review of Abril et al. "Technical Note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters."

Comment 1 - "GENERAL COMMENTS

10 I read this manuscript with great interest, as it addresses a topic my colleagues and I have been 11 considering for quite a while, with large implications for the current understanding of freshwater air-water CO2 fluxes. The featured dataset of concurrent ph/TA/pCO2 measurements represents 12 13 a valuable first step in examining potential errors in large-scale pCO2 flux estimates based on TA 14 and pH measurements, and the decision to structure the manuscript as a technical note seems 15 sound. However, the data also present an opportunity to explore possible ways to refine or even correct estimates of pCO2 from the TA/pH pairing. While such refinements or corrections would 16 17 most likely be variable and site-dependent, they offer a chance to substantially improve current 18 regional or global CO2 flux estimates.

19 The scientific quality of this paper is high. The authors employed well-documented methods for

field and laboratory measurements, and a reasonable approach to derive pCO2 from TA/pH.
 Except for some suggestions to improve language usage listed in under Technical Corrections,
 the authors do a fine job presenting their data and findings."

Reply 1 – We thank C.W. Hunt for his very positive overall evaluation of our MS. Indeed, one crucial question raised by the three referees can be summarized as: "Is it possible to correct the bias in calculated pCO2 data?". In fact, we tested several methods to derive empirical relationships that could be used to correct the pCO2 calculated from pH and TA. Unfortunately, we found no reliable consistent quantitative relationships to allow correcting for the bias in pCO2 when values are derived from pH. DOC, and TA.

31 The first approach consisted in calculating organic alkalinity from pH and DOC using the models 32 of Driscoll et al (1989) -which assumes a single apparent pK value for organic acids- and the 33 model of Hruska et al. (2003) - a triprotic model which assumes three apparent pK values-. 34 These two organic acid models applied to our data led to very similar organic alkalinity values 35 (See attached figure 1A). The organic alkalinity was then subtracted from the TA and the pCO2 36 was re-calculated from the measured pH and the TA value corrected from organic acids. pCO2 37 values corrected that way were, however, still very different from those measured in the field (See 38 figure 1B), being sometimes higher and sometimes lower than the measured values. 39

40 The second approach consisted in subtracting from the measured TA, the alkalinity calculated 41 with the CO2sys program using as input parameters the measured pH and pCO2, in order to 42 derive a non-carbonate alkalinity (NCA). Besides the fact that NCA derived that way was often 43 negative (probably due to large sensitivity of calculation from the pCO2/pH pairing), it was neither 44 (or weakly) correlated with DOC, nor with pH (See Figure 2). Consequently, we could not derive 45 any empirical relationship useful to correct for the bias in pCO2 calculation.

Change 1 – In the revised version of our MS, we include a description of these attempts to correct
 calculated pCO2 from the available parameter (pH, TA, DOC and measured pCO2).

50 Comment 2 - "SPECIFIC COMMENTS

51 P11708 L22: Some discussion of the effect of filtering TA samples would be helpful. The one

52 study I am aware of which discusses the filtration effect on freshwater alkalinity is Williams et al.

53 (2009), who did not observe a significant difference between filtered and unfiltered alkalinities.

54 However, that study examined low-DOC waters, which may differ from the waters in this study.

55 Technically you measured dissolved alkalinity (DA), not total alkalinity (TA). They are probably

56 functionally equivalent, but it is a point worth mentioning. Chanson and Millero (2007) discuss the

57 filtration question with regard to open-ocean samples, and found no difference between filtered 58 and unfiltered alkalinity. However, the particulate loads in your sampled rivers are probably much 59 larger than open ocean waters. 60 61 Reply 2 - All our TA measurements were made on filtered samples. We agree with the referee that filtering is crucial in freshwaters. However, we made no comparison between filtered and 62 63 unfiltered samples, so we cannot improve any understanding on this aspect. However, we expect that in white water rivers, with high TSM values, there could be an effect of dissolution of CaCO3 64 particles during titration that should affect the TA values. If we refer to definition of total alkalinity 65 of Dickson (1981) it refers to the total sum of bases in one kilogram of sample for a pH > 4.5. 66 67 Hence, TA should by definition relate solely to solutes and exclude particles. 68 69 Dickson, AG. 1981. An exact definition of total alkalinity and a procedure for the estimation of 70 alkalinity and total inorganic carbon from titration data. Deep-Sea Research Part a-71 Oceanographic Research Papers. 28:609-623. 72 73 Change 2 - In the absence of comparative data, we avoided a long discussion on TA titration on 74 unfiltered samples. Nevertheless, we mentioned in the revised MS that TA measurements should 75 be done on filtered samples, otherwise some additional bias would appear in turbid samples. 76 Comment 3 - "P11710 L14-28 This section provides some very valuable insights, and I especially 77 78 appreciate the ranking of sites in Table 2 by pH and TA to illustrate the trends in pCO2 79 overestimation, but I urge the authors to explore the interactions between pCO2 over- estimation 80 and pH and DOC further. I point this out because although the pairing of TA and pH to estimate 81 pCO2 is problematic, as well illustrated in this work, it is also potentially extremely valuable, as there is a wealth of TA and pH data worldwide stretching back many decades. In our Hunt et al. 82 83 (2011) paper we observed a relatively robust linear relationship between pH and the percentage 84 of TA comprised of NCA, especially at pH<7. Subsequent unpublished data has shown the same 85 trend, albeit with a somewhat different slope of the linear regression. It seems that the authors 86 could attempt a similar regression, which may offer a simple pH-based correction factor, either 87 gross or site-specific, which could be applied to the calculated pCO2 values. I wonder if such a correction factor could yield 'good enough' corrected calculated pCO2 to make the use of TA and 88 pH on broad regional or global scales possible. Additionally, we have seen promise in power 89 90 relationships between DOC concentration and non-carbonate alkalinity concentration, which 91 could potentially also be used to derive a correction factor for use with the TA-pH pairing." 92 93 Reply 3 – Refer also to reply 1. We fully agree it would be useful to provide such empirical 94 correction factor. The referee refers to a method he used to estimate non carbonate alkalinity

correction factor. The referee refers to a method he used to estimate non carbonate alkalinity
(NCA), based on the comparison of measured TA with that calculated from pH and DIC. Our
dataset concerns pCO2, pH, TA, Temperature and DOC only. So we could calculate TA from the
pH/pCO2 pairing, which is relatively uncertain in comparison with calculation from the pH/DIC
pairing, owing to the strong correlation between these two parameters (pCO2 and pH, see also
comment 5). As can be seen in Figure B, we found no correlation between NCA (or the proportion
of NCA in TA) and pH or DOC.

Change 3 – In table 2, we added a ranking of our dataset by DOC concentration. This ranking
 confirmed the general interpretation on the role of DOC on pCO2 overestimation.

Comment 4 – "Further, it seems that the authors have all the data to test a multivariate regression
 of pCO2 overestimation against a combination of DOC and pH, which may be even more robust.
 Any insights the authors could provide to improve the use of TA and pH to calculate pCO2 would
 be of great value."

110 Reply 4 – A multivariable regression against DOC and pH is inappropriate as these two variables 111 are not independent, since DOC contributes to acidity and is thus correlated with pH. Indeed, any 112 insight to improve the use of TA and pH to calculated would be of great value. However, we found

109

113 no evidence for the feasibility of a generally valid approach to correct for the bias, and until further 114 studies provide more insights, our conclusion remains that pH/TA pairing should be abandoned in 115 acidic waters. 116 117 Change 4 - No change related to this specific comment (multivariable analysis) 118 119 Comment 5 - P11711 L18-23: This is interesting! There is evidence in the coastal ocean 120 literature as well that pairing pCO2 and pH to derive TA and DIC produces problematic results 121 (Cullison Gray et al. 2011). The authors of this coastal paper also conclude that the pH- pCO2 122 pairing are particularly sensitive to measurement error, but did not address how precise pH and 123 pCO2 measurements would need to be in order to accurately retrieve DIC and TA. Mention of this 124 topic is useful in the current manuscript, but perhaps deserves further exploration. It is clear that 125 this manuscript focuses on the derivation of pCO2 from pH and TA, but the authors have all the 126 data needed to perform a very nice sensitivity analysis on the pH-pCO2 pairing. While this may 127 deviate from the central question of the manuscript, I would be very interested in the results of 128 such an analysis. 129 130 Reply 5 - Indeed, this deviates from the central question of the MS. Nevertheless, we stress in 131 our MS the difficulty to calculate TA from the pH/pCO2 pairing, as these variables are generally 132 well correlated. 133 134 Change 5 - we cite Cullison Gray et al. (2011) in our revised MS to strengthen our 135 argumentation. 136 137 **TECHNICAL CORRECTIONS** 138 Comment 6 - General: Would it make sense to present alkalinity in µmol L-1 instead of mmol L-1? 139 Reply/Change 6 - We now use µmol L-1 throughout the manuscript. 140 141 Comment 7 - General: I suggest defining shorthand terms: perhaps pCO2calc (calculated pCO2) 142 and pCO2obs (measured pCO2). 143 Reply 7 - If these expressions are correct, we find it easier, more confortable, and clearer to 144 repeat "calculated pCO2" and "measured pCO2" throughout the ms. 145 146 147 Comment 8 - P11702 L5: I would recommend avoiding 'Nowadays'. For this line perhaps 148 substitute 'Currently' 149 P11702 L6: add comma: 'freshwaters, and. . .' P11702 L20-23: awkward sentence 150 P11703 L28: I would recommend avoiding 'Nowadays'. For this line perhaps substitute 'Presently' 151 Change 8 - Modified in the revised MS, as suggested 152 153 Comment 9 - P11703 L29 and throughout: Change 'water' to 'aquatic' 154 Reply 9 - "water pCO2" is widely used by opposition to air pCO2, and may have a different 155 meaning from "aquatic pCO2" 156 157 Comment 10 - P11704 L1-2: Some citations here comparing usage of direct and indirect pCO2 158 observations may be needed 159 Reply 10 - it is difficult to provide a reference list, as it will never be exhaustive or quantitative 160 (how many papers using calculated versus measured ? how many measured versus calculated 161 pCO2 data in each paper ?, etc...). We have chosen two significant references at the global 162 scale (Cole et al 1994, Raymond et al. 2013). 163 164 Comment 11 -165 P11704 L3: change to 'carbonic acid (which are a function of temperature)

- 166 P11704 L16: change to 'adapted to the variability of pCO2 found in freshwaters.'
- 167 P11704 L17: change 'and' to 'to' P11704 L18: change 'First works consisted in' to 'Earlier
- 168
- examples provided a' P11704 L22: change to 'showed a variability of +/-500'

- 169 Reply/ Change 11 modified in the revised MS as suggested 170
- 171 Comment 12 P11704 L26: Is 7% agreement excellent? This level might be better described as
- a 'good' agreement. I suspect pairing TA with a pCO2 +/- 7%, or even +/- 5%, would yield
- 173 extremely variable calculated pH DIC values, for example.
- 174 Reply/ Change 12 changed to "good agreement" 175
- 176 Comment 13 P11704 L27: change to 'or underestimated, but'
- 177 P11704 L27-29: In this case, I don't think 'we' refers to all the authors of this manuscript.
- 178 Consider rewriting this sentence to avoid the 'we' pronoun: 'Concurrent measurements
- 179 of...performed in 2003 in acidic, humic-rich...showed that pCO2 calculation. . .'
- 180 P11705 L7: change to 'organic acid anions'
- 181 P11705 L15: 'exponentially' is a really quantitative term. Consider substituting 'dramatically'
- 182 Reply/ Change 13 modified in the revised MS as suggested
- 183 184
- 185 Comment 14 P11706 L4-12: A map of sampling locations, perhaps with unique markers
- 186 corresponding to the various publications referenced, would be very helpful
- 187 Reply 14 A world map showing the 12 sampling sites is provided in the revised MS 188
- 189 Comment 15 P11708 L12-13: awkward sentence
- 190 P11708 L16: Separate into two sentences, suggest changing to 'In addition to the IR analysers
- 191 generally used in this work, in the Sinnamary River pCO2 was also. . .'
- 192 P11708 L29: change to 'capped'
- 193 P11709 L1: change to 'Shimadzu'
- 194 P11709 L17-18: awkward sentence
- 195 P11709 L24-25: awkward sentence
- 196 P11710 L7: change to 'more than 10%'
- 197 P11710 L12: change to 'The largest overestimation of pCO2calc occurred in the
- 198 most...'
- 199 P11710 L14 Should this refer to Fig 3b, instead of Fig. 2b?
- 200 P11711 L3: the phrase 'calculated pCO2 overestimation' is awkward
- 201 P11711 L6: the rivers in Hunt et al. 2011 were located in New Hampshire, Massachusetts, and
- 202 Maine (USA) and New Brunswick (Canada). Perhaps just say 'New England (USA) and New
- 203 Brunswick (CA) rivers'
- $204 \qquad \text{Reply / change 15} \text{modified in the revised MS as suggested.}$

205 206 Comment 16 - P11711 L9-10: In our Hunt et al. 2011 paper we made some important 207 assumptions about non-carbonate inorganic contributions to alkalinity, but did not test these 208 assumptions experimentally. We did not have concurrent nutrient measurements, so our N, P and 209 Si values were taken from other work in the Oyster River. For other rivers described in that paper 210 we did not have any N,P or Si data to examine their effects upon alkalinity. From the pKa values 211 of nitrate, phosphate and silicate it is probably safe to assume that they do not contribute to 212 alkalinity at the observed river pH. We also assumed that aluminum species did not contribute, 213 which may or not be true. 214 Reply / change 16 - We changed the sentence "in addition, the contribution of inorganic species 215 other than carbonate was negligible and most of the NCA could be attributed to organic acid 216 anions" to "in addition, the contribution of inorganic species other than carbonate was assumed 217 negligible and most of the NCA was attributed to organic acid anions". 218 219 Comment 17 - P11711 L16-18 Awkward sentence, suggest 'evidencing the predominant role of 220 organic acids in DIC speciation and pH in such acidic systems. Because we did not directly

- measure DIC...'
 P11712 L3 Suggest change 'far from' to 'not only' P11712 L23 Suggest changing 'above' to
 'requiring'
- P11714 L1 'World' does not need to be capitalized P11714 L6 Suggest removing 'ones'.

- 225 P11714 L5-10 This is a very long sentence. Suggest separating into two or three shorter
- 226 sentences.
- 227 P117714 L25 Suggest removing 'as such'
- 228 Reply / change 17 modified in the revised MS as suggested. 229
- 230 Comment 18 REFERENCES
- 231 Chanson, M. and F.J. Millero. 2007. Effect of filtration on the total alkalinity of open- ocean
- seawater. Limnol. and Oceanogr.: Methods 5: 292-295.
- 233 Cullison Gray, S.E., DeGranpre, M.E., Moore, T.S., Martz, T.R., Friedrich, G.E. and K.S.
- Johnson. 2011. Applications of in situ pH measurements for inorganic carbon calculations. Marine
 Chemistry 125: 82-90.
- 236 Williams, A.J., Andersen, C.B. and G.P. Lewis. 2009. Evaluating the effects of sample processing
- treatments on alkalinity measurements. Journal of Hydrology 377: 455- 464.
- 238 Reply / change 18 We cite the Cullison Gray paper in order to strengthen the sensitivity to
- analytical errors in TA calculated from pH and pCO2.
- 240 241

269

242 Anonymous Referee #2

243 Comments to the manuscript by Abril et al. bg-2014-341, Technical note: "Large over- estimation 244 of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters".

245 Comment 1 - Overview : 246 The study presents a technical note where directly determined pCO2 (equilibrator or headspace 247 techniques) and indirectly calculated pCO2 (from total alkalinity, pH and temperature) were 248 compared across a wide range of freshwater systems. The authors found a large deviation 249 between the two methods where the indirect determination generally overestimate the pCO2. 250 They further found that this overestimation was highest in low carbonate alkalinity, low pH and 251 high DOC waters (> 100% in the 25% most organic-rich and acidic samples). They explain the 252 large deviation by the influence of organic acids on the total alkalinity determination but also that 253 the lower buffering capacity of the carbonate system at low pH increases the sensitivity of the 254 calculated pCO2. The main message of the study is consequently that large scale studies of 255 pCO2 should not solely use indirect determination, this is especially true for low pH and organic-256 rich waters. Based on this the authors further suggest that recent large scale studies on CO2 257 emissions from inland waters might have overestimated the flux due to being based on potentially 258 biased data 259 The manuscript focus on an important methodological topic that is very suitable for publication in 260 Biogeosciences I believe. The amount of published papers dealing with inland freshwater CO2 261 emissions at various scales is rapidly increasing. Many of these are based on such indirect 262 methods without or with little validation of the results. In the race of getting these global/regional 263 estimates and due to the lack of directly determined pCO2, general chemistry data bases are 264 often used but without considering the limitations of the data nor the methods used. Although the 265 knowledge about weaknesses in the indirect determination of pCO2 is not totally new, there is a 266 need for bringing the discussion to light, something that I think this manuscript really does.

- 268 Reply 1 We thank the referee for his/her very positive overall evaluation of our MS.
- 270 Comment 2 General comments:

271 With this background the manuscript is an important contribution to the research field. The

- authors present an impressive data set covering a wide geochemical and geographical range.
- 273 Even not directly important for the comparison I especially appreciate the African contribution 274 since this part of the world often is underrepresented in related studies. The manuscript is well
- written, includes solid data derived from standard and clear methodology and should be
- publishable after rather minor clarifications/additions. However, I find it a bit strange that the
- 277 authors do not present ways to compensate for the influence of organic acids on the total
- 278 alkalinity determination. This would be of great interest and use for future pCO2 estimates based
- 279 on standard water chemistry data. Methods to do that are there in the literature (see detailed
- 280 comments below) and with the great data set that the authors present this would really lift the

story and the overall impact.

Reply 2 – Indeed, one crucial question raised by the three referees can be summarized as: "Is it
possible to correct the bias in calculated pCO2 data?". In fact, we tested several methods to
derive empirical relationships that could be used to correct the pCO2 calculated from pH and TA.
Unfortunately, we found no reliable consistent quantitative relationships to allow correcting for the
bias in pCO2 when values are derived from pH, DOC, and TA.

289 The first approach consisted in calculating organic alkalinity from pH and DOC using the models 290 of Driscoll et al (1989) -which assumes a single apparent pK value for organic acids- and the 291 model of Hruska et al. (2003) - a triprotic model which assumes three apparent pK values-. 292 These two organic acid models applied to our data led to very similar organic alkalinity values 293 (See attached figure 1A). The organic alkalinity was then subtracted from the TA and the pCO2 294 was re-calculated from the measured pH and the TA value corrected from organic acids. pCO2 295 values corrected that way were, however, still very different from those measured in the field (See 296 figure 1B), being sometimes higher and sometimes lower than the measured values.

The second approach consisted in subtracting from the measured TA, the alkalinity calculated with the CO2sys program using as input parameters the measured pH and pCO2, in order to derive a non-carbonate alkalinity (NCA). Besides the fact that NCA derived that way was often negative (probably due to large sensitivity of calculation from the pCO2/pH pairing), it was neither (or poorly) correlated with DOC, nor with pH (See Figure 2). Consequently, we could not derive any empirical relationship useful to correct for the bias in pCO2 calculation.

Change 2 – In the revised version of our MS, we include a description of these attempts to correct
 calculated pCO2 from the available parameter (pH, TA, DOC and measured pCO2).

308 309 Comment

297

- Comment 3 Detailed comments:
 Ln 5 p.11702. Replace "Nowadays" with "Still" for example.
- Ln 15-17 p. 11703. I suggest to rephrase this sentence. In non-carbonate and organic- rich soils I
- would say that DOC commonly exceeds the DIC. Of course it is tricky to write about general
- 312 global patterns. But I suggest to formulate it differently.
- 314 Reply / Change 3 Modified in the revised MS, as suggested
- 314 Reply / Change 3 Modified in the revised MS, as suggested 315

Comment 4 – Ln 24-27 p.11703. It is not totally clear to me what variability the authors refer to
 when they mention that pCO2 can vary more than 4 orders of magnitude. Spatially, temporally or
 maybe spatiotemporally? Could be clarified.

Reply / Change 4. In the revised MS, we specify that this refers to spatiotemporal variations.

Comment 5 - Ln 28 p. 11703. Again replace "Nowadays" with something more suitable Ln 3 p.
 11704. Should be "carbonic acid" not "carbon acid" Ln 16 p. 11705. Include "pCO2" before
 "values"

324 Reply / Change 5 – Modified in the revised MS, as suggested

325
326
327
328
329
329
329
320
320
320
321
321
322
322
323
324
325
325
326
327
328
328
329
329
329
320
320
320
321
321
321
322
322
323
324
325
325
325
326
327
328
328
329
329
329
320
320
320
321
321
321
322
322
322
323
324
325
325
325
326
327
328
328
329
329
329
320
320
320
321
321
321
321
321
322
322
323
324
325
325
325
326
327
328
327
328
329
329
329
320
320
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
322
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321

329 depending on the origin of the dataset". To measure pH is not easy, this is especially true for 330 waters with low-ionic strength. In such waters specific electrodes are needed in order to receive a

331 stable and accurate pH reading. It is not easy to judge how well this is considered or if it is a

332 potential problem in the included systems from the existing pH description in the manuscript.

333 From my own experience I often find field based pH meters more unreliable (even if well-

334 calibrated) than lab based ones, however bringing the water to lab is associated with other

335 uncertainty as the authors also mention.

337 Reply 6 - We totally agree that it is not easy to judge how well pH is measured in general. If this

- 338 is true for our own dataset, it may be even more critical for pH data obtained by environmental
- agencies. Comments by the referee were based on his/her own experience, as in fact, no

340 quantitative study that compares pH-meters, electrodes, field and lab measurements, storage

- 341 impact, etc..., are available in the literature. In the discussion of the first version of our MS we
- 342 wrote "Thus, one factor of variability throughout the dataset as well as in literature data is the 343 accuracy of pH measurements – despite the care taken (e.g, calibrations with NBS buffers for
- each day of measurements), we cannot rule out that drift or malfunction of pH electrodes
- contribute to the observed variability, constituting an additional disadvantage compared to direct
 pCO2 measurements with very stable gas analysers".
- 346 pCO2 measurements with very stable gas analysers 347
- Change 6 in the revised MS, we stress more the difficulties of pH measuring, also in the method
 section of the paper, following the suggestions of the reviewer.
- Comment 7 Ln 6 p. 11707. I suggest to move the date to after "Rivers" Ln 16 p. 11707. What
 kind of IR gas analyser? Ln 21 p. 11708. Add "determination" after GC.
- 353 Reply/change 7 Modified in the revised MS as suggested. 354
- 355 Comment 8 A general concern in the method section is the lack of info about the basic
- chemistry of the carbonate system. Below pH 5.4-5.6 there should in theory be no carbonate
 alkalinity. These limits (or similar) are also often used in studies where pCO2 is calculated from
 alkalinity
- Reply 8 Alkalinity is operationally defined (in our case the GRAN function between pH 4 and 3,
- but also in the case of end-point titrations used in environmental agencies, titration can still be performed at pH of less than 5 (the pK of HCO3-/CO2 being around 4.5). In addition, as stated in
- 362 our submitted MS, we used to aerate our sample before titration in order to remove a fraction of
- dissolved CO2 before HCO3- titration. This aeration increases the pH at the start of the titration
- and improves the quality (repeatability) of the alkalinity titration, even at pH around 5. Typical TA
 values in these cases are generally below 100 μmol L-1.
- Change 8 We provide more details on our TA protocol and mention these pH limits as suggested by the reviewer.
- 368
 369 Comment 9 Ln 2-4 p. 11710. The sentence that starts with "Our dataset. . .." Do not belong in
- 370 the results as I see it. This is a reflection that is suitable for the discussion.
- Reply / Change 9 Sentence has been moved to discussion.

373 Comment 10 - Ln 1- p. 11711-. Here comes my main concern directly in the discussion. The 374 influence of organic acids on the total alkalinity is not a new finding and there are ways to quantify 375 and eventually compensate for the influence. In earlier acidification related research, for example 376 Hruska et al. (2003) determined the organic acid concentration just by using pH and DOC as 377 input parameters. This could then be removed from the total alkalinity (similar to the NCA derived 378 from titration) in order to get a more reliable calculated pCO2. This procedure has also been used 379 in earlier studies (see Humborg et al. 2010; Wallin et al. 2014). In addition, Wallin et al. (2014) 380 presented a similar comparison as conducted in this manuscript where alkalinity based pCO2 and 381 pCO2 derived from DIC measurements were compared. Despite considering the organic acids 382 the comparison still showed rather large deviation in the low alkaline waters (highlighting the 383 sensitivity of the carbonate system at low pH). Of course there might be problematic to use such 384 a universal organic acid model over the wide range of included systems as in this study. But to 385 not even mention this opening in the paper feels strange. I think this manuscript really quantify 386 the problems but also has the potential to suggest solutions. I definitely agree though that an 387 increased use of methods focusing on CO2 determination are needed in the future with 388 standardized protocol to follow.

- 389 Reply/changes 10 see also reply 2 and the additional figure A
- As in Wallin et al. 2014, we have used the tri-protic model for organic acids of Hruska et al.
- 391 (2003) in order to estimate the alkalinity of organic acids. We subtracted this organic alkalinity to 392 our measured TA and we re-calculated the pCO2 from the pH and the corrected alkalinity. Water

- 393 pCO2 corrected that way were not better correlated to the measured pCO2. To the contrary,
- 394 some highly negative pCO2 values appeared in the corrected dataset (Figure 1). In our revised 395 MS, we describe these calculations in more details.
- 396
- 397 Comment 11 - Ln 26-28 p. 11714. An evaluation of a pCO2 method based on calculation from 398 direct DIC determination was recently published this year (Åberg and Wallin, 2014). In this study
- 399 the method was also compared to a direct headspace technique with good result.
- 400 Reply/change 11 - we mention and refer to the results of the paper of Åberg and Wallin, 2014 in
- 401 the revised MS, as suggested. However, we continue recommending in our MS field direct pCO2 402 determination, as this is very precise, cheap and easy, and it does depends on the quality of pH 403 measurements.
- 404
- 405 Comment 12 - References :
- 406 Hruska, J., S. Köhler, H. Laudon, and K. Bishop (2003), Is a universal model of or-ganic acidity 407 possible: Comparison of the acid/base properties of dissolved organic carbon in the boreal and
- temperate zones, Environ. Sci. Technol., 37(9), 1726-1730, doi:10.1021/es0201552 408
- 409 Humborg, C., C. M. Mörth, M. Sundbom, H. Borg, T. Blenckner, R. Giesler, and V. Ittekkot (2010),
- 410 CO2 supersaturation along the aquatic conduit in Swedish watersheds as constrained by
- 411 terrestrial respiration, aquatic respiration and weathering, Glob. Change Biol., 16(7), 1966-1978, 412 doi:10.1111/j.1365-2486.2009.02092.x
- 413 Wallin, M. B., S. Löfgren, M. Erlandsson, and K. Bishop (2014), Representative regional sampling
- 414 of carbon dioxide and methane concentrations in hemiboreal headwa- ter streams reveal underestimates in less systematic approaches, Glob. Biogeochem. Cycles, 28(4), 465-479,
- 415 416 doi:10.1002/2013gb004715
- 417 Åberg, J., and M. B. Wallin (2014), Evaluating a fast headspace method for measuring DIC and
- subsequent calculation of pCO2 in freshwater systems, Inland Wat., 4(2), 157-166, 418
- 419 doi:10.5268/IW-4.2.694
- 420
- 421 Reply/change 12
- 422 We cited Wallin et al (2014), in the submitted MS
- We added Hruska et al (2003), and Åberg, and Wallin (2014), and Humborg et al (2010) in the 423 424 revised MS
- 425 426
- 427 Anonymous Referee #3
- 428 Received and published: 27 August 2014
- 429 Comment 1 - I believe this is a well written and well structured manuscript on a topic of current
- 430 and relevant interest to a wide community. The subject of methodological bias in calculated pCO2
- 431 values is extremely important as more and more people are beginning to utilise large datasets to 432 estimate GHG contributions from inland water systems. Whilst the concept of overestimation is
- 433 not new, particularly in relation to DOC rich systems, this study presents a very nice dataset with
- 434 which to test the hypotheses and explore links to other water characteristics. My comments
- 435 below, which are few, are aimed primarily at improving what I believe is a very good manuscript in 436 its current format.
- 437 Reply 1 – We thank the referee for his/her very positive overall evaluation of our MS.
- 438 439 Comment 2 - Introduction: whilst I realise there are practical limitations to the use of high
- 440 temporal resolution sensors for in-situ CO2 monitoring and therefore the number of studies are so
- 441 far limited, it may be worth highlighting submerged NDIR sensors as an alternative direct method
- 442 to measure pCO2.
- 443 Reply/change 2. We mention this membrane technique in our revised MS and cite the paper
- 444 "Direct and continuous measurement of dissolved carbon dioxide in freshwater aquatic systems-445 method and applications by Johnson et al. (2010) in ECOHYDROLOGY.
- 446
- 447 Comment 3 - Methods: I am generally happy with the methods section, I felt it was well written 448 and sufficiently detailed using standard and reliable methods. Results section 3.2: I think more

449 could be made of the correlations that are described but not statistically modelled. Correlation

450 statistics are not shown despite significant correlations being described.

451 Reply/change 3 – correlation statistics (p values of linear regressions) are now provided in the

452 revised MS, as suggested.453

454 Comment 4 - General Comment: Could simple empirical modelling be used to attempt a 455 correction for the bias? Whilst this may not work across all systems it would be very interesting to 456 try. The authors have shown an important overestimation in studies which utilise large datasets of water quality to indirectly calculate pCO2 and subsequent evasion, they have not however 457 458 attempted to produce a solution. If an additional calculation step, e.g. including a DOC correlation 459 value, would allow better pCO2 estimates from the available data that would be extremely useful 460 and significantly improve the science. This may not be possible but I would like to see evidence it 461 had been attempted. 462

Reply 4 - Indeed, one crucial question raised by the three referees can be summarized as: "Is it
possible to correct the bias in calculated pCO2 data?". In fact, we tested several methods to
derive empirical relationships that could be used to correct the pCO2 calculated from pH and TA.
Unfortunately, we found no reliable consistent quantitative relationships to allow correcting for the
bias in pCO2 when values are derived from pH, DOC, and TA.

468 469 The first approach consisted in calculating organic alkalinity from pH and DOC using the models 470 of Driscoll et al (1989) -which assumes a single apparent pK value for organic acids- and the 471 model of Hruska et al. (2003) - a triprotic model which assumes three apparent pK values-. 472 These two organic acid models applied to our data led to very similar organic alkalinity values 473 (See attached figure 1A). The organic alkalinity was then subtracted from the TA and the pCO2 474 was re-calculated from the measured pH and the TA value corrected from organic acids. pCO2 475 values corrected that way were, however, still very different from those measured in the field (See 476 figure 1B), being sometimes higher and sometimes lower than the measured values.

477 478 The second approach consisted in subtracting from the measured TA, the alkalinity calculated 479 with the CO2sys program using as input parameters the measured pH and pCO2, in order to 480 derive a non-carbonate alkalinity (NCA). Besides the fact that NCA derived that way was often 481 negative (probably due to large sensitivity of calculation from the pCO2/pH pairing), it was neither 482 correlated with DOC, nor with pH (See Figure 2). Consequently, we could not derive any 483 empirical relationship useful to correct for the bias in pCO2 calculation.

483 empirical relationship useful to correct for the blas in pCO2 calculation. 484

485 Change 4 – In the revised version of our MS, we include a description of these attempts to correct 486 calculated pCO2 from the available parameter (pH, TA, DOC and measured pCO2).

487 488

489

492

490491 additional figure Captions

493 Figure 1

A: comparison organic alkalinity calculated from pH and DOC using the models of Driscoll et al (1989) –which assumes a single apparent pK value for organic acids- and the triprotic model of

495 (1989) – which assumes a single apparent pK value for organic acids- and the inprote model of
 496 Hruska et al. (2003) – which assumes three apparent pK values. These two organic acid models
 497 applied to our data leaded to very similar organic alkalinity values (A).

B: this calculated organic alkalinity was then subtracted from the measured TA. Then the pCO2

499 was re-calculated from the measured pH and the TA corrected from organic acids. pCO2 values

500 corrected that way were still very different from those measured in the field (B), although being 501 sometime higher and sometimes lower than the measured values.

501 sometime higher and sometimes lower than the measured values. 502

502

504 Figure 2

- Non carbonate alkalinity (NCA), as the difference between the alkalinity calculated with the
- 505 506 507 508 CO2sys program using pH and pCO2 as input parameters, and the measured TA. NCA derived that way, expressed either in concentration (A,C) or as percentage of TA (B,D) was often
- negative and was neither (or weakly when expressed as % of TA) correlated with DOC, nor with
- pH. No quantitative empirical relationship could be deduced from these plots.
- 508 509 510 511 512 513

516 | Figure <u>1</u>

517 A: comparison organic alkalinity calculated from pH and DOC using the models of Driscoll et al

(1989) –which assumes a single apparent pK value for organic acids- and the triprotic model of
Hruska et al. (2003) – which assumes three apparent pK values-. These two organic acid models
applied to our data leaded to very similar organic alkalinity values (A).

521 B: this calculated organic alkalinity was then subtracted from the measured TA. Then the pCO2 522 was re-calculated from the measured pH and the TA corrected from organic acids. pCO2 values 523 corrected that way were still very different from those measured in the field (B), although being

524 sometime higher and sometimes lower than the measured values.

- 524 525
- 526

527 528 529

531 | Figure <u>2</u>

- Non carbonate alkalinity (NCA), as the difference between the alkalinity calculated with the CO2sys program using pH and pCO2 as input parameters, and the measured TA. NCA derived

that way, expressed either in concentration (A,C) or as percentage of TA (B,D) was often negative and was neither (or weakly when expressed as % of TA) correlated with DOC, nor with pH. No quantitative empirical relationship could be deduced from these plots.

543 REVISED MS: MARKED-UP VERSION

544			
545	Technical Note: Large overestimation of pCO ₂ calculated from pH and alkalinity in		
546	acidic, organic-rich freshwaters		
547			
548	Gwenaël Abril ^{1.2} , Steven Bouillon ³ , François Darchambeau ⁴ , Cristian R. Teodoru ³ , Trent R.		
549	Marwick ³ , Fredrick Tamooh ³ , Fred Ochieng Omengo ³ , Naomi Geeraert ³ , Loris		
550	Deirmendjian ¹ , Pierre Polsenaere ¹ , and Alberto V. Borges ⁴		
551			
552			
553	¹ Laboratoire EPOC, Environnements et Paléoenvironnements Océaniques et Continentaux,		
554 555	CNRS, Université de Bordeaux, France.		
555 556	² Programa de Geoquímica, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil		
557			
558	³ Katholieke Universiteit Leuven, Department of Earth & Environmental Sciences, Leuven,		
559	Belgium		
560			
561	⁴ Unité d'Océanographie Chimique, Université de Liège, Belgium		
562			
563			
564			
565			
566			

567 Abstract

568	Inland waters have been recognized as a significant source of carbon dioxide (CO ₂) to the	
569	atmosphere at the global scale. Fluxes of CO ₂ between aquatic systems and the atmosphere	
570	are calculated from the gas transfer velocity and the water-air gradient of the partial pressure	
571	of CO ₂ (pCO ₂). <u>Currently</u> , direct measurements of water pCO ₂ remain scarce in freshwaters	gwen abril 3/11/14 14:48
572	and most published pCO ₂ data are calculated from temperature, pH and total alkalinity (TA).	Supprimé: Nowadays
573	Here, we compare calculated (pH and TA) and measured (equilibrator and headspace) water	
574	pCO ₂ in a large array of temperate and tropical freshwaters. The 761 data points cover a wide	
575	range of values for TA (0 to $14200 \mu\text{mol}\text{L}^{-1}$), pH (3.94 to 9.17), measured pCO ₂ (36 to 23000	gwen abril 3/11/14 14:31
576	ppmv), and dissolved organic carbon (DOC) (29 to 3970 μ mol L ⁻¹). Calculated pCO ₂ were	Supprimé: mmol
577	>10% higher than measured pCO ₂ in 60% of the samples (with a median overestimation of	
578	calculated pCO ₂ compared to measured pCO ₂ of 2560 ppmv) and were >100% higher in the	
579	25% most organic-rich and acidic samples (with a median overestimation of 9080 ppmv). We	
580	suggest these large overestimations of calculated pCO_2 with respect to measured pCO_2 are	
581	due to the combination of two cumulative effects: (1) a more significant contribution of	
582	organic acids anions to TA in waters with low carbonate alkalinity and high DOC	
583	concentrations; (2) a lower buffering capacity of the carbonate system at low pH, that	
584	increases the sensitivity of calculated pCO ₂ to TA in acidic and organic-rich waters. No	
585	empirical relationship could be derived from our dataset in order to correct calculated pCO_2	
586	for this bias. Owing to the widespread distribution of acidic, organic-rich freshwaters, we	
587	conclude that regional and global estimates of CO ₂ outgassing from freshwaters based on pH	gwen abril 3/11/14 20:11
588	and TA data only are most likely overestimated, although the magnitude of the overestimation	Supprimé: We recommend that regional studies on pCO ₂ should not be based
589	needs further quantitative analysis. Direct measurements of pCO ₂ are recommended in inland	gwen abril 3/11/14 20:13
590	waters in general, and in particular in acidic, poorly buffered, freshwaters.	Supprimé: , and that d gwen abril 3/11/14 20:16
591		Supprimé: should become the primary method
592		

600 1 Introduction

601	Inland waters (streams, rivers, lakes, reservoirs, wetlands) receive carbon from terrestrial	
602	landscapes, usually have a net heterotrophic metabolism, and emit significant amounts of CO_2	
603	to the atmosphere (Kempe 1984; Cole et al. 1994; Raymond et al. 2013). This terrestrial-	
604	aquatic-atmosphere link in the global carbon cycle is controlled by complex biogeographical	
605	drivers that generate strong spatial and temporal variations in the chemical composition of	
606	freshwaters and the intensity of CO ₂ outgassing at the water-air interface (e.g. Tamooh et al.	
607	2013; Dinsmore et al. 2013; Abril et al. 2014; Borges et al. 2014). Hence, large datasets are	
608	necessary in order to describe the environmental factors controlling these CO ₂ emissions and	
609	to quantify global CO ₂ fluxes from inland waters (Sobek et al. 2005; Barros et al. 2011;	
610	Raymond et al. 2013). Dissolved inorganic carbon (DIC) concentration and speciation in	
611	freshwaters greatly depend on the lithological nature of watersheds (Meybeck 1987). For	
612	instance, rivers draining watersheds rich in carbonate rocks have a high DIC concentration,	
613	generally well above $1000 \mu\text{mol}\text{L}^{-1}$. Bicarbonate ions contribute to the majority of the total	gwen abril 3/11/14 14:31
614	alkalinity (TA) in these waters, which have high conductivities and high pH. In these hard	Supprimé: mmol
615	waters, dissolved CO ₂ represents a minor fraction (5-15%) of the DIC compared to	
616	bicarbonates. In rivers draining organic-rich soils and non-carbonate rocks, DIC	
617	concentrations are lower (typically a few hundred μ mol L ⁻¹) but dissolved organic carbon	
618	(DOC) concentrations are higher, and commonly exceed the DIC concentrations. Organic	gwen abril 3/11/14 17:24
619	acid anions significantly contribute to TA of these soft waters (Driscoll et al. 1989; Hemond	Supprimé: sometimes exceeding t
620	1990), which have low conductivities and low pH. Dissolved CO ₂ represents a large,	
621	generally dominant, fraction of DIC in these acidic, organic-rich waters.	
622		
623	Fluxes of CO ₂ between aquatic systems and the atmosphere can be computed from the water-	
624	air gradient of the concentration of CO ₂ and the gas transfer velocity (Liss and Slater 1974) at	
625	local (e.g. Raymond et al. 1997), regional (e.g. Teodoru et al. 2009), and global scales (e.g.	

628	Cole et al. 1994; Raymond et al. 2013). The partial pressure of CO ₂ (pCO ₂) is relatively	
629	constant in the atmosphere compared to surface freshwaters pCO_2 that can vary by more than	
630	4 orders of magnitude spatially and temporally (Sobek et al. 2005; Abril et al. 2014).	
631	Consequently, water pCO ₂ controls the intensity of the air-water flux, together with the gas	gwen abril 23/10/14 20:39
632	transfer velocity. Presently, both measured and calculated water pCO ₂ data are used to	Supprimé: spatially and temporally gwen abril 3/11/14 14:55
633	compute CO_2 fluxes from freshwater systems, although calculated pCO_2 is overwhelmingly	Supprimé: Nowadays
634	more abundant than directly measured pCO ₂ (<i>e.g.</i> Cole et al. 1994; Raymond et al. 2013).	
635	pCO_2 can be calculated from the dissociation constants of carbon <u>ic</u> acid (<u>which are a</u> function	
636	of temperature) and any of the following couples of measured variables: pH/TA, pH/DIC,	
637	DIC/TA (Park 1969). In a majority of cases, calculated pCO_2 is based on the measurements of	
638	pH/TA and water temperature. These three parameters are routinely measured by many	
639	environmental agencies, and constitute a very large database available for the scientific	
640	community. Calculation of pCO_2 from pH and TA has been initiated in World Rivers in the	
641	1970's (Kempe 1984) and relies on the dissociation constants of carbonic acid, and the	
642	solubility of CO ₂ , all of which are temperature-dependent (Harned and Scholes 1941; Harned	
643	and Davis 1943; Millero 1979; Stumm and Morgan 1996). Measured pCO ₂ is based on water-	
644	air phase equilibration either on discrete samples (headspace technique, e.g. Weiss 1981) or	
645	continuously (equilibrator technique, e.g. Frankignoulle et al. 2001) using various systems	
646	and devices, followed by direct, generally infrared (IR), detection of CO ₂ in the equilibrated	
647	gas. Commercial IR gas analysers are becoming cheaper and more accurate, stable and	
648	<u>compact</u> , and provide a large range of linear response well adapted to <u>variability of pCO_2</u>	gwen abril 3/11/14 14:58
649	found in freshwaters.	Supprimé: water gwen abril 3/11/14 14:58
650		Supprimé: variability
651	Only a limited number of studies have compared directly measured pCO_2 to computed pCO_2 .	gwen abril 3/11/14 15:00
652	Earlier examples provided a comparison between pCO ₂ measured by headspace equilibration	Supprimé: and gwen abril 3/11/14 15:01
653	coupled to gas chromatography (GC), and pCO_2 calculated from pH and DIC (Kratz et al.	Supprimé: First works consisted in

660	1997; Raymond et al. 1997). Reports by these authors in Wisconsin lakes and the Hudson		
661	River show that the pCO ₂ values were linearly correlated but showed <u>a variability</u> of ± 500		
662	ppmv around the 1:1 line, over a range of measured pCO ₂ from 300 to 4000 ppmv. Later,		
663	Frankignoulle and Borges (2001) reported the first comparison of pCO ₂ calculated from pH		
664	and TA and pCO_2 measured by equilibration coupled to an IR analyzer in an estuary in		
665	Belgium. In this high TA (2500-4800 μ mol L ⁻¹) and high pH (>7.4) system, they found a		
666	good agreement between both approaches, calculated pCO ₂ being either overestimated or		
667	underestimated, but always by less than 7%. In 2003, concomitant measurements of pH, TA		
668	and pCO ₂ were performed in acidic, humic-rich ("black" type) waters of the Sinnamary River		
669	in French Guiana (Abril et al. 2005; 2006). <u>Calculation of pCO₂ from pH (~5)</u> and TA (~200		
670	μ mol L_{1}^{-1} gave unrealistically high values compared to those measured directly with a		
671	headspace technique (typically 30000 ppmv versus 5000 ppmv). Direct measurements of CO ₂		
672	and CH ₄ outgassing fluxes with floating chambers and the computation of the respective gas		
673	transfer velocities of these two gases (Guérin et al. 2007) confirmed that pCO ₂ values		
674	calculated from pH and TA were overestimated compared to direct measurements in the		
675	Sinnamary River. More recently, Hunt et al. (2011) and Wang et al. (2013) provided evidence		
676	that organic acid anions in DOC may significantly contribute to TA in some rivers and		
677	generate an overestimation of calculated pCO ₂ . Butman and Raymond (2011) reported higher		
678	calculated than measured pCO_2 in some US streams and rivers, but no information was		
679	available on the potential role of organic acids on this overestimation. These authors		
680	concluded that the low number of samples in their study reflected the need for more research		
681	on this topic.		
682			
683	With the growing interest on pCO ₂ determination in freshwaters globally, and given the		
684	apparent simplicity and low cost of pH and TA measurements, the number of publications		
685	that report calculated pCO ₂ in freshwaters has increased <u>dramatically</u> in the last decade. Some		

Alberto 11/11/14 08:23 Supprimé: ; Kratz et al. 1997 Alberto 11/11/14 08:23 Supprimé: and Wisconsin lakes

1	Alberto 11/11/14 08:27
	Supprimé: system
1	gwen abril 3/11/14 15:03
	Supprimé: n excellent
1	gwen abril 3/11/14 15:04
	Supprimé: by
1	gwen abril 23/10/14 20:42
	Supprimé: we performed concurrent measurements of pH, TA and pCO ₂
١	gwen abril 23/10/14 20:44
	Supprimé: , and we noted that
	gwen abril 23/10/14 20:45
	Supprimé: calculation
	Alberto 11/11/14 08:26
	Supprimé: about
	Alberto 11/11/14 08:26
ļ	Mis en forme: Exposant

gwen abril 3/11/14 15:06 Supprimé: s Alberto 11/11/14 09:01 Supprimé: dissolved organic carbon (Alberto 11/11/14 09:01 Supprimé:)

Alberto 11/11/14 09:02
Supprimé: ir

gwen abril 17/11/14 15:31 Supprimé: relative gwen abril 3/11/14 15:07 Supprimé: exponentially

702	of these publications report extremely high and potentially biased $\underline{pCO_2}$ values in low-
703	alkalinity and high DOC systems. It has thus become necessary to pay attention to this issue
704	and investigate the occurrence of such potential bias and its magnitude in the different types
705	of freshwaters. Here, we present a large dataset of concomitant measurements of temperature,
706	pH, TA, pCO ₂ , and DOC in freshwaters. This is the first comprehensive dataset to investigate
707	the magnitude of the bias between calculated and measured pCO ₂ , as it covers the entire range
708	of variation of most parameters of the carbonate system in freshwaters. The objective of this
709	paper is to alert the scientific community to the occurrence of a bias in pCO_2 calculation from
710	pH and TA in acidic, poorly buffered and organic-rich freshwaters, to briefly discuss its origin
711	in terms of water chemistry, and to provide the range of pH, TA and DOC values where $p\mathrm{CO}_2$
712	calculation should be abandoned and the range where it still gives relatively accurate results.

714 2 Material and Methods

715 2.1 Sample collection

716	Our dataset consists of 761 concomitant measurements of temperature, pH, TA, water pCO ₂ ,		
717	and DOC in 12 contrasting tropical and temperate systems in Europe, Amazonia and Africa		
718	(Fig. 1; Table 1). These samples were obtained in the Central Amazon River and floodplains		
719	system in Brazil, the Athi-Galana-Sabaki River in Kenya, the Tana River (Kenya), small		
720	rivers draining the Shimba Hills in southeastern Kenya, the Congo River and tributaries in the		
721	Democratic Republic of the Congo (DRC), Lake Kivu in Rwanda and DRC, the Leyre River		
722	and tributaries in France, the Loire River in France, the Meuse River in Belgium, the Rianila		
723	and Betsiboka Rivers in Madagascar, the Sinnamary River downstream of the Petit Saut		
724	Reservoir in French Guiana, and the Zambezi River in Zambia and Mozambique (Fig. 1).		
725	Details on some of the sampling sites can be found in Abril et al. (2005; 2014), Borges et al.		
726	(2012 <u>; 2014</u>), Marwick et al. (2014a,b), Polsenaere et al. (2013), Tamooh et al. (2013),		
727	Teodoru et al. (2014). These watersheds span a range of climates and are occupied by		

728	different types of land cover, which include tropical rainforest (Amazon, Congo, Rianila), dry	
729	savannah (Tana, Athi-Galana-Sabaki, Betsiboka, Zambezi), temperate pine forest growing on	
730	podzols (Leyre), mixed temperate forest, grassland and cropland (Meuse) and cropland	
731	(Loire). Lithology is also extremely contrasted as it includes for instance carbonate-rocks	
732	dominated watershed as for the Meuse, sandstone dominated silicates (Leyre), and	Supprimé: and Meuse
733	precambrian crystalline magmatic and metamorphic rocks with a small proportion of	
734	carbonate and evaporite rocks for the Congo river.	
735		
736	2.2 Field and laboratory measurements	
737	Although pH measurements might seem almost trivial, highly accurate and precise pH data	
738	are in fact not easy to obtain, especially in low-ionic strength waters, where electrode readings	Stevenb 8/11/14 21:48 Supprimé: in fact accurate
739	are generally less stable. Even though pH measurements in the laboratory might be more	Stevenb 8/11/14 21:48 Supprimé:
740	accurate, it is crucial to measure pH in situ or immediately after sampling, as pH	Alberto 11/11/14 09:17 Supprimé: so
741	determination several hours or days after sampling will be affected by CO ₂ degassing and/or	Stevenb 8/11/14 21:48 Supprimé: is
742	microbial respiration (Frankignoulle and Borges 2001). In this work, water temperature and	
743	pH were measured in the field with different probes depending on the origin of the dataset.	gwen abril 8/11/14 19:20 Supprimé: W
744	However, all the pH data were obtained with glass electrodes and rely on daily calibration	
745	with two-point United States National Bureau of Standards (NBS) standards (4 and 7).	Stevenb 8/11/14 21:49 Supprimé: h
746	Measurements were performed directly in the surface water, or in collected water	
747	immediately after sampling.	
748		
749	Several techniques were used to measure water pCO ₂ . Water-gas equilibration was performed	gwen abril 8/11/14 19:07 Supprimé: It is crucial to measure pH <i>in situ</i>
750	with a marbles type equilibrator (Frankignoulle et al. 2001) for the Amazon, Loire, Levre,	or immediately after sampling, as pH determination in the laboratory several hours or days after sampling will be potentially
751	Sinnamary and Congo Rivers (December 2013) as well for Lake Kivu. or with a Liqui-Cel	affected by CO ₂ degassing and/or microbial respiration (Frankignoulle and Borges 2001).
752	MiniModule membrane contactor equilibrator (see Teodoru et al. 2009; 2014) for the	gwen abril 3/11/14 19:12 Supprimé: Rivers
752		
/53	Zambezi and some sites within the Congo basin (December 2012): water was pumped either	

768	continuously from a ship, or on an ad hoc basis from the bank of the rivers after waiting ~ 15	
769	minutes for complete equilibration; air was continuously pumped from the equilibrator to the	
770	gas analyser (see e.g. Abril et al. 2014 for a more detailed description of the system). A	
771	syringe-headspace technique (Kratz et al. 1997; Teodoru et al. 2009) was used in the field in	
772	all African rivers and in the Meuse River: 30 mL volume of atmospheric air was equilibrated	
773	with 30 mL volume of river water by vigorously shaking during 5-10 min in four replicate	
774	gas-tight syringes. The four replicates 30 mL of equilibrated gas and a sample of atmospheric	
775	air were injected in an IR gas analyser (Li-Cor® models 820 or 840, or PP systems® model	Alberto 11/11/14 09:21
776	<u>EGM-4</u>); the first gas injection served as a purge for the <u>air</u> circuit and cell and the three other	Supprimé: OR
777	injections were used as triplicate pCO_2 determination (average repeatability of ±1%). The	Alberto 11/11/14 09:20 Supprimé: WM4 owen abril 3/11/14 19:15
778	pCO_2 in the river water was deduced from that measured in the headspace accounting for the	Supprimé: in the field
779	initial pCO_2 in the air used for equilibration, water temperature in the river and in the water at	
780	equilibrium in the syringe, and based on Henry's law. Comparison between syringe-	
781	headspace and marbles or membrane equilibrator was made during two cruises on the Congo	
782	River and three cruises in the Zambezi basin and gave very consistent results, deviation from	
783	the 1:1 line being always less than 15% (see Fig. 2). This highlights the consistency of the	gwen abril 31/10/14 18:04
784	present data-set of direct pCO2 measurements although different techniques were used. A	Supprimé: Fig. 1
785	serum bottle-headspace technique (Hope et al. 1995) was also used on the Sinnamary River;	
786	surface water was sampled in 120 mL serum bottles that were poisoned with HgCl ₂ and	owen abril 17/11/14 15:43
787	sealed excluding air bubbles. Back in the laboratory, a 40 mL headspace was created with	Mis en forme: Indice
788	pure N_2 (Abril et al. 2005). The CO ₂ concentration of equilibrated gas in the headspace was	
789	analysed by injecting small volumes (0.5 mL) of gas in a GC calibrated with certified gas	
790	mixtures.	
791		Alberto 11/11/14 17:21
792	Immediately after water-gas phase equilibration, CO2 was detected and quantified in most	Supprime: , Alberto 11/11/14 17:21
702	complex with non-dimension ID accomplexees (Example et al. 2001, Abril (1. 2014)	Supprimé: infrared (
193	samples with non-dispersive in gas analysers (Frankignoulle et al. 2001; Abril et al. 2014).	Supprimé:),

801	The gas analysers were calibrated before each field cruise, with air circulating through soda		
802	lime or pure N_2 for zero and with a certified gas standard for the span. Depending on the		
803	cruises and expected pCO ₂ ranges, we used gas standard concentration of 1000 - 2000 ppmv,		
804	or a set of calibration gases at 400, 800, 4000 and 8000 ppmv. Stability of the instrument was		
805	checked after the cruise, and deviation of the signal was always less than 5%. These		
806	instruments offer a large range of linear response, depending on manufacturers and model: 0-		
807	20000 ppmv or 0-60000 ppmv. <u>The linearity of a Li-COR</u> ® Li-820 gas analyser was verified		
808	by connecting it to a closed circuit of gas equipped with a rubber septum to allow injection of		
809	pure CO_2 with a syringe. Linearity was check by injecting increasing volumes of CO_2 in order		
810	to cover the whole range of measurement and was excellent between zero and $\sim 20000 \text{ ppmv}_{\underline{.}}$		
811	In addition to the JR analysers generally used in this work, in the Sinnamary River, pCO ₂ was		
812	also measured with an INNOVA® 1312 optical filter IR photoacoustic gas analyser (range 0		
813	- 25000 ppmv) connected to an equilibrator and with a Hewlett Packard® 5890 GC equipped		
814	with a thermal conductivity detector (TCD); both analysers were calibrated with a gas mixture		
815	of 5000 ppmv of CO ₂ . Both methods gave results consistent at \pm 15% in the 0 – 13000 ppmv		
816	range (Abril et al. 2006). Sinnamary data reported here are from headspace and GC		
817	determination.		
818			
819	TA was analysed by automated electro-titration on 50 ml filtered samples with 0.1N HCl as		
820	titrant. Equivalence point was determined with a Gran method from pH between 4 and 3		
821	(Gran 1952). Precision based on replicate analyses was better than $\pm 5 \mu mol L^{-1}$. TA		
822	measurements should be done on filtered samples; otherwise some overestimation would		
823	occur in turbid samples, which may content significant amount of acid-neutralizing particles		
824	(e.g. calcium carbonate). In contrast to TA measurements based on titration to an endpoint of		
825	5.6 (e.g. Wallin et al. 2014), the Gran titration method allows the determination of TA values		
826	in samples with situ pH down to ~4.5, <i>i.e.</i> very close to the dissociation constant of HCO_3^2		

Alberto 11/11/14 17:26 Supprimé: We verified t Alberto 11/11/14 17:26 Supprimé: , which was Alberto 11/11/14 17:26 Supprimé: ed

gwen abril 3/11/14 15:54 Supprimé: ; gwen abril 3/11/14 15:55 Supprimé: Apart from gwen abril 3/11/14 15:55 Supprimé: used in general Alberto 11/11/14 17:24 Supprimé: infrared gas gwen abril 17/11/14 16:11 Supprimé: IR gwen abril 17/11/14 16:14 Supprimé: by

836	<u>/H₂CO₃.</u> In most acidic samples with low <u>TA</u> , reproducibility was improved by slightly	
		Alberto 11/11/14 17:29
837	increasing the pH by up to 0.2 units by vigorously stirring <u>during ~15min</u> in order to <u>degas</u> as	Supprime: alkalinity
000		Supprimé: degass
838	much CO_2 as possible before starting the titration. DOC was measured on samples <u>filtered</u>	gwen abril 17/11/14 20:46
020	through any combusted (1009C) close fibre filter with a nerestity of 0.7 up and stared	Supprimé: between X and X min
839	through pre-combusted (490°C) glass fibre filter with a porosity of 0.7 µm and stored	gwen abril 3/11/14 14:13
010	acidified with ultranura ILDO, in heregilizate yield canned with relutetraffuereethylene	Supprimé: filtred
840	acidined with ultrapure H ₃ PO ₄ in borosificate viais capped with <u>polytetraintoroethylene</u>	Alberto 11/11/14 17:31
0/1	stannara. Analysis was parformed with a Shimodry TOC5000 analyser based on high	Supprimé: Teflon
041	stoppers. Anarysis was performed with a <u>similadzu</u> 1003000 anaryser based on nigh	gwen abril 3/11/14 15:57
842	temperature catalytic oxidation, after removal of dissolved CO ₂ for samples from Amazon,	Supprimé: Shumadzu
843	Loire, Leyre, and Sinnamary Rivers. DOC concentrations were measured with a customized	
844	wet oxidation TOC analyzer (Thermo HiperTOC, or IO Analytical Aurora 1030W) coupled to	
845	a Delta+XL or Delta V IRMS,	Stavanh 9/11/14 01:45
046		Supprimé: for the other rivers
846		
847	2.3 pCO ₂ calculation from pH and TA	
848	We calculated pCO ₂ from TA, pH and temperature measurements using <u>carbonic acid</u>	
		Alberto 11/11/14 17:32
849	dissociation constants of Millero (1979) (based on those of Harned and Scholes (1941) and	Supprime: thermodynamic
850	<u>Harned and Davis (1943)</u> and the CO_2 solubility from Weiss (1974) as implemented in the	
851	CO2SYS program. Hunt et al. (2011) reported discrepancy lower than 2% for pCO ₂ computed	
852	this way with those obtained with the PHREEQC program (Parkhurst and Appelo, 1999).	
853	Differences in software or dissociation constants cannot account for the large bias in	
854	calculated pCO ₂ compared to measured pCO ₂ we report in this paper.	Alberto 11/11/14 17:34
855		Alberto 11/11/14 17:34
856	3 Results	gwen abril 3/11/14 16:00
857	3.1 Data ranges and patterns in the entire dataset	gwen abril 3/11/14 16:00
858	Measured pCO ₂ varied between 36 ppmv in a floodplain of the Amazon River and 23000	gwen abril 3/11/14 16:00
859	ppmv in a first order stream of the Leyre River (Table 1). Minimum values of pH and TA	gwen abril 3/11/14 16:00
860	occurred in the Congo River ($pH = 3.94$ and $TA = 0$) and <u>maximum</u> values in Lake Kivu (pH	gwen abril 3/11/14 16:00
		Supprimé: highest
861	= 9.16 and TA = $14200 \mu mol L^{-1}$). Highest DOC concentrations (>3000 $\mu mol L^{-1}$) were	gwen abril 3/11/14 14:32
		Supprime: mmol

878	observed in small streams in the Congo basin and in first order streams draining podzolized
879	soils in the Leyre basin. Lowest DOC concentrations (<40 μ mol L ⁻¹) occurred in some
880	tributaries of the Athi-Galana-Sabaki, in the Rianila and Betsiboka Rivers, and in the Shimba
881	Hills streams. When considering the whole dataset, measured pCO ₂ and DOC were negatively
882	correlated with pH, whereas TA was positively correlated with pH (Fig. 3, $p < 0.0001$ for the
883	three variables). This illustrates the large contrast in acid-base properties between acidic,
884	organic-rich and poorly buffered samples on the one hand, and basic, carbonate-buffered
885	samples on the other hand.
886	
887	3.2 Comparison between measured and calculated pCO ₂
888	Calculated pCO ₂ was more than 10% lower than measured pCO ₂ in 16% of the samples; both
889	methods were consistent at $\pm 10\%$ in 24% of the samples; calculated pCO ₂ was <u>more than</u>
890	10% higher than measured pCO ₂ in 60% of the samples and more than 100% higher in 26%
891	of the samples. Absolute values, as expressed in ppmv, were largely shifted toward
892	overestimation, calculated versus measured pCO2 data being well above the 1:1 line, and
893	calculated minus measured pCO_2 values ranging between -6180 ppmv and +882022 ppmv
894	(Fig. 4). The largest overestimation of calculated pCO ₂ occurred in the most acidic samples,
895	whereas underestimations of calculated pCO2 occurred in neutral or slightly basic samples
896	(Fig. 4b). Ranking the data according to the pH, TA and DOC reveal that overestimation of
897	calculated pCO ₂ compared to measured pCO ₂ increased in acidic, poorly buffered waters in
898	parallel with an increase in the DOC concentration (Table 2). Discrepancies between
899	calculated and measured pCO_2 were very different from one system to another, depending on
900	the chemical status of the waters. On average at each sampled site, the relative overestimation
901	of calculated pCO ₂ decreased with pH and TA and increased with DOC (Fig. 5).
902	Overestimation of calculated pCO_2 was on average <10% in the Kivu Lake, and the Meuse,
903	Loire, Shimba Hills and Tana Rivers, which all have neutral or basic pH, TA > $1000 \mu mol L^{-1}$

9	
	Jwen abril 3/11/14 16:05
0	Supprimé: Some clear patterns were bserved in the dataset,
9	wen abril 3/11/14 16:05
S	Supprimé: decreasing
g	wen abril 8/11/14 18:52
S	Supprimé: and
g	wen abril 3/11/14 16:06
S	Supprimé: increasing
g	wen abril 31/10/14 18:05
S	Supprimé: Fig. 2
A	Alberto 11/11/14 17:35
S	Supprimé: P
A	Alberto 11/11/14 17:36
S	Supprimé: parameters
g	gwen abril 3/11/14 19:10
l r	Déplacé vers le bas [1]: Our dataset
p c c	corobably covers the full range of conditions of arbon speciation that can be encountered in continental surface waters.
p c c	brobably covers the full range of conditions of arbon speciation that can be encountered in continental surface waters. gwen abril 3/11/14 16:20
	orobably covers the full range of conditions of arbon speciation that can be encountered in continental surface waters. gwen abril 3/11/14 16:20 Supprimé: >
	orobably covers the full range of conditions of arbon speciation that can be encountered in continental surface waters. gwen abril 3/11/14 16:20 Supprimé: > gwen abril 3/11/14 16:19
	orobably covers the full range of conditions of arbon speciation that can be encountered in continental surface waters. gwen abril 3/11/14 16:20 Supprimé: > gwen abril 3/11/14 16:19 Supprimé: >
	orobably covers the full range of conditions of arbon speciation that can be encountered in continental surface waters. gwen abril 3/11/14 16:20 Supprimé: > gwen abril 3/11/14 16:19 Supprimé: > gwen abril 3/11/14 16:20
p c c g g s s s s s	orobably covers the full range of conditions of arbon speciation that can be encountered in continental surface waters. gwen abril 3/11/14 16:20 Supprimé: > gwen abril 3/11/14 16:19 Supprimé: > gwen abril 3/11/14 16:20 Supprimé: >
p c c S S S S S	orobably covers the full range of conditions of arbon speciation that can be encountered in continental surface waters. gwen abril 3/11/14 16:20 Gupprimé: > gwen abril 3/11/14 16:19 Gupprimé: > gwen abril 3/11/14 16:20 Gupprimé: >
	orobably covers the full range of conditions of arbon speciation that can be encountered in continental surface waters. gwen abril 3/11/14 16:20 Supprimé: > gwen abril 3/11/14 16:19 Supprimé: > gwen abril 3/11/14 16:20 Supprimé: >

gwen abril 31/10/14 18:06 Supprimé: Fig. 3 gwen abril 3/11/14 16:21 Supprimé: L gwen abril 31/10/14 18:06 Supprimé: Fig. 2 gwen abril 17/11/14 20:49 Supprimé: and

gwen abril 31/10/14 18:08 Supprimé: Fig. 4

gwen abril 3/11/14 14:32 Supprimé: mmol

925	and low to moderate DOC concentrations ($< 400 \mu mol L^{-1}$) (Fig. 5). In contrast, calculated		
			gwen abril 31/10/14 18:08
926	pCO ₂ was overestimated by >200% on average in the Congo, Leyre, Sinnamary and Amazon		Supprimé: Fig. 4
927	Rivers, which have acidic pH, TA $\leq 500 \mu mol L^{-1}$ and highest DOC concentration, reaching		gwen abril 3/11/14 14:32
928	1000 µmol L ⁻¹ on average in the Congo. The cases of Athi-Galana-Sabaki, Rianila, Betsiboka,		Supprimé: 0.
929	and Zambezi Rivers were intermediate in pH, TA and DOC, and with average		Supprimé: mmol
930	overestimations of calculated pCO_2 of 50-90% (Fig. 5).		
	······································		gwen abril 31/10/14 18:08
931			Supprimé: Fig. 4
932	4 Discussion		
933	4.1 Origin of overestimation of calculated pCO ₂		
934	Our dataset (Fig. 3; Table 1) probably covers the full range of conditions of carbon speciation		
935	that can be encountered in continental surface waters. A pCO ₂ overestimation negatively		Déplacé (insertion) [1]
			gwen abril 3/11/14 19:10
936	correlated with pH ($p = 0.001$) and TA ($p = 0.005$) and positively correlated with DOC ($p \le 1$)		Supprimé:
			gwen abril 3/11/14 16:25
937	0.001) (Fig. 5) is consistent with the observations of Cai et al. (1998) in the freshwater end-		Supprimé: The fact that calculated
		\wedge	gwen abril 3/11/14 16:25
938	members of some estuaries in Georgia, USA, and of Hunt et al. (2011) in rivers in New		Supprime: 18
			gwen abril 3/11/14 16:58
939	England (USA) and New Brunswick (CA). These authors performed NaOH back-titration in		Supplime. Table 2, Fig. 4
			gwen abril 3/11/14 10.59
940	order to measure non-carbonate alkalinity (NCA). They found that NCA accounted for a large		gwen abril 3/11/14 17:00
			Supprimé: Hampshire
941	fraction (in some cases the majority) of TA; in addition, the contribution of inorganic species		gwen abril 3/11/14 17:00
			Supprimé:
942	other than carbonate was <u>assumed</u> negligible and most of the NCA <u>was</u> attributed to organic		gwon abril 3/11/14 17:02
0.40			Supprimé: could be
943	acid anions. Hunt et al. (2011) also showed that in the absence of direct titration of NCA,		gwen abril 3/11/14 17:03
944	which is labour-intensive and whose precision may be poor, this parameter could be		Supprimé:
945	calculated as the difference between the measured TA and the alkalinity calculated from		
946	measurements of pH and DIC and the dissociation constants of carbonic acid. Using the latter		
947	approach, Wang et al. (2013) obtained a positive correlation between NCA and DOC		gwen abril 3/11/14 17:09
948	concentrations in the Congo River, evidencing the predominant role of organic acids in DIC		gwen abril 3/11/14 17:09
			Supprimé: on the water pH and
949	speciation and pH in such acidic system. Because we did not directly measure DIC in this		gwen abril 3/11/14 17:09

study, we could not calculate NCA with the same procedure as these studies. We attempted to 950

1/14 17:09 1/14 17:09 n the water pH and 1/14 17:09 Supprimé: directly gwen abril 4/11/14 19:38 Supprimé: An attempt

968	calculate TA from our measured pH and pCO ₂ with the CO2SYS program. However, TA
969	values calculated this way were inconsistent with other measured variables (with sometimes
970	negative values). Indeed, because pH and pCO2 are too interdependent in the carbonate
971	system, very small analytical errors on these variables lead to large uncertainties in the
972	calculated TA (Cullison Gray et al. 2011). A second attempt to correct our TA data from
973	NCA consisted in calculating organic alkalinity using pH and DOC as input parameters. We
974	compared the model of Driscoll et al. (1989), which assumes a single pK value for all organic
975	acids, and the triprotic model of Hruska et al. (2003), which assumes three apparent pK values
976	for organic acids. These two models applied to our pH and DOC gave very similar organic
977	alkalinity values, which could be subtracted from the measured TA. In the most acidic
978	samples (e.g. some sites from the Congo basin), modelled organic alkalinities were larger than
979	measured TA and the difference was thus negative. Nevertheless, we then recalculated pCO_2
980	from the measured pH and the TA corrected from organic alkalinity. Calculated pCO ₂
981	corrected with that method were, however, still very different from those measured in the
982	field, being sometimes higher and sometimes lower than the measured pCO ₂ , without any
983	meaningful pattern (indeed, corrected pCO_2 was negatively correlated ($p < 0.001$) with
984	measured pCO ₂). Consequently, we were unable to derive any empirical relationship to
985	correct for the bias in pCO ₂ calculation from pH and TA. Nevertheless, the negative
986	correlation between pH and DOC and positive correlation between pH and TA (Fig. 3)
987	confirm a strong control of organic acids on pH and DIC speciation across the entire dataset.
988	×
989	As discussed by Hunt et al. (2011), a significant contribution of organic acids to TA leads to
990	an overestimation of calculated pCO_2 with the CO2SYS program, or with any program that
991	accounts only for the inorganic species that contribute to TA. It is thus obvious that the
992	observed increase in pCO ₂ overestimation when pH decreases (Fig. 4b & 5; Table 2) is due to
993	an increasing contribution of organic acid anions to TA. However, this effect is <u>not</u> the only

gwen abril 4/11/14 19:39 Supprimé: failed. Indeed

gwen abril 4/11/14 19:42 Supprimé: , gwen abril 4/11/14 19:43 Supprimé: probably

Alberto 11/11/14 17:43 Supprimé: organic alkalinity

Alberto 11/11/14 17:44	
Supprimé: trend	
gwen abril 17/11/14 20:52	
Mis en forme: Police : Italique	
Stevenb 8/11/14 21:51	
Supprimé: could	
Stevenb 8/11/14 21:51	
Supprimé: not	
Stevenb 8/11/14 21:51	
Supprimé: useful	
gwen abril 31/10/14 18:06	
Supprimé: Fig. 2	
Alberto 11/11/14 17:45	
Supprimé: our	
gwen abril 3/11/14 17:14	
Supprimé:	
gwen abril 31/10/14 18:07	
Supprimé: Fig. 3	
gwen abril 3/11/14 17:11	
Supprimé: 4	
gwen abril 3/11/14 17:12	
Supprimé: far from being	

1008	driver of the observed overestimation of pCO ₂ , which is also due to a decrease in the	
1009	buffering capacity of the carbonate system at acidic pH. To investigate the magnitude of this	
1010	second effect, we calculated the factor dpCO ₂ /dTA (in ppmv mol ⁻¹), which describes the	
1011	change in calculated pCO_2 induced by a change in TA. This factor, which is the opposite of a	
1012	buffer factor as it reflects the sensitivity of pCO ₂ calculation to the TA, increases	
1013	exponentially when pH decreases (Fig. 6a), i.e. it is proportional to the H ⁺ concentration. To	owen abril 31/10/14 18:09
1014	go further in this theoretical analysis, we computed the difference between the pCO_2	Supprimé: Fig. 5
1015	calculated at a given TA value and the one calculated at a slightly higher TA value (TA+ X	Mis en forme: Exposant
1016	<u>μmol</u> L ⁻¹). These calculations reveal an extreme sensitivity of calculated pCO ₂ to TA at acidic	
1017	pH (Figure 5b). For instance, increasing TA by $5 \mu mol L^{-1}$ (a value close to the precision of	awen abril 3/11/1/ 1/:33
1018	TA titrations) increases the calculated pCO_2 by 31 ppmv at pH 7, by 307 ppmv at pH 6 and by	Supprimé: 0.00
1019	3070 at pH 5. Increasing TA by $100 \mu mol L^{-1}$ (a typical value of NCA found in freshwaters,	awan ahril 2/11/14 14:22
1020	Driscoll et al. 1994; Cai et al. 1998; Hunt et al. 2011), increases the calculated pCO ₂ by 615	Supprimé: 0.
1021	ppmv at pH 7, by 6156 ppmv at pH 6 and by 61560 ppmv at pH 5. Note that this increase in	
1022	calculated pCO ₂ is independent of the chosen initial TA value. The difference between	
1023	calculated and measured pCO ₂ from our data-set, shows that a NCA contribution around 100	awaa ahrii 2/14/14 14/22
1024	<u>μmol</u> L ⁻¹ is sufficient to explain the overestimation of calculated pCO ₂ of most samples at	Supprimé: 0.
1025	pH<6, whereas a NCA contribution higher than $500 \mu mol L^{-1}$ would be necessary for several	awan ahril 2/11/14 14:22
1026	samples at circumneutral and slightly basic pH (Fig. 5b). Samples requiring this high NCA	Supprimé: 0.
1027	contribution are from the Athi-Galana-Sabaki and Zambezi watersheds, and correspond to TA	gwen abril 31/10/14 18.06 Supprimé: Fig. 4
1028	values well above $1000 \ \mu mol \ L^{-1}$. A NCA value of 500 $\mu mol \ L^{-1}$ in these samples is thus	gwen abni 3/17/14 17:13 Supprimé: above
1029	plausible.	gwen abril 3/11/14 14:34 Supprimé: 0.
1030		
1031	We have no definitive explanation for lower calculated than measured pCO ₂ , which is	
1032	observed mainly at neutral to slightly basic pH, e.g., in the Zambezi River (Fig. 4). In most of	
1033	these samples, owing to the relatively high TA value, an overestimation of pH of less than 0.2	gwen abni 31/10/14 18:07 Supprimé: Fig. 3

1043	units is sufficient to account for the low calculated $p\mathrm{CO}_2$ compared to measured values. In
1044	general, it is not easy to judge how accurate are pH measurements, and even less when data
1045	come from environmental agencies. Thus, one factor of variability throughout the dataset as
1046	well as in literature data is the accuracy of pH measurements – despite the care taken (e.g,
1047	calibrations with NBS buffers for each day of measurements), we cannot rule out that drift or
1048	malfunction of pH electrodes contribute to the observed variability, constituting an additional
1049	disadvantage compared to direct pCO ₂ measurements with very stable gas analysers.
1050	
1051	4.2 Impact on estimates of CO ₂ emissions from freshwaters
1052	According to our analysis, overestimation of calculated pCO ₂ is largest in acidic, poorly
1053	buffered and organic-rich waters. Consequently, the overestimation of regional and global
1054	CO_2 emissions computed from calculated p CO_2 depends on the relative contribution of these
1055	types of waters worldwide. In their analysis, Raymond et al. (2013) have discarded all
1056	calculated pCO_2 values with a pH value of less than 5.4, as well as all pCO_2 values above
1057	100000 ppmv. These criteria would exclude only 8% of samples from our dataset. Indeed,
1058	from our analysis, it appears that overestimation of calculated pCO ₂ occurs at pH much higher
1059	than 5.4 (Fig. 4,5&6; Table 2). Both techniques were consistent at $\pm 10\%$ on average in only
1060	five of the twelve studied systems, which combine a circumneutral to basic pH with a TA
1061	concentration well above $1000 \mu mol L^{-1}$ (Fig. 5). Although it would not be sufficient for the
1062	cases of the Zambezi and Athi-Galana-Sabaki Rivers where overestimation is still significant,
1063	a TA value above $1000 \mu\text{mol}\text{L}^{-1}$ appears as a more robust criteria, rather than a pH threshold,
1064	to separate calculated pCO_2 affected by bias from those consistent with measured pCO_2
1065	(Table 2). In fact, pCO_2 calculation from pH and TA in freshwaters historically relies on
1066	theoretical background and validation data in high alkalinity waters (Neal et al. 1998),
1067	including karstic waters (Kempe 1975). At the global scale, high TA typically occurs in rivers
1068	draining watersheds with a significant proportion of carbonate rocks, typically >30% of their

gwen abril 31/10/14 18:07 Supprimé: Fig. 3 gwen abril 8/11/14 19:31 Supprimé: 4 gwen abril 8/11/14 19:31 Supprimé: 5 gwen abril 31/10/14 18:08 Supprimé: Fig. 4

1073	surface area if the criteria of TA > $1000 \mu mol L^{-1}$ is chosen and the normalized weathering
1074	rates of Meybeck (1987) are applied. According to Meybeck (1987), the average and
1075	discharge-weighted TA is around $900 \mu mol L^{-1}$ for world rivers and around $600 \mu mol L^{-1}$ for
1076	tropical rivers. Among the 25 largest rivers in the world, 15 have a TA > 1000 μ mol L ⁻¹
1077	according to Cai et al. (2008). The two largest rivers in the world in terms of discharge, the
1078	Amazon and the Congo, are also well below this limit of $1000 \mu\text{mol}\text{L}^{-1}$ and have large
1079	overestimation in calculated pCO_2 (on average 200% and 360%, respectively). Very low TA
1080	and pH and high DOC values have also been reported in boreal streams and rivers (Humborg
1081	<u>et al. 2010;</u> Dinsmore et al. 2012; Wallin et al. 2014).
1082	
1083	In lakes, the highest pCO ₂ values in the literature <u>come from tropical black water lakes</u> and
1084	were also calculated rather than directly measured (Sobek et al. 2005). Calculated pCO ₂ was
1085	65250 ppmv in Lago Tupé in the Brazilian Amazon, a Ria Lake connected to the Rio Negro,
1086	where, according to our own dataset, pH is below 5 and TA is around $70 \mu mol L^{-1}$. It was
1087	18950 ppmv in Kambanain Lake in Papua New Guinea corresponding to a pH value of 6.1
1088	and a TA value of $350 \mu mol L^{-1}$ (Vyverman 1994). This suggests a widespread overestimation
1089	of calculated pCO ₂ that significantly impacts the estimation of global CO ₂ emissions from
1090	inland waters. However, a precise analysis based on exact quantitative information on the
1091	relative contribution of acidic and high and low alkalinity waters to the total surface area of
1092	inland waters is necessary in order to evaluate the exact magnitude of the overestimation.
1093	
1094	5 Conclusion
1095	From our analysis, it appears that the validity of calculating pCO ₂ from pH, TA, and
1096	temperature is most robust in freshwaters with circumneutral to basic pH and with TA
1097	exceeding $1000 \mu mol L^{-1}$. At lower TA and pH, however, calculated pCO ₂ (and hence, CO ₂
1098	degassing rates) are overestimated by 50 to 300% relative to direct, <i>in situ</i> pCO ₂

gwen abril 3/11/14 14:35 Supprimé: 0. gwen abril 3/11/14 14:35 Supprimé: 0. Alberto 11/11/14 18:11 Supprimé: ; t gwen abril 3/11/14 17:15 Supprimé: World

Alberto 11/11/14 18:15
Supprimé: are
gwen abril 3/11/14 17:15
Supprimé: ones
gwen abril 3/11/14 17:18
Mis en forme: Indice
gwen abril 3/11/14 17:16
Supprimé: and come from tropical black water lakes:
gwen abril 3/11/14 14:35
Supprimé: 0.0
gwen abril 3/11/14 17:18
Supprimé: ;
gwen abril 3/11/14 17:18
Supprimé: and
gwen abril 3/11/14 14:35

Alberto 11/11/14 18:17 Mis en forme: Police : Italique

1111	measurements. Since a large majority of freshwater systems globally have characteristics	
1112	outside of the range of applicability of pCO_2 calculation, it appears reasonable to assume that	
1113	recent estimates of global CO ₂ emission from lakes and rivers, which are based exclusively on	
1114	calculated pCO_2 data, are overestimated. We propose that while TA and pH measurements	
1115	remain useful to describe the aquatic chemistry, data on pCO ₂ should in the future rely on	gwen abril 3/11/14 17:20
1116	direct measurements of pCO ₂ . Even if some studies report relatively robust calculation of	Supprimé: as such gwen abril 3/11/14 19:23
1117	pCO ₂ from pH and DIC measurements (Raymond et al. 1997; Kratz et al. 1997; Aberg and	Supprimé: C gwen abril 3/11/14 19:23
1118	Wallin 2014), direct pCO ₂ in the field are stable, precise, and straightforward and do not	Supprimé: should also be quantitatively tested as an alternative to direct pCO ₂
1119	depend on the quality of pH measurements, which are often uncertain. Further, high-quality	gwen abril 3/11/14 19:26
1120	DIC measurements are very time consuming, fairly complicated to set-up and do not allow to	Supprimé: et al. gwen abril 3/11/14 19:23
1121	carry out continuous measurements in a simple and straightforward fashion. Although there	
1122	are some practical limitations to their use in the field, submerged IR sensors, which allow	
1123	high temporal resolution, are also promising (Johnson et al. 2010). The long-term instrument	Stevenb 8/11/14 21:53
1124	stability and accuracy based on newly developed Off-Axis Integrated Cavity Output	Supprimé: methods
1124 1125	stability and accuracy based on newly developed Off-Axis Integrated Cavity Output Spectroscopy and Cavity Ring-Down Spectroscopy technologies seems to improve in	Supprimé: methods
1124 1125 1126	stability and accuracy based on newly developed Off-Axis Integrated Cavity Output Spectroscopy and Cavity Ring-Down Spectroscopy technologies seems to improve in comparison to traditional IR instruments, although the latter are more affordable, compact and	Supprimė: methods
 1124 1125 1126 1127 	stability and accuracy based on newly developed Off-Axis Integrated Cavity Output Spectroscopy and Cavity Ring-Down Spectroscopy technologies seems to improve in comparison to traditional IR instruments, although the latter are more affordable, compact and with lower power requirements. Joint international efforts are necessary to define most	Supprimė: methods
 1124 1125 1126 1127 1128 	stability and accuracy based on newly developed Off-Axis Integrated Cavity Output Spectroscopy and Cavity Ring-Down Spectroscopy technologies seems to improve in comparison to traditional IR instruments, although the latter are more affordable, compact and with lower power requirements. Joint international efforts are necessary to define most appropriate protocols for the measurements of dissolved inorganic carbon parameters in	gwen abril 8/11/14 19:40
 1124 1125 1126 1127 1128 1129 	stability and accuracy based on newly developed Off-Axis Integrated Cavity Output Spectroscopy and Cavity Ring-Down Spectroscopy technologies seems to improve in comparison to traditional IR instruments, although the latter are more affordable, compact and with lower power requirements. Joint international efforts are necessary to define most appropriate protocols for the measurements of dissolved inorganic carbon parameters in freshwaters.	gwen abril 8/11/14 19:40 Supprimé: pCO ₂ , DIC and pH
1124 1125 1126 1127 1128 1129 1130	stability and accuracy based on newly developed Off-Axis Integrated Cavity Output Spectroscopy and Cavity Ring-Down Spectroscopy technologies seems to improve in comparison to traditional IR instruments, although the latter are more affordable, compact and with lower power requirements. Joint international efforts are necessary to define most appropriate protocols for the measurements of dissolved inorganic carbon parameters in freshwaters.	gwen abril 8/11/14 19:40 Supprimé: pCO ₂ , DIC and pH
1124 1125 1126 1127 1128 1129 1130 1131	stability and accuracy based on newly developed Off-Axis Integrated Cavity Output Spectroscopy and Cavity Ring-Down Spectroscopy technologies seems to improve in comparison to traditional IR instruments, although the latter are more affordable, compact and with lower power requirements. Joint international efforts are necessary to define most appropriate protocols for the measurements of dissolved inorganic carbon parameters in freshwaters.	gwen abril 8/11/14 19:40 Supprimé: pCO ₂ , DIC and pH
1124 1125 1126 1127 1128 1129 1130 1131 1132	stability and accuracy based on newly developed Off-Axis Integrated Cavity Output Spectroscopy and Cavity Ring-Down Spectroscopy technologies seems to improve in comparison to traditional IR instruments, although the latter are more affordable, compact and with lower power requirements. Joint international efforts are necessary to define most appropriate protocols for the measurements of dissolved inorganic carbon parameters in freshwaters.	gwen abril 8/11/14 19:40 Supprimé: pCO ₂ , DIC and pH
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133	stability and accuracy based on newly developed Off-Axis Integrated Cavity Output Spectroscopy and Cavity Ring-Down Spectroscopy technologies seems to improve in comparison to traditional IR instruments, although the latter are more affordable, compact and with lower power requirements. Joint international efforts are necessary to define most appropriate protocols for the measurements of dissolved inorganic carbon parameters in freshwaters. Acknowledgements The dataset used in this study was collected in the framework of projects funded by the	Supprimė: methods gwen abril 8/11/14 19:40 Supprimė: pCO ₂ , DIC and pH
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134	stability and accuracy based on newly developed Off-Axis Integrated Cavity Output Spectroscopy and Cavity Ring-Down Spectroscopy technologies seems to improve in comparison to traditional IR instruments, although the latter are more affordable, compact and with lower power requirements. Joint international efforts are necessary to define most appropriate protocols for the measurements of dissolved inorganic carbon parameters in freshwaters. Acknowledgements The dataset used in this study was collected in the framework of projects funded by the Cluster of Excellence COTE at the Université de Bordeaux (ANR-10-LABX-45, CNP-Leyre	gwen abril 8/11/14 19:40 Supprimé: pCO ₂ , DIC and pH
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135	stability and accuracy based on newly developed Off-Axis Integrated Cavity Output Spectroscopy and Cavity Ring-Down Spectroscopy technologies seems to improve in comparison to traditional IR instruments, although the latter are more affordable, compact and with lower power requirements. Joint international efforts are necessary to define most appropriate protocols for the measurements of dissolved inorganic carbon parameters in freshwaters. Acknowledgements The dataset used in this study was collected in the framework of projects funded by the Cluster of Excellence COTE at the Université de Bordeaux (ANR-10-LABX-45, CNP-Leyre project), the European Research Council (ERC-StG 240002, AFRIVAL; African river basins:	Supprimé: methods gwen abril 8/11/14 19:40 Supprimé: pCO ₂ , DIC and pH Stevenb 8/11/14 20:42
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136	stability and accuracy based on newly developed Off-Axis Integrated Cavity Output Spectroscopy and Cavity Ring-Down Spectroscopy technologies seems to improve in comparison to traditional IR instruments, although the latter are more affordable, compact and with lower power requirements. Joint international efforts are necessary to define most appropriate protocols for the measurements of dissolved inorganic carbon parameters in freshwaters. Acknowledgements The dataset used in this study was collected in the framework of projects funded by the Cluster of Excellence COTE at the Université de Bordeaux (ANR-10-LABX-45, CNP-Leyre project), the European Research Council (ERC-StG 240002, AFRIVAL¿ African river basins: Catchment-scale carbon fluxes and transformations, http://ees.kuleuven.be/project/afrival/),	Supprimé: methods gwen abril 8/11/14 19:40 Supprimé: pCO ₂ , DIC and pH Stevenb 8/11/14 20:42 Supprimé: -

1146	the Fonds National de la Recherche Scientifique (FNRS, CAKI, 2.4.598.07, TransCongo,		Alberto 11/11/14 17:08	
1147	14711103), the French national agency for research (ANR 08-BLAN-0221, CARBAMA	\backslash	Supprimé: R	
1148	project http://carbama.epoc.u-bordeaux1.fr/), the Research Foundation Flanders (FWO-		Supprimé: Transcongo	
1149	Vlaanderen), the Belgian Federal Science Policy (BELSPO-SSD projects COBAFISH and			
1150	EAGLES), the Research Council of the KU Leuven, and the Institut de Radioprotection et			
1151	Sureté Nucléaire, France (FLORE project). We thank the Hydreco Laboratory in French			
1152	Guiana, and Patrick Albéric (ISTO Orléans) who analysed some of the data reported here,			
1153	Aurore Beulen (ULg) for collection of Meuse dataset, Marc-Vincent Commarieu (ULg) for			
1154	analytical support, two anonymous reviewers and C.W. Hunt (reviewer) for constructive			
1155	comments on the previous version of the paper. AVB is a senior research associate at the			
1156	FNRS		Alberto 11/11/14 17:09 Supprimé: scientist	
1150				
115/				
1120				

1163 References

- 1164 <u>Åberg, J., and Wallin M. B.: Evaluating a fast headspace method for measuring DIC and</u>
 1165 <u>subsequent calculation of pCO₂ in freshwater systems, Inland Wat., 4(2), 157-166,</u>
 1166 <u>doi:10.5268/IW-4.2.694(2014), 2014.</u>
- 1167 Abril, G., Guérin, F., Richard, S., Delmas, R., Galy-Lacaux, C., Gosse, P., Tremblay, A.,
- 1168 Varfalvy, L., Dos Santos, M.A. and Matvienko, B.: Carbon dioxide and methane
- 1169 emissions and the carbon budget of a 10-year old tropical reservoir (Petit-Saut. French
- 1170 Guiana), Global Biogeochem. Cy., 19, GB4007. doi:10.1029/2005GB002457. 2005.
- 1171 Abril, G., Martinez, J.-M., Artigas, L.F., Moreira-Turcq, P., Benedetti, M.F., Vidal L.,
- 1172 Meziane, T., Kim, J.-H., Bernardes, M.C., Savoye, N., Deborde, J., Albéric, P., Souza,
- M.F.L., Souza, E.L. and Roland, F.: Amazon River Carbon Dioxide Outgassing fuelled
 by Wetlands, Nature 505, 395–398, 2014.
- Abril, G., Richard, S. and Guérin, F.: In-Situ measurements of dissolved gases (CO₂ and CH₄)
 in a wide range of concentrations in a tropical reservoir using an equilibrator, Sc. Total
 Envir., 354: 246-251, 2006.
- Barros, N., Cole, J. J., Tranvik L. J., Prairie Y. T., Bastviken D., Huszar V. L. M., del Giorgio
 P. and Roland F.: Carbon emission from hydroelectric reservoirs linked to reservoir age
- and latitude, Nature Geosciences, DOI: 10.1038/NGEO1211, 2011.
- 1181 Borges, A. V., Bouillon, S., Abril, G., Delille, B., Poirier, D., Commarieu, M.-V., Lepoint, G.,
- 1182 Morana, C., Servais, P., Descy, J.-P. and Darchambeau, F.: Variability of carbon
- 1183 dioxide and methane in the epilimnion of Lake Kivu: In J.-P. Descy et al. (eds.). Lake
- 1184 Kivu: Limnology and biogeochemistry of a tropical great lake, Aquatic Ecology Series
- 1185 5, Springer DOI 10.1007/978-94-007-4243-7_4, 47-66, 2012.
- 1186 Borges A.V., C. Morana, S. Bouillon, P. Servais, J.-P. Descy, F. Darchambeau, Carbon
- 1187 cycling of Lake Kivu (East Africa): net autotrophy in the epilimnion and emission of

- **1188** <u>CO₂ to the atmosphere sustained by geogenic inputs, PLoS ONE 9(10): e109500.</u>
- <u>doi:10.1371/journal.pone.0109500, 2014.</u>
- Butman, D. and Raymond, P.A.: Significant efflux of carbon dioxide from streams and rivers
 in the United States. Nature Geosci. 4, 839-842, 2011.
- Cai, W.-J., Wang, Y., and Hodson, R. E.: Acid-base properties of dissolved organic matter in
 the estuarine waters of Georgia, USA, Geochim. Cosmochim. Ac., 62, 473–483, 1998.
- 1194 Cai, W.-J., Guo, X., Chen, C.T.A., Dai, M., Zhang, L., Zhai, W., Lohrenz, S.E., Yin, K.,
- 1195Harrison, P.J., Wang, Y.: A comparative overview of weathering intensity and HCO3[±]1196flux in the world's major rivers with emphasis on the Changjiang, Huanghe, Zhujiang
- 1197 (Pearl) and Mississippi Rivers. Continental Shelf Research 28(1-2), 1538-1549, 2008.
- Cole, J. J., Caraco, N., Kling, G. W., and Kratz, T. K.: Carbon dioxide supersaturation in the
 surface waters of lakes, Science, 265, 1568–1570, 1994.
- 1200 <u>Cullison Gray, S. E., DeGranpre, M. E., Moore, T. S., Martz, T. R., Friedrich, G. E. and</u>
 1201 Johnson, K. S.: Applications of in situ pH measurements for inorganic carbon
- 1202 <u>calculations, Mar. Chem., 125, 82-90, 2011.</u>
- Dinsmore, K. J., Wallin M. B., Johnson, M. S., Billett M. F., Bishop, K., Pumpanen, J. and
 Ojala, A.: Contrasting CO₂ concentration discharge dynamics in headwater streams: A
- 1205 multi-catchment comparison, J. Geophys. Res. Biogeosci., 118, 445–461.,
- doi:10.1002/jgrg.20047, 2012.
- 1207 Driscoll, C. T., Fuller, R., D. and Schecher, W. D.: The role of organic acids in the
- acidification of surface waters in the eastern U.S., Water Air and Soil Pollution 43, 21-40, 1989.
- 1210 Frankignoulle, M., Borges, A. V., and Biondo, R.: A new design of equilibrator to monitor
- 1211 carbon dioxide in highly dynamic and turbid environments. Water Res., 35, 1344–1347,
- 1212 2001.

- 1213 Frankignoulle, M. and Borges, A. V.: Direct and indirect pCO2 measurements in a wide range
- 1214 of pCO₂ and salinity values. Aquatic Geochemistry, 7, 267-273, 2001.
- Gran, G.: Determination of the equivalence point in potentiometric titrations of seawater with
 hydrochloric acid, Oceanol. Acta, *5*, 209-218, 1952.
- 1217 Guérin, F., Abril, G., Serça, D., Delon, C., Richard, S., Delmas, R., Tremblay, A., and
- 1218 Varfalvy, L.: Gas transfer velocities of CO₂ and CH₄ in a tropical reservoir and its river
 1219 downstream. J. Mar. Syst., 66, 161-172, 2007.
- Harned, H.S., Scholes, S.R.: The ionization constant of HCO₃⁻ from 0 to 50°C. J. Am. Chem.
 Soc. 63, 1706–1709, 1941.
- Harned H.S. and R.D. Davis: The ionization constant of carbonic acid in water and the
 solubility of carbon dioxide in water and aqueous salt solutions from 0 to 50°C. J. Am.
 Chem. Soc. 65: 2030-2037, 1943.
- Hemond, H. F.: Acid neutralizing capacity, alkalinity, and acid-base status of natural waters
 containing organic acids. Environ. Sci. Technol. 24, 1486–1489, 1990.
- Humborg, C., C. M. Mörth, M. Sundbom, H. Borg, T. Blenckner, R. Giesler, and V. Ittekkot
 (2010), CO₂ supersaturation along the aquatic conduit in Swedish watersheds as
 constrained by terrestrial respiration, aquatic respiration and weathering, Glob. Change
 Biol., 16(7), 1966-1978, doi:10.1111/j.1365-2486.2009.02092.x
- Hruska, J., S. Köhler, H. Laudon, and Bishop K.: Is a universal model of organic acidity
 possible: Comparison of the acid/base properties of dissolved organic carbon in the
 boreal and temperate zones, Environ. Sci. Technol., 37(9), 1726-1730,
 doi:10.1021/es0201552, 2003.
- 1235 Hope, D., Dawson, J. J. C., Cresser, M. S. and Billett, M. F.: A method for measuring free
- 1236 CO_2 in upland streamwater using headspace analysis. J. Hydrol., 166, 1–14, 1995.

- 1237 Hunt, C. W., Salisbury, J. E. and Vandemark, D.: Contribution of non-carbonate anions to
- total alkalinity and overestimation of pCO₂ in New England and New Brunswick rivers.
 Biogeosciences, 8, 3069–3076, 2011.
- Johnson M.J., Billett M.F., Dinsmore K.J., Wallin M., Dyson K.E. and Jassal R.S.: Direct and
 continuous measurement of dissolved carbon dioxide in freshwater aquatic systems method and applications. Ecohydrol. 3, 68–78, 2010.
- 1243 Kempe, S.: A computer program for hydrochemical problems in karstic water. Annales de
 1244 Spéléologie 30, 699–702, 1975.
- Kempe, S.: Sinks of the anthropogenically enhanced carbon cycle in surface freshwaters. J.
 Geophys. Res., 89, 4657-4676, 1984.
- Kratz, T.K., Schindler, J., Hope, D., Riera, J. L., and Bowser, C. J.: Average annual carbon
 dioxide concentrations in eight neighboring lakes in northern Wisconsin, USA. Verh.
 Internat. Verein. Limnol., 26, 335-338, 1997.
- Liss, P. S., and Slater P. G.: Flux of gases across the air-sea interface. Nature, 233:327-9,
 1974.
- Marwick, T.R., Tamooh, F., Ogwoka, B., Teodoru, C., Borges, A. V., Darchambeau, F., and
 Bouillon S.: Dynamic seasonal nitrogen cycling in response to anthropogenic N loading
 in a tropical catchment, Athi–Galana–Sabaki River, Kenya, Biogeosciences, 11, 1–18,
- 1255 doi:10.5194/bg-11-1-2014, 2014a
- Marwick, T. R., Borges A. V., Van Acker K., Darchambeau F. and Bouillon S.:
 Disproportionate contribution of riparian inputs to organic carbon pools in freshwater
- 1258 systems, Ecosystems, <u>17(6)</u>, <u>974-989</u>, <u>doi: 10.1007/s10021-014-9772-6</u>, <u>2014b</u>.
- Meybeck, M.: Global chemical weathering of surficial rocks estimated from river dissolved
 loads, American J. Science, 287, 401-428, 1987.
- 1261 Millero, F. J.: The thermodynamics of the carbonic acid system in seawater. Geochim
- 1262 Cosmochim Acta 43:1651-1661, 1979.

gwen abril 17/11/14 21:09 Supprimé: in press, gwen abril 3/11/14 19:53 Mis en forme: Surlignage

- 1264 Neal, C., House, W.A., Down, K.: An assessment of excess carbon dioxide partial pressures
- in natural waters based on pH and alkalinity measurements, Sc. Total Envir., 210–211,
 173–185, 1998.
- Park, P. K.: Oceanic CO₂ system: An evaluation of ten methods of investigation, Limnol.
 Oceanogr. 14, 179-186, 1969.
- 1269 Parkhurst, D. L. and Appelo, C. A. J.: User's guide to PHREEQC (version 2) A computer
- 1270 program for speciation, batch-reaction, one-dimensional transport, and inverse
- 1271 geochemical calculations: US. Geological Survey Water-Resources Investigations
- 1272 Report 99-4259, 312 pp., 1999.
- 1273 Polsenaere, P., Savoye, N., Etcheber, H., Canton, M., Poirier, D., Bouillon, S. and Abril ,G.:
- 1274 Export and degassing of terrestrial carbon through watercourses draining a temperate1275 podsolised catchment, Aquatic Sciences, 75, 299–319, 2013.
- 1276 Raymond, P. A., Caraco, N. F. and Cole J. J.: Carbon dioxide concentration and atmospheric
 1277 flux in the Hudson River, Estuaries 20(2), 381-390, 1997.
- 1278 Raymond, P. A., Hartmann, J., Lauerwald R., Sobek, S., McDonald, C., Hoover, M., Butman,
 1279 D., Striegl R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M.,
- 1280 Ciais, P., and Guth, P.: Global carbon dioxide emissions from inland waters, Nature,
 1281 503, 355-359, 2013.
- Sobek, S., Tranvik L. J., and Cole, J. J.: Temperature independence of carbon dioxide
 supersaturation in global lakes. Global Biogeochem. Cy., 19. GB2003.
 doi:10.1029/2004GB002264, 2005.
- 1285 Stumm, W. and Morgan, J. J.: Aquatic Chemistry, Wiley- Interscience, New York, 1996.
- 1286 Tamooh, F., Borges, A. V., Meysman, F. J. R., Van Den Meersche, K., Dehairs F., Merckx
- 1287 R., and Bouillon S.: Dynamics of dissolved inorganic carbon and aquatic metabolism in
- 1288 the Tana River basin, Kenya, Biogeosciences, 10, 6911-6928, 2013

- 1289 Teodoru, C. R., del Giorgio P. A., Prairie Y. T., and Camire M., Patterns in pCO₂ in boreal
- streams and rivers of northern Quebec, Canada, Global Biogeochem. Cycles, 23,
 GB2012, doi:10.1029/2008GB003404, 2009.
- 1292 <u>Teodoru C. R., F. C. Nyoni, A. V. Borges, F. Darchambeau, I. Nyambe, and Bouillon S.:</u>
 1293 <u>Spatial variability and temporal dynamics of greenhouse gas (CO₂, CH₄, N₂O)</u>
 1294 <u>concentrations and fluxes along the Zambezi River mainstem and major tributaries,</u>
 1295 Biogeosciences Discussions, 2014.
- 1296 Vyverman, W.: Limnological Features of Lakes on the Sepik-Ramu Floodplain, Papua New
 1297 Guinea Aust. J. Mar. Freshwater Res., 45, 1209-1224, 1994.
- Wallin, M. B., Löfgren, S., Erlandsson, M. and Bishop, K.: Representative regional sampling
 of carbon dioxide and methane concentrations in hemiboreal headwater streams reveal
 underestimates in less systematic approaches. Glob. Biogeochem. Cy. 28, 465-479,
- 1301 2014.
- Wang, Z. A., Bienvenu, D. J., Mann, P. J., Hoering, K. A., Poulsen, J. R., Spencer, R. G. M.
 and Holmes, R. M. Inorganic carbon speciation and fluxes in the Congo River.
 Geophys. Res. Lett., 40(3), 511-516, doi:10.1002/grl.50160, 2013.
- Weiss, R. F.: Carbon dioxide in water and seawater: the solubility of a non-ideal gas, Mar.
 Chem. 2, 203–215, 1974.
- Weiss, R. F.: Determinations of carbon dioxide and methane by dual catalyst flame ionization
 chromatography and nitrous oxide by electron capture chromatography. J Chromatogr Sci
 19: 611-616, 1981.
- 1310
- 1311

Alberto 11/11/14 19:39

Commentaire [1]:

The volume and pages should be available soon (paper is submitted and BGD in production), something to look out for the proofing stage.

Country	untry Watersheds Tempe (°C			Trature DOC C) $(\mu \mod L^{-1})$				pH (NBS scale)				TA (µmol I	2 ⁻¹)	Measured pCO ₂ (ppmv)			N
		Av.	Min.	Max.	Av.	Min.	Max.	Av.	Min.	Max.	Av.	Min.	Max.	Av.	Min.	Max.	
Brazil	Amazon	30.3	27.4	34.3	352	118	633	6.60	4.53	7.60	385	30	1092	4204	36	18400	155
Kenya	Athi-Galana- Sabaki	25.9	19.8	36.0	307	29	1,13 3	7.69	6.49	8.57	2290	407	5042	2811	608	10405	44
DRC	Congo	26.3	22.6	28.2	1002	149	3968	6.01	3.94	7.22	212	0	576	6093	1582	15571	97
DRC / Rwanda	Lake Kivu	24.0	23.0	24.7	162	142	201	9.05	8.99	9.17	13037	12802	13338	660	537	772	53
France	Leyre	12.5	7.9	19.2	588	142	3625	6.20	4.40	7.41	280	38	1082	4429	901	23047	92
France	Loire	15.5	8.8	19.3	195	167	233	8.70	8.07	9.14	1768	1579	1886	284	65	717	18
Belgium	Meuse	18.1	13.3	25.9	229	102	404	7.89	6.95	8.59	2769	360	7141	2292	176	10033	50
Madagascar	Rianila and Betsiboka	25.4	20.2	29.5	138	33	361	6.84	5.83	7.62	233	76	961	1701	508	3847	36
Kenya	Shimba Hills	25.1	21.9	31.8	214	36	548	7.37	6.22	8.93	1989	227	14244	2751	546	9497	9
French Guiana	Sinnamary	27.1	24.1	28.7	419	213	596	5.50	5.08	6.30	143	66	290	7770	1358	15622	49
Kenya	Tana	26.6	25.0	27.9	321	193	651	7.65	7.32	8.02	1619	1338	2009	2700	845	6014	51
Zambia / Mozambique	Zambezi	26.9	18.8	31.8	252	103	492	7.59	5.06	9.08	1245	52	3134	2695	151	14004	107
Entire dataset		24.6	7.9	36.0	408	29	3968	7.00	3.94	9.17	1731	0	14244	3707	36	23047	761

Table 1. Summary of the presented dataset. Average, minimum and maximum values of temperature, dissolved organic carbon (DOC), pH

(measured on the NBS scale), total alkalinity (TA) and measured partial pressure of CO₂ (pCO₂) in the different freshwater ecosystems.

Table 2. Median and average values of dissolved organic carbon (DOC), pH (measured on the NBS scale), total alkalinity (TA), and calculated

	Ν	% of	cal – meas pCO ₂ (ppmv)		cal – meas pCO ₂ (% of meas pCO ₂)		рН		$TA (\mu \operatorname{mol} L^{-1})$		$\begin{array}{c} \text{DOC} \\ (\mu \text{mol} \text{L}^{-1}) \end{array}$	
		samples										
			Med.	Av.	Med.	Av.	Med.	Av.	Med.	Av.	Med.	Av.
All samples	761	100%	+611	+10692	+23%	+194%	6.94	7.00	467	1731	315	408
Ranked by calculated-mea	asured p	OCO_2 as % of r	neasured pCO ₂	2								
< -10%	122	16%	-540	-890	-34%	-36%	7.89	7.85	1269	1766	259	275
± 10%	174	23%	+15	+50	+2%	+1%	7.67	7.78	1576	3735	228	273
>+10%	465	61%	+2430	+17710	+72%	+327%	6.52	6.49	308	972	360	497
>+50%	280	37%	+ 5490	+ 28660	+162%	+526%	6.18	6.14	192	460	375	567
>+100%	199	26%	+ 9080	+39120	+270%	+710%	5.89	5.96	166	364	389	602
Ranked by pH												
pH > 7	368	48%	+1	+82	+1%	+15%	7.82	7.92	1572	3284	231	255
pH < 7	393	52%	+3280	+20630	+71%	+362%	6.30	6.13	232	277	413	558
рН 6-7	256	34%	+1580	+2710	+40%	+96%	6.58	6.55	334	370	350	427
pH < 6	136	18%	+18410	+ 54486	+308%	+864%	5.50	5.35	93	101	487	828
pH < 5	25	3%	+115580	+209910	+1645%	+3180%	4.53	4.53	41	45	1427	1,843
Ranked by TA												
$TA > 2000 \ \mu mol \ L^{-1}$	110	14%	+20	+340	+2%	+12%	8.58	8.47	7023	8326	163	202
TA 1000-2000 μ mol L ⁻¹	157	21%	-8	-163	-2%	-9%	7.81	7.83	1566	1534	271	295
TA 500-1000 μ mol L ⁻¹	99	13%	+1307	+1900	+28%	+72%	6.97	7.11	651	697	304	318
$TA < 500 \ \mu mol \ L^{-1}$	395	52%	+2070	+20090	+64%	+350%	6.30	6.24	222	232	400	538
$TA < 100 \ \mu mol \ L^{-1}$	82	11%	+6840	+60560	+230%	+1040%	5.50	5.35	59	56	603	988
Ranked by DOC												
$DOC < 200 \ \mu mol \ L^{-1}$	<u>179</u>	24%	<u>+40</u>	<u>+776</u>	<u>+5%</u>	+62%	<u>7.89</u>	7.92	<u>1579</u>	<u>4807</u>	163	<u>149</u>
DOC 200-300 µmol L ⁻¹	167	22%	+102	+2755	<u>+5%</u>	+69%	<u>7.56</u>	7.37	<u>1132</u>	1259	<u>258</u>	<u>252</u>
DOC 300-400 µmol L ⁻¹	165	22%	<u>+887</u>	<u>+4473</u>	+25%	<u>+101%</u>	<u>6.90</u>	<u>6.93</u>	<u>499</u>	<u>866</u>	<u>341</u>	<u>344</u>
$DOC > 400 \ \mu mol \ L^{-1}$	<u>250</u>	<u>33%</u>	+3070	+27197	+59%	+434%	6.15	6.14	<u>200</u>	<u>415</u>	555	765
$DOC > 800 \ \mu mol \ L^{-1}$	79	10%	+4995	+62784	+92%	+886%	<u>5.80</u>	<u>5.62</u>	<u>94</u>	180	1099	1438

minus measured partial pressure of CO₂ (pCO₂) in the dataset.

Figure captions

Figure 1 Location of the sampling sites in Africa, Amazonia, and Europe.	
<u>Figure 2. –</u> Comparison of results of different water-air equilibration designs for direct pCO_2	
measurements; pCO_2 measured with a marbles equilibrator (Congo) and with a membrane	
equilibrator (Congo and Zambezi) are plotted against pCO_2 measured with a syringe	
headspace technique. Detection was made with an IR gas analyser.	
Figure 3 Plot of carbon variables versus pH in the studied freshwater systems. Top panels	gwen abril 31/10/14 18:00
are shown with a linear scale and bottom panels with a logarithmic scale; (a,b): measured	Supprimé: 2
pCO ₂ ; (c,d) Total alkalinity; (e,f) Dissolved organic carbon. Zero TA values are plotted as	
0.001 in order to be visible on the log pCO_2 scale. Rianila and Bestiboka are plotted together	
although they belong to different watersheds in Madagascar.	
Figure 4 Comparison between measured and calculated pCO_2 for the whole dataset; (a)	gwon abril 31/10/14 18:00
calculated versus measured pCO ₂ , the line shows when measured pCO ₂ equals calculated	Supprimé: 3
pCO_2 ; (b) the difference between calculated and measured pCO_2 as a function of pH; same	
symbols as in Figure 3.	
Figure 5 Average percentages of pCO ₂ overestimation (calculated as 100 x (calculated	gwen abril 17/11/14 21:11 Supprimé: 2
pCO ₂ -measured pCO ₂)/measured pCO ₂ , as a function of (a) pH, (b) TA and (c) DOC, for the	gwen abril 31/10/14 18:00 Supprimé: 4
12 studied sites. Error bars indicate the standard deviation from the mean for each freshwater	
systems.	
Figure 6 Sensitivity of pCO ₂ overestimation to pH; (a) theoretical factor dpCO ₂ / dTA,	
which describes the sensitivity of calculated pCO ₂ to the TA value; (b) the solid lines show	gwen abril 31/10/14 18:00 Supprimé: 5
the increase in calculated pCO ₂ induced by various increases in TA, as functions of pH; these	
lines mimic the overestimation of calculated pCO ₂ generated by increasing contributions of	
organic alkalinity to the TA; field data (as calculated – measured pCO ₂) have been plotted for	

comparison; same symbols as in Figure 3. Note that negative values do not appear in the

logarithmic scale.

gwen abril 17/11/14 21:11 Supprimé: 2

gwen abril 31/10/14 18:01 Supprimé: 2

gwen abril 8/11/14 18:55 Supprimé: 5

47