Dear Editor of Biogeosciences

Please find attached a revised version of the manuscript entitled, "*Physical and Chemical Characterization of Biochars Derived from Different Agricultural Residues*".

First of all, I would like to thank the referees whose suggestions have definitely improved the paper. All comments and corrections have been taken into consideration. Mainly, the sections of introduction and conclusion have been improved. Regarding improvement of English writing, we made a deep revision of the manuscript and, lately asked for professional editing services (Editage) to revise it.

Thank you very much,

Best regards,

KEIJI JINDO

Dear Referee #1,

Thank you very much for your suggestions, our response for your comments was described with blue colour as following:

Remarks from Referee#1

The ms. dealing with "Physical and chemical characterizations of biochars derived from different agricultural residues" is clear, well organised and written. For the future work, we suggest the authors to compare and discuss these results with those of standard of humic substances (humic acids, mainly) supplied by the IHSS (Iternationa Humic Substance Society).

The comment of Referee #1 is relevant since there are similarities of chemical composition with humic subsatances, especially in terms of recalcitrant character. In fact, the technique to analysis of chemical composition of biochar material by FT-IR, NMR, and thermal analysis can be very fundamental tools to compare biochars to those materials.

Dear Referee#2

Thank you very much for your comments and suggestions, all of them have been considered in order to improve the quality of this paper. The comments of Referee#2 are relevant and reasonable. All our response for your comments was described with blue colour as following:

Remarks from Referee#2

In my opinion this article does not suit the aims and scope of biogeosciences. Different temperatures can alter the characteristics of biochar. But what is the implication that this has in the soil biogeochemistry or soil microbiology? This article is much more suited for a journal focused on pyrolysis like Journal of Analytical and Applied Pyrolysis. The article is not very well written, both with numerous grammar mistakes. See, for example, lines 11 and 21 in the abstract or the first line in the introduction. In many instances there are also inadequate links between ideas. The authors conclude that low temperature biochars are better for soil microbial population potential for carbon sequestration. There is not the level of novelty required to publish in Biogeosciences.

First of all, we appreciate your comments, which encouraged us to reconstruct the manuscript for making clearer the focus of our work and also to upgrade the manuscript quality.

We have now rewritten the aim of the manuscript (the last section of the introduction) to highlight the relevance of our work to the scope of the journal. The main aim was to optimize the physicochemical properties of biochar, prepared from different residual materials as feedstocks in order to enhance their potential as organic amendments and to interact with the different soil biogeochemical cycles. We hope that the new version clearly highlights the relationship of the paper to the following scope of the journal "Biogeochemistry and global elemental cycles".

In addition, we have included further characterization of the biochars in order to evaluate their stability in soils. The ash content of biochar and the thermal analysis are added to our study. These data manifest the differences of the properties with more details.

Concerning of the use of English, we made a deep revision of the manuscript and ask for professional editing services (Editage) to revise our whole manuscript including tables and figures.

We have amended the sentence in the conclusions, and we have reviewed the entire manuscript to clarify well known concepts and the main contributions of this paper.

Page 11728, lines 1-6: This is mentioned only in the abstract and not in the introduction section. Lines 20-21: This is never proved in this article. These constitute examples of inadequate links between ideas.

We agree with the reviewer and we have focused the abstract on the novelty of the paper, rather than introducing the research topic.

Page 11729, line 10: This reference is a very poor choice here. Lammirato did not measure any indicator related to plant performance. Line 20: "Eucalyptus"

We appreciate the clarification and, accordingly, we have replaced the reference by Lammirato et al, 2011. We choose other references, relating to the experiment of plant growth (Robertson et al., 2012) and the nutrient release from biochar (Mukherjee and Zimmerman, 2013).

"Eucaryptus" was corrected to "Eucalyptus".

There is a lack of hypothesis in the introduction. It is not clear what the authors aim to learn from this experiment. In addition they justify the use of rice husk and rice straw, but not other materials.

The revised version of the introduction was intended to better explain the aim of the paper. However, a as suggested by the referee, we also included an statement with the hypothesis of the manuscript to justify how the different properties of the feedstock

would determine the behavior of biochar in soil and the impact on soil biogeochemical cycles. Justification of the use of apple pruning woodchip and the oak tree, as the reference as the hard-wood material was added.

Page 11730, line 8: What was the approximate size of the pieces? This has important implications for the pyrolysis process.

We agree with reviewer. The size of the pieces was less than 4–5 cm. The description was added in the manuscript.

Page 11732, lines 17-19: This is highly speculative. Lines 24 to end of the page: This is again highly speculative. How would Si content affect the pyrolysis process?

The sentence on the page 11732, lines 17-19, was omitted, and the sentence from Line 24 to end of the page was rephrased. A description of Si content during the pyrolysis process was added in the manuscript and supplementary data on elemental composition of biochars produced at 800 °C, including the Si content, is now shown.

Page 11733, lines 7-9: This sentence is really difficult to understand. It needs serious rewriting.

The sentence was rewritten.

Page 11736, line 1: As substitute for what?

It was error. It should be "substrate".

```
Physical and Chemical Characterizations of biochars derived from different
 1
 2
      agricultural residues
 3
      Keiji Jindo<sup>1,32</sup>*, Hideki Mizumoto<sup>23</sup>, Yoshito Sawada<sup>32</sup>, Miguel A. Sanchez-Monedero<sup>1</sup>,
 4
      and Tomonori Sonoki<sup>23</sup>
 5
 6
 7
      1
         Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC). Department
 8
      of Soil Conservation and Waste Management. Campus Universitario de Espinardo,
 9
      30100 Murcia, SPAIN.
      <sup>2</sup>—Faculty of Agriculture and Life-Sciences, Hirosaki University, Bunkyo-cho, Hirosaki,
10
      Aomori 036-8561, JAPAN.
11
         ____Institute of Industrial Science, the University of Tokyo, 3-8-1 Komaba, Meguro-
      3-___
12
13
      ku, Tokyo 153-8902, JAPAN.
      <sup>3</sup> Faculty of Agriculture and Life-Sciences, Hirosaki University, Bunkyo-cho, Hirosaki,
14
15
      Aomori 036-8561, JAPAN.
16
17
18
19
20
21
22
23
      *Corresponding author: keijindo@hotmail.com
24
      Phone: +34 968396364
25
      Fax: +34 968396213
26
```

27

30 Abstract

31 Biochar has received large attention as a strategy to tackle against carbon 32 emission. Not only carbon fixation has been carried out but also other merits for 33 agricultural application due to unique physical and chemical character such as 34 absorption of contaminated compounds in soil, trapping ammonia and methane 35 emission from compost, and enhancement of fertilizer quality. Biochar has been 36 evaluated globally as a tool for carbon sequestration and soil fertility. The 37 understanding of the chemical and physical properties of biochar, which are strongly 38 related to type of original material and pyrolysis condition, is an important key to 39 identifyselect the most suitable use in lately adequate application to soil (Manyà, 2012). 40 A selection of organic wastes with contrasting characteristics (rice husk, rice straw, 41 wood chips of apple tree (Malus Pumila) and oak tree (Quercus serrata)) were 42 pyrolyzedpirolyzed at different temperatures (400, 500, 600, 700 and 800°C) in order to 43 optimize the physicochemical properties of biochar as soil amendment. In order to 44 evaluate and optimize those characteristics of the pyrolysis product, several chemical 45 and physical analysis were examined in our studyIn our study, using different local 46 waste feed stocks (rice husk, rice straw, wood chips of apple tree (Malus Pumila) and 47 oak tree (Quercus serrata)), in Aomori, Japan, were utilized for creating biochar with different temperature (400,500,600,700,and- 800°C). Concerning to the biochar 48 49 production, the pyrolysis of at lower temperatures produced high had more biochar 50 yields, but , in relative to tha n-higher temperature pyrolysis process. On the 51 contrary, produced biochars with high C content, surface areas and adsorption 52 characteristics have been increased as increasing temperature. The proportions of

53	carbon content in the biochars also increased together with increased temperatures.
54	Infrared Fourier spectra (FT-IR) and ¹³ C-NMR were used to understand carbon
55	chemical compositions in our biochars, and it was observed that the numbers of the
56	shoulders representing aromatic groups, considered as stable carbon structure appeared
57	as the temperature came closer to 600 ⁹ C, as well as in FT IR. In rice materials (RS and
58	<u>RH)</u> , the peaks assigned to SiO2, was observed in <u>differentall temperature ranges of</u>
59	biochars_ (400-800 ⁰ C) in FT-IR_along with retained small shoulder of aromatic carbon
60	(over 1620 cm ⁻¹ .). The biochar obtained from rice materials (RH and RS) has high
61	biochar yield and the unique chemical property as a consequence of the incorporation of
62	silica element into chemical structure, while in the biochar from wood materials (AB
63	and OB) the enrichment with carbon content together with high absorption character
64	was created. We propose suppose that the pyrolysis at 600° C creates the most
65	recalcitrant character for carbon sequestration, meanwhile the pyrolysis at 400° C
66	produces the superior properties as a fertilizer by retainsing volatile and easily labile
67	compounds-compounds.which promotes soil microbial activities.
68	
69	
70	Keywords: biochar; pyrolysis; NMR; carbon sequestration; crop residues
71	
72	
73	
74	
75	

1. Introduction.

78	The interests in biochar utilization as a strategy for mitigation of global warming
79	is steadily are increasing. Besides the growing attention to the biochar-utilization of
80	biochar for the carbon sequestration, a number of works are reported on a alternative
81	variety of purposesuses of biochar, such as the improvements of soil fertility, plant
82	growth and decontamination of pollutants such as pesticides, heavy metals, and
83	hydrocarbons (Beesley et al., 2011; Cabrera et al., 2011). Since tThe diverse
84	applications of biochar would be determined by its physicochemical properties, which
85	are governed by the pyrolysis conditions (heating temperature and duration) and the
86	original feedstock (Enders et al., 2012). For this reason, should be in accordance with the
87	adequate ability and property each biochar has, the information on the whole
88	production processscheme, which mostly determine fundamental biochar character, is a
89	key factor in defining any strategy for the use of biochar. to understand them. Morever,
90	Pyrolysis is the thermo-chemical process of heating biomass under low-oxygen
91	presence to produce pyrogenic material. Heating durations, temperatures, and types of
92	feedstock materials are main components to determine the property of final product.
93	Pyrolysis is the thermo-chemical process of heating biomass under low oxygen presence
94	to produce pyrogenic material. Heating condition, and types of feedstock materials are
95	main components to determine the property of final product (Enders et al., 2012), and
96	the differences in stability between biochars and the transformation after adding to the
97	soil is affected by the initial property (Joseph et al., 2010). The
98	The physicochemical properties of biochar can drive changes in soil nutrient and
99	C availability and provide physical protection of microorganisms from predators and
100	desiccation, which finally promotes the alteration of the microbial diversity and the
101	taxonomy (Leehman et al., 2011). bBiochar derived from relatively low temperature

102	pyrolysis are characterized by a high content of volatile matter, containinged easily
103	decomposable substrates, which can contributes ed to the plant growth as an additional
104	nutrition, according to the reports (Robartson et al., 2012; Mukherjee and Zimmerman,
105	2013Lammirato et al., 2011). On the other hand, the structure of the biochar derived
106	from the high temperature pyrolysis, is was refined to more selected compounds,
107	formed characterized by larger surface area and also showed higher aromatic carbon
108	contents, which ean could promote and finally this physico chemical property promotes
109	the adsorption capacity for bioremediation as well as the recalcitrant character for
110	carbon sequestration (Lehmann, 2007). Also, it has been considered that the yields by-
111	products such as fuels and gases generated during the pyrolyisis were influenced by
112	pylolysis temperature and duration (Grierson et al., 2009; Mahinpey et al., 2009; Gell et
113	al., 2011).
114	The type of feedstock material is also an important factor to guide the proper
115	orientation of application, since the properties of biochar will be affected by the nature
116	of the original material, and consequently its effect in soil. The soil cation exchange
117	capacity is enhanced more by manure-based biochars than wood
118	(EucaryptusEucalyptus) biochar (Singh et al., 2010), meanwhile the treatment of the
119	soil with woodchip biochar resulted in higher saturated hydraulic conductivities than the
120	manure biochar treatment (Lei and Zhang, 2012).
121	The aim of our study is to optimize the physicochemical characteristics of
122	biochar for its use in agriculture by combining different pyrolysis conditions and the
123	selection of different agricultural wastes as feedstocks.biochar production of each
124	different material, To achieve this aim, evaluatinge the thermo-chemical properties of
125	biochars obtained derived by different feedstock with at different temperature (400-800
126	^o C) were evaluated. Rice husk (RH) and rice straw (RS) are used in our work as original
127	materials, since the global amounts of residues from rice crop (Oryza sativa L.) are 0.9

128	Gt for a year which constitutes the 25% of the total amount of whole agricultural
129	residues in the world (Knoblauch et al, 2011). Also, the research on characteristic of
130	biochars derived from orchard residues, pruning woodchips of apple tree (AB) (Malus
131	pumila),-are takingen conducted place, comparing with hard-wood-biocharas well as
132	the other tree wood chip from of oak tree (OB), (Quercus serrata). According to the
133	FAO statistics, the 793800 metric tons of apple is produced in Japan in 2012, and 50
134	percent of the whole production are from Aomori prefecture, which is well known as
135	the origin of variety "Fuji-Apple". However, 36879 ton/ year (dry weight) of pruning
136	branches in this region, which estimate more than 75% of total volume, still remains
137	without utilization (NADO report). This is probably due to the concern that the remnant
138	of pesticide, insecticide or fire retardant, that impregnated into the wood and finally
139	making them psychical inseparable (Badger, 2002), is hazardous material for soil
140	ecosystem if plowing residual orchard materials as organic amendment. The
141	carbonization of pruning woodchip could be alternative waste management not only for
142	reducing hazardous material such as pesticide remnant (Suri and Horio, 2010) but also
143	for sequestrating carbon in soil. Although several works on the use of pruned-biochar as
144	soil amendment have been -are-recently published recently for soil amendment (Fellet et
145	al., 2011: Alburquerque et al., 2013), the evaluation of the pyrolysis during production
146	process on this feedstock is hardly reported. The optimization of pyrolysis production
147	should be examined by monitoring the production process.
148	

149 2. MATERIALS AND METHODS

150 2.1 Biochar preparation from agricultural residues

151 Biochars used in this work were made from two rice residues (Oryza sativa L.): straw

152 and husk, and two woody materials: a kind of broad-leaved trees (Quercus serrate

153 Murray) and apple wood chips (Malus pumila). All materials were first dried in air and

then cut into small pieces (less than 4-5cm) to put into a ceramic vessel (370cm³) for a
commercial electric furnace (SOMO-01 Isuzu, Japan), and were charred for 10 hours at
different temperatures (from 400 to 800°C) with 10 °C min⁻¹ heating rate.

157

158 2.2 Chemical analysis of biochar

159 After the pyrolysis process, all samples were grounded to be homogenized, and sieved 160 to less than 0.5 mm in diameter. The biochar yield was calculated by the proportion of the weight of pyrolysis product to the original material. The determinationanalysis of 161 162 volatile matter and ash content was conducted according to the American Society for 163 Testing and Materials (ASTM) D1752-84, which is recommended in the International bBiochar international organizationInitiative (www.biochar-international.org): The 164 165 volatile matter was determined by measurement of weight loss following combustion of about 1 g of charcoal in a crucible at 950 °C. With the same procedure as the volatile 166 167 matter, the ash content was determined at 750. °C. The pH of each mixture pH at 1:10 168 (w/v) ratio was measured with a MP220 pH-meter. Micro- and meso-porosity was 169 evaluated by the iodine (I₂) and methylene blue (MB) adsorption capacity, respectively, 170 following the methodology used by Gaspard et al., (2007). The specific surface area was 171 determined using N₂ sorption isotherms run on automated surface area. The specific surface areas distribution reading wereas taken from adsorption isotherms, using the 172 173 equation of Brunauer–Emmett–Teller (BET) surface area (Zhang et al., 2011).

174 *Elemental composition*

175 – The elemental composition of –carbon (C), hydrogen (H), and –nitrogen (N) was
176 determined using an Elemental analyzer (Thermo Finnigan EA-1112, Thermo Fisher
177 Scientific Inc., Massachusetts, America), and the oxygen (O) content was determined by
178 Vario ELl cube, Elementar Analysensysteme GmbH Co.

179 <u>Thermal analysis</u>

- 180 Thermal analysis of the biochars was measured by using a SDT-2960 simultaneous
- 181 DSC-TGA thermal analyzer (TA instruments) under static air atmosphere with as-the
- 182 <u>following temperature rampprocedure: a temperature equilibrating at 30 °C followed by</u>
- 183 <u>a linear heating rate of 5 °C min⁻¹ from 30 to 105 °C, an isotherm for 10 min and then</u>
- 184 <u>continued ramping of 5 °C min⁻¹ from 105 to 680 °C.</u>

185 Infrared Spectra

186 Infrared spectra were recorded on a Varian 670-IR (Agilent Technologies Inc., CA) 187 using the pellet technique by mixing 1 mg of dried biochar with 300 mg of pre-dried 188 and pulverized spectroscopic-grade KBr (from Merck & Co., Whitehouse Station, NJ). 189 The following broad band assignation was used (Chen B-and Chen-Z,2009; Haslinawati 190 et al., 2011; Novak et al., 2010; Peng et al., 2011; Yuan et al., 2011; Wu et al., 20123; Guo and Chen, 2014): 3400 to 3410 cm⁻¹, H-bonded O-H stretching vibrations of 191 hydroxyl groups from alcohols, phenols, and organic acids; 2850 to 2950 cm⁻¹, C-H 192 stretching of alkyl structures; 1620–1650 cm⁻¹, aromatic and olefinic C=C vibrations, 193 C=O in amide (I), ketone, and guinone groups: 1580 to 1590 cm^{-1} , COO- asymmetric 194 stretching; 1460 cm⁻¹, C-H deformation of CH₃ group; 1280-1270 cm⁻¹, O-H stretching 195 of phenolic compounds; and three bands around 460 cm⁻¹-, 800 cm⁻¹, and 1000-1100 196 197 cm⁻¹, bending of Si-O stretching.

198 Solid-state nucleic resonance spectroscopy (NMR)

199 Cross-polarisation magic angle spinning (CPMAS) 13 C nuclear magnetic resonance 200 (13 C-NMR) spectra were acquired in the solid samples with a Varian 300, equipped with 201 a 4-mm-wide bore MAS probe, operating at a 13 C resonating frequency of 75.47 MHz. 202 The assignation of the following peaks and broads was used (Brewer et al., 2009; 203 Calvero et al., 2011): The peak around 30 ppm, is considered as content of methylenic 204 chains and/or CH₂ groups deriving from various lipid compounds<u>and</u>; plant waxes<u>__and</u> 205 plant biopolyester; Two peaks at 55 ppm and 70 ppm, assigned to methoxy and O-alkyl 206 groups characteristic of the relatively-easily-biodegradable compounds such as 207 remaining cellulose, and hemicellulose; The broad band around 130 ppm, related to alkyl substitutions in the p-hydroxy phenyl ring of cinnamic and p-coumaric units of 208 209 both lignin and suberin biopolymers, as well as to both partially-degraded lignin 210 structures and condensed aromatic and olefinic carbons; The sharp peak at 170 ppm, 211 assigned to a large content of carboxyl groups in aliphatic acids of plant and microbial 212 origin and/or amide groups in amino acid moieties. The spectra were integrated in the 213 chemical shift (ppm) resonance intervals of 0-45 ppm (paraffinic carbons), 46-65 ppm 214 (methoxy C from OCH₃, and complex aliphatic carbons), 66–90 ppm (O-aliphatic C, 215 such as alcohols and ethers), 91-145 ppm (aromatic carbon), 145-160 ppm (phenolic 216 carbons), 160 -185 ppm (carboxyl, amides and ester) and 185-220 ppm (carbonyls) 217 (Wang et al., 2007; Zhang et al., 2012+).

218

219 **3. Result and Discussion**

220 3.1. Physicochemical characteristics of biochar 221 The characteristics of biochars originated from different agricultural wastesmaterials 222 are shown in Table 1. Lower temperature pyrolysis process, hasproduced a higher 223 biochar yield and an more enriched volatile matter composition than the -high 224 temperature biocharsinside biochar product. The volatile compounds are easily 225 degradable compounds, which stimulates the activity of microorganisms in soil as 226 substrate and ends up supplying plant nutrition (Steinbess et al., 2009; Zimmerman, 227 2012). The biochar yields and volatile contents were gradually reduced by increasing 228 pyrolysis temperatures. Not only the range of pyrolysis temperature Moreover, the type 229 of feedstock also affected biochar yields and the volatile matter content. Among 230 different biochar types, two types of woody-biochars (AB and OB) showed larger variation in volatile content from low temperature to high temperature (from 400 °C to 231

232	800 0 C) than non-woody biochars (RS and RH), aAs observed by , and this result is in
233	accordance with other report (Enders et al., (2012). ThThese authors found that the ey
234	mention that this attributes to the recalcitrant character of lignin in woody feedstocks
235	can partially resist , which resists still partially pyrolytic decomposition at 400 °C, but
236	not in the range of 950 °C (used for the determination of ash content), increasing the
237	volatile content of woody biochar prepared a relatively low temperatures. for
238	determinating the volatile content quantification. low yields and low volatile contents
239	compared to other two kinds of biochar from rice residues (RS and RH). Also, wood
240	original biochar (AB and OB) has less ash content than others, (RS and RH), which is in
241	the accordance with the work of Singh et al., (2010). The biochars derived from rice
242	material (RS and RH) have a high ash content in all temperature ranges, which may
243	have casued aand the partial change in of the structure and composition by a possible
244	interaction between organic and inorganic constituents during feedstock pyrolysis, as
245	already reported by composition partially could be occurred according to the report
246	(Elders et al., (2012), in biochar that the biochars, containing above 20% of ashesed
247	greater than 20% ash, could be possible interaction between organic and inorganic
248	constituents during feedstock pyrolysis. Overall, tThose results might be due to the
249	differences in compositions of the original agricultural material since rRice plants are
250	enriched with Si, which strongly relates to the ash content of the biochar (Mukome et al.,
251	2013) by the formation of Si-C bonds which increases the aromatic components and
252	recalcitrance of the biochars with increasing pyrolysis temperatures (Guo and Chen,
253	2014)-while. In the case of woody feedstocks, , while recalcitrant carbons such as lignin
254	content are predominantly contained in woody plants (Liu and Zhang, 2009; Spokas et
255	al., 2009; Joseph et al., 2013). It is reported that the bonds Si-C is probably take part in
256	cross linking of organic and inorganic compounds such as aromatic groups or

257	erystallites, and the higher temperature that biochar production is taken place, the SiO4
258	is more dominant relative to SiO2 (Lehmann et al., 2011).
259	The pH values increased with by higher temperature, probably as a consequence
260	ofresulted from the relative concentration of non-pyrolyised inorganic elements, already
261	present in the original feedstocks (Novak et al., 2009). The porosity and surface area
262	represent the main physical properties of biochar, which are and strongly connected
263	strongly-with the improvement of soil properties such as soil adsorption capacity, and
264	water retention abilities. which those has couldpotential to improve soil property
265	(Kalderis et al., 2008)., and in particular, taking the advantage of enhanced these
266	properties, <u>T</u> the number of works on the application of biochar derived from the rice
267	husk hasve been reported to on enhancement of theose properties in for improvement of
268	the soil-quality (Kalderis et al., 2008; Liu and Zhang, 2009; Lei and Zhang, 2013)As
269	shown in Table 1, the biochar production withat higher temperatures generally enlarged
270	methylene blue number, I_2 absorption, and surface area, compared to than the
271	production $\frac{\text{with}\underline{at}}{\text{lower temperature (p < .001), and these results are in accordance with}}$
272	other previous work (Gaskin et al., 2008; Liu and Zhang, 2009; Yu et al., 2011).
273	Regarding of comparison among the variety of origins, the difference in micro-porosity
274	(I_2) of biochars between from wood feedstock (AB and OB) and from rice residues (RH
275	and RK) was gradually enlarged as increasing pyrolysis temperature from 500°C to
276	800°C. In contrast, an apparent difference in surface area was observed. The surface
277	areas of RH and RK reduced at 800°C, while those of AB and OB still had been
278	extending. These decreases in surface areas of RH and RK will be attributed to ash
279	content in biochar, that high content of inorganic ash in biochar filled or blocked access
280	to micropores, resulting in relatively low surface area (Mackay and Roberts, 1982; Song
281	and Guo, 2012).

282 3.2. Analytic elements

283	Analytical elements and both ratios of H/C and O/C are also indicators to evaluate
284	the characters of biochars (Nguyen and Lehmann, 2009). As shown table 2, it is
285	observed that the increasing temperature results in loss of hydrogen and oxygen than
286	carbon. Dehydrogenation of CH_3 on biochar properties as consequence of thermal
287	induction is the indicative of changes in biochar recalcitrance (Harvey et al., 2012).
288	Concerned with oxygen loss, the biomass material normally comprises of labile and
289	recalcitrant O fractions; a labile O fraction that is quickly lost upon initial heating, and a
290	recalcitrant O fraction which retained in the char of final product (Rutherford et al.,
291	2013).
292	Regarding with the H/C/ and O/C, Table 2 shows the redaction reduction in these
293	ratios with charring temperature, being attributed to the dehydration and
294	decarboxylation reactions. The change of O/C ratio in the range from 400 0 C to 500 0 C
295	was remarkably observed in the order of RS>RK> AB> OB. It is reported (Yang et al.,
296	(2007) and ;-Khodadad et al.,(2011) found that biochar made from wood and at higher
297	temperatures are less biologically labile, containing relatively higher proportions of
298	more aromatic organic matter, compared to other biochars original materials of prepared
299	from agricultural residues and at lower temperature. As shown in the van Krevelen
300	diagram (Fig. 1), the constancy of the reduction in the H/C and O/C ratios as increasing
301	temperature are observed, reflecting the loss of easily degradable carbon compounds
302	such as volatile matters At the parallel, lower C/O ratio in biochar with higher
303	temperature indicate the arrangement of aromatic rings (Spokas et al., 2010), forming
304	crystal graphite-like structure with high stability (Wu et al., 2012; Dong et al., 2013).
305	Concerning with the difference of the feedstocks in the diagram, the rice material
306	biochars (RS and RH) wereas distanced from Y axe at 600 °C and 700°C;
307	wheras whereas the stable reduction of the H/C and O/C in wood biochars (AB and OB)
308	was shown. This result was mainly due to the decrease of C content in RS and RH from

309	500 ⁹ C to 600 ⁹ C, which the shift moved from 45.2% to 40.3% and from 37.5% to 33.8%,
310	in RS and RH, respectively (Table 2). The reduction of carbon content in biochar
311	production could be related to the chemical and physical composition. The change of
312	the physical and structural composition of rice straw biochar between the pyrolysis
313	condition of 500 °C and 700 °C is reported by Guo and Chen, (2014)-, using SEM-EDS
314	images. For the rice husk biochar made at 500 0 C, the silicon was associated with
315	carbon and formed a dense structure, forming Si-encapsulated carbon, meanwhile the
316	silicon component were physically distanced from carbon structure in biochars prepared
317	at the highest temperature for the other made at (700 °C).
318	
319	3.3. Thermal analysis
320	Thermal analysis is a useful method to understand -the structure of biochar materials.
321	(Kalderis et al., 2014; Mimmo et al., 2014). In our study (Fig. 2), all biochar samples
322	had a similar of the thermal degradation profile, with an increasing weight loss with
323	increasing pyrolysis temperature. has same tendency that biochar produced at 400^{-9} C
324	has the largest proportion of lost weight. The difference among the feedstocks (wood v -s.
325	no-wood) wais observed in the total weight losses, as observed in the ash
326	content.location of the curve of lost weight. The curves of the lost weight in AB and OB
327	were-reached up to to a great extent until the 940 percent of total weight, meanwhile the
328	curve in RH and RK reached were stopped-around half volume of weight (40-50%),
329	reflecting the higher mineral content . This would be reflected to the high mineral
330	content in rice material, and moreover during charring process this mineral content
331	performs as a barrier to prevent from heat diffusion and the release of the volatile
332	contents (Xu and Chen, 2013).
333	

334 3.4. Chemical composition with spectra parameters (FT-IR and NMR)

335	The FT-IR is a great tool to shed on the light to understand to observe the shift
336	change of chemical composition. The aliphatic loss process is represented by the band
337	of FT-IR with aliphatic C-H stretching (2950-2850cm ⁻¹) at increasing temperature from
338	400° C to 600° C –(Figure 2), meanwhile <u>thea couples of</u> representative peaks for
339	aromatic carbon appeared more clearly such as C-H stretching (750-900cm ⁻¹ and 3050-
340	3000cm ⁻¹), C=C (1380-1450 cm ⁻¹), C-C and C-O stretching (1580-1700cm ⁻¹). As
341	shown by the infrared spectra, charring temperature modifies the functional group, and
342	thus aliphatic C groups decrease but aromatic C increases (Lee et al., 2010). Since
343	longevity of biochar is a matter of debate in relation with the biochar production
344	(Nguyen and Leehman, 2009; Peng et al., 2011), the pyrolysis process of 600 ⁰ C, which
345	creates more recalcitrant character by increasing aromatic compounds, has suitable
346	method in terms of the carbon sequestration. However,- when the charring temperature
347	increase over 700 0 C and 800 0 C, the intensity of bands decline gradually such as
348	hydroxyl group (3200-3400 cm ⁻¹) and even aromatic bands (1580-1600cm ⁻¹ and 3050-
349	3000cm ⁻¹) Other works (Yuan et al., 2011) report that the number of bounds
350	representing functional groups are present at the lower-temperature biochars (300 ⁰ C and
351	500°C), and are absent in the biochar-derived by 700°C. The loss of these functional
352	groups decrease recalcitrant character of biochar, which will be hardly remained after
353	applying it to soil.
354	The characteristic of feedstock type of biochar has been reflected by the presence of
355	bounds around 460 cm ⁻¹ , 800 cm ⁻¹ , and 1040-1100 cm ⁻¹ , assigned to SiO ₂ , and these is
356	bands was shown in all biochars originated from rice materials (RH and RS), showing
357	in the Fig. 3. <u>ba</u> . The SiO ₂ is a major component in chemical structure of rice material,
358	and is typical of recalcitrant property. In plant physiology, the presence of silica is
359	knowingly found as principal component of plant phytoliths and it functions for
	1

preserving stability character ,based on the predominance of aromatic structure andkeeping higher chemical property with functional groups.

Concerning with lower temperature, the shoulder at around 20 ppm, assigned to easily degradable carbon, appeared in the 400° C-produced biochars, and this shoulder was eliminated in the biochar produced at 500° C. This accords with other's work

386	(McBeath et al., 2013) that biochar, produced at 300°-400°C, exhibited broad alkyl
387	signals and carbohydrate band, meanwhile these bands were not detectable over 400° C.
388	As shown in previous section, the biochar, produced at lower temperature, has higher
389	volatile carbon contents. The type of easily degradable compounds possibly contributes
390	to microorganisms in soil as substrateitute (Khodadad et al., 2011). In this sense, lower
391	temperature is suitable for the biochar utilization for soil fertility. On the contrary,
392	higher_temperature pyrolysis selects functional groups and provides aromatic
393	predominant presence in chemical composition, consequently resulting to the formation
394	of recalcitrant structure. However, it should be highlighted that the excess of the high
395	temperature such as 700 °C and 800 °C is not likely suitable and efficient for biochar
396	production, since those biochars reduce recalcitrant character by heat degradation of
397	functional group, and yield lower the biochar production than other biochars.
398	
399	4. Conclusion
400	In conclusion, the temperature of pyrolysis process-and the type of feedstock
400 401	In conclusion, the temperature of pyrolysis process and the type of feedstock change <u>drive</u> the physic-chemical properties of biochar. In our study, <u>lower temperature</u>
400 401 402	In conclusion, the temperature of pyrolysis process and the type of feedstock change <u>drive</u> the physic-chemical properties of biochar. In our study, <u>lower temperature</u> <u>pyrolysis has volatile content and ash</u> compounds retained inside biochar structure.
400401402403	In conclusion, the temperature of pyrolysis process and the type of feedstock change <u>drive</u> the physic-chemical properties of biochar. In our study, <u>lower temperature</u> pyrolysis has volatile content and ash compounds retained inside biochar structure. <u>Hincreasing highr</u> temperature re pyrolysis process produces more enhanced the physical
 400 401 402 403 404 	In conclusion, the temperature of pyrolysis process and the type of feedstock change drive the physic-chemical properties of biochar. In our study, <u>lower temperature</u> pyrolysis has volatile content and ash compounds retained inside biochar structure. <u>Hincreasing highr</u> temperature re pyrolysis process produces more enhanced the physical property of adsorption property such as large surface area and porosity and the
 400 401 402 403 404 405 	In conclusion, the temperature of pyrolysis process-and the type of feedstock change-drive_the physic-chemical properties of biochar. In our study, <u>lower temperature</u> pyrolysis has volatile content and ash compounds retained inside biochar structure. <u>Hincreasing highr</u> temperature re pyrolysis process produces more enhanced the physical property of adsorption property such as large surface area and porosity and the recalcitrant chemical character , reinforced by the function group, are improved. This
 400 401 402 403 404 405 406 	In conclusion, the temperature of pyrolysis process and the type of feedstock change-drive the physic-chemical properties of biochar. In our study, <u>lower temperature</u> pyrolysis has volatile content and ash compounds retained inside biochar structure. Hincreasing highr temperature re pyrolysis process produces more enhanced the physical property of adsorption property such as large surface area and porosity and the recalcitrant chemical character, reinforced by the function group, are improved. This alteration was strongly shown in wood material biochar (AB and OB). By contrast, rice
 400 401 402 403 404 405 406 407 	In conclusion, the temperature of pyrolysis process-and the type of feedstock change drive the physic-chemical properties of biochar. In our study, <u>lower temperature</u> pyrolysis has volatile content and ash compounds retained inside biochar structure. Hincreasing highr temperature re pyrolysis process produces more enhanced the physical property of adsorption property such as large surface area and porosity and the recalcitrant chemical character, reinforced by the function group, are improved. This alteration was strongly shown in wood material biochar (AB and OB). By contrast, rice material biochar (RH and RS) has higher biochar yield during the pyrolysis process than
 400 401 402 403 404 405 406 407 408 	In conclusion, the temperature of pyrolysis process-and the type of feedstock change-drive the physic-chemical properties of biochar. In our study, <u>lower temperature</u> pyrolysis has volatile content and ash compounds retained inside biochar structure. <u>Hincreasing highr</u> temperature re pyrolysis process produces more enhanced the physical property of adsorption property such as large surface area and porosity and the recalcitrant chemical character, reinforced by the function group, are improved. This alteration was strongly shown in wood material biochar (AB and OB). By contrast, rice material biochar (RH and RS) has higher biochar yield during the pyrolysis process than AB and OB, and the property of the biochar product is different from wood material in
 400 401 402 403 404 405 406 407 408 409 	In conclusion, the temperature of pyrolysis process and the type of feedstock change-drive the physic-chemical properties of biochar. In our study, <u>lower temperature</u> pyrolysis has volatile content and ash compounds retained inside biochar structure. <u>Hincreasing highr</u> temperature re pyrolysis process produces more enhanced the physical property of adsorption property such as large surface area and porosity and the recalcitrant chemical character, reinforced by the function group, are improved. This alteration was strongly shown in wood material biochar (AB and OB). By contrast, rice material biochar (RH and RS) has higher biochar yield during the pyrolysis process than AB and OB, and the property of the biochar product is different from wood material in that the inorganic components is combined with organic moieties in related with the
 400 401 402 403 404 405 406 407 408 409 410 	In conclusion, the temperature of pyrolysis process -and the type of feedstock change-drive the physic-chemical properties of biochar. In our study, lower temperature pyrolysis has volatile content and ash compounds retained inside biochar structure. Hincreasing highr temperature re pyrolysis process produces more enhanced the physical property of adsorption property such as large surface area and porosity and the recalcitrant chemical character, reinforced by the function group, are improved. This alteration was strongly shown in wood material biochar (AB and OB). By contrast, rice material biochar (RH and RS) has higher biochar yield during the pyrolysis process than AB and OB, and the property of the biochar product is different from wood material in that the inorganic components is combined with organic moieties in related with the carbon encapsulation by silicon presence, recalcitrant character of functional group and
 400 401 402 403 404 405 406 407 408 409 410 411 	In conclusion, the temperature of pyrolysis process-and the type of feedstock change-drive the physic-chemical properties of biochar. In our study, <u>lower temperature</u> pyrolysis has volatile content and ash compounds retained inside biochar structure. Hincreasing highr temperature re pyrolysis process produces more enhanced the physical property of adsorption property such as large surface area and porosity and the recalcitrant chemical character, reinforced by the function group, are improved. This alteration was strongly shown in wood material biochar (AB and OB). By contrast, rice material biochar (RH and RS) has higher biochar yield during the pyrolysis process than AB and OB, and the property of the biochar product is different from wood material in that the inorganic components is combined with organic moieties in related with the carbon encapsulation by silicon presence. recalcitrant character of functional group and adsorption property due to large surface area and porosity. By contrast, lower

412	temperature pyrolysis has volatile carbon compounds retained inside biochar structure,
413	which can induce microbial activities in soil. The over-heat production (>above 600° C)
414	showed the disappearance of the functional groups, driven by heat degradation.
415	
416	5. Acknowledgements
417	This work was supported in part by JSPS-CSIC bilateral project.
418	
419	6. References
420	Alburquerque, J. A., Salazar, P., Barrón, V., José Torrent, J., Campillo M.C., Gallardo
421	A., and, Villar R.:, Enhanced wheat yield by biochar addition under different
422	mineral fertilization levels-, Agron. Sustain. Dev., 33,475-484, 2013
423	
424	Badger, P.C.: Processing cost analysis for biomass feedstock, Oak Ridge National
425	Laboratory, Report for Biomass program, Office of Energy Efficiency and
426	Renewable Energy, USDOE. 2002.
427	
428	Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, JL., Harris, E., Robinson, B., and
429	Sizmur, T.: A review of biochars' potential role in the remediation, revegetation
430	and restoration of contaminated soils ₂ . Environ. Pollut., 159, 3269-82, 2011.
431	
432	Brewer, CAE., Schmidt-Rohr, Klaus., Satrio, Justinus-J. A., and Brown Robert, C.:
433	Characterization of biochar from Fast pyrolysis and gasification systems _a .
434	Environ. Progress. Sustain.able Energy, 28, 386-96, 2009.
435	
436	

437	Calvelo, PR., Kaal, J., Camps_, Arbestain, M., Lorenzo PR., Aitkenhead, W., Hedley,
438	M., Macias, F., Hindmarsh, J., and Macia-Agullo, JA.: Contribution to
439	characterisation of biochar to estimate the labile fraction of carbon _a - Org_anic
440	Geochem., 42, 1331-42, 2011.
441	
442	Cabrera, A., Cox, L., Spokas, KA., Celis, R., Hermosín, MC., Cornejo, J., and
443	Koskinen, WC.: Comparative sorption and leaching study of the herbicides
444	fluometuron and 4-chloro-2 methylphenoxyacetic acid (MCPA) in a soil
445	amended with biochars and other sorbents-, J. Agri. Food Chem., 14, 12550-60,
446	2011.
447	
448	Chen, B., and Chen, Z.: Sorption of naphthalene and 1-naphthol by biochars of orange
449	peels with different pyrolytic temperatures, Sorption of naphthalene and 1-
450	naphthanol by biochars of orang peels with different pyrolytic tempreratures.
451	Chemosphere, 76, 127-133, 2009.
452	
453	Dong, X., Ma, LQ., Zhu, Y., Li, Y., and Gu, B.:-, Mechanistic Investigation of
454	<u>Mmercury</u> <u>s</u> orption by <u>Bb</u> razilian <u>p</u> Pepper <u>Bb</u> iochars of <u>Dd</u> ifferent <u>Pp</u> yrolytic
455	$\underline{F}_{\underline{f}}$ temperatures $\underline{B}_{\underline{b}}$ ased on X-ray $\underline{P}_{\underline{p}}$ hotoelectron $\underline{S}_{\underline{S}}$ pectroscopy and $\underline{F}_{\underline{f}}$ low
456	<u>€c</u> alorimetry <u></u> Environ. Sci. Technol., 47, 12156–12164, 2013.
457	
458	Enders, A., Hanley, K., Whitman, T., Joseph, S., and Lehmann J.;: Characterization of
459	biochars to evaluate recalcitrance and agronomic performance, Bioresour.
460	<u>Tenchnol., 114, 644-653, 2012.</u>
461	

462	Fellet, G., Marchiol, L., Delle, Vedove, G., and, Vedove, A. Peressotti Application of	
463	biochar on mine tailings: Effects and perspectives for land reclamation.	
464	<u>Chemosphere, 83, 1262-1267, 2011.</u>	
465		
466	•	書式変更: インデント:段落前: 0 cm, 最 初の行: 0 cm
467	Gaspard, S., Altenor, S., Dawson, E.A., Barnes P.A., and Ouensanga, A.: Activated	
468	carbon from vetiver roots: gas and liquid adsorption studies. J. Hazardous Mater.,	
469	144, 73 81, 2007.	
470		
471	Guo, J., and Chen, B., Insights on the molecular mechanism for the recalcitrance of	
472	biochar: interactive effects of carbon and silicon compontents. Environ. Sci.	
473	Technol. 48, 9103-9101, 2014.	
474		
475	Gaskin, JW., Steiner, C., Harris, KC., Das, C., and Bibens, B.: Effect of low-	
476	temperature pyrolysis conditions on biochar for agricultural use_{a^2} Transactions of	
477	the Asabe, 51, 2061-2069.	
478		
479	Gaspard, S., Altenor, S., Dawson, E. A., Barnes P. A., and Ouensanga, A.: Activated	
480	carbon from vetiver roots: gas and liquid adsorption studies, J. Hazard. Mater.,	
481	<u>144, 73–81, 2007.</u>	
482		
483	Gell, K., van Groenigen, JW., and Cayuela, ML., Residues of bioenergy production	
484	chains as soil amendments: Immediate and temporal phytotoxicity ₁ . J.	
485	Hazard <u>.ous</u> Mater., 86, 2017–25, 2011.	
486		

487	Grierson, S., Strezov, V., Ellem, G., Mcgregor, R., and Herbertson, J.: Thermal
488	characterisation of microalgae under slow pyrolysis conditions ₂₇ J. Anal yt .
489	Appl.ied Pyrolysis., 85, 118–123, 2009.
490	
491	Guo, J., and Chen, B., Insights on the molecular mechanism for the recalcitrance of
492	biochar: interactive effects of carbon and silicon components. Environ. Sci.
493	<u>Technol. 48, 9103-9101, 2014.</u>
494	
495	Haslinawatui, MM., Matori, KA., Wahab, ZA., Sidek, HAA., and Zainail, AT.:
496	Effects of temperature on the ceramic from rice husk ash Int_ernational J. Basic
497	Appl.ied Sciences., 9, 111-16, 2009.
498	
499	Harvey, OM., Herbert, BE., Kuo, LJ., and Louchouarn, P.: Generalized #two-
500	$\underline{D}\underline{d}$ imensional perturbation correlation Infrared spectroscopy reveals
501	mechanisms for the development of surface charge and recalcitrance in plant-
502	derived biochars-, Environ. Sci. Technol., 46, 10641–10650, 2012.
503	
504	Joseph-, S., Graber, ER., Chia, C., -Munroe, P., Donne, S., Thomas, T., Nielsen, S.,
505	Marjo, C., Rutlidge, H., Pan, GX., Li, L., Taylor, P., Rawal, A., and Hook, J.:
506	Shifting paradigms: development of high-efficiency biochar fertilizers based on
507	nano-structures and soluble components. Carbon Manage., 4, 323-343, 2013.
508	
509	Kalderis, D., -Kotti, M. S., Méndez, A., and G. Gascó.: Characterization of hydrochars
510	produced by hydrothermal carbonization of rice husk. Solid Earth, 5, 477–483,
511	<u>2014.</u>

513	Koutoulakis, D., -Paraskeva, P., Diamadopoulos, E., Otal, E., Olivares del Valle, J., and-
514	Fernández-Pereira, C.: Adsorption of polluting substances on activated carbons
515	prepared from rice husk-, Chem.ical Eng.eniering J.ournal, 144, 42-50, 2011.
516	
517	Khodadad, CLM., Zimmerman, AR., Uthandi, S., Green. SJJ., and Foster, JS.:
518	Taxa-specific changes in soil microbial composition induced by pyrogenic
519	carbon amendments _{-a} Soil Biol. Biochem., 43, 385-392, 2011.
520	
521	Knoblauch C. Maarifat A. A. Pfeiffer, E. M. and Haefele S. M.: Degradability of black
522	carbon and its impact on trace gas fluxes and carbon turnover in paddy soils-,
523	Soil Biol. Biochem., 43, 1768-1778, 2011.
524	
525	Lammirato, C., Miltner, A., and Kaestner, M.: Effects of wood char and activated
526	carbon on the hydrolysis of cellobiose by beta-glucosidase from Aspergillus
527	niger ₋₂ Soil Biol. Biochem., 43, 1936-42, 2011.
528	
529	Lee, JW., Kidder, M., Evans, BR., Paik, S., Buchanan, AC., Garten, CT., and
530	Brown, RC.: Characterization of of biochars produced from cornstovers for soil
531	amendment ₁ - Environ. Sci <u>ence</u> Technol., 44, 7970-74, 2010.
532	
533	Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., and Crowley,
534	D.: Biochar effects on soil biota - A review-, Soil Biol. Biochem., 43, 1812-
535	<u>1836, 2011.</u>
536	
537	Lehmann, J.: Bio-energy in the black-, Frontiers Ecol.og Environ., 5, 381–387, 2007.

539	Lei, O., and Zhang, R.: Effects of biochars derived from different feedstocks and
540	pyrolysis temperatures on soil physical and hydraulic properties $_{2^{-}}$ J. Soils
541	Sediments 13, 1561-1572, 2013.
542	
543	Liu, Z., and Zhang, FS.: Renoval of lead from water using biochars prepared from
544	hydrothermal liquefaction o biomass ₁ - J. Hazard <u>ous</u> Mater., 167, 933-939, 2009.
545	
546	Manyà, J. J: Pyrolysis for bBiochar Ppurposes: A rReview to Eestablish Courrent
547	Kknowledge Ggaps and Rresearch Nneeds. Environ. Sci. Technol., 46,
548	<u>7939–7954, 2012.</u>
549	
550	McBeath, AV, Smernik, RJ., Krull, ES., and Lehmann, J.: The influence of
551	feedstock and production temperature on biochar carbon chemistry: A solid-state
552	13C NMR study-, The influence of feedstock and production temperature on
553	biochar carbon chemistry: A solid state 13C NMR study. Biomass and
554	Bionenergy_, 60, 121-129, 2013.
555	
556	MacKay, DM., and Roberts, PV.: The influence of pyrolysis conditions on yield and
557	microporosity of lignocellulosic chars _a - Carbon 20, 95–105, 1982.
558	
559	Mahinpey, N., Murugan, P., Mani, T., and Raina, R.: Analysis of bio-oil, biogas, and
560	biochar from pressurized pyrolysis of wheat straw using a tubular reactor
561	Energy Fuels, -23, 2736–42, 2007.
562	

563	Mimmo, T., Panzacchi, P.,*, Baratieri, M., Davies C. A., and Tonon, G. : Effect of
564	pyrolysis temperature on miscanthus (Miscanthus x3 giganteus) biochar physical,
565	chemical and functional properties-, Biomass and Bioenergy., 62, 149-157, 2014.
566	
567	Mukherjee, A. and Zimmerman, A. : Organic carbon and nutrient release from a range
568	of laboratory-produced biochars and biochar-soil mixtures, Geoderma, 193, 122-
569	<u>130, 2013.</u>
570	
571	Mukome, F. N. D., Zhang, X., Silva, L. C. R., Johan-Six, J., and Sanjai J. Parikh, S.J:
572	Use of Cchemical and Pphysical Ccharacteristics Tto Investigate Ttrends in
573	Biochar Ffeedstocks, J. Agric. Food Chem. 61, 2196–2204, 2013.
574	
575	
576	Nguyen, BT., and Lehmann, J.: Black carbon decomposition under varying water
577	regimes., Org. anic Geochem., 40, 846-853, 2009.
578	
579	Novak, JM., Busscher, WJ., Watts, DW., Laird, DA., Ahmedna, MA., and
580	Niandou, MAS.: Short-term CO ₂ mineralization after additions of biochar and
581	switchgrass to a Typic Kaniudult ₂ - Geoderma 154,281-288, 2010.
582	
583	Novak, JM., Lima, I., Xing, B., Gaskin, JW., Steiner, C., Das, KC., Ahmedna, M.,
584	Rehrah, D., Watts, DW., Busscher, WJ., and, Harry, S.: Characterization of
585	designer biochar produced at different temperatures and their effects on a loamy
586	sand. Annals of Environ. Science, 3, 195-206, 2009.
587	
588	Parr, J.F.: Effect of fire on phytolith coloration, Geoarcheology, 21, 171–185, 2006.

589	
590	Peng. X., Ye, LL., Wang, CH., Zhou, H., and Sun, B.: Temperature and duration-
591	depend rice stra-derived biochar: characteristics and its effects on soil properties
592	of an Untisol in southern China-, Soil Tillage Res., 112,159–166, 2011.
593	
594	Ξ
595	Robertson, S.J., Rutherford, M.P., López-Gutiérrez, J.C. and Massicotte H.B.: Biochar
596	enhances seedling growth and alters rootvsymbioses and properties of sub-boreal
597	forest soils. Can. J. Soil Sci. 92, 329-340, 2012.
598	
599	Rutherherford, DW., Wershaw, RL., Rostad, CE., and Kelly, CN.: Effect of
600	formation conditions on biochars: compositional and structural properties of
601	cellulose, lignin, and pine biochars ₂ - Biomass Bioenerg., y 46, 693–701, 2012.
602	
603	Singh, B.P., Singh B. P., and Cowie, A. L.,-: Characterisation and evaluation of biochars
604	for their applications a soil amendment ₇ Aust. J. Soil Res., 48, 516–525, 2010.
605	
606	Son-, W., and Guo, M.,-: Quality variations of poultry litter biochar generated at
607	different pyrolysis temperatures, J. Anal. Applied. Pyrolysis, 94, 138–145, 2011.
608	
609	Spokas, KA: Review of the stability of biochar in soils: predictability of O:C molar
610	ratios <u>.</u> - Carbon Manage., 1, 289-303, 2010.
611	
612	Suri, A., and Horio, M: Solid Bbiomass Ccombustion, in:, Handbook of Combustion
613	Vol. 4: Solid Fuels, Edited by M.aximilian Lackner, F.ranz Winter, and

614	A.vinash K. Agarwal (eds), Copyright-WILEY-VCH Verlag GmbH & Co.
615	KGaA, Weinheim, chapter 3, 85-140, 2010.
616	
617	Steinbess., S., Gleixner. G., and Antoniett, M.: Effect of biochar amendment on soil
618	carbon balance and soil microbial activity., Soil Biol. and Biochem., 41, 1301-1310,
619	2009.
620	
621	Yuan, JH., Xu, RK., and Zhang, H.: The forms of alkalis in the biochar produced
622	from crop residues at different temperatures. Bioresour. Technol., 102, 3488-
623	3497, 2010.
624	Xu, Y. and Chen, B. Investigation of thermodynamic parametres in the pyrolysis
625	conversion f biomass and manure to biochars using thermogravimetrisc analysis.
626	Biores. Tenhnol.146, 485-493, 2013.
627	
628	Wang, XL., Cook, R., Tao, S. and Xing, BS.: Sorption of organic contaminants by
629	biopolymers: Role of polarity, structure and domain spatial arrangement _{τ_2}
630	Chemosphere, 66, 1476-1484, 2007.
631	
632	Wilding, L.P., Brown, R.E., and Holowaychuk, Accesibility and properties of occluded
633	carbon in biogenetic opal. Soil Sci.103, 56-61, 1969.
634	
635	Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H., and Chen, Y.:
636	Chemical characterization of rice straw-derived biochar for soil amendment.
637	Biomass and Bioenergy., 47-, 268-276, 2012.
638	

639	-Yang, H.P., Yan, R., Chen, H.P., Lee, D. H., Zheng, C.G-G.: Characteristics of
640	hemicellulose, ceellulose, and lignin pyrolysis., Fuel, 86, 12–13, 1781– <u>17</u> 88,
641	2007.
642	
643	Yu, JT., Dehkhoda, AM., and Ellis, N.: Development of biochar-based catalyst for
644	transesterification of canola- Energy and fuels 25:, 337-344, 2011.
645	
646	Yuan, J. H., Xu, R. K., and Zhang, H.: The forms of alkalis in the biochar produced
647	from crop residues at different temperatures. Bioresour. Technol., 102, 3488-
648	<u>3497, 2010.</u>
649	
650	Zhang, G., Zhang, O., Sun, K., Liu, X., Zheng, W., and Zhaoil, Y.: Sorption of simazine
651	to corn straw biochars prepared at different pyrolytic temperatures ₂₇ Environ.
652	Pollut., 159, 2594–2601, 2011.
653	
654	Zimmerman, AR., Bin, G., and Mi Youn, A. : Positive and negative carbon
655	mineralization priming effects among a variety of biochar amended soils Soil
656	Biol. Biochem., 43, 1169–1179, 2011.
657	
658	

samples	temperature (°C) 400 500 600 700 800	Biochar Yield (%) 28.3 16.7 16.6 15.8 15.5	$\frac{Ash}{Content}$ $\frac{(\%)}{4.4 \pm 0.0}$ $\frac{4.4 \pm 0.0}{6.5 \pm 0.0}$ 7.6 ± 0.1 8.0 ± 0.0 8.6 ± 0.0	Volatile Content (%) 32.436 ± 0.105 18.327 ± 0.328 11.107 ± 0.20 7.72 ± 0.10 6.82 ± 0.107	$pH (H_2O)$ 7.02 ± 0.08 9.64 ± 0.07 10.04 ± 0.02 10.03 ± 0.02 10.02 ± 0.02	Methylene Blue (mg/g DW) 4.436 ± 0.24 12.04 ± 0.438 5.765 ± 0.439 10.63 ± 0.767 51.879 ± 0.658	I_2 adsorption (mg/g DW) $\frac{45.044.96 \pm 2.61}{97.987 \pm 2.765}$ 122.105 ± 1.53 208.328 ± 1.59 298.54 ± 1.70	BET Surface Area (m ² /g) ≇式変更 : 1 11.90 cm, 55 F(f 58.60 208.769 418.766 545.4 3	ンデント:段落前: −0.66 インデント: 2.08 cm
OB	400 500 600 700 800	35.8 28.6 22.0 20.0 19.1	$\frac{3.6 \pm 0.0}{5.1 \pm 0.1}$ $\frac{5.54 \pm 0.0}{6.2 \pm 0.0}$ $\frac{8.3 \pm 0.2}{5.5}$	$32.\underline{106} \pm 0.\underline{105}$ $19.42 \pm 0.\underline{327}$ 12.30 ± 0.04 $8.\underline{328} \pm 0.\underline{107}$ $7.\underline{987} \pm 0.\underline{106}$	$\begin{array}{c} 6.43 \pm 0.04 \\ 8.10 \pm 0.12 \\ 8.85 \pm 0.07 \\ 9.54 \pm 0.00 \\ 9.68 \pm 0.03 \end{array}$	3.90 ± 0.328 5.659 ± 0.547 5.51 ± 0.439 17.106 ± 0.216 29.438 ± 0.547	$38.\underline{766} \pm 0.04$ 91.74 ± 0. <u>106</u> 131. <u>327</u> ± 1. <u>547</u> 212. <u>879</u> ± 0. <u>109</u> 250. <u>328</u> ± 1.40	5.60 103. <u>2</u> 17 288. <u>6</u> 58 335.64 398. <u>2</u> 15	
RH	400 500 600 700 800	48.6 42.4 37.3 32.8 32.0	$\frac{35.9 \pm 0.1}{46.2 \pm 0.2}$ $\frac{52.8 \pm 0.4}{55.1 \pm 0.2}$ $\frac{62.6 \pm 0.3}{52.6 \pm 0.3}$	22.00 ± 0.13 10.656 ± 0.14 6.02 ± 0.327 3.985 ± 0.14 3.247 ± 0.219	$\begin{array}{c} 6.84 \pm 0.03 \\ 8.99 \pm 0.04 \\ 9.41 \pm 0.00 \\ 9.52 \pm 0.02 \\ 9.62 \pm 0.01 \end{array}$	2.94 ± 0.875 9.72 ± 0.437 13.50 ± 0.24 13.88-9 ± 10.099 34.106 ± 0.34	$44.\underline{107} \pm 1.\underline{655}$ $75.\underline{438} \pm 1.\underline{658}$ $\underline{669.08.95} \pm 3.13$ $121.02 \pm 1.\underline{658}$ $174.40 \pm 3.\underline{107}$	193.7 0 262.0 0 243.0 0 256.0 0 295. <u>6</u> 57	
RS	400 500 600 700 800	39.3 32.6 23.4 18.4 18.3	$\frac{34.0 \pm 0.2}{43.5 \pm 0.2}$ $\frac{58.6 \pm 0.1}{69.9 \pm 0.4}$ $\frac{73.9 \pm 0.1}{50.000}$	22.42 ± 0.109 12.80 ± 0.14 8.436 ± 0.03 5.33 ± 0.13 4.547 ± 0.215	$\begin{array}{c} 8.62 \pm 0.03 \\ 9.82 \pm 0.01 \\ 10.19 \pm 0.01 \\ 10.39 \pm 0.03 \\ 10.47 \pm 0.04 \end{array}$	29.32 ± 2.40 29.658 ± 2.81 33.765 ± 4.93 40.545 ± 3.02 82.61 ± 2.02	$74.\underline{766} \pm 2.64$ 95.94 ± 1.52 85. <u>657</u> $\pm 1.\underline{658}$ 100. <u>655</u> ± 1.52 190.2 ± 1.31	46.60 59.91 129.00 149.00 256.9 <u>7</u> 6	

Table 1. Physical and chemical characteristics of the biochars from different feedstocks; AB (apple tree branch), OB (oak tree), RH (rice husk), and RS

(rice straw).

	temperature	<u>.</u>					
samples	(°C)	C* (%)	H [*] (%)	N [*] (%)	O (%)	O/C	H/C
	400	70. <u>2</u> 18 ± 0. <u>2</u> 15	4.13 ± 0.01	0.76 ± 0.00	20. <u>6</u> 56± 0.1 2	0.22	0.71
	500	79.12 ± 0.00	2.65 ± 0.09	0.34 ± 0.01	<u>12.0</u> 11.98± 0.10	0.11	0.40
٨D	600	81. <u>5</u> 46 ± 0. <u>1</u> 05	1.96 ± 0.02	0.46 ± 0.00	13.6 <mark>3</mark> .± 0. <u>3</u> 26	0.12	0.29
AD	700	82. <u>3</u> 26 ± 1. <u>4</u> 39	1.21 ± 0.05	0.41 ± 0.02	16.3 4 ± 0. <u>7</u> 68	0.15	0.18
	800	84.84 ± 0.108	0.60 ± 0.01	0.34 ± 0.01	5.8 1 ±0.0 3	0.05	0.08
	400	$70.5\frac{2}{2} \pm 0.2\frac{1}{2}$	3.70 ± 0.02	0.69 ± 0.02	21. <u>5</u> 47± 0. <u>2</u> 15	0.23	0.63
	500	77. <u>6</u> 57 ± 0.31	2.51 ± 0.16	0.51 ± 0.03	17.7 3 ± 0. <u>5</u> 45	0.17	0.39
OB	600	81.22 ± 0.548	1.92 ± 0.01	0.48 ± 0.02	<u>16.0</u> 15.96± 0.215	0.15	0.28
02	700	83.22 ± 0.23	1.16 ± 0.06	0.31 ± 0.00	<u>15.0</u> 14.97± 0. <u>1</u> 07	0.13	0.17
	800	82.985 ± 0.42	0.69 ± 0.06	0.32 ± 0.00	17.329 ± 0.12	0.16	0.10
1	400	44.659 ± 0.326	2.50 ± 0.00	0.69 ± 0.02	16.3 2 ± 0.2 3	0.27	0.67
	500	45.215 ± 0.33	1.27 ± 0.03	0.47 ± 0.02	7.1 2 ± 0.2 16	0.12	0.34
DII	600	$40.\overline{435} \pm 0.74$	0.85 ± 0.05	0.37 ± 0.01	9.2 <mark>3</mark> ± 0.3 <mark>1</mark>	0.17	0.25
RH	700	38.8 ± 0.546	0.46 ± 0.04	0.26 ± 0.02	12.7 69 ± 0.2 0	0.25	0.14
	800	40.41 ± 0.768	0.28 ± 0.01	0.22 ± 0.00	2. <u>7</u> 69± 0.01	0.05	0.08
1	400	49.92 ± 0.215	2.80 ± 0.12	1.22 ± 0.01	12.0 <mark>2</mark> ± 0. <u>1</u> 06	0.18	0.67
	500	37. <u>5</u> 48 ± 0.2 2	0.93 ± 0.03	0.61 ± 0.01	8.6 4 ± 0.3 <mark>3</mark>	0.17	0.30
RS	600	33. <u>8</u> 78 ± 1.02	0.60 ± 0.07	0.41 ± 0.04	13. <u>7</u> 68± 0.3 2	0.30	0.21
	700	36. <u>3</u> 26 ± 0. <u>8</u> 79	0.51 ± 0.06	0.34 ± 0.02	17. <u>4</u> 38± 0.94	0.36	0.17
	800	29. <u>2</u> 17 ± 0. <u>4</u> 37	0.25 ± 0.02	0.25 ± 0.01	3.7 1 .± 0.0 1	0.10	0.10

Table 2. The elemental compositions of biochars from different feedstocks; AB (apple tree branch), OB (oak tree), RH (rice husk), and RS (rice straw).

Figure legends

Fig.1- Van Krevelen diagram of biochar originated from different feedstock; AB (apple tree branch), OB (oak tree), RH (rice husk), and RS (rice straw). Each symbol shows pyrolysis temperature as follows; Black =8000C, Gray = 7000C, Line= 6000C Dot = \$000C, and White= 4000C.

Fig. 2. a. - Thermal analysis of biochars of wood materials; AB (apple tree) and OB (oak tree) Fig.2. b. - Thermal analysis of biochars of of rice residues; RH (rice husk) and RS (rice straw)

Fig. 3.a. - FT-IR spectra of biochars of wood materialss; AB (apple tree) and OB (oak) Fig. 3.b. - FT-IR spectra of biochars of rice residues; RH (rice husk) and RS (rice straw)

Fig. 4. a. - 13C CPMAS-NMR of biochars of wood materials; AB (apple tree) and OB (oak tree)

Fig.4. b. - 13C CPMAS-NMR of biochars of rice residues; RH (rice husk) and RS (rice straw)

Fig. 1 Van Krevelen diagram of biochar originated from different feedstock. The temperature range of pyrolysis process is as following; Black = 800° C, Gray = 700° C, Line= 600° C Dot = 500° C, and White= 400° C

Fig. $\underline{32}$.a.-FT-IR spectra of biochars of wood materialss; AB (apple tree) and OB (oak tree)

Fig. <u>32</u>.b.- FT-IR spectra of biochars of rice residues; RH (rice husk) and RS (rice straw)

Fig. <u>43</u>. a. - 13 C CPMAS-NMR of biochars of wood materials; AB (apple tree) and OB (oak tree)

Fig. <u>43</u>. b. - 13 C CPMAS-NMR of biochars of rice residues; RH (rice husk) and RS (rice straw)

CERTIFICATE OF ENGLISH EDITING

This document certifies that the paper listed below has been edited to ensure that the language is clear and free of errors. The edit was performed by professional editors at Editage, a division of Cactus Communications. The intent of the author's message was not altered in any way during the editing process. The quality of the edit has been guaranteed, with the assumption that our suggested changes have been accepted and have not been further altered without the knowledge of our editors.

TITLE OF THE PAPER

Physical and Chemical Characterizations of biochars derived from different agricultural residues

AUTHORS

Keiji Jindo1,2*, Hideki Mizumoto3, Yoshito Sawada2, Miguel A. Sanchez-Monedero1, and Tomonori Sonoki3

> JOB CODE DIXVU 1

Signature

Nikesh Gosalia. Vice President, Author Services, Editage

> Date of Issue October 20, 2014

Editage, a brand of Cactus Communications, offers professional English language editing and publication support services to authors engaged in over 500 areas of research. Through its community of experienced editors, which includes doctors, engineers, published scientists, and researchers with peer review experience, Editage has successfully helped authors get published in internationally reputed journals. Authors who work with Editage are guaranteed excellent language quality and timely delivery.

Contact Editage

Worldwide +1 877-334-8243 www.editage.com

Japan request@editage.com submissions@editage.com submit-+81 03-6868-3348 www.editage.jp

Korea korea@editage.com 400-005-6055 1544-9241 www.editage.co.kr

China www.editage.cn

Brazil 0800-892-20-97 www.editage.com.br

Taiwan fabiao@editage.cn inquiry.brazil@editage.com submitjobs@editage.com 02 2657 0306 www.editage.com.tw

Physical and Chemical Characterizations of <u>B</u>biochars <u>D</u>derived from <u>D</u>different <u>Aagricultural Rresidues</u>

3

Keiji Jindo^{1,2}*, Hideki Mizumoto³, Yoshito Sawada², Miguel A. Sanchez-Monedero¹,
and Tomonori Sonoki³

6

7 ¹ Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC)₁- Department
8 of Soil Conservation and Waste Management₁- Campus Universitario de Espinardo,
9 30100 Murcia, SPAIN.

² Institute of Industrial Science, the University of Tokyo, 3-8-1 Komaba, Meguro-ku,

11 Tokyo 153-8902, JAPAN.

³ Faculty of Agriculture and Life-Sciences, Hirosaki University, Bunkyo-cho, Hirosaki,
 Aomori 036-8561, JAPAN.

- 14
- 15
- 16
- 17
- 18
- 4.5
- 19
- 20
- 21 *Corresponding author: keijindo@hotmail.com
- 22 Phone: +34 968396364
- 23 Fax: +34 968396213
- 24

26 Abstract

27 Biochar has been evaluated globally is widely recognized -as an efficient tool for 28 carbon sequestration and soil fertility. The understanding of the-its chemical and 29 physical properties of biochar, which are strongly related to the type of the initial 30 original-material used and pyrolysis conditions, is an important crucial key to identify 31 the most suitable use application of biochar in soil. A selection of organic wastes with 32 contrasting characteristics (e.g., rice husk, rice straw, wood chips of apple tree (Malus 33 <u>p</u>Pumila), and oak tree (Quercus serrata)) were pyrolyzed at different temperatures 34 (400, 500, 600, 700, and 800 °C) in order to optimize the physicochemical properties of 35 biochar as <u>a</u> soil amendment. <u>Low-temperature p</u>Pyrolysis at low temperatures produced 36 high biochar yields; in contrast, but high-temperature pyrolysis led to produced 37 biochars with <u>a high C content</u>, <u>large surface area</u>, and <u>suitable</u> adsorption 38 characteristics. - The biochar obtained from rice materials (RH and RS) has showed a 39 high biochar-yield and the unique chemical propertiesy as a consequence because of the 40 incorporation of silica elements into its chemical structure., while in Tthe biochar 41 obtained from wood materials (AB and OB) showed high the enrichment with carbon 42 content together and with high high absorption character was created. We suggest 43 propose that the pyrolysis carried out at 600 $^{\circ\theta}C$ creates leads to the most a high 44 recalcitrant character (suitable for carbon sequestration), meanwhile-whereas that the pyrolysis at $400^{\theta_{o}}C$ produces retains volatile and easily labile compounds. 45

- 46
- 47

48 Keywords: biochar; pyrolysis; NMR; carbon sequestration; crop residues

- 49
- 50

1. Introduction-

56	The interest in <u>the application of biochar utilization</u> as a strategy method for
57	mitigatingon of the globalwarming effects is steadily increasing. Besides the studies
58	about the growing attention to the utilization use of biochar for carbon sequestration, a
59	number of works reports have focused are reported on its alternative uses applications
60	of biochar, such as for the improvement of soil fertility and , plant growth and
61	decontamination of pollutants such as such as pesticides, heavy metals, and
62	hydrocarbons (Beesley et al., 2011; Cabrera et al., 2011). The diverse range of biochar
63	applications of biochar would depends be determined by on its physicochemical
64	properties, which are governed by the pyrolysis conditions (heating temperature and
65	duration) and the original feedstock (Enders et al., 2012). For this reasonThus, detailed
66	the information on about the complete whole production process processisis a key factor
67	in defining the most suitable in defining any application strategy for the use of biochars.
68	
69	The <u>biochar</u> physicochemical properties of biochar can drive cause changes in
70	the soil nutrient and C availability, and and provide physical protection of to
71	microorganisms from against predators and desiccation; this may, which finally
72	promotes the alteration of the microbial diversity and the taxonomy of the soil (Lehman
73	et al., 2011). <u>The b</u> Biochar derived from from relatively low-temperature pyrolysis are
74	is characterized by a high content of volatile matter that, containsing easily
75	decomposable substrates, which can contribute support to plant growth (Robartson et al.,
76	2012; Mukherjee and Zimmerman, 2013). On the other hand In contrast, the structure of
77	the biochar derived from high-temperature pyrolysis is characterized by <u>a</u> large surface
78	area and high aromaticcarbon content, which - could may promote increase -the

adsorption capacity (-<u>a desirable property</u> for bioremediation) as well as the recalcitrant
character (for carbon sequestration) (Lehmann, 2007).

The type of feedstock material is also another an important factor that 81 82 determines the final application of the biochar and its effect in soil, o guide the proper 83 orientation of application, because its since the properties -are of biochar will be 84 affected by the nature of the original material, and consequently its effect in soil. For 85 instance, tThe soil cation-exchange capacity of is enhanced more by manure-based 86 biochars is higher than that of than wood (Eucalyptus) biochar (Singh et al., 2010), 87 meanwhile while the treatment of the soil with woodchip biochar resultsed in higher 88 saturated hydraulic conductivities than that treated with e-manure-based biochar 89 treatment (Lei and Zhang, 2012).

90 The aim of our study is to optimize the physicochemical characteristics of 91 biochar for its use in agriculture by combining investigating different pyrolysis 92 conditions and the selection of different agricultural wastes used as feedstocks., To 93 achieve this aim, the thermo-chemical properties of the biochars obtained -at different 94 temperatures (400–800 ° C) were evaluated. Rice husk (RH) and rice straw (RS) are 95 were used in our work aas original the starting materials, since because the global 96 amounts of residues from rice crops (Oryza sativa L.) are is 0.9 Gt for per a year, i.e., 97 which constitutes the 25% of the total amount of the whole global agricultural residues 98 produced in the world (Knoblauch et al, 2011). More Also, the research is being 99 conducted on the properties of characteristic of biochars derived from orchard residues 100 and, pruning woodchips of apple tree (AB) (Malus pumila), than are taking place, 101 comparthat on ing with hard-wood biochar derived from the of-oak tree (OB), (Quercus 102 *serrata*). The carbonization of pruning woodchip could-may be considered as an 103 alternative waste management not only for the reduction of ing hazardous materials 104 such as pesticide remnant (Suri and Horio, 2010) but also for soil sequestrating carbon

 $\mathbf{5}$

105 <u>sequestration in soil</u>. Although several works-studies have been recently proposed on the
106 use of pruned-biochar as <u>a</u> soil amendment have been recently published (Fellet et al.,
107 2011: Alburquerque et al., 2013), the reports on the evaluation of the pyrolysis process
108 on this feedstock <u>are is hardly-scantreported</u>.

109

110 2. Materials and Methods ATERIALS AND METHODS

111 2.1 Biochar <u>P</u>preparation from <u>A</u>agricultural <u>R</u>residues

112 The -bBiochars used in this work were obtained made from two rice residues (Oryza 113 sativa L.), e.g., -straw and husk, as well as, and two woody materials, e.g., -a type of 114 kind of broad-leaved trees (Quercus serrate Murray) and apple-wood chips (Malus *pumila*). All materials were first dried in air and then cut into small pieces (less than 4______) 115 5 cm); these were then inserted into to put into a ceramic vessel (370 cm³) that was 116 117 used in for a commercial electric furnace (SOMO-01 Isuzu, Japan). This, and were was 118 charred for 10 hours at different temperatures (from 400 to 800 °C) with at a heating rate of 10 °C min⁻¹-.heating rate. 119

120

121 2.2 <u>Biochar</u> Chemical <u>A</u>analysis-of biochar

122 -After the pyrolysis process, all samples were grounded and sieved to less than 0.5 mm 123 in diameter. The biochar yield was calculated by as the proportion of the weight of 124 pyrolysis product to the original material. The determination of the volatile matter and 125 ash content was conducted according to the American Society for Testing and Materials 126 (ASTM) D1752-84, which is recommended in-by the International Biochar Initiative. 127 The volatile matter was thus determined by measuringement theof weight loss that 128 followsing the combustion of about 1 g of charcoal in a crucible at 950 °C. With 129 Following the same the same procedure, as the volatile matter, the ash content was 130 determined at 750 °C. The pH of each mixture (pH at 1:10, (w/v) ratio) was measured

with <u>athe</u> MP220 pH-meter. Micro- and meso-porosity <u>was-were</u>_evaluated by the iodine (I₂) and methylene blue (MB) adsorption capacity, respectively, following <u>a</u> previously proposed the methodology (used by Gaspard et al., (2007). The specific surface area was determined using N₂ sorption isotherms run on <u>an</u> automated surface area. The specific surface_area distribution was <u>taken-obtained</u> from <u>the</u> adsorption isotherms, using the <u>equation of</u> Brunauer-Emmett-Teller (BET) <u>equation</u> surface area (Zhang et al., 2011).

130

139 <u>2.2.1</u> Elemental <u>C</u>eomposition

The elemental composition of carbon (C), hydrogen (H), and nitrogen (N) was
determined using an <u>e</u>Elemental analyzer (Thermo Finnigan EA-1112, Thermo Fisher
Scientific Inc., Massachusetts, America); and the oxygen (O) content was determined
by Vario El cube, Elementar Analysensysteme GmbH Co.

144

145 <u>2.2.2</u> Thermal <u>A</u>analysis

146 <u>The t</u>Thermal analysis of the biochars was <u>measured-performed</u> by using an SDT-2960

147 simultaneous DSC-TGA thermal analyzer (TA instruments) under static_-air atmosphere

148 with the following temperature ramp, <u>e.g.,</u>: a-temperature equilibrating at 30 °C,

149 followed by a linear heating (at a rate of 5 °C min⁻¹-), from 30 to 105 °C; an-isotherm

- 150 for 10 min, and then continued ramping of 5 °C min⁻¹-, from 105 to 680 °C.
- 151

152 <u>2.2.3</u> Infrared Spectra

Infrared spectra were recorded on a Varian 670-IR (Agilent Technologies Inc., CA)
using the pellet technique by mixing 1 mg of dried biochar with 300 mg of pre-dried
and pulverized spectroscopic-grade KBr (from Merck & Co., Whitehouse Station, NJ).
The following broad_-band assignation assignment was used (Chen and Chen, 2009;

157 Haslinawati et al., 2011; -Novak et al., 2010; Peng et al., 2011; Yuan et al., 2011; Wu et al., 2012; Guo and Chen, 2014): 3400 to 3410 cm⁻¹, H-bonded O-H stretching 158 vibrations of hydroxyl groups from alcohols, phenols, and organic acids; 2850 to 2950 159 cm^{-1} , C–H stretching of alkyl structures; 1620–1650 cm^{-1} , aromatic and olefinic C=C 160 vibrations, C=O in amide (I), ketone, and quinone groups; 1580 to 1590 cm^{-1} , COO⁻ 161 asymmetric stretching; 1460 cm⁻¹, C-H deformation of CH₃ group; 1280–1270 cm⁻¹, 162 O-H stretching of phenolic compounds; and three bands around 460 cm⁻¹, 800 cm⁻¹, $\frac{1}{2}$, $\frac{1}{2}$ 163 and 1000–1100 cm⁻¹, bending of Si-O stretching. 164

165

166

2.2.4 Solid-state <u>Nn</u>ucleic <u>Magnetic R</u>resonance <u>spectroscopy</u> (NMR) <u>Spectroscopy</u>

-Cross-polarizsation magic angle spinning (CPMAS) ¹³C nuclear magnetic resonance 167 (¹³C-NMR) spectra were acquired in-from the solid samples with a Varian 300, 168 equipped with a 4-mm-wide bore MAS probe, operating at a ¹³C resonating frequency 169 170 of 75.47 MHz. The assignation assignment of the following peaks and broads was used 171 (Brewer et al., 2009; Calvero et al., 2011).: The peak around 30 ppm; is-was assigned to considered as content of the methylenic chains and/or CH₂ groups deriving of the from 172 173 various lipid compounds and plant waxes.; the t+wo peaks at 55 ppm and 70 ppm were, 174 assigned to methoxy and O-alkyl groups, characteristic of the relatively -easily -175 biodegradable compounds such as remaining cellulose, and hemicellulose; tThe broad 176 band around 130 ppm was, assigned related to alkyl substitutions in the p-hydroxy phenyl ring of the cinnamic and p-coumaric units of both lignin and suberin 177 178 biopolymers, as well as to both partially_degraded lignin structures and condensed 179 aromatic and olefinic carbons; tThe sharp peak at 170 ppm was, assigned to thea large 180 content of carboxyl groups in the aliphatic acids of plant and microbial origin and/or 181 amide groups in amino acid moieties. The spectra were integrated in the chemical shift 182 (ppm) resonance intervals of 0-45 ppm (paraffinic carbons), 46-65 ppm (methoxy C from OCH₃, and complex aliphatic carbons), 66–90 ppm (O-aliphatic C₇ such as
alcohols and ethers), 91–145 ppm (aromatic carbon), 145–160 ppm (phenolic -carbons),
160–185 ppm (carboxyl, amides, and ester) and 185–220 ppm (carbonyls) (Wang et al.,
2007; Zhang et al., 2012).

- 187
- 188

3. Result and Discussion

189 3.1. <u>Biochar</u> Physicochemical <u>C</u>eharacteristics of biochar

190 The characteristics of the biochars originated derived from different agricultural wastes 191 are shown in Table 1. Low--temperature pyrolysis produced a higher biochar yield and 192 an enriched volatile-matter composition than the high-temperature biochars. The 193 biochar yields and volatile contents were gradually reduced diminished as the by 194 increasing pyrolysis temperature increaseds. Moreover, the type of feedstock also 195 affected the biochar yields and the volatile--matter content. Among the different biochar 196 types, woody biochars (AB and OB) showed a larger variation change in the volatile content from low temperature to high temperature (from 400 0°C to 800 -⁰°C) than non-197 198 woody biochars (RS and RH), as previously observed (by Enders et al., (2012). These It 199 was authors found that the recalcitrant character of lignin in woody feedstocks can partially resist pyrolytic decomposition at 400 $^{o\theta}C_{1,7}$ but not in the range of at 200 201 temperatures as high as 950 °- $^{\theta}$ C (for example, used for the determination of the ash 202 content); this leads to an, increaseing in the volatile content of the woody biochar 203 204 and RH) have showed a high ash content in at all temperature ranges;, which this may be 205 the cause for the have casued a partial change in the structure and composition 206 promoted by a possible interaction between organic and inorganic constituents during 207 the feedstock pyrolysis, as already reported (by Elders et al., (2012), in the biochars 208 that containing an amount of ash larger than <u>above-20%</u> of ashes. Rice plants are enriched rich within Si; this may be due, which strongly relates to the ash content of the
biochar (Mukome et al., 2013), which favors the by the formation of the Si-C bonds,
thereby which increasinges the number of aromatic components and recalcitrance of the
biochars as a result of an with increase in the ing-pyrolysis temperatures (Guo and Chen,
2014). In the case of woody feedstocks, recalcitrant carbons such as lignin content are
the main component predominantly contained in woody plants (Liu and Zhang, 2009;
Spokas et al., 2009; Joseph et al., 2013).

216 The pH values increased with temperature, probably as a consequence of the relative 217 concentration of non-pyrolyzed pyrolyised inorganic elements, already present in the 218 original feedstocks (Novak et al., 2009). The porosity and surface area (-represent the 219 most important main physical properties of biochar), which aare critical factors for 220 strongly connected with the improvement of soil properties such as soil adsorption 221 capacity and water retention abilityies (Kalderis et al., 2008). The application of the RH 222 biochar derived from the rice husk has been reported to enhance these properties in the 223 soil (Kalderis et al., 2008; Liu and Zhang, 2009; Lei and Zhang, 2013). As shown in 224 Table 1, the a biochar production at higher temperatures generally enlarged leads to an 225 increase in -the MBmethylene blue number, I₂ absorption, and surface area, compared to 226 the production at lower temperatures (p < .001); this is in line, and these results are in 227 accordance with other previous studies work (Gaskin et al., 2008; Liu and Zhang, 2009; 228 Yu et al., 2011). In addition, Regarding of comparison among the variety of origins, our 229 data showed that the difference inin the micro-porosity (I_2) of between the biochars 230 obtained between from wood feedstock (AB and OB) and those from rice residues (RH 231 and RK) was gradually enlarged increased as the increasing pyrolysis temperature from 232 increased from 500 °C to 800 °C. In addition, In contrast, an apparent difference in 233 surface area was observed. tThe surface areas of RH and RK reduced diminished at 234 800^{o^e}C, while those of AB and OB still had been expanded tending. The former

235	behavior se decreases in surface areawas s of RH and RK will be attributed to the ash
236	content in the biochar, which, that high content of inorganic ash in biochar filled or
237	blocked the access to micropores, resulting in a relatively low surface area (Mackay and
238	Roberts, 1982; Song and Guo, 2012).
239	
240	3.2. Analytic <u>E</u> elements
241	Analytical elements and both ratios of H/C and O/C ratios are also-useful indicators
242	of to evaluate the characters of biochars (Nguyen and Lehmann, 2009). As-Data in
243	shown <u>T</u> table 2 suggest that, it is observed that an increase in the the increasing
244	temperature results in <u>a larger</u> loss of hydrogen <u>H</u> and oxygen O compared to that of
245	than carbon <u>C</u> . The dDehydrogenation of CH_3 (on biochar properties as consequence a
246	result of thermal induction) indicates is the indicative of a changes in the biochar
247	recalcitrance (Harvey et al., 2012). Concerned with oxyIn additiongen loss, the a
248	biomass material normally typically comprises of labile and recalcitrant O fractions; the
249	former -a labile O fraction that is rapidly quickly lost upon after the initial heating, the
250	latter and a recalcitrant O fraction which is retained in the char of the final product
251	(Rutherford et al., 2013).
252	Because of the high temperature of the charring process, Regarding with tthe H/C/
253	and O/C ratios (, Table 2) are shows the reduced, as a result tion in these ratios with
254	charring temperature, being attributed toof the dehydration and decarboxylation
255	reactions. The change of The O/C ratio in the range from $400^{-\theta}C$ to $500^{\theta_{\circ}}C$ range was
256	remarkably changed according to the following observed in the order: of RS_>RK_> AB
257	> OB. Yang et al., (2007) and Khodadad et al., (2011) found that the biochar made
258	derived from wood and at higher temperatures is are less biologically labile, because it
259	<u>contains a containing</u> relatively higher <u>larger</u> proportions <u>amount</u> of more aromatic-

260 organic matter, -compared to <u>that of other</u>-biochars prepared from agricultural residues

261	and at lower temperatures. As shown in the van Krevelen diagram (Fig. 1), the
262	constancy of the reduction in the H/C and O/C ratios steadily diminish as the
263	temperature increases, increasing temperature are observed, reflecting the loss of easily
264	degradable carbon compounds such as volatile matters. At the parallelSimilarly, a lower
265	C/O ratio in biochar withat higher temperatures indicate indicates the an arrangement of
266	the aromatic rings (Spokas et al., 2010), which forming very stable crystal graphite-like
267	structures with high stability (Wu et al., 2012; Dong et al., 2013).
268	Concerning A comparison of the with the difference of the feedstocks in the
269	diagram <u>indicates that</u> , the rice materiaRS and RH ¹ biochars (RS and RH) were are
270	distanced from the Y axe at $600^{\circ}_{\circ}C$ and $700^{\circ}_{\circ}C_{2}$; whereas the H/C and O/C ratios in
271	the AB and OB biochars show athe stable reduction of the H/C and O/C in wood
272	biochars (AB and OB) was shown. The reduction of the carbon content in the biochar
273	production could may be related to the chemical and physical composition. In particular,
274	a previously proposed SEM-EDS analysis suggested a The change of in the physical and
275	structural composition of the rice straw RS biochar obtained at between the pyrolysis
276	temperatures of condition of 500 $^{\circ\theta}C$ and 700 $^{\circ\theta}C$ is reported by Guo and Chen (2014),
277	using SEM-EDS images(Guo and Chen, 2014). For the rice husk biochar made at 500
278	⁶ C, <u>In addition</u> , the silicon of the RH biochar obtained at 500 °C - was associated with
279	the formation of a carbon and formed a dense carbon structure, (forming Si-
280	encapsulated carbon); in contrast, , meanwhile the silicon component were physically
281	distanced from carbon structure in the biochars prepared at the highest temperature (700
282	0 °C), the silicon component was physically distanced from the carbon structure.
283	
284	3.3- Thermal <u>A</u> analysis
285	Thermal analysis is a useful method to understand study the structure of biochar
286	materials . (Kalderis et al., 2014; Mimmo et al., 2014). In our this work, study (Fig. 2),

287	all biochar samples had showed a similar thermal-degradation profile (Fig. 2), with an
288	the increasing weight loss proportionally increasing with increasing ptheyrolysis
289	temperature <u>of pyrolysis</u>
290	(wood vs. non-wood) was observed in the total weight losses, as observed in the ash
291	content, i.e., tThe curves of the lost-weight loss in of AB and OB, and RH and RK
292	reachedwas up to 90% and 40–50% percent of the total weight, respectively;
293	meanwhile this behavior rthe curve in RH and RK reached around half volume of
294	weight (40-50%), reflectsing the higher mineral content in rice materials. In addition, ,
295	and moreover during charring process theis mineral component content performs
296	functions as a barrier thato prevents from the diffusion of heat diffusion and the refore
297	the release of the volatile componentnents during the charring process (Xu and Chen,
298	2013).
299	
300	3.4 Chemical Composition with Sepectra Prarameters (FT-IR and NMR)
500	5.4. Chemiear <u>C</u> eomposition with <u>O</u> spectra <u>T</u> parameters (1.1. It and With)
301	The FT-IR is a great tool to observe the shift change of chemical composition. The
301 302	The FT-IR is a great tool to observe the shift change of chemical composition. The aliphatic loss process is represented by <u>T</u> the <u>FT-IR</u> band <u>at 2950–2850 cm⁻¹ (which</u>
300301302303	The FT-IR is a great tool to observe the shift change of chemical composition. The aliphatic loss process is represented by <u>T</u> the <u>FT-IR</u> band <u>at 2950–2850 cm⁻¹ (which appears in the temperature range of 400 and 600 °C) was assigned to the of FT-IR with</u>
301302303304	The FT-IR is a great tool to observe the shift change of chemical composition. The aliphatic loss process is represented by <u>T</u> the <u>FT-IR</u> band <u>at 2950–2850 cm⁻¹ (which appears in the temperature range of 400 and 600 °C) was assigned to the of FT-IR with aliphatic C-H stretching (2950-2850cm⁻¹) at increasing temperature from 400⁶C te</u>
 301 302 303 304 305 	The FT-IR is a great tool to observe the shift change of chemical composition. The aliphatic loss process is represented by <u>T</u> the <u>FT-IR</u> band <u>at 2950–2850 cm⁻¹ (which appears in the temperature range of 400 and 600 °C) was assigned to the of FT-IR with aliphatic C-H stretching ($2950-2850$cm⁻¹) at increasing temperature from 400^{9}C to 600^{9}C (Fig.ure 2); this indicates an aliphatic loss₇. In addition, meanwhile the</u>
 301 302 303 304 305 306 	The FT-IR is a great tool to observe the shift change of chemical composition. The aliphatic loss process is represented by Tthe FT-IR band at 2950–2850 cm ⁻¹ (which appears in the temperature range of 400 and 600 °C) was assigned to the of FT-IR with aliphatic C-H stretching (2950-2850cm ⁻¹) at increasing temperature from 400^{9} C to 600^{9} C (Fig.ure 2); this indicates an aliphatic loss ₇ . In addition, meanwhile the typical representative peaks of for aromatic carbon appeared more clearly; these were
 301 302 303 304 305 306 307 	The FT-IR is a great tool to observe the shift change of chemical composition. The aliphatic loss process is represented by <u>T</u> the <u>FT-IR</u> band <u>at 2950–2850 cm⁻¹ (which appears in the temperature range of 400 and 600 °C) was assigned to the of FT-IR with aliphatic C-H stretching ($2950-2850$ cm⁻¹) at increasing temperature from 400^{θ}C to 600^{θ}C –(Fig.ure 2); this indicates an aliphatic loss₇. In addition, meanwhile the typical representative peaks of <u>for</u> aromatic carbon <u>appeared more clearly</u> assigned to the such as C-H stretching (750–900 cm⁻¹a and</u>
 301 302 303 304 305 306 307 308 	The FT-IR is a great tool to observe the shift change of chemical composition. The aliphatic loss process is represented by <u>T</u> the <u>FT-IR</u> band <u>at 2950–2850 cm⁻¹ (which appears in the temperature range of 400 and 600 °C) was assigned to the of FT-IR with aliphatic C-H stretching (2950-2850cm⁻¹) at increasing temperature from 400⁰C to 600⁰C – (Fig.ure 2); this indicates an aliphatic loss₇. In addition, meanwhile the typical representative peaks of for aromatic carbon <u>appeared more clearly</u> assigned to the such as C-H stretching (750–900_cm⁻¹a and 3050–3000_cm⁻¹), C=C (1380–1450 cm⁻¹), C-C and C-O stretching (1580–1700_cm⁻¹).</u>
 301 302 303 304 305 306 307 308 309 	The FT-IR is a great tool to observe the shift change of chemical composition. The aliphatic loss process is represented by <u>T</u> the <u>FT-IR</u> band <u>at 2950–2850 cm⁻¹ (which appears in the temperature range of 400 and 600 °C) was assigned to the of FT-IR with aliphatic C-H stretching (2950-2850cm⁻¹) at increasing temperature from 400⁹C to 600⁹C (Fig.ure 2); this indicates an aliphatic loss₇. In addition, meanwhile the typical representative peaks of for-aromatic carbon appeared more clearly; these were appeared more clearly assigned to the such as C-H stretching (750–900_cm⁻¹a and 3050–3000_cm⁻¹), C=C (1380–1450 cm⁻¹), C-C and C-O stretching (1580–1700_cm⁻¹). These data suggest that As shown by the infrared spectra, the charring temperature can</u>
 301 302 303 304 305 306 307 308 309 310 	The FT-IR is a great tool to observe the shift change of chemical composition. The aliphatic loss process is represented by <u>T</u> the <u>FT-IR</u> band <u>at 2950–2850 cm⁻¹ (which appears in the temperature range of 400 and 600 °C) was assigned to the of FT-IR with aliphatic C-H stretching (2950-2850cm⁻¹) at increasing temperature from 400^{9}C to 600^{9}C –(Fig.ure 2); this indicates an aliphatic loss₇. In addition, meanwhile the typical representative peaks of <u>for</u>-aromatic carbon <u>appeared more clearly</u> assigned to the<u>such as</u> C-H stretching (750–900_cm⁻¹a and 3050–3000_cm⁻¹), C=C (1380–1450 cm⁻¹), C-C and C-O stretching (1580–1700_cm⁻¹). These data suggest that As shown by the infrared spectra, the charring temperature <u>can</u> modifyies the functional groups, leading to a decrease in, the <u>and thus</u> aliphatic C</u>
 301 302 303 304 305 306 307 308 309 310 311 	The FT-IR is a great tool to observe the shift change of chemical composition. The aliphatic loss process is represented by <u>T</u> the <u>FT-IR</u> band at 2950–2850 cm ⁻¹ (which appears in the temperature range of 400 and 600 °C) was assigned to the of FT-IR with aliphatic C-H stretching (2950-2850cm ⁻¹) at increasing temperature from 400 ⁹ C to 600 ⁹ C (Fig.ure 2); this indicates an aliphatic loss ₇ . In addition, meanwhile the typical representative peaks of for aromatic carbon appeared more clearly; these were appeared more clearly assigned to the such as C-H stretching (750–900 cm ⁻¹ a and 3050–3000 cm ⁻¹), C=C (1380–1450 cm ⁻¹), C-C and C-O stretching (1580–1700 cm ⁻¹). These data suggest that As shown by the infrared spectra, the charring temperature can modifyies the functional groups, leading to a decrease in ₇ the and thus aliphatic C increases (Lee et al., 2010). Since the
 301 302 303 304 305 306 307 308 309 310 311 312 	The FT-IR is a great tool to observe the shift change of chemical composition. The aliphatic loss process is represented by <u>T</u> the <u>FT-IR</u> band <u>at 2950–2850 cm⁻¹ (which appears in the temperature range of 400 and 600 °C) was assigned to the of FT-IR with aliphatic C-H stretching (2950-2850cm⁻¹) at increasing temperature from 400^oC to 600^oC (Fig<u>ure 2)</u>; this indicates an aliphatic loss₇. In addition, meanwhile the typical representative peaks of for aromatic carbon appeared more clearly; these were appeared more clearly assigned to the such as C-H stretching (750–900_cm⁻¹a_and 3050_3000_cm⁻¹), C=C (1380_1450 cm⁻¹), C-C and C-O stretching (1580_1700_cm⁻¹). These data suggest that As shown by the infrared spectra; the charring temperature carbon and decrease an increase in but aromatic C increases (Lee et al., 2010). Since the biochar longevity of biochar is a matter of debate in relation with the <u>its_biochar</u></u>

313 production is still a matter of debate (Nguyen and Lehman, 2009; Peng et al., 2011), the pyrolysis process of at 600 °- $^{\theta}$ C, which creates leads to a higher more recalcitrant 314 character by increasing the number of aromatic compounds, has is a suitable method in 315 316 for terms of the carbon sequestration. However, when the charring temperature increases to values larger than over 700- $^{\theta}C$ and -800 $^{\circ\theta}C$, the intensity of the bands such 317 as that of decline gradually such as the hydroxyl groups (3200-3400 cm⁻¹) and even 318 aromatic bands groups (1580–1600 cm⁻¹ and 3050–3000 cm⁻¹) gradually diminishes. 319 320 Other-Previous studies works (Yuan et al., 2011) have shown that report that the 321 number of bounds representing functional groups are present at-in biochars obtained at the lower_temperature biochars ($300_{-}^{00}C$ and $500_{-}^{00}C$), and are absent in those derived e 322 323 biochar derived byat 700⁶ °C.

324 In particular, The characteristic of feedstock type of biochar has been reflected by tthe presence of baounds around 460 cm⁻¹, 800 cm^{-1,-}, and 1040-1100 cm⁻¹, which were 325 326 assigned to SiO₂, reflects the nature of the feedstock type; and these bands was were 327 observed in shown in all the RH and RS biochars originated from rice materials (RH 328 and RS), showing in the (Fig. 3.-b). In plant physiology, the presence of silica is 329 knowingly known to be found as the most critical principal component of for plant 330 phytoliths, asphytoliths and it it functions for protectsion the of the plant carbon from 331 degradation (Wilding et al., 1969;, Parr, 2006). In-deedfact, SiO₂ is a major component in the chemical structure of rice material. -The shoulder observed around 1600 cm⁻¹ in 332 333 rice the RH and RS biochars (RH and RS), which was assigned to the aromatic compounds, is still present retained at temperatures as high as until the 800⁹ C during 334 335 the biochar production. Guo and Chen (2014) proposed that a novel framework of novel 336 silicon-and-ccarbon framework that -couple may provide can contribute a new 337 perspective for the evaluation of ng the biochar stability, in addition to thebesides 338 recalcitrant character derived from the aromatic carbon compounds. In particular, They

339 mention that the structure of encapsulated carbon by silica <u>could can protect</u> the biochar
340 against physical and chemical oxidation, <u>and presumably leadings</u> to a longer turnover
341 time in soils.

The ${}^{13}C$ NMR spectra of different biochars (are shown in Fig. 3-(a and b)) with 342 343 similar show shape for all biochar materials a strong, dominated by the presence of 344 condensed aromatic signal at 127 ppm. Furthermore, tThis signal signal was becomes 345 more intense in the observed more clearly in all different biochars which are produced at 600 ^{o9}C; however,, and the sharpness of this peak was gradually weaken as the 346 temperature increases $\frac{1}{2}$ (above 600^{θ} °C), this peak loses sharpness. Same trend was 347 shown in Tthe shoulder of the methoxyl carbons of lignin and that of carboxylic carbons, 348 349 at 57 ppm and 190 ppm, respectively, shows a similar trend, i.e.,- Especially, the biochars, made from rice straw at 800⁻⁰C (Fig. 3, b) demonstrated a the decomposition 350 351 of this shoulder was observed for the RS biochars obtained at 800 °C (Fig. 3b). of these ranges. From Thus, these results along with those of the is result as well as shown in FT-352 353 **IR** analysis suggest figure, it worth of noting that there ithat s no much need to produce biochara with very high temperature (700-800 °⁰C and 800⁰C) may affect for 354 355 preserving the chemical properties of the functional groups and the stability characterof 356 the biochars, as a result of based on the predominance the formation of aromatic 357 structures and keeping higher chemical property with functional groups.

Concerning with lower temperature, t<u>T</u>he shoulder <u>observed</u> at around 20 ppm, which was assigned to easily degradable carbon_compounds, appeared in_for_the biochars produced at -400_{-}^{0} C-produced biochars; , and this shoulder was <u>not detected</u> eliminated in the biochars produced at 500_{-}^{0} C. This accords is in agreement with previous studies_other's work-(McBeath et al., 2013) that <u>have shown that the biochars</u>, produced at temperatures of 300_{-}^{0} C, exhibited broad alkyl signals and carbohydrate bands; meanwhile these bands were not detected <u>able-aboveover</u> 400_{-}^{0} C.

365 As shown in the previous section, the biochars, produced at lower temperatures, contain 366 a large amount of has higher volatile carbon contents. Thise type of easily degradable 367 compounds possibly contributes to microorganisms in soil as substrate (Khodadad et al., 368 2011). In this sense Thus, a lower temperature may be moreis suitable for the application 369 of the for the biochars for the improvement of utilization for soil fertility. On the 370 contraryIn contrast, higher---temperature pyrolysis selects functional groups and 371 provides aromatic predominant presence in chemical composition, consequently 372 resulting to the formation of recalcitrant structure. However, ilt should be remarked 373 thatt should be highlighted that the excess of the high temperatures as high as such as 374 700⁶C and 800 ⁶C areis notot likely suitable for and an efficient biochar 375 production, for biochar i.e., the heat degradation of the functional groups -production, 376 since thmay reduce the ose biochars reduce recalcitrant character, thus resulting in a by heat degradation of functional group, and lower biochar yield lower the biochar 377 378 production than other biochars.

379

380 4. Conclusion

381 The data presented in this work clearly showed that both In conclusion, thethe 382 pyrolysis temperature of pyrolysis and the type of feedstock drive the physico-chemical 383 properties of the biochars. In our particular, an study, increase ing r in the temperature 384 improved the enhanced the physical property of adsorption propertiesy such as large 385 surface area, and porosity, and the recalcitrant chemical character in woody material 386 biochars (AB and OB). InBy contrast, rice-material biochar (RH and RS) has shows a 387 higher biochar yield during the pyrolysis process than that of AB and OB. In addition, τ 388 and the propertiesy of the rice-material biochar products are is different from woody 389 materialbiochars, i.e., in that the inorganic components are is combined with organic 390 moieties as a consequence of the in related with the carbon encapsulation promoted

391	byby silicon-presence <u>Finally, -t</u> The over-heat production (<u>temperature</u> above 600 <u>°</u>
392	$^{\theta}$ C) showed <u>causes</u> the <u>decomposition</u> <u>disappearance</u> of the functional groups <u>through</u> ,
393	driven by heat degradation.
394	
395	5. Acknowledgements
396	This work was <u>partly</u> supported in part by the JSPS-CSIC bilateral project.
397	

Table 1. Physical and chemical characteristics of the biochars derived from different feedstocks; AB (apple tree branch), OB (oak tree),

RH (rice husk), and RS (rice straw).

samples	temperature (°0)	Biochar Yield (%)	Ash Content (%)	Volatile Content (%)	рН (H ₂ O)	Methylene Blue (mg/g DW)	I ₂ adsorption (mg/g DW)	BET Surface Area (m ² /g)
	400	28.3	4.4 ± 0.0	32.4 ± 0.1	7.02 ± 0.08	4.4 ± 0.2	45.0 ± 2.6	11.9
	500	16.7	6.5 ± 0.0	18.3 ± 0.3	9.64 ± 0.07	2.0 ± 0.4	97.9 ± 2.7	58.6
AB	600	16.6	7.6 ± 0.1	11.1 ± 0.2	10.04 ± 0.02	5.7 ± 0.4	122.1 ± 1.5	208.7
	700	15.8	8.0 ± 0.0	7.7 ± 0.1	10.03 ± 0.02	0.6 ± 0.7	208.3 ± 1.5	418.7
	800	15.5	8.6 ± 0.0	6.8 ± 0.1	10.02 ± 0.02	51.8 ± 0.6	298.5 ± 1.7	545.4
OB	400 500 600	35.8 28.6 22.0	3.6 ± 0.0 5.1 ± 0.1 5.54 ± 0.0	32.1 ± 0.1 19.4 ± 0.3 12.3 ± 0.0	6.43 ± 0.04 8.10 ± 0.12 8.85 ± 0.07	3.9 ± 0.3 5.6 ± 0.5 5.5 ± 0.4	38.7 ± 0.0 91.7 ± 0.1 131.3 ± 1.5 212.8 ± 0.1	5.6 103.2 288.6
	700 800	20.0 19.1	6.2 ± 0.0 8.3 ± 0.2	8.3 ± 0.1 7.9± 0.1	9.54 ± 0.00 9.68 ± 0.03	29.4 ± 0.5	212.8 ± 0.1 250.3 ± 1.4	335.6 398.2
RH	400 500 600 700 800	48.6 42.4 37.3 32.8 32.0	$\begin{array}{c} 35.9 \pm 0.1 \\ 46.2 \pm 0.2 \\ 52.8 \pm 0.4 \\ 55.1 \pm 0.2 \\ 62.6 \pm 0.3 \end{array}$	$22.0 \pm 0.1 \\ 10.6 \pm 0.1 \\ 6.0 \pm 0.3 \\ 3.9 \pm 0.1 \\ 3.2 \pm 0.2$	$\begin{array}{c} 6.84 \pm 0.03 \\ 8.99 \pm 0.04 \\ 9.41 \pm 0.00 \\ 9.52 \pm 0.02 \\ 9.62 \pm 0.01 \end{array}$	$2.9 \pm 0.8 9.7 \pm 0.4 3.5 \pm 0.2 3.9 \pm 1.0 34.1 \pm 0.3$	$44.1 \pm 1.6 \\ 75.4 \pm 1.6 \\ 69.0 \pm 3.1 \\ 121.0 \pm 1.6 \\ 174.4 \pm 3.1$	193.7 262.0 243.0 256.0 295.6
RS	400 500 600 700 800	39.3 32.6 23.4 18.4 18.3	$\begin{array}{c} 34.0 \pm 0.2 \\ 43.5 \pm 0.2 \\ 58.6 \pm 0.1 \\ 69.9 \pm 0.4 \\ 73.9 \pm 0.1 \end{array}$	$22.4 \pm 0.1 \\ 12.8 \pm 0.1 \\ 8.4 \pm 0.0 \\ 5.3 \pm 0.1 \\ 4.5 \pm 0.2$	$\begin{array}{c} 8.62 \pm 0.03 \\ 9.82 \pm 0.01 \\ 10.19 \pm 0.01 \\ 10.39 \pm 0.03 \\ 10.47 \pm 0.04 \end{array}$	$\begin{array}{c} 29.3 \pm 2.4 \\ 29.6 \pm 2.8 \\ 3.7 \pm 4.9 \\ 10.5 \pm 3.0 \\ 32.6 \pm 2.0 \end{array}$	$74.7 \pm 2.6 95.9 \pm 1.5 85.6 \pm 1.6 100.6 \pm 1.5 190.2 \pm 1.3$	46.6 59.9 129.0 149.0 256.97

samples	temperature	C* (%)	H* (%)	N* (%)	O (%)	O/C	H/C
	400	70.2 ± 0.2	4 13 + 0.01	0.76 ± 0.00	20.6+.0.1	0.22	0.71
	500	70.2 ± 0.2 79.1 + 0.0	4.13 ± 0.01 2.65 + 0.09	0.70 ± 0.00 0.34 ± 0.01	12.0 ± 0.1	0.22	0.40
	600	81.5 ± 0.1	1.00 = 0.03 1.96 ± 0.02	0.54 ± 0.00	12.0 = 0.1 13.6 ± 0.3	0.12	0.10
AB	700	82.3 ± 1.4	1.21 ± 0.05	0.41 ± 0.02	16.3 ± 0.7	0.15	0.18
	800	84.8 ± 0.1	0.60 ± 0.01	0.34 ± 0.01	5.8±0.0	0.05	0.08
	400	70.5 ± 0.2	3.70 ± 0.02	0.69 ± 0.02	21 5± 0 2	0 23	0.63
	500	77.6 ± 0.3	2.51 ± 0.16	0.51 ± 0.03	17.7 ± 0.5	0.17	0.39
OB	600	81.2 ± 0.5	1.92 ± 0.01	0.48 ± 0.02	16.0 ± 0.2	0.15	0.28
OD	700	83.2 ± 0.2	1.16 ± 0.06	0.31 ± 0.00	15.0 ± 0.1	0.13	0.17
	800	82.9 ± 0.4	0.69 ± 0.06	0.32 ± 0.00	17.3 ± 0.1	0.16	0.10
	400	44.6 ± 0.3	2.50 ± 0.00	0.69 ± 0.02	16.3 ± 0.2	0.27	0.67
	500	45.2 ± 0.3	1.27 ± 0.03	0.47 ± 0.02	7.1 ± 0.2	0.12	0.34
DU	600	40.4 ± 0.7	0.85 ± 0.05	0.37 ± 0.01	9.2 ± 0.3	0.17	0.25
KH	700	38.8 ± 0.5	0.46 ± 0.04	0.26 ± 0.02	12.7 ± 0.2	0.25	0.14
	800	40.4 ± 0.7	0.28 ± 0.01	0.22 ± 0.00	2.7 ± 0.0	0.05	0.08
	400	49.9 ± 0.2	2.80 ± 0.12	1.22 ± 0.01	12.0 ± 0.1	0.18	0.67
	500	37.5 ± 0.2	0.93 ± 0.03	0.61 ± 0.01	8.6 ± 0.3	0.10	0.30
RS	600	33.8 ± 1.0	0.60 ± 0.07	0.41 ± 0.04	13.7 ± 0.3	0.30	0.21
	700	36.3 ± 0.8	0.51 ± 0.06	0.34 ± 0.02	17.4 ± 0.9	0.36	0.17
	800	29.2 ± 0.4	0.25 ± 0.02	0.25 ± 0.01	$3.7.\pm 0.0$	0.10	0.10

Table 2. The eElemental compositions of the biochars derived from different feedstocks; AB (apple tree branch), OB (oak tree), RH (rice husk), and RS (rice straw).

Figure legends

straw)).

Fig._1_- Van Krevelen diagram of <u>the</u>biochar<u>s</u> <u>derived</u> <u>originated</u> from different feedstock<u>s</u>; AB (apple tree branch), OB (oak tree), RH (rice husk), and RS (rice straw). Each symbol shows-<u>indicates the</u> pyrolysis temperature -as follows<u>:</u>; Black =_8000_C, Gray = 7000_C, Line_= 6000_C, Dot = 5000_C, and White_= 4000_C.

Fig. 2. a.—Thermal analysis of <u>the</u> biochars <u>obtained from (a) of</u>-wood materials; (AB (apple tree) and OB (oak tree)) and (b) Fig.2. b.—Thermal analysis of biochars of of rice residues (; RH (rice husk-) and RS (rice straw)).

Fig. 3.a. FT-IR spectra of <u>the</u> biochars <u>obtained from (a) of</u> wood materials<u>s (</u>; AB (apple tree) and OB (oak)<u>) and (b) Fig. 3.b. - FT-IR spectra of biochars of</u> rice residues (; RH (rice husk) and RS (rice straw)).

Fig. 4. ¹³C a. 13C CPMAS-NMR of <u>the</u> biochars <u>obtained from (a)</u> of wood materials (; AB (apple tree) and OB (oak tree)), and (b) Fig.4. b. 13C CPMAS NMR of biochars of rice residues (; RH (rice husk) and RS (rice

Fig. 1 Van Krevelen diagram of biochar originated from different feedstock.- The temperature range of pyrolysis process is as following; Black = $800_{-}^{\circ 0}C_{1,7}$ Gray = $700_{-}^{\circ 0}C_{1,7}$ Line = $600_{-}^{\circ 0}C_{1,7}$ Dot = $500_{-}^{\circ 0}C_{1,7}$ and White = $400_{-}^{\circ 0}C$

書式変更: 上付き/下付き(なし)

Fig. 2._a.-_Thermal analysis of biochars of wood materials; AB (apple tree) and OB (oak tree)

Fig. 2. b. –Thermal analysis of biochars of of-rice residues; RH (rice husk) and RS (rice straw)

Fig. 3.a.-FT-IR spectra of biochars of wood materialss; AB (apple tree) and OB (oak tree)

Fig. 3.b._-FT-IR spectra of biochars of rice residues; RH (rice husk) and RS (rice straw)

Fig. 4. a.– 13 C CPMAS-NMR of biochars of wood materials; AB (apple tree) and OB (oak tree)

Fig._4. b.—_¹³C CPMAS-NMR of biochars of rice residues; RH (rice husk) and RS (rice straw)