

1 **Spring bloom community change modifies carbon pathways**
2 **and C : N : P : Chl-a stoichiometry of coastal material fluxes**

3
4 K. Spilling^{1,2}, A. Kremp¹, R. Klais³, K. Olli³ and T. Tamminen¹

5 [1]{Marine Research Centre, Finnish Environment Institute, P.O. Box 140, 00251 Helsinki,
6 Finland}

7 [2]{Tvärminne Zoological Station, University of Helsinki, 10900 Hanko, Finland}

8 [3]{Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu, Estonia}

9 Correspondence to: K. Spilling (kristian.spilling@environment.fi)

10

11 Running title: Coastal carbon pathways and stoichiometry

12

13

14 **Abstract**

15 Diatoms and dinoflagellates are major bloom-forming phytoplankton groups competing for
16 resources in the oceans and coastal seas. Recent evidence suggests that their competition is
17 significantly affected by climatic factors under ongoing change, modifying especially the conditions
18 for cold-water, spring bloom communities in temperate and arctic regions. We investigated the
19 effects of phytoplankton community composition on spring bloom carbon flows and nutrient
20 stoichiometry in multi-year mesocosm experiments. Comparison of differing communities showed
21 that community structure significantly affected C accumulation parameters, with highest particulate
22 organic carbon (POC) build-up and dissolved organic carbon (DOC) release in diatom-dominated
23 communities. In terms of inorganic nutrient drawdown and bloom accumulation phase, the
24 dominating groups behaved as functional surrogates. Dominance patterns, however, significantly
25 affected C : N : P : Chl *a* ratios over the whole bloom event: when diatoms were dominant, these
26 ratios increased compared to dinoflagellate dominance or mixed communities. Diatom-dominated
27 communities sequestered carbon up to 3.6-fold higher than the expectation based on the Redfield
28 ratio, and 2-fold higher compared to dinoflagellate dominance. To our knowledge, this is the first
29 experimental report of consequences of climatically driven shifts in phytoplankton dominance

1 patterns for carbon sequestration and related biogeochemical cycles in coastal seas. Our results also
2 highlight the need for remote sensing technologies with taxonomical resolution, as the C : Chl *a*
3 ratio was strongly dependent on community composition and bloom stage. Climate-driven changes
4 in phytoplankton dominance patterns will have far-reaching consequences for major
5 biogeochemical cycles and need to be considered in climate change scenarios for marine systems.

6

7 **1 Introduction**

8 Coastal seas and shelf areas (<200 m deep) constitute approximately 5 % of the ocean, but are
9 among the most vital marine biotopes, both from an ecological and from a socio-economical
10 perspective. They connect terrestrial, atmospheric, and marine biogeochemical cycles, and it has
11 been estimated that ~12% of the marine primary production and ~86% of the total carbon burial in
12 the ocean takes place in coastal regions (Dunne et al., 2007). Coastal seas also play a pivotal role in
13 trophic transfer of organic carbon from primary producers through the food web, and include some
14 of the richest fisheries in the world. At the same time, these areas are the most affected by direct
15 and indirect anthropogenic pressures and are highly vulnerable to projected global change (Halpern
16 et al., 2008). Multiple drivers of the marine food web, such as temperature, UV irradiation, pCO₂,
17 and runoff of nutrients and freshwater, are affecting the ecosystem on different levels. One of the
18 key issues for predicting how global change will affect coastal marine environments is to identify
19 population dynamics and feedback loops under a changing environment (Harley et al., 2006; Eggers
20 et al., 2014).

21 Temperate aquatic systems are characterized by high productivity, especially of new production, as
22 opposed to recycled production (Dugdale and Goering, 1967). Their production is highly seasonal,
23 and the annual spring bloom represents the most significant production phase. High initial
24 concentrations of inorganic nutrients, increasing solar radiation, and emerging stratification of water
25 layers trigger the onset of photosynthetic production. Several bloom-forming phytoplankton groups
26 compete for resources in marine environments during spring, the most conspicuous being diatoms,
27 dinoflagellates and prymnesiophytes. Recent evidence from both coastal and offshore environments
28 shows decadal shifts in the relative proportions of diatoms and dinoflagellates at different seasons,
29 and suggests that their competition is significantly affected by climatic factors under ongoing
30 change (Leterme et al., 2005; Hinder et al., 2012), modifying especially the spring bloom conditions
31 of temperate and arctic regions; mild winters and more storms have been shown to favor
32 dinoflagellates (Klais et al., 2013), and also changes in thermal stratification patterns and freshwater
33 runoff are thought to affect phytoplankton community composition; for example diatoms typically

1 dominate during times with high turbulence whereas dinoflagellates are more common after firm
2 stratification has been established (Smayda and Reynolds, 2001). The extensive temperate and
3 arctic shelf seas and marginal ice zones are globally among the most susceptible biotopes for
4 climate change, and their changing production preconditions will potentially have a great impact on
5 global carbon budgets and interconnected biogeochemical cycles. The consequences of climate-
6 driven phytoplankton community change represent therefore urgent challenges for reliable climate
7 change scenarios.

8 The physiology and morphology of different phytoplankton species and groups vary considerably,
9 with direct impacts on ecosystem-wide nutrient cycling and cascading food web effects. Differences
10 in species-specific traits like growth rate, nutrient affinities and biochemical composition, cell size,
11 motility, and life cycle strategies govern the outcome of resource competition, and therefore the
12 community composition in a set of environmental conditions. They also directly affect system-level
13 carbon sequestration, stoichiometry of material flows, and the export of organic carbon to the sea
14 floor. Several of these functional aspects of algal physiology are thus relevant for large-scale
15 biogeochemical cycles, and their incorporation in trait-based models of phytoplankton production
16 (Litchman and Klausmeier, 2008; Litchman et al., 2010) would significantly enhance the predictive
17 potential of marine biogeochemical models under climate change.

18 Among the temperate coastal seas projected to change most rapidly is the Baltic Sea, due to its close
19 interaction with the intensively modified catchment, the predicted changes in annual precipitation
20 patterns over northern Europe, its reduced alkalinity, and heavy fishing pressure (Niiranen et al.,
21 2013). In the Baltic Sea, cold-water dinoflagellates and diatoms have been considered functional
22 surrogates during the spring bloom, as both effectively deplete the wintertime inorganic nutrient
23 concentrations (Tamminen, 1995; Kremp et al., 2008), and the bloom terminates in most basins
24 once nitrate has been consumed below analytical detection limits (Tamminen and Andersen, 2007).
25 However, there are obvious differences with respect to life cycle strategies and sedimentation
26 patterns of the competing phytoplankton groups. In general, diatoms sink quickly to the sea floor
27 once nutrients are depleted, and it has been shown that the fraction of the population forming
28 resting spores is highly species-specific (Rynearson et al., 2013). Dinoflagellates, on the other hand,
29 lyse before reaching the sediment, or alternatively go through a life cycle transformation producing
30 decomposition-resistant resting cysts (Heiskanen, 1998).

31 The differences in sedimentation patterns have a large impact on decomposition of the bloom
32 biomass in sediments, with consequences on oxygen consumption and release of phosphorus
33 (Spilling and Lindström, 2008), this should also affect the decomposition by pelagic bacteria. This

1 indicates strong cascading effects of bloom community composition on benthic food webs and
2 material cycles. Although grazing pressure is relatively low during the spring bloom period in the
3 Baltic Sea (Lignell et al., 1993), phytoplankton species composition has been shown to affect also
4 the planktonic grazer communities because of species-specific differences in food quality for the
5 emerging copepod populations (Vehmaa et al., 2011). Therefore, the cascading effects of bloom
6 composition are potentially pervasive within the whole ecosystem.

7 In this study, we investigate the effects of phytoplankton community composition on stoichiometry
8 of planktonic biogeochemical processes, in a coastal model system displaying ongoing, climate-
9 driven community change (the Baltic Sea [Klais et al., 2011]). We hypothesize that a change in
10 phytoplankton community composition (here, diatom vs. dinoflagellate dominance) will
11 significantly modify the carbon budget and stoichiometric composition of the seston. The data
12 originate from coastal mesocosm experiments with nutrient enrichments performed in 5 consecutive
13 years, with multi-week time series of phytoplankton species composition, primary production and
14 nutrient fractions in a total of 36 mesocosms. The experiments displayed natural phytoplankton
15 communities of interannually highly variable relative contributions of diatoms and cold-water
16 dinoflagellates (<10% to >90% of either group) to the total bloom biomass.

17

18 **2 Materials and methods**

19 **2.1 Experimental set-up**

20 The mesocosm experiments were conducted in spring 2004 to 2008 under laboratory conditions at
21 the Tvärminne Zoological Station, University of Helsinki. The experimental set-up consisted of a
22 control unit of natural sea water, and three nutrient manipulation treatments: a combined nitrate (N)
23 and phosphate (P) addition; dissolved silicate (DSi) addition; and combined N, P, and DSi addition.
24 On top of the nutrient manipulations, different treatments were added. In 2004, 2006, and 2008, two
25 different light environments were used, in a full factorial 2^3 design; in 2005, only the nutrient
26 treatments were used; in 2007, two cultured diatoms typical for the spring bloom in the area:
27 *Thalassiosira levanderi* ($\sim 10 \mu\text{m}$ diameter) and *T. baltica* (20-30 μm diameter), were added in a
28 gradient to the natural communities. The final concentration of *T. levanderi* was 20000, 75000 and
29 212000 cells L^{-1} and the final concentration of *T. baltica* was 2000, 3560 and 13350 cells L^{-1} . A
30 summary of the experimental design and initial conditions in the experimental units is given in
31 Table 1.

1 For each experiment, containers were filled with natural surface water and pre-screened with a 200
2 μm mesh-size net to remove metazooplankton. Water was collected during ice break-up from the
3 ice edge near the Storfjärden monitoring station at the SW coast of Finland ($59^\circ 51'\text{N}$; $23^\circ 13'\text{E}$). In
4 2004, white plastic (PE) 80 L barrels were used as experimental units, whereas for the years 2005 to
5 2008, 25 L transparent polycarbonate carboys were used.

6 Ice break-up typically coincides with the initiation of the annual spring bloom in the area (Niemi,
7 1975), and the captured phytoplankton community was assumed to represent the seed community
8 for the spring bloom. The timing of ice break-up varied between years, and accordingly the
9 experiments were started on different dates in subsequent years, depending on the ice situation.

10 After filling containers on the ice, they were immediately brought to the laboratory; the water was
11 divided into mesocosm carboys, and placed into a walk-in incubator set to 2°C . The mesocosms
12 were illuminated by daylight spectrum, fluorescent tubes (Philips TLD-95) at a 12:12 L/D cycle,
13 corresponding to the ambient light cycle. Different irradiance was used for different treatments
14 (Table 1). Pre-filtered ($0.2\ \mu\text{m}$) air was bubbled into the mesocosms to keep a low level of
15 turbulence.

16 Natural nutrient conditions were manipulated by additions of $\text{NO}_3\text{-N}$, $\text{PO}_4\text{-P}$ (N+P treatment),
17 and/or $\text{SiO}_2\text{-Si}$ (DSi treatment), with similar nutrient manipulations carried out each year. Nutrient
18 additions (see Table 1 for the initial NO_3 concentrations) were targeted at approximately doubling
19 the typical wintertime concentrations in the area, while maintaining a balanced Redfield ratio (a
20 molar N: P ratio of 16). Irradiance was adjusted to $20\ \mu\text{mol photons m}^{-2}\ \text{s}^{-1}$ for the low light
21 treatment (LL), which was applied in the 2004, 2006, and 2008 experiments; and to $90\ \mu\text{mol}$
22 $\text{photons m}^{-2}\ \text{s}^{-1}$ for the high light treatment (HL). In 2005 and 2007, all treatments received $90\ \mu\text{mol}$
23 $\text{photons m}^{-2}\ \text{s}^{-1}$.

24 The successive years represented different initial conditions, due to differences in ice break-up and
25 other meteorological history of the winter-early spring season. The ambient nutrient concentrations
26 of each experiment thus represented varying phases of the early bloom period despite similar
27 experimental additions, between full wintertime levels and the spring depletion period. The initial,
28 natural phytoplankton community varied from year to year.

29 **2.2 Sampling protocol and measurements**

30 Mesocosms were sampled for Chlorophyll *a* (Chl *a*), nutrient and phytoplankton immediately after
31 the addition of nutrients on day 0, and subsequently every 2 to 3 days. The duration of the
32 experiment differed between years, depending on how fast nutrients were exhausted (Table 1). Prior

1 to sampling, which took place at the beginning of the daily light period; the contents of the
2 mesocosms were stirred with a polycarbonate rod to ensure an even distribution of phytoplankton
3 and other particulate matter. The samples thus represent bloom development without sedimentation
4 losses. The total sampling volume never exceeded half the total volume.

5 Samples for dissolved and particulate nutrients and Chl *a* were processed immediately. Nutrient
6 concentrations (NO₃-N, PO₄-P and DSi) were determined manually in duplicate from each carboy
7 according to the standard colorimetric methods (Grasshoff et al., 1983). Dissolved organic carbon
8 (DOC) concentrations were measured by the High Temperature Catalytic Oxidation (HTCO)
9 method using a Shimadzu TOC-V CPH carbon and nitrogen analyzer. Sub-samples (<0.45 µm
10 Supor Acrodisc PES filter, Gelman Sciences) were acidified to pH 2.5 with 2 M HCl and stored in
11 darkness at room temperature. The 20 ml glass ampoules were stored for 4 to 6 months, before
12 determining the DOC concentration according to Sharp et al. (1993).

13 For determining Chlorophyll *a* (Chl *a*), 50 ml duplicate samples from each carboy were filtered
14 onto glass fiber filters (Whatman GF/F) and extracted in 10 ml of 94% ethanol for 24 h in the dark
15 at room temperature. Chl *a* was measured on a Shimadzu RFPC-5001 fluorometer, calibrated with
16 pure Chl *a* (Sigma). Duplicate filters (50-100 ml filtered depending on the biomass concentration)
17 were also prepared for determination of particular organic carbon (POC), nitrogen (PON) and
18 phosphorus (POP). For all samples acid washed, pre-combusted GF/F filters were used. The filters
19 were allowed to dry and stored at room temperature (20 °C) until nutrient determination. POC and
20 PON were measured from the same filter with a mass spectrometer (Europa Scientific). POP was
21 determined according to Solórzano and Sharp (1980).

22 Phytoplankton samples were preserved with acid Lugol's solution. Prior to microscopic analysis,
23 volumes of 50 and 25 ml were set up for concentration in Utermöhl chambers and allowed to settle
24 for at least 24 hours. Diatoms and dinoflagellates, identified to species or genus level, were counted
25 with an inverted light microscope (Leica DM IRB Wetzlar, Germany). Cells were grouped into two
26 size categories (> and < 10 µm), which were counted separately at x 200 and x 787 magnification.
27 At least half of the chamber bottom was screened when cell densities were low, otherwise 400 cells
28 were counted, if possible, for each category. Cell dimensions of diatoms and dinoflagellates were
29 measured on 25 randomly selected cells of each species, and biovolumes were calculated using
30 formulas given for standard geometric shapes of phytoplankton taxa (Sun and Liu, 2003).
31 Biovolume values were converted to carbon according to the recommendations of Menden-Deuer
32 and Lessard (2000).

1 Radiolabeled ^{14}C was used for determining the total primary production, and this was determined
2 on all sampling days. An activity of 0.15 kBq was added to 10 mL of sample and incubations
3 carried out in the same light and temperature conditions as for the mesocosms. After an incubation
4 period of 3 h, 4 mL sample was extracted, 150 μL of 37% formaldehyde was added to fix the
5 sample, and 100 μL of 1 M HCl was added in ventilation cupboard to remove unassimilated
6 (inorganic) ^{14}C isotope. The samples were left with the lid open for 24 h before 7mL of liquid
7 scintillation cocktail (Hi Safe) was added. The radioactivity was measured using a liquid
8 scintillation counter (PerkinElmer Inc., Wallac Winspectral 1414). The amount of total dissolved
9 inorganic carbon (DIC) was measured with a high-temperature combustion IR carbon analyzer
10 (Unicarbo, Electro Dynamo, Finland). Primary production was calculated from uptake of ^{14}C
11 knowing the total amount of added isotope and total DIC. Due to the relatively short incubation
12 period, measured primary production was assumed to represent gross primary production (Sakshaug
13 et al., 1997).

14 **2.3 Data treatment**

15 The development of dissolved inorganic nutrients and particulate organic carbon (POC), nitrogen
16 (PON), phosphorus (POP), Chlrophyll *a* (Chl *a*), and dissolved organic carbon (DOC) were
17 organized as a function of time (e.g. Fig. 1). Background levels of refractory DOC are very high in
18 the Baltic Sea, e.g. 350-400 $\mu\text{mol C L}^{-1}$ as DOC in the open Gulf of Finland (Hoikkala, 2012), so
19 the start concentration was subtracted from all values to express DOC change during the
20 experiment. The phytoplankton development was divided into two growth stages: exponential and
21 stationary growth phase. The exponential growth phase was defined from the start of the experiment
22 until the primary production peak per volume (i.e. not normalized to biomass); stationary growth
23 phase was defined as the period after this point until the end of the experiment.

24 The community growth rate (μ) was determined during the exponential growth phase for the
25 biomass-related parameters (μ_{POC} , μ_{Chla}) by linear regression of the natural log transformed data.
26 The exponential growth of DOC (χ_{DOC}) was done in the same way. During stationary growth phase
27 a linear regression (without log transformation) was fitted to the data parameters in order to find the
28 rate of change.

29 Primary production was modeled from the ^{14}C incubations, assuming the measured production to
30 represent the whole light period (12 h d^{-1}). Sampling did not take place every day, and we estimated
31 the carbon fixation between sampling days by linear regression. A simple model was created,
32 summing the gross carbon fixation for each day, and this was termed total gross production (TGP).

1 This accumulated gross primary production would be the theoretical development of POC without
2 any loss processes.

3 The growth rate of TGP (μ_{TGP}) was calculated similarly to the other biomass-related parameters
4 described above, and carbon assimilation efficiency (CAE) was calculated from the ratio between
5 the measured carbon accumulation and total gross production:

6 $CAE = \mu_{POC}/\mu_{TGP}$ (1)

7 Carbon loss rate (CLR) was calculated as fraction of TGP not entering the POC pool:

8 $CLR = 1 - CAE$ (2)

9 Respiration (RES) was calculated as the part of the loss rate not released as DOC, assuming that all
10 carbon not adding to the POC or DOC pools was used for respiration.

11 $RES = CLR - (\chi_{DOC}/\mu_{TGP})$ (3)

12 The CAE, CLR and RES parameters were also calculated for the stationary growth phases with the
13 difference that the rate of change where used instead of growth rate, e.g. Δ_{POC} instead of μ_{POC} .

14 Phytoplankton community composition data were used for calculating the proportion of
15 dinoflagellates and diatoms of the total community biomass. Species evenness (Shannon
16 equitability, H_E) was calculated as follows:

17 $H_E = -[p_i * \ln(p_i/S)]$ (4)

18 where p_i is the proportion of i 'th species biovolume from total biovolume of the sample, and S is the
19 number of species present in the sample.

20 ANOVA on ranks were used to check for statistical significance ($\alpha = 0.05$) between different
21 phytoplankton community composition for the different carbon budget parameters. 'On ranks' were
22 used because of a low normal distribution score for several parameters using the Anderson-Darling
23 test ($A^2 > 1$ and $p < 0.05$). The ANOVA and regression analysis were carried out in SigmaPlot
24 (SPSS).

25

26 **3 Results**

27 **3.1 Phytoplankton community**

28 The initial phytoplankton community composition varied from year to year, with relative
29 proportions of the total biomass ranging from >90% diatoms to >90% dinoflagellates. In general,

1 there were more species of diatoms present in the mesocosms compared to dinoflagellates. The
2 most abundant diatoms were *Thalassiosira baltica*, *T. levanderi*, *Chaetoceros wighamii*,
3 *Skeletonema marinoi* and *Achnanthes taeniata*, and two dinoflagellates were dominating:
4 *Biecheleria baltica* and *Peridiniella catenata*. Species evenness was highest in a mixed community,
5 when dinoflagellates constituted 20%-70% (i.e. 30%-80% diatoms) of the total population (Fig. 2).
6 The effect on evenness was less pronounced when diatoms dominated. During diatom dominance,
7 several species were represented whereas during dinoflagellate dominance, only one out of the two
8 species was accounted for most of the biomass (*B. baltica* in 2004 and *P. catenata* in 2007). The
9 phytoplankton community was divided into three categories: diatom dominance (>80%), mixed
10 community (20-70% dinoflagellates) and dinoflagellate dominance (>70%). The rationale behind
11 setting the group boundaries was from the apparent difference in species evenness (Fig. 2).

12 The dominance of either diatoms or dinoflagellates were almost complete being at >90% of
13 the total phytoplankton biomass during the experiments with the exception of 2008 (mixed
14 community) when Chrysophytes made up 10-20% of the biomass.

15 **3.2 Carbon budget**

16 The community carbon growth rate (μ_{POC}) was clearly affected by the light conditions, but not by
17 the community composition. The average μ_{POC} under the low and high light conditions (20 and 90
18 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$) were $0.08 (\text{d}^{-1}) \pm 0.01$ (SD) and $0.15 (\text{d}^{-1}) \pm 0.02$ (SD) respectively. There was
19 no significant difference in μ_{POC} between different community compositions (Fig. 3A). However,
20 growth rate calculated from Chl *a* (μ_{Chla}) was highest in diatom dominated communities and
21 decreased linearly ($p < 0.0001$) with increasing dinoflagellate proportion (Fig. 3A). The carbon
22 assimilation efficiency (CAE) was positively correlated ($p = 0.04$) with the growth rate (Fig. 3B).

23 During exponential growth, there was no apparent difference between phytoplankton communities
24 in gross primary production (Fig. 4, Table 2). There was, however, an effect on the CAE and
25 respiration (RES). The mixed community had on average a ~30% higher CAE and ~75% lower
26 RES compared to the situations when dinoflagellates or diatoms dominated (Fig 4, Tables 2 and 3).

27 In the stationary growth phase, the community composition clearly had an effect on the carbon
28 budget (Fig 4, Tables 2 and 4). When diatoms constituted >80% of the population, there was on
29 average 3-7 times higher buildup of particulate organic carbon (POC), ~2 fold higher total gross
30 production (TGP), and ~2-fold higher release of dissolved organic carbon (DOC) compared to the
31 situations with mixed or dinoflagellate dominated communities (Fig. 5, Tables 2 and 4). The

1 diatoms also had the highest CAE during stationary growth, but with no statistical difference with a
2 mixed community (Table 4).

3 **3.3. Stoichiometry**

4 The phytoplankton community clearly affected the stoichiometry of the seston, with C : N and C : P
5 ratio being higher during diatom dominance (Fig. 6). The drawdown of inorganic N and P was close
6 to 100% and stayed stable after the onset of stationary growth phase (e.g. Fig 1A). There was a
7 significant, negative correlation between C : N and C : P ratios with increasing dinoflagellate
8 proportion during both exponential and stationary growth phase ($p \leq 0.03$). The C : N ratio was a
9 factor of 1.2-1.7 times higher than the Redfield ratio during exponential growth phase, and
10 increased to 1.7-3.6 times higher than the Redfield ratio in all communities during stationary growth
11 phase.

12 The C : P ratio was up to 1.4 times higher than the Redfield ratio during exponential growth in
13 diatom dominated communities; dinoflagellate dominated communities were approximately on par
14 with the Redfield ratio. During stationary growth phase the C : P ratio increased to 1.4-2.8 times
15 higher than the Redfield ratio.

16 The N : P ratio was for most samples fell below the Redfield ratio of 16 and did not vary between
17 communities during exponential growth ($p = 0.23$). After nutrients had been depleted, however,
18 there was a negative correlation of N : P ratio with increasing dinoflagellate proportion ($p < 0.001$)
19 (Fig. 6).

20 The N : Si ratio was lowest during diatom dominance ($p < 0.001$), and increased with dinoflagellate
21 dominance, especially during exponential growth phase (Fig 6). In general, the drawdown of N and
22 P and build-up of biomass (e.g. POC) were very similar in the N, P and N, P & Si treatment and in
23 the control and Si addition.

24 The C : Chl *a* ratio was clearly affected by the phytoplankton community composition and growth
25 phase ($R^2 = 0.53$, $p < 0.0001$) (Figs 3 and 7), and there was on average a trend of decreasing ratios
26 during exponential growth followed by increasing ratios during stationary growth phase. At the start
27 of the experiment, the average C: Chl *a* ratios (comparing only high light treatments) were 477 ± 338 (SD), 84 ± 51 (SD) and 55 ± 31 (SD) gC (g Chl *a*)⁻¹ for diatom, mixed, and dinoflagellate-
28 dominated communities, respectively. The initial decrease in the C : Chl *a* ratio was most rapid
29 during diatom dominance (95 ± 74 (SD) at the primary production peak), whereas there was less
30 change for mixed communities or during dinoflagellate dominance (60 ± 60 (SD) and 45 ± 17 (SD)
31 respectively at the primary production peak). The C : Chl *a* ratio started to increase again during the
32

1 stationary growth phase and were at the end of the experiment 208 ± 62 (SD), 218 ± 155 (SD) and
2 387 ± 49 (SD) for diatom, mixed and dinoflagellate dominated communities respectively.

3

4 **4 Discussion**

5 **4.1 Natural mixed communities as an experimental system**

6 Differences in the physiology and cellular composition of diatoms and dinoflagellates have been
7 recurrently established in monocultures (Chan, 1980; Banse, 1982; Menden-Deuer and Lessard,
8 2000), with the general conclusion that diatoms show higher maximum growth rates, higher
9 photosynthetic rates per unit carbon, and lower C : Chl *a* ratios compared to dinoflagellates. The
10 conclusions are based on monoculture growth under saturating light and nutrient abundance, or on
11 continuous monocultures with established light or nutrient limitation, with the implicit or explicit
12 assumption that the empirically derived traits can be utilized in modeling the performance of natural
13 planktonic populations or communities (Cloern et al., 1995; Sarthou et al., 2005). Other angles to
14 the phylogenetic-metabolic differences have been to address the evolutionary inheritance of
15 elemental stoichiometry between phyla and superfamilies (Quigg et al., 2003), or to mechanistically
16 model the stoichiometry of the nested biochemical processes underlying primary production of
17 unicellular algae (Geider et al., 1998; Falkowski, 2000; Pahlow, 2005).

18 Our experiment series departs from these approaches by empirically studying the carbon flow and
19 community stoichiometry over the full duration of natural, mixed community spring bloom events.

20 During a multispecies bloom, the abiotic conditions and species interactions go through a
21 continuous transformation, inducing transitory physiological acclimation responses and changes in
22 competitive advantage between species. This seriously complicates prediction of bloom
23 development with species-specific properties originating from growth in controlled, artificial
24 monoculture conditions (Sathyendranath et al., 2009; Mateus et al., 2012). We used standardized,
25 representative environmental conditions (light, temperature, nutrient supplies) and exclusion of
26 advective and sedimentation flows, to specifically address the net effects of variable diatom-to-
27 dinoflagellate proportions of the bloom community on modification of coastal biogeochemistry.

28 Our experimental setup eliminated sinking losses that affect the overall bloom dynamics in open
29 natural systems. Diatoms, in particular, are known to aggregate and sink efficiently out of the photic
30 layer after bloom culmination (Kiørboe et al., 1990; Underwood et al., 2004). Our results therefore
31 represent an upper limit for bloom C drawdown. However, the stoichiometric differences between
32 different communities evolved fast after the bloom peak, and the variable physical forcing in coastal

1 seas include changes in mixing of the surface layer, resuspension, and lateral transport, which
2 counteract permanent sedimentation of fresh biogenic material, prolonging the stationary phase of
3 bloom communities. This increases the heterotrophic remineralization in the water column.

4 **4.2 Dominance patterns in experimental communities**

5 The 5 initial communities represented the natural variability of phytoplankton in the respective
6 years, as mesocosm communities developed from natural inocula. Interannual variability in
7 community composition was considerable: years of dinoflagellate dominance alternated with years
8 of diatom dominance or evenly mixed communities. The experimental treatments of light, nutrient
9 supplies and community structure amplified or further diversified the dominance patterns of the
10 natural inoculum communities. This provided a wide range of dominance conditions in the
11 altogether 36 mesocosms over multi-week bloom events, thus representing an ideal semi-natural
12 experimental system for community-level comparisons.

13 In the coastal study area, pre-bloom and bloom period weather patterns have been found to be
14 significantly related to high dinoflagellate proportions during spring (Klais et al., 2013). Klais et al.,
15 2013 reported that mild winters with thin ice cover more storms favored dinoflagellates, suggesting
16 that changing climate conditions are likely to drive the increasing frequency of coastal
17 dinoflagellate-dominated spring blooms. Recent biodiversity shifts in offshore phytoplankton
18 communities have been repeatedly linked to changing climate conditions (Reid et al., 1998; Hinder
19 et al., 2012), modifying hydrographic properties of the water column, and thus selecting for
20 specifically adapted taxonomic groups, most notably dinoflagellates (Hallegraeff, 2010).

21 While diatom dominance was in most cases caused by several co-occurring diatom species, the
22 dinoflagellate blooms in the mesocosms consisted of a single species - *Biecheleria baltica* (formerly
23 known as *Woloszynskia halophila*) or *Peridiniella catenata*. This seems to be a general
24 phenomenon in a wide range of marine habitats: diatoms behave as guild members sharing the
25 habitat, whereas dinoflagellates usually follow a taxonomical hierarchical pathway towards
26 domination of one species (Smayda and Reynolds, 2001). Diatoms are, in general, tolerant to
27 habitat diversity and are adapted to habitats with several ecological niches, whereas dinoflagellates
28 often are habitat specialists where typically the best adapted species outcompete the rest (Smayda
29 and Reynolds, 2001).

30 In dinoflagellate-dominated blooms, the respective species already constituted a major fraction of
31 the initial community, by far outnumbering any other phytoplankton species, and were thus able to
32 maintain dominance under several experimental treatments despite their relatively low species-

1 specific growth rates (Kremp et al., 2008). Dinoflagellates have been shown to possess
2 compensatory strategies to compete with fast growing phytoplankton groups, such as allelopathy,
3 mixotrophy, and internal nutrient storages (Legrand and Carlsson, 1998; Collos et al., 2004;
4 Tillmann et al., 2008). *B. baltica* has recently been confirmed to effectively suppress growth of co-
5 occurring diatoms by excretion of allelochemicals (Suikkanen et al., 2011), and utilization of
6 residual P has been suggested to facilitate sustained growth of *B.baltica* in the 2004 mesocosms
7 (Kremp et al., 2008).

8 **4.3 Carbon production and losses during developing and late bloom stages**

9 There were no significant differences between communities of diatom or dinoflagellate dominance
10 in carbon-based growth rates (μ_{POC} or μ_{TGP}) during the exponential bloom phase. This is somewhat
11 counterintuitive, taking into account the general conclusions from monoculture studies, and
12 previous evidence that Baltic Sea dinoflagellates exhibit lower growth rates in mixed communities
13 than the competing diatoms (Kremp et al., 2008). It should be noted that the carbon budgets are
14 cumulative for the whole exponential phase, including also the variable delay periods from the
15 experiment onset. Also, we are dealing with natural, mixed communities even in both “dominance”
16 categories. Despite the differences in instantaneous growth rates between individual diatom and
17 dinoflagellate species, the varying mixed communities thus performed production-wise comparably
18 during the bloom accumulation phase.

19 Growth rates based on increase in Chl *a* were higher than carbon-based growth rates when diatoms
20 were dominating. The faster accumulation of Chl *a* than carbon, on a community scale, could be
21 caused by rapid synthesis of Chl *a* in diatoms based on reserve storage (Ross and Geider, 2009).
22 This was supported by the difference in C : Chl *a* ratio between diatom and dinoflagellate-
23 dominated communities (Fig 3). During diatom dominance, the C : Chl *a* ratio was rapidly
24 decreasing during exponential growth phase, reflecting the difference in μ_{POC} and μ_{Chla} . The Chl *a*
25 based measurements overestimated the production rate under diatom dominance, and the results
26 emphasize the importance of considering the currency of planktonic production measurements in
27 large-scale estimates of aquatic primary production.

28 Our data showed that assimilation efficiency was highest in mixed communities, compared to either
29 diatom or dinoflagellate dominance. This is in line with recent studies on the effects of biodiversity
30 on community functioning, indicating that more diverse communities support higher resource use
31 efficiency and productivity (Ptacnik et al., 2008; Worm et al., 2006; Stockenreiter et al., 2013;
32 Striebel et al., 2009). Different species have different environmental requirements, occupying

1 different niches in the ecosystem. With increased diversity, the probability of occupying more of the
2 total niche space increases, leading to better utilization of resources.

3 The net metabolic differences within variable community dominance manifested themselves only
4 after the exponential growth phase, when nutrients were effectively incorporated to biomass, and
5 loss processes became prominent. Net growth of primary producers is regulated by the balance of
6 production and loss processes, such as respiration, excretion, sedimentation, and grazing.
7 Sedimentation losses were eliminated in our experimental setup. Grazing effects were assumed to
8 be minor, because there are no overwintering populations of large copepods in the Baltic Sea, our
9 experiments started with 200- μ m pre-screening, and the grazing pressure by other heterotrophs on
10 the large-celled (mostly >20 μ m) spring bloom diatoms or dinoflagellates is negligible (Lignell et
11 al., 1993). The main loss pathways are therefore respiration and excretion of dissolved organic
12 matter. The latter evidently possess high carbon-to-nutrient ratios, as particulate nutrient fractions
13 remained relatively stable once inorganic nutrient pools were depleted during the exponential
14 growth phase.

15 There was no statistically significant difference between respiration rates of communities
16 dominated by diatoms or dinoflagellates. In monocultures, dinoflagellates have generally higher
17 respiration ratio than diatoms (Spilling and Markager, 2008; Falkowski and Owens, 1978), but our
18 experiments with natural mixed communities did not reproduce this difference reliably. During the
19 exponential phase, respiration ratios were equal, whereas for the stationary stage, high variability in
20 the generally high respiration ratios of dinoflagellate-dominated communities (median 78%) failed
21 to yield significance for the apparent difference to diatom dominance. However, significantly lower
22 assimilation efficiencies of dinoflagellate-dominated communities (median 10%) were clearly
23 driven by respiration, not by DOC release (Fig. 5).

24 Especially in diatom-dominated communities, POC continued to increase significantly after the
25 primary production peak, and the communities kept fixing $^{14}\text{CO}_2$, as indicated by the modeled
26 carbon accumulation and relatively low (median 45%) respiration ratios. Concomitant late bloom
27 DOC release in diatom-dominated communities increased significantly over other communities, as
28 well. The results from our natural diatom-dominated communities reproduced the early
29 observations obtained with diatom batch monocultures by (Goldman et al., 1992), who pointed out
30 that the conventional new production concept, based on Redfield ratios (Dugdale and Goering,
31 1967), neglects the “excess” carbon fixation, due to uncoupling between photosynthesis and
32 nutrient acquisition.

1 Our results showed that the post-peak bloom DOC accumulation was an order of magnitude lower
2 than the parallel POC increase in diatom-dominated communities (note y-axis scales in Fig. 1).
3 DOC is by definition a pragmatic concept (organic carbon passing a glass-fiber filter with a nominal
4 0.7 μ m porosity). Diatoms are known to excrete C-rich organic compounds of variable molecular
5 weight as means to dissipate harvested light energy, once biomass synthesis becomes limited by
6 nutrient deficiency (Kiørboe et al., 1990; Underwood et al., 2004). It is likely that the colloidal and
7 mucoid DOC fractions were progressively trapped on POC filters during the late bloom stages,
8 potentially affecting e.g. C : Chl a and μ POC, when coagulation and aggregation of detrital matter
9 with the continuum of 'dissolved' organic carbon continued in the absence of sedimentation flows.
10 Additionally, any labile DOC excreted was probably quickly utilized by bacteria and did not add to
11 the measured DOC pool.

12 The overall conclusion of the C budgets for different communities is that during the build-up of the
13 bloom, differences between varying community dominance were far smaller than anticipated from
14 monoculture studies. With regard to inorganic nutrient drawdown, exponential biomass
15 development, and assimilation efficiency, diatoms and dinoflagellates acted to a large extent as
16 functional surrogates. Major differences evolved only after the bloom culmination (coinciding with
17 the depletion of inorganic nutrient pools and primary productivity peak), with significant
18 consequences for carbon sequestration, C : N : P stoichiometry of spring bloom material flows, and
19 the carbon-to-chlorophyll ratio of the communities.

20 **4.4 Effects of community composition on nutrient stoichiometry and C
21 drawdown during bloom events**

22 The stationary phase of diatom-dominated communities strongly influenced the stoichiometry of
23 seston, by doubling (112% increase) the C content from the exponential phase compared both to N
24 and P, and 1.6 times higher compared to stationary phase dinoflagellate dominance (Fig. 6). The net
25 effect was therefore a 3.6-fold enhanced CO₂ sequestration to that expected from the Redfield ratio.
26 Even dinoflagellate-dominated communities exhibited corresponding CO₂ drawdown enhancement
27 to POC in the stationary phase, but at a significantly lower level (1.7-fold higher than the C : N,
28 Redfield prediction). Carbon assimilation efficiencies in late bloom stages were very low for
29 dinoflagellate-dominated communities due to high respiration rates, therefore preventing significant
30 accumulation of organic C despite ongoing ¹⁴C fixation. Dinoflagellate communities had a lower N
31 : P ratio than diatom communities in stationary growth phase. Dinoflagellates have a high uptake
32 affinity for P and keep assimilating it after growth stops (Kremp et al. 2008) probably due to their
33 large genome, of which P is an essential component. The N : Si ratio of the seston was, as expected,

1 affected by the dominance pattern (up to 4-fold difference) as only the diatoms are utilizing silicate.
2 The fact that the DSi addition made little to no effect on the outcome suggests that the initial DSi
3 concentration was sufficient for the diatom community and did not affect the competition with
4 dinoflagellates.

5 The excess carbon fixation noted in a stationary diatom batch culture (Goldman et al., 1992) was
6 supported in field conditions by chemical proxies and discussed within the ‘biological pump’
7 framework, as a vehicle transporting more CO₂-derived carbon from the atmosphere to the oceans
8 than expected from nutrient availability and fixed Redfield ratios (Sambrotto et al., 1993). Engel et
9 al. (2002) showed that a major component of the emerging high POC : PON ratios in an
10 experimentally induced natural diatom community bloom was aggregation of ‘marine snow’ (72%
11 more dissolved inorganic carbon fixation than inferred from nitrate supply and Redfield
12 stoichiometry), following a large late-bloom flow of carbon into transparent exopolymer particles
13 (TEP). Schartau et al. (2007) modeled this ‘carbon overconsumption’ flux based on the
14 experimental results, and addressed 30% of the POC increase to TEP formation.

15 Our results clearly support the ‘overconsumption’ carbon flow pattern for a natural diatom-
16 dominated bloom presented by Engel et al. (2002) and modeled by Schartau et al. (2007), but the
17 difference of our results to Redfield-based estimates was even higher. The diatom community of
18 Engel et al. (2002) exhibited close-to-Redfield stoichiometry during the bloom accumulation phase,
19 while our diatom-dominated exponential phase communities showed seston C : N and C : P ratios
20 almost double and triple the corresponding Redfield ratios, respectively. In the stationary phase, our
21 strongest diatom-dominated communities had up to 3.6 times higher seston C : N content
22 (regression in Fig. 6) than anticipated from Redfield ratios, as compared to 72% by Engel et al.
23 (2002).

24 Estimates of offshore carbon overconsumption in the field, based on integrative geochemical
25 approaches to *in situ* variations of chemical species, were reported up to 300% in the ‘Vanishing in
26 Bermuda’ debate and Joint Global Ocean Flux Study (Toggweiler, 1994; Michaels et al., 1994;
27 Marchal et al., 1996), soon after the experimental observations of Goldman et al. (1992), who found
28 C : N ratio enhancement of ca. 200% in late phase diatom cultures. Our N-based ‘C
29 overconsumption’ for coastal, diatom-dominated natural community bloom events (up to 3.6 times
30 higher) therefore support, but also expand these observations, in terms of (a) the observed ranges of
31 ‘C overconsumption’, (b) direct measurements of bloom events by natural mixed phytoplankton
32 communities, and (c) geographically covering a coastal regime. Most importantly, however, we also
33 show that the bloom community composition significantly affects the level of ‘C overconsumption’.

1 Dinoflagellate-dominated communities showed a similar pattern of increasing carbon-to-nutrient
2 ratios of seston from exponential to stationary phases, but with clearly smaller departures from the
3 Redfield stoichiometry than under diatom dominance (1.7 times higher than Redfield C : N).

4 **4.5 Carbon-to-chlorophyll ratio and community composition**

5 A stoichiometric ratio of particular interest for large-scale estimates of aquatic primary production,
6 either for geographically defined provinces or globally, is the carbon-to-chlorophyll ratio.
7 Implementing numerical models of primary productivity requires either direct carbon-based
8 phytoplankton observations or incorporation of fixed (Cloern et al., 1995) or dynamic C : Chl *a*
9 ratios (Taylor et al., 1997). Phytoplankton C is notoriously difficult to separate from seston C, and
10 no methods for direct measurements in the field are available. Most available spatially extensive
11 observations originate from satellite remote sensing of chlorophyll, which requires bridging to
12 carbon-based models (Behrenfeld and Falkowski, 1997). Currently, advanced oceanic
13 biogeochemical models include dynamic C : Chl *a* ratios with photoacclimation parameterization,
14 the most common of which is the Geider et al. (1998) model or its derivatives (Sathyendranath et
15 al., 2009; Baird et al., 2013).

16 Carbon-to-chlorophyll ratios are known to be highly variable both in monocultures and in nature
17 (Taylor et al., 1997; Chan, 1980), and the photoacclimation models are generally parameterized
18 with monoculture responses to controlled laboratory conditions, most often highly departing from
19 any set of natural conditions. Major uncertainty is introduced when laboratory models are translated
20 for application to field models, if the sources of C : Chl *a* variability are not sufficiently understood
21 and accounted for (Sathyendranath et al., 2009). These sources are normally addressed as responses
22 of cultured algae to light and nutrient availability, which certainly are the key drivers for
23 photosynthesis and the maintenance of the photosynthetic machinery, including cellular quotas for
24 C, N, and P. However, species- or group-specific differences in these responses have rarely been
25 incorporated, and the ability of photoacclimation models to cope with functionally different
26 phytoplankton groups and non-steady state natural conditions is a major current challenge for
27 variable stoichiometry models (De La Rocha et al., 2010).

28 Our results showed that both the growth stage of a bloom and the species dominance patterns
29 strongly affected the community C : Chl *a* ratios. The lowest ratios (30 to 80; g:g) were encountered
30 during the primary productivity and Chl *a* peak phases, when the community composition had a
31 minor effect. During senescent bloom stages, diatom-dominated communities developed 4-fold C :
32 Chl *a* ratios (median 200), whereas dinoflagellate-dominated communities showed median values of
33 ca. 400, in similar irradiance, temperature, and nutrient-depleted conditions. These transient, order-

1 of-magnitude changes within a few weeks during bloom events, with a strong component of species
2 composition, present so far overlooked challenges for models of phytoplankton acclimation and
3 geographically extensive production estimates based on satellite remote sensing.

4 An interesting difference between the diatoms and dinoflagellates, dominating the spring bloom in
5 the Baltic Sea, is their different response to the onset of inorganic N depletion. Diatoms continued
6 to run photosynthesis building up the internal C storage, and also releasing C as DOC, probably as a
7 way of dissipating excess light energy (Myklestad et al., 1989; Staats et al., 2000). Dinoflagellates,
8 in contrast, seem to shut down the photosynthetic machinery earlier as a way to acclimate to a
9 condition with reduced need for inorganic carbon fixation. The observed increase in C : Chl a in the
10 two groups could be caused by different reasons, for the diatoms primarily an increase in POC,
11 while for the dinoflagellates the decrease in Chl a was relatively more important.

12

13 **4.6 Community change in changing climate**

14 Competition between cold-water dinoflagellates and diatoms represents an important aspect of
15 community change especially in changing climatic conditions of coastal temperate and arctic
16 environments. Other well-documented, increasing dinoflagellate occurrences amidst diatom
17 dominance that suggest climatic connotations are warm-water harmful algal blooms (Hallegraeff et
18 al. 2010), while in several marine habitats, prymnesiophytes (especially *Emiliania huxleyi* and
19 *Phaeocystis*; (Breton et al., 2006) are the main competitors for diatoms. Our results indicate that
20 such variation in phytoplankton community dominance patterns have potentially significant
21 consequences for marine biogeochemical cycles that need to be addressed, as ca. half of global
22 primary production is attributed to marine systems, with phytoplankton as the main component
23 (Field et al., 1998).

24 Application of either fixed Redfield stoichiometry, or uniform “phytoplankton” stoichiometry, can
25 lead to several-fold errors or uncertainties in estimates for CO₂ sequestration, especially during
26 temperate and arctic spring blooms. In dynamic natural bloom conditions, distinguishing between
27 community composition and physiological acclimation during varying bloom stages, as sources of
28 variation in seston stoichiometry, therefore remains a major challenge for trait-based phytoplankton
29 ecology.

30 Marine biota are often regarded and studied as mere passive objects of climate change, and their
31 responses to changes in e.g. temperature, acidification, stratification, and light climate of the mixed
32 surface layer are accordingly actively studied. It appears essential to focus equally on the active role

1 of phytoplankton in climate change: how marine carbon sequestration and interconnected
2 biogeochemical cycles are directly modified by community change. Incorporating functional
3 diversity and stoichiometric flexibility of primary producers into marine biogeochemical models is
4 therefore a pending task for climate change research. An obvious parallel challenge for
5 geographically extensive estimates of marine primary production is enhanced taxonomical
6 resolution of remote sensing technologies, to cope with the ongoing large-scale community change
7 and its biogeochemical consequences.

8 **Acknowledgements**

9 This study was funded by Academy of Finland (decision no 111336 & 263862), funding was also
10 provided by Walter and Andrée de Nottbeck Foundation (KS), and Estonian Research Council grant
11 PUT39 (KO and RK). We would like to thank all the staff at Tvärminne Zoological Station (Univ.
12 Helsinki) for all technical assistance and Päivi Hakanen for her assistance in the microscopy work.

13

14 **References**

15 Baird, M. E., Ralph, P. J., Rizwi, F., Wild-Allen, K., and Steven, A. D.: A dynamic model of the
16 cellular carbon to chlorophyll ratio applied to a batch culture and a continental shelf
17 ecosystem, *Limnol Oceanogr*, 58, 1215-1226, 2013.

18 Banse, K.: Cell volumes, maximal growth rates of unicellular algae and ciliates, and the role of
19 ciliates in marine pelagic, *Limnol Oceanogr*, 27, 1059-1071, 1982.

20 Behrenfeld, M. J., and Falkowski, P. G.: A consumer's guide to phytoplankton primary productivity
21 models, *Limnol Oceanogr*, 42, 1479-1491, 1997.

22 Breton, E., Rousseau, V., Parent, J.-Y., Ozer, J., and Lancelot, C.: Hydroclimatic modulation of
23 diatom/Phaeocystis blooms in nutrient- enriched Belgian coastal waters(North Sea), *Limnol
24 Oceanogr*, 51, 1401-1409, 2006.

25 Chan, A. T.: Comparative physiological study of marine diatoms and dinoflagellates in relation to
26 irradiance and cell size. II. Relationship between photosynthesis, growth, and
27 carbon/chlorophyll a ratio, *J Phycol*, 16, 428-432, 1980.

28 Cloern, J. E., Grenz, C., and Vidérar-Lucas, L.: An empirical model of the phytoplankton
29 chlorophyll: carbon ratio-the conversion factor between productivity and growth rate, *Limnol
30 Oceanogr*, 40, 1313-1321, 1995.

31 Collos, Y., Gagne, C., Laabir, M., Vaquer, A., Cecchi, P., and Souchu, P.: Nitrogenous nutrition of
32 *Alexandrium catenella* (Dinophyceae) in cultures and in Thau Lagoon, Southern France, *J
33 Phycol*, 40, 96-103, 2004.

34 De La Rocha, C., Terbrueggen, A., Völker, C., and Hohn, S.: Response and recovery of
35 *Thalassiosira weissflogii* to nitrogen and silicon starvation: growth rates, nutrient uptake, and
36 C, Si, and N per cell, *Mar Ecol Prog Ser*, 412, 57-68, 2010.

37 Dugdale, R. C., and Goering, J. J.: Uptake of new and regenerated forms of nitrogen in primary
38 productivity, *Limnol Oceanogr*, 12, 196-206, 1967.

39 Dunne, J. P., Sarmiento, J. L., and Gnanadesikan, A.: A synthesis of global particle export from the
40 surface ocean and cycling through the ocean interior and on the seafloor, *Global Biogeochem
41 Cy*, 21, GB4006, 2007.

1 Eggers, S. L., Lewandowska, A. M., Barcelos e Ramos, J., Blanco-Ameijeiras, S., Gallo, F., and
2 Matthiessen, B.: Community composition has greater impact on the functioning of marine
3 phytoplankton communities than ocean acidification, *Global Change Biol*, 20, 713-723, 2014.

4 Engel, A., Goldthwait, S., Passow, U., and Alldredge, A.: Temporal decoupling of carbon and
5 nitrogen dynamics in a mesocosm diatom bloom, *Limnol Oceanogr*, 47, 753-761, 2002.

6 Falkowski, P. G., and Owens, T. G.: Effects of light intensity on photosynthesis and dark
7 respiration in six species of marine phytoplankton, *Mar Biol*, 45, 289-295, 1978.

8 Falkowski, P. G.: Rationalizing elemental ratios in unicellular algae, *J Phycol*, 36, 3-6, 2000.

9 Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P.: Primary production of the
10 biosphere: integrating terrestrial and oceanic components, *Science*, 281, 237-240, 1998.

11 Geider, R. J., MacIntyre, H. L., and Kana, T. M.: A dynamic regulatory model of phytoplankton
12 acclimation to light, nutrients and temperature, *Limnol Oceanogr*, 43, 679-694, 1998.

13 Goldman, J., Hansell, D., and Dennett, M.: Chemical characterization of three large oceanic
14 diatoms: potential impact on water column chemistry, *Mar Ecol Prog Ser*, 88, 257-270, 1992.

15 Grasshoff, K., Ehrhardt, M., and Kremling, K.: Methods of seawater analysis, Verlag Chemie,
16 Weinheim, 419 pp., 1983.

17 Hallegraeff, G. M.: Ocean climate change, phytoplankton community responses, and harmful algal
18 blooms: A formidable predictive challenge, *J Phycol*, 46, 220-235, 2010.

19 Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., D'Agrosa, C., Bruno, J. F.,
20 Casey, K. S., Ebert, C., and Fox, H. E.: A global map of human impact on marine ecosystems,
21 *Science*, 319, 948-952, 2008.

22 Harley, C. D., Randall Hughes, A., Hultgren, K. M., Miner, B. G., Sorte, C. J., Thornber, C. S.,
23 Rodriguez, L. F., Tomanek, L., and Williams, S. L.: The impacts of climate change in coastal
24 marine systems, *Ecol Lett*, 9, 228-241, 2006.

25 Heiskanen, A. S.: Factors governing sedimentation and pelagic nutrient cycles in the northern Baltic
26 Sea, *Monogr Boreal Env Res*, 8, 1-80, 1998.

27 Hinder, S. L., Hays, G. C., Edwards, M., Roberts, E. C., Walne, A. W., and Gravenor, M. B.:
28 Changes in marine dinoflagellate and diatom abundance under climate change, *Nature Climate Change*, 2, 271-275, 2012.

29 Hoikkala, L.: Dynamics of dissolved organic matter and its bioavailability to heterotrophic bacteria
30 in the Gulf of Finland, Northern Baltic Sea, University of Helsinki, 62 pp., 2012.

31 Kiørboe, T., Andersen, K. P., and Dam, H. G.: Coagulation efficiency and aggregate formation in
32 marine phytoplankton, *Mar Biol*, 107, 235-245, 10.1007/BF01319822, 1990.

33 Klais, R., Tamminen, T., Kremp, A., Spilling, K., An, B. W., Hajdu, S., and Olli, K.: Spring
34 phytoplankton communities shaped by interannual weather variability and dispersal
35 limitation: Mechanisms of climate change effects on key coastal primary producers, *Limnol
36 Oceanogr*, 58, 753-762, 2013.

37 Kremp, A., Tamminen, T., and Spilling, K.: Dinoflagellate bloom formation in natural assemblages
38 with diatoms: nutrient competition and growth strategies in Baltic spring phytoplankton,
39 *Aquat Microb Ecol*, 50, 181-196, 2008.

40 Legrand, C., and Carlsson, P.: Uptake of high molecular weight dextran by the dinoflagellate
41 *Alexandrium catenella*, *Aquat Microb Ecol*, 16, 81-86, 1998.

42 Leterme, S. C., Edwards, M., Seuront, L., Attrill, M., Reid, P., and John, A.: Decadal basin-scale
43 changes in diatoms, dinoflagellates, and phytoplankton color across the North Atlantic,
44 *Limnol Oceanogr*, 50, 1244-1253, 2005.

45 Lignell, R., Heiskanen, A. S., Kuosa, H., Gundersen, K., Kuuppo-Leinikki, P., Pajuniemi, R., and
46 Uitto, A.: Fate of a phytoplankton spring bloom - sedimentation and carbon flow in the
47 planktonic food web in the northern Baltic, *Mar Ecol Prog Ser*, 94, 239-252, 1993.

48 Litchman, E., and Klausmeier, C. A.: Trait-based community ecology of phytoplankton, *Annu Rev
49 Ecol Evo S*, 39, 615-639, 2008.

50

1 Litchman, E., de Tezanos Pinto, P., Klausmeier, C. A., Thomas, M. K., and Yoshiyama, K.: Linking
2 traits to species diversity and community structure in phytoplankton, *Hydrobiol.*, 653, 15-28,
3 2010.

4 Marchal, O., Monfray, P., and Bates, N. R.: Spring–summer imbalance of dissolved inorganic
5 carbon in the mixed layer of the north-western Sargasso Sea, *Tellus B*, 48, 115-134, 1996.

6 Mateus, M., Leitão, P., de Pablo, H., and Neves, R.: Is it relevant to explicitly parameterize
7 chlorophyll synthesis in marine ecological models?, *J Mar Sys*, 94, S23-S33, 2012.

8 Menden-Deuer, S., and Lessard, E. J.: Carbon to volume relationships for dinoflagellates, diatoms,
9 and other protist plankton, *Limnol Oceanogr*, 45, 569-579, 2000.

10 Michaels, A. F., Bates, N. R., Buesseler, K. O., Carlson, C. A., and Knap, A. H.: Carbon-cycle
11 imbalances in the Sargasso Sea, *Nature*, 372, 537-540, 1994.

12 Myklestad, S., Holm-Hansen, O., Vårum, K. M., and Volcani, B. E.: Rate of release of extracellular
13 amino acids and carbohydrates from the marine diatom *Chaetoceros affinis*, *J Plankton Res*,
14 11, 763-773, 1989.

15 Niemi, Å.: Ecology of phytoplankton in the Tvärminne area, SW coast of Finland. II. Primary
16 production and environmental conditions in the archipelago and the sea zone, *Acta Botanica
17 Fennica*, 105, 1-73, 1975.

18 Niiranen, S., Yletyinen, J., Tomczak, M. T., Blenckner, T., Hjerne, O., MacKenzie, B. R.,
19 Müller-Karulis, B., Neumann, T., and Meier, H.: Combined effects of global climate change
20 and regional ecosystem drivers on an exploited marine food web, *Global Change Biol*, 19,
21 3327-3342, 2013.

22 Pahlow, M.: Linking chlorophyll-nutrient dynamics to the Redfield N: C ratio with a model of
23 optimal phytoplankton growth, *Mar Ecol Prog Ser*, 287, 33-43, 2005.

24 Ptacnik, R., Solimini, A. G., Andersen, T., Tamminen, T., Brettum, P., Lepistö, L., Willén, E., and
25 Rekolainen, S.: Diversity predicts stability and resource use efficiency in natural
26 phytoplankton communities, *Proceedings of the National Academy of Sciences*, 105, 5134-
27 5138, 2008.

28 Quigg, A., Finkel, Z. V., Irwin, A. J., Rosenthal, Y., Ho, T.-Y., Reinfelder, J. R., Schofield, O.,
29 Morel, F. M., and Falkowski, P. G.: The evolutionary inheritance of elemental stoichiometry
30 in marine phytoplankton, *Nature*, 425, 291-294, 2003.

31 Reid, P. C., Edwards, M., Hunt, H. G., and Warner, A. J.: Phytoplankton change in the North
32 Atlantic, *Nature*, 391, 546-546, 1998.

33 Ross, O. N., and Geider, R. J.: New cell-based model of photosynthesis and photo-acclimation:
34 accumulation and mobilisation of energy reserves in phytoplankton, *Mar Ecol Prog Ser*, 383,
35 53-71, 2009.

36 Rynearson, T., Richardson, K., Lampitt, R., Sieracki, M., Poulton, A., Lyngsgaard, M., and Perry,
37 M.: Major contribution of diatom resting spores to vertical flux in the sub-polar North
38 Atlantic, *Deep Sea Res Pt I*, 82, 60-71, 2013.

39 Sakshaug, E., Bricaud, A., Dandonneau, Y., Falkowski, P. G., Kiefer, D. A., Legendre, L., Morel,
40 A., Parslow, J., and Takahashi, M.: Parameters of photosynthesis: definitions, theory and
41 interpretation of results, *J Plankton Res*, 19, 1637-1670, 1997.

42 Sambrotto, R. N., Savidge, G., Robinson, C., Boyd, P., Takahashi, T., Karl, D. M., Langdon, C.,
43 Chipman, D., Marra, J., and Codispoti, L.: Elevated consumption of carbon relative to
44 nitrogen in the surface ocean, *Nature*, 363, 248-250, doi:10.1038/363248a0, 1993.

45 Sarthou, G., Timmermans, K. R., Blain, S., and Tréguer, P.: Growth physiology and fate of diatoms
46 in the ocean: a review, *J Sea Res*, 53, 25-42, 2005.

47 Sathyendranath, S., Stuart, V., Nair, A., Oka, K., Nakane, T., Bouman, H., Forget, M.-H., Maass,
48 H., and Platt, T.: Carbon-to-chlorophyll ratio and growth rate of phytoplankton in the sea,
49 *Mar Ecol Prog Ser*, 383, 73-84, 2009.

1 Schartau, M., Engel, A., Schröter, J., Thoms, S., Völker, C., and Wolf-Gladrow, D.: Modelling
2 carbon overconsumption and the formation of extracellular particulate organic carbon,
3 Biogeosci, 4, 433-454, 2007.

4 Sharp, J. H., Benner, R., Bennett, L., Carlson, C. A., Dow, R., and Fitzwater, S. E.: Re-evaluation
5 of high temperature combustion and chemical oxidation measurements of dissolved organic
6 carbon in seawater, Limnol Oceanogr, 38, 1774-1782, 1993.

7 Smayda, T. J., and Reynolds, C. S.: Community assembly in marine phytoplankton: application of
8 recent models to harmful dinoflagellate blooms, J Plankton Res, 23, 447-461, 2001.

9 Solórzano, L., and Sharp, J. H.: Determination of total dissolved phosphorus and particulate
10 phosphorus in natural waters, Limnol Oceanogr, 25, 754-758, 1980.

11 Spilling, K., and Lindström, M.: Phytoplankton life cycle transformation lead to species-specific
12 effects on sediment processes in the Baltic Sea, Cont Shelf Res, 28, 2488-2495, 2008.

13 Spilling, K., and Markager, S.: Ecophysiological growth characteristics and modeling of the onset
14 of the spring bloom in the Baltic Sea, J Mar Sys, 73, 323-337, 2008.

15 Staats, N., Stal, L. J., and Mur, L. R.: Exopolysaccharide production by the epipelagic diatom *Cylindrotheca closterium*: effects of nutrient conditions, Journal of Experimental Marine
16 Biology and Ecology, 249, 13-27, 2000.

17 Stockenreiter, M., Haupt, F., Graber, A. K., Seppälä, J., Spilling, K., Tamminen, T., and Stibor, H.:
18 Functional group richness: implications of biodiversity for light use and lipid yield in
19 microalgae, J Phycol, 49, 838-847, 2013.

20 Striebel, M., Behl, S., and Stibor, H.: The coupling of biodiversity and productivity in
21 phytoplankton communities: consequences for biomass stoichiometry, Ecology, 90, 2025-
22 2031, 2009.

23 Suikkanen, S., Hakanen, P., Spilling, K., and Kremp, A.: Allelopathic effects of Baltic Sea spring
24 bloom dinoflagellates on co-occurring phytoplankton, Mar Ecol Prog Ser, 439, 45-55, 2011.

25 Sun, J., and Liu, D.: Geometric models for calculating cell biovolume and surface area for
26 phytoplankton, J Plankton Res, 25, 1331-1346, 2003.

27 Tamminen, T.: Nitrate and ammonium depletion rates and preferences during a Baltic spring bloom,
28 Mar Ecol Prog Ser, 120, 123-133, 1995.

29 Tamminen, T., and Andersen, T.: Seasonal phytoplankton nutrient limitation patterns as revealed by
30 bioassays over Baltic Sea gradients of salinity and eutrophication, Mar Ecol Prog Ser, 340,
31 121-138, 2007.

32 Taylor, A. H., Geider, R. J., and Gilbert, F. J. H.: Seasonal and latitudinal dependencies of
33 phytoplankton carbon-to-chlorophyll a ratios: results of a modelling study, Mar Ecol Prog Ser, 152, 51-66, 1997.

34 Tillmann, U., Alpermann, T., John, U., and Cembella, A.: Allelochemical interactions and short-
35 term effects of the dinoflagellate *Alexandrium* on selected photoautotrophic and heterotrophic
36 protists, Harmful Algae, 7, 52-64, 2008.

37 Toggweiler, J.: Vanishing in Bermuda, Nature, 372, 505-506, 1994.

38 Underwood, G. J. C., Boulcott, M., Raines, C. A., and Waldron, K.: Environmental effects on
39 exopolymer production by marine benthic diatoms: dynamics, changes in composition, and
40 pathways of production, J Phycol, 40, 293-304, 10.1111/j.1529-8817.2004.03076.x, 2004.

41 Vehmaa, A., Kremp, A., Tamminen, T., Hogfors, H., Spilling, K., and Engström-Öst, J.: Copepod
42 reproductive success in spring-bloom communities with modified diatom and dinoflagellate
43 dominance, ICES J Mar Sci, 69, 351-357, doi:10.1093/icesjms/fsr138, 2011.

44 Worm, B., Barbier, E. B., Beaumont, N., Duffy, J. E., Folke, C., Halpern, B. S., Jackson, J. B.,
45 Lotze, H. K., Micheli, F., and Palumbi, S. R.: Impacts of biodiversity loss on ocean ecosystem
46 services, Science, 314, 787-790, 2006.

47

48

49

50

51 Table 1. Summary of the experimental set-up in different years. The treatments were nutrient addition (NPSi), which were additions of nitrogen
 52 (N), phosphorus (P) and silicate (Si) in N-P, Si and N-P-Si additions. The light treatment (Light) was a low and high light treatment, 20 and 90
 53 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ respectively. In 2005 there was only the nutrient addition treatment and in 2007 there cultured diatoms were added in a
 54 gradient (Diatom gradient). The diatoms added were: *Thalassiosira levanderi* ($\sim 10 \mu\text{m}$ diameter and was added to a final concentration of 20000,
 55 75000 and 212000 cells L^{-1}) and *T. baltica* (20-30 μm diameter and was added to a final concentration of 2000, 3560 and 13350 cells L^{-1}), two
 56 very typical spring bloom species. The start concentration of NO_3 (Start NO_3) gives the concentration in $\mu\text{g L}^{-1}$ of NO_3 in the control and in the
 57 treatments with N addition. The peak Chl *a* values are the minimum and maximum concentration recorded in the control (no nutrient addition)
 58 and in treatments with nutrients added respectively.

59

60 Year	Start date	Duration	Treatments	Start NO_3	Start Chla	Peak Chla
61		days		$\mu\text{g L}^{-1}$	$\mu\text{g L}^{-1}$	$\mu\text{g L}^{-1}$
63 2004	24 March	44	NPSi, Light	90 / 260	7.1	21 / 78
64 2005	7 April	28	NPSi	100 / 250	2.9	20 / 184
65 2006	19 April	23	NPSi, Light	8 / 170	35.0	39 / 199
66 2007	16 March	33	NPSi, Diatom gradient	90 / 250	4.9	22 / 77
67 2008	12 March	28	NPSi, Light	100 / 280	0.6	43 / 70

68

69

70 Table 2. Statistical comparison using 1-way ANOVA on ranks. Tukey's post hoc test of statistical
71 significant differences (*) can be found in table 3 (exponential growth phase) and 4 (stationary
72 growth phase).

73

74

75 Exponential growth phase

76	Parameter	DF	SS	MS	F-value	p-value
77	POC	2	5.58	2.79	0.026	0.974
78	DOC	2	29.3	14.6	0.140	0.870
79	TGP	2	313	156	1.637	0.211
80	CAE	2	888	444	5.770	0.007*
81	RES	2	941	471	6.258	0.005*

82

83 Stationary growth phase

84	POC	2	1395	678	9.246	<0.001*
85	DOC	2	958	479	5.399	0.009*
86	TGP	2	1084	542	6.386	0.005*
87	CAE	2	739	369	3.874	0.031*
88	RES	2	564	282	2.804	0.075

89

90

91

92

93

94 Table 3. Tukey's post hoc tests of carbon parameters during exponential growth phase. Only the
 95 statistical significant parameters from Table 2 were tested: carbon assimilation efficiency (CAE)
 96 and respiration (RES). The phytoplankton community was categorized according to diatom
 97 dominance (Diatoms), mixed community (Mixed) and dinoflagellate dominance (Dinoflagellates).
 98 The star (*) indicate statistical significance ($\alpha = 0.05$).

99

100

101

CAE	Diff	St diff	p-value
Mixed vs Diatoms	10.833	3.026	0.013*
Mixed vs Dinoflagellates	10.517	2.800	0.023*
Dinoflagellates vs Diatoms	0.317	0.084	0.996

102

RES			
Mixed vs Diatoms	11.583	3.272	0.007*
Mixed vs Dinoflagellates	10.183	2.743	0.026*
Dinoflagellates vs Diatoms	1.400	0.377	0.925

103

104

105

106

107 Table 4. Tukey's post hoc tests of carbon parameters during stationary growth phase. Only the
 108 statistical significant parameters from Table 2 were tested: particular organic carbon (POC)
 109 dissolved organic carbon (DOC), total gross production (TGP) and carbon assimilation efficiency
 110 (CAE). The phytoplankton community was categorized according to diatom dominance (Diatoms),
 111 mixed community (Mixed) and dinoflagellate dominance (Dinoflagellates). The star (*) indicate
 112 statistical significance ($\alpha = 0.05$).

113

POC	Diff	St diff	p-value
Mixed vs Diatoms	11.071	3.240	0.007*
Mixed vs Dinoflagellates	4.029	1.120	0.509
Dinoflagellates vs Diatoms	15.100	4.060	<0.001*
<hr/>			
DOC			
Mixed vs Diatoms	11.464	3.094	0.011*
Mixed vs Dinoflagellates	1.414	0.363	0.930
Dinoflagellates vs Diatoms	10.050	2.492	0.046*
<hr/>			
TGP			
Mixed vs Diatoms	12.381	3.416	0.005*
Mixed vs Dinoflagellates	2.114	0.554	0.845
Dinoflagellates vs Diatoms	10.267	2.603	0.036*
<hr/>			
CAE			
Mixed vs Diatoms	2.512	0.654	0.791
Mixed vs Dinoflagellates	8.671	2.145	0.096
Dinoflagellates vs Diatoms	11.183	2.675	0.030*

117

118 Fig. 1. An example of the data extracted from the mesocosms (data from high light treatment with
119 N and P addition, 2004): dissolved, inorganic nutrients and particulate, organic nutrients (A) and
120 carbon parameters (B). The parameters are: nitrate (NO_3), particulate organic nitrogen (PON),
121 phosphate (PO_4), particulate organic phosphorus (POP), dissolved silicate (DSi), biogenic silicate
122 (BSi), particulate organic carbon (POC), dissolved organic carbon (DOC) and total gross production
123 (TGP). All parameters were measured directly except TGP, which was extrapolated from short-term
124 ^{14}C incubations. The growth was divided into exponential and stationary growth phases based on
125 the primary production peak (L^{-1}), indicated with the horizontal bars on top (B). Note the different
126 scales for on the y-axes.

127

128 Fig. 2. Species evenness plotted against the dinoflagellate proportion of the whole community. For
129 later analysis, the phytoplankton community was divided into three categories: diatom dominance
130 (>80%), mixed community (20-70% dinoflagellates) and dinoflagellate dominance (>70%). The
131 rationale behind setting the group boundaries was from the apparent difference in species evenness.

132

133 Fig. 3. The growth rate during exponential growth of particulate organic carbon (μ_{POC}) and
134 Chlorophyll *a* (μ_{Chla}) at different dinoflagellate proportion of the total phytoplankton community
135 (A), and the relationship between carbon assimilation efficiency and μ_{POC} (B). No significant trend
136 was found for μ_{POC} , but a negative correlation between μ_{Chla} and dinoflagellate proportion. The
137 solid line represents the linear regression (slope = -0.16; $R^2 = 0.53$; $p < 0.0001$) and the dashed lines
138 represent the 95% confidence intervals. The carbon assimilation efficiency is the ratio between the
139 measured growth rate in POC and the total gross production (Fig 1). A positive correlation was
140 found (slope = 1.49; $R^2 = 0.12$; $p = 0.04$).

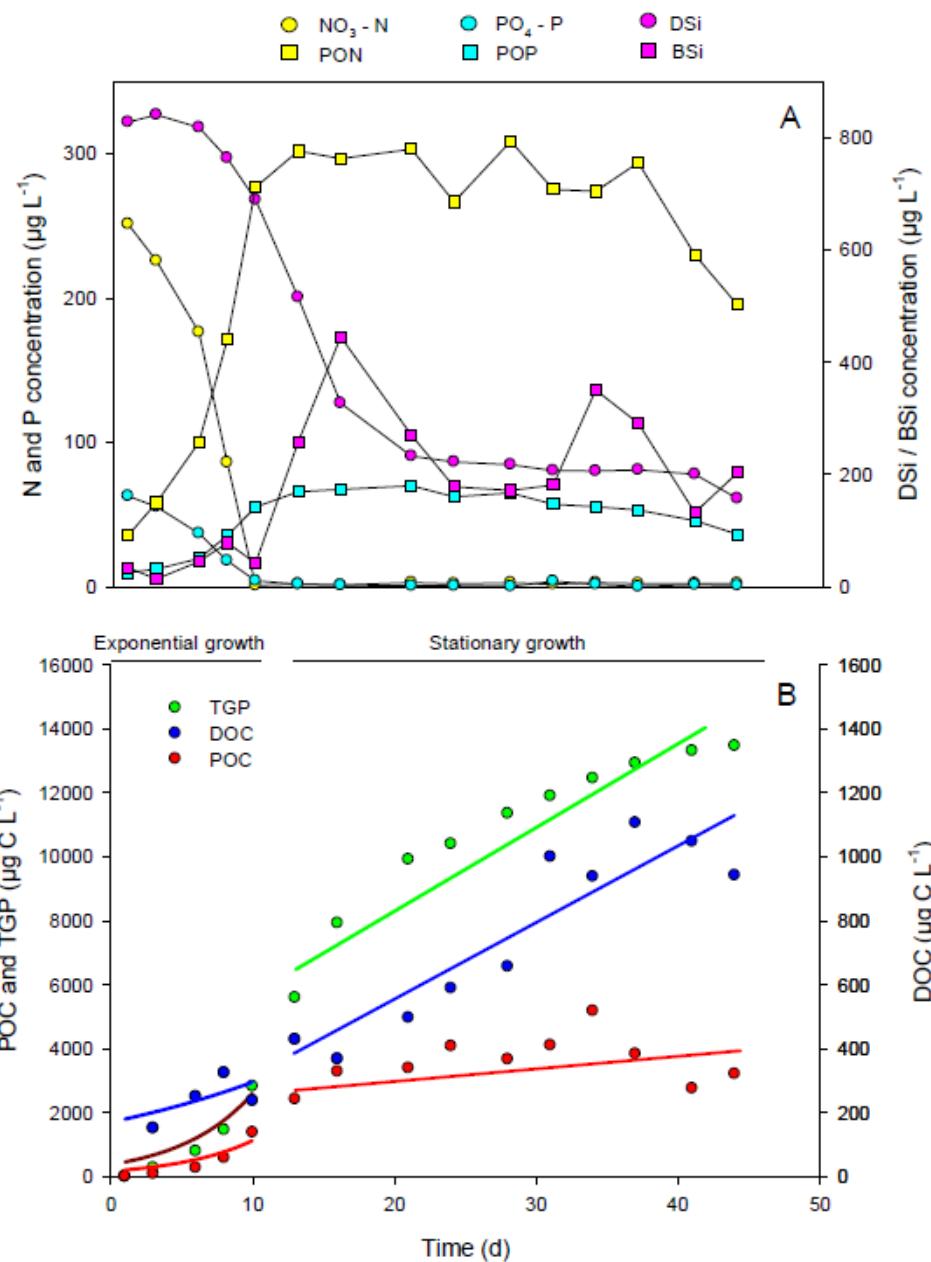
141

142 Fig. 4. Carbon budget parameters: particulate organic carbon (POC), dissolved organic carbon
143 (DOC) and total gross production, during exponential and stationary growth. The phytoplankton
144 community was divided into three categories: diatom dominance (>80%), mixed community (20-
145 70% dinoflagellates) and dinoflagellate dominance (>70%). The rationale behind setting the group
146 boundaries was from the apparent difference in species evenness (Fig. 2) between these groups. The
147 stars (*) indicate statistical significance ($\alpha = 0.05$) against one (*) or two groups (**), details can be
148 found in Table 3.

149

150 Fig. 5. Carbon budget parameters: carbon assimilation efficiency and respiration, during
151 exponential and stationary growth. The phytoplankton community was divided into three
152 categories: diatom dominance (>80%), mixed community (20-70% dinoflagellates) and
153 dinoflagellate dominance (>70%). The rationale behind setting the group boundaries was from the
154 apparent difference in species evenness (Fig. 1) between these groups. The star indicate statistical
155 significance difference ($\alpha = 0.05$) compared to one (*) or two (**) other groups, details can be
156 found in Table 4.

157


158 Fig. 6. The particulate C : N, C : P, N : P and N : Si ratios plotted against the weighted mean of
159 dinoflagellate proportion during exponential (primary production peak) and stationary growth phase
160 (end of experiment). The dashed horizontal line represent the Redfield-Brzezinski ratio (molar
161 ratio), the red and blue line represents statistically significant linear regression of exponential and
162 stationary growth phase data. Regression coefficients were for the C: N ratio: slope = -3.3; R^2 =
163 0.14; $p = 0.02$ and slope = -9.6; $R^2=0.29$; $p=0.0004$ for exponential and stationary growth phase
164 respectively. For the C : P ratio they were: slope = -48.0; $R^2= 0.13$; $p = 0.03$ and slope = -171.4; R^2
165 = 0.45 and $p <0.001$ for exponential and stationary growth phase respectively. For N : P ratio, the
166 regression coefficients for stationary growth phase: slope = -3.15; $R^2 = 0.31$; $p = 0.0002$; for the
167 exponential growth phase, the coefficients were: $R^2 = 0.04$; $p = 0.2$. For the N : Si ratio they were:
168 slope = 3.06; $R^2= 0.51$; $p <0.0001$ and slope = 1.31; $R^2 = 0.36$ and $p = 0.0001$ for exponential and
169 stationary growth phase respectively.

170

171 Fig. 7. The C : Chl α ratio at the primary production peak (PP) and at the end of the experiment
172 (End). The phytoplankton community was divided into three categories: diatom dominance (>80%),
173 mixed community (20-70% dinoflagellates) and dinoflagellate dominance (>70%). The rationale
174 behind setting the group boundaries was from the apparent difference in species evenness (Fig. 2).

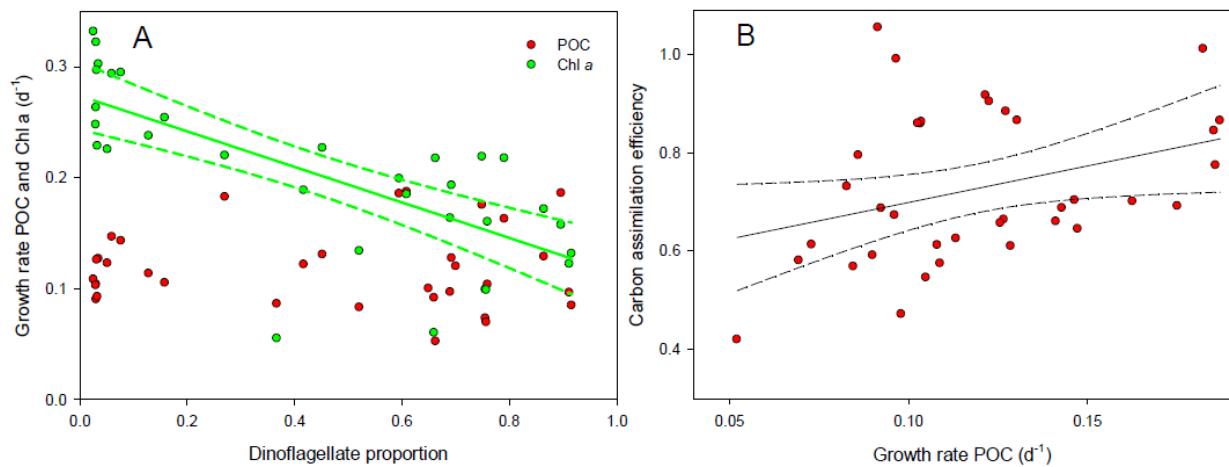
175

176

177

178 FIG 1

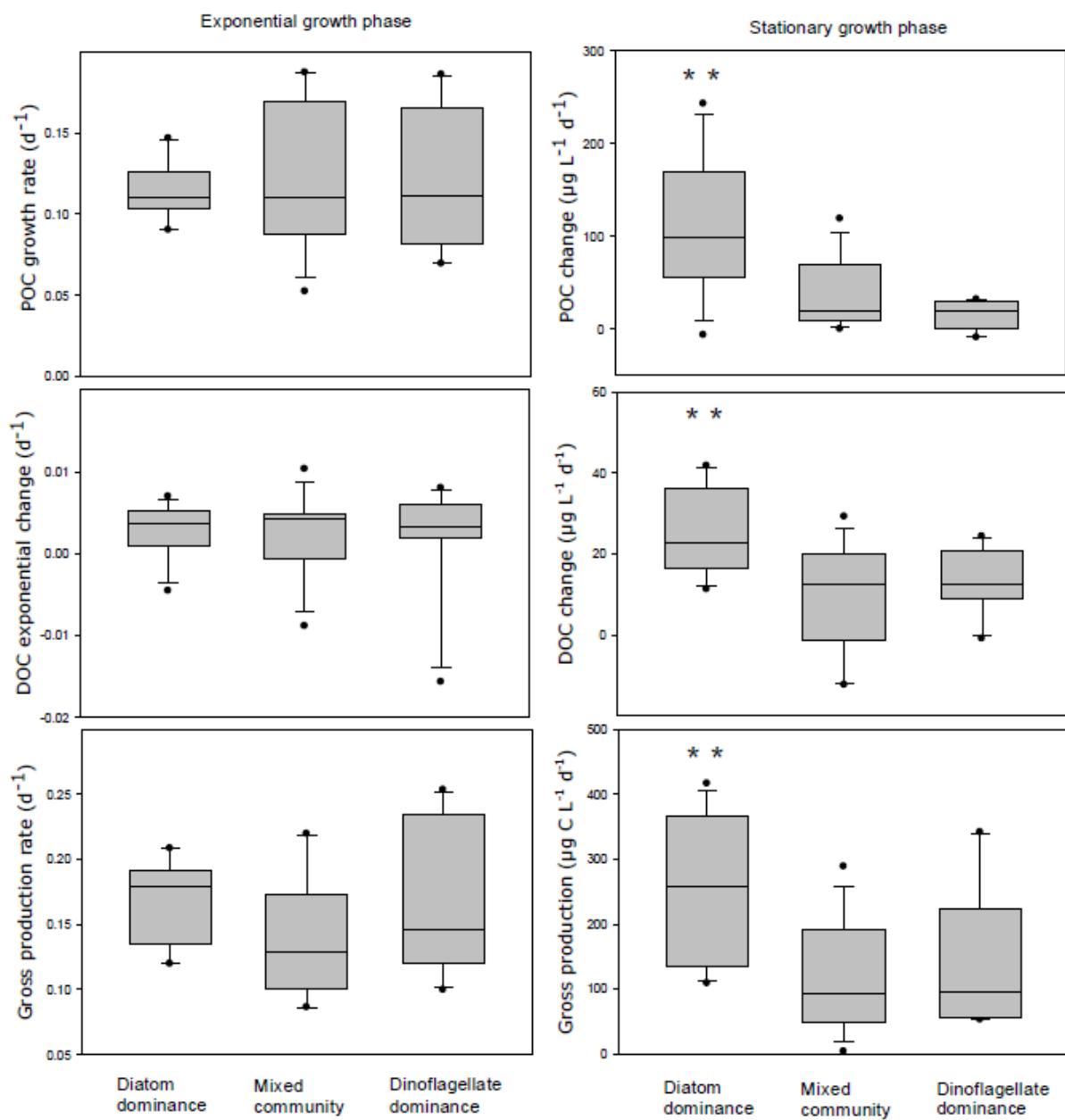
179



180

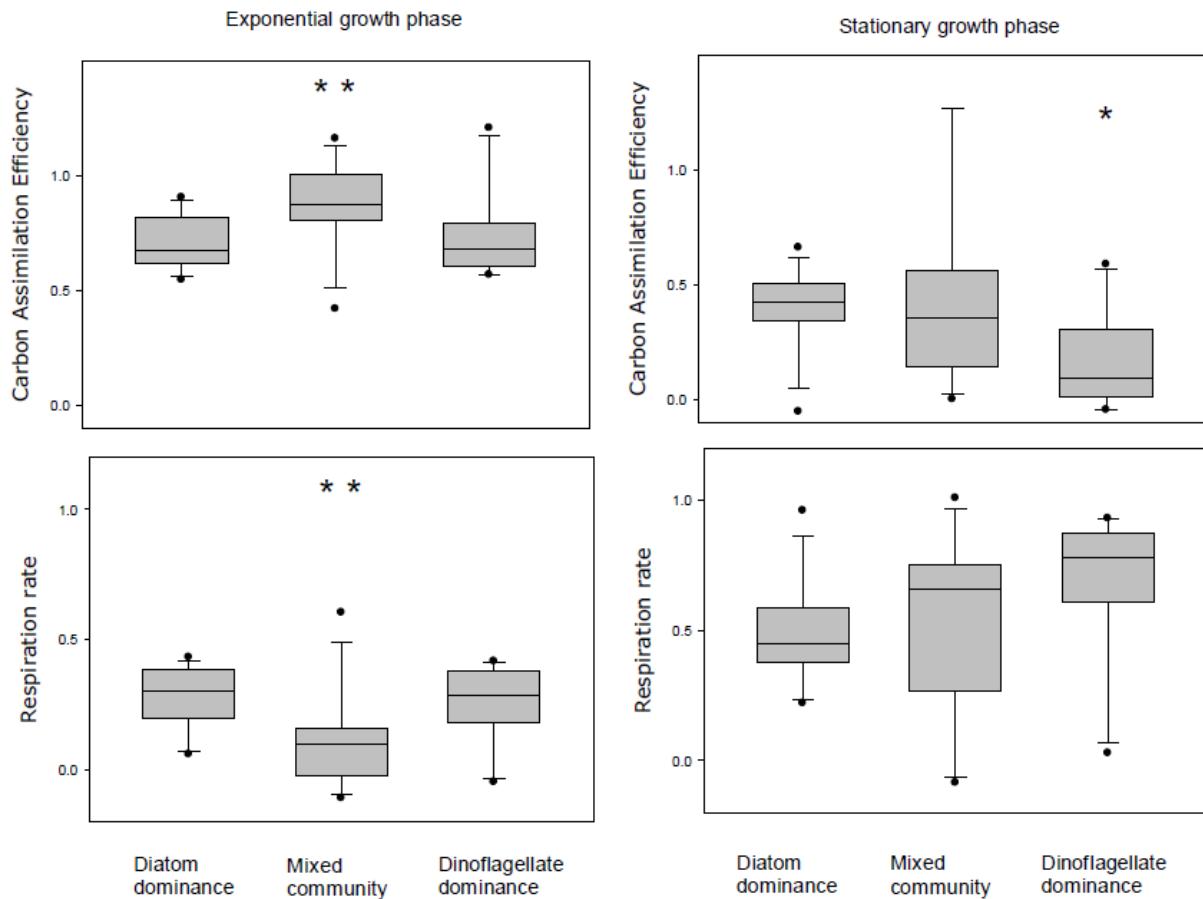
181 FIG 2

182


183

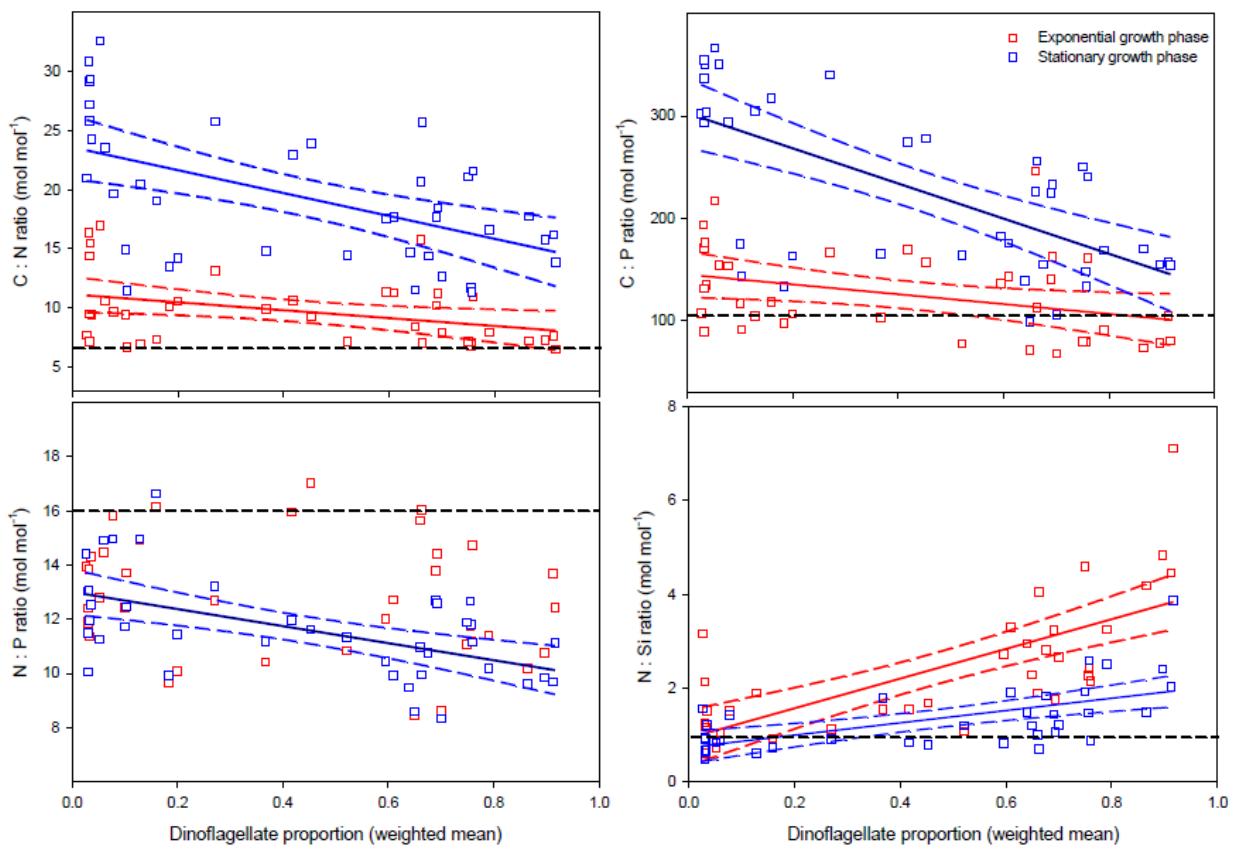
184

185 FIG 3


186

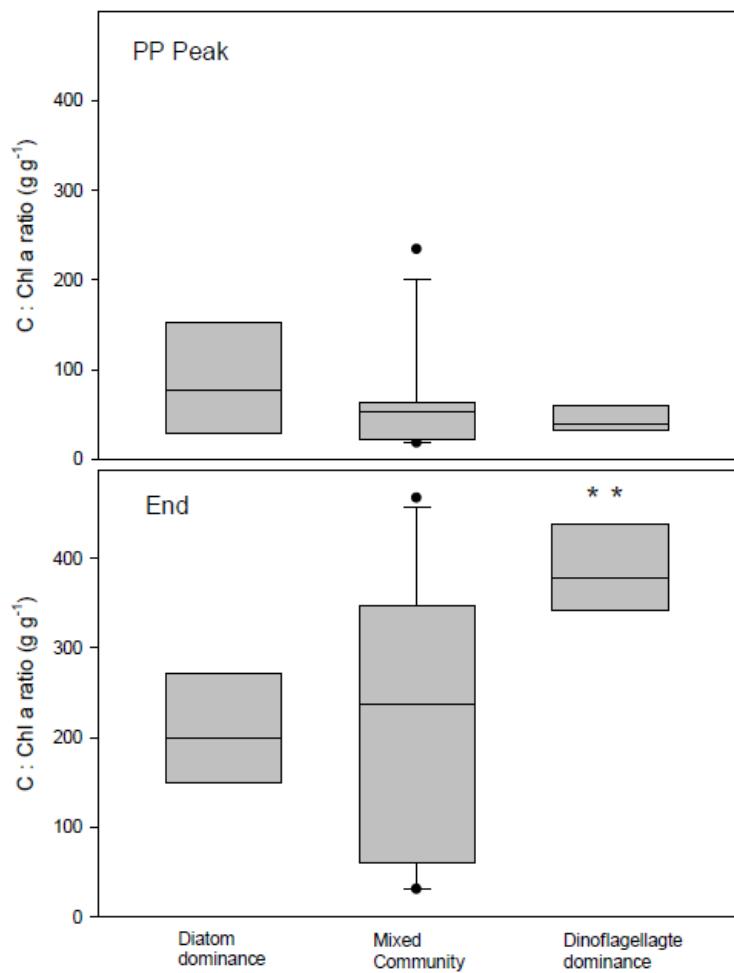
187

188 FIG 4


189

190

191 FIG 5


192

193

194 FIG 6

195

196

197 FIG 7