

1 Dear Reviewers,

2
3 Re: Manuscript entitled: "Retrieval of the photochemical reflectance index for assessing
4 xanthophyll cycle activity: a comparison of near-surface optical sensors" A. Harris, J. Gamon, G.
5 Z. Pastorello, and C. Wong

6
7 Many thanks for the helpful and constructive comments made regarding the manuscript. Below
8 we address each of the comments from each of the reviewers in turn. We hope that the quality
9 of the manuscript has been enhanced by the changes made and that the paper can be
10 considered for publication in Biogeosciences.

11

12 **A. Porcar-Castell (Referee #1)**

13 A multitude of optical sensors and spectrometer systems are being rapidly deployed across flux
14 sites. These sensors are expected to facilitate the interpretation of remotely sensed data and
15 therefore the upscaling of processes such as photosynthesis. To reach this goal it is critical: i)
16 that sensors remain stable on the long-term, or otherwise regularly calibrated and well
17 characterized; and ii) that data obtained with different sensors and configurations can be
18 intercompared. The photochemical reflectance Index (PRI) is an index that uses narrow spectral
19 bands, normally centered at 531 and 570nm, to track the epoxidation status of the xanthophyll
20 cycle pigments. The PRI should therefore be susceptible to slight changes in instrument
21 properties such as band location or spectral resolution. In this study, Harris et al. compare the
22 performance of two different systems to estimate diurnal variations in the PRI of different plant
23 canopies: a widely used lower-cost multichannel sensor vs a more expensive spectrometer
24 system, arranged in three different configurations. Their results show that both instruments were
25 able to successfully track the adjustments in the PRI through the day, which in turn correlated
26 with the diurnal changes in epoxidation status of the xanthophyll-cycle. Their study
27 demonstrates that while data obtained from different instruments and setups was linearly
28 correlated, differences in spectral response and sensor configuration had a significant effect on
29 absolute PRI levels. Interestingly, the authors present a method that can be applied to correct
30 data obtained with instruments with different spectral functions which was able to correct for
31 most of the discrepancy.

32

33 The experiments were carefully planned, the article is clearly written and informative, and overall
34 the paper is a significant, timely and useful contribution that will serve the community involved in
35 optical measurements at flux sites. The article fits very well within the EUROSPEC Issue as it
36 represents a perfect example of the sort of activities that EUROSPEC was set to do. Perhaps
37 the only "weakness" was that the study did not go into the seasonal domain so the reader is left
38 with some relevant questions: A) how these instruments would perform under seasonal (=large)
39 fluctuations in temperature? B) how different configuration and setups (e.g. SC or DC) would

1 perform under more demanding environments, e.g. rain, snow, dust deposition, etc)? C) how
2 would different sensors and spectral configurations succeed in tracking the slow seasonal
3 changes in the de-epoxidation status of the xanthophyll-cycle pigments and its total pools?
4 Obviously, answering these questions would have required a different experimental setup
5 outside the scope of this paper. Perhaps a good topic for future work?

6

7 **Response:** Longer term seasonal experiments using near-surface sensors are the subject of
8 forthcoming companion papers authored by Wong *et al.* (in press) and Gamon *et al.* (in
9 preparation)

10

11 **Specific comments:**

12 1. Page 11922, 10. The authors write “. . .SKR 1800 sensors recorded a prominent decrease in
13 the PRI during the early afternoon (Fig. 7). . . Consequently the observed between-sensor
14 differences are likely due (to) each sensor having a slightly different IFOV”. The authors
15 could discuss the possibility that the higher spectral resolution of the SKR 1800 relative to
16 the UniSpec system (as seen from Fig. 1) was actually outperforming the latter. Indeed, the
17 diurnal PRI pattern from the Unispec in Fig 7 is rather flat despite the clear changes in
18 illumination; in fact I would have expected some more variation. On the other hand, average
19 PPFD appears to be higher at 13:00 compared to 14:00 when the sky was occasionally
20 covered by clouds, consistent with the lower PRI at 13:00 relative to 14:00 obtained with the
21 SKR 1800. Could the SKR 1800 be better at tracking diurnal changes?

22

23 **Response:** It is difficult to determine the exact cause of apparent sensor differences in the
24 diurnal study because we are measuring over a rather heterogeneous canopy. Whether the
25 SKR 1800 sensors are better at tracking diurnal changes is difficult to confirm but our initial
26 dark-to-light experiments suggest that the SKR 1800 sensors may not respond as quickly to
27 changes in EPS as the Unispec instrument. Even if the SKR 1800 sensors were more
28 “sensitive” to changing diurnal conditions because of its narrower FWHM, this was not
29 reflected in a superior strength of the correlation with the EPS Skye sensors suggesting that
30 other factors (e.g. S:N, FOV, etc.) may also come into play. Previous studies (e.g. Gamon *et*
31 *al.*; 1992 and Filella *et al.*; 1996) have shown the Unispec to be able to detect diurnal
32 changes in EPS. The lack of a clear diurnal signal from the Unispec in this study, in
33 comparison to those observed by the SKR 1800 sensors, is thus likely to be because of the
34 differences in the IFOV of the instruments. The patterns of EPS, and thus the PRI, vary quite
35 markedly depending on whether the canopy is facing S or N (See figure 9). The fact that
36 even when the SRFs of the SKR 1800 were simulated by the Unispec canopy instrument,
37 the diurnal patterns still did not match suggests that differences in the spectral response of
38 the instruments was not the reason for such differences in the diurnal response patterns.
39 Further inter-comparison studies, which utilise more uniform vegetation canopies would help
40 clarify the exact reasons for the observed sensor differences. To this end we have added a

1 couple of additional paragraphs in the discussion section of the manuscript to highlight these
2 issues namely: “Consequently the observed between-sensor differences are *likely* due to
3 each sensor having a slightly different IFOV. The complexity of the conifer canopy is such
4 that even relatively small differences in the IFOV between instruments may result in each
5 instrument measuring parts of the canopy that may have been exposed to different levels of
6 illumination (i.e. levels of sun and shade; Gamon and Bond 2013)” and”However, even
7 when the SRFs of the SKR 1800 were simulated by the Unispec canopy instrument, the
8 diurnal pattern did not match that of the SKR 1800 sensors and the PRI-EPS relationship
9 was consistently stronger than the relationship observed between EPS and the SKR 1800-
10 measured PRI suggesting that instrument differences other than the spectral response (e.g.
11 signal-to-noise ratio, IFOV, the use of a cosine diffuser compared to a Spectralon panel) may
12 also have contributed to the observed divergence in diurnal PRI values between instruments.
13 Further inter-comparison studies, which utilise more uniform vegetation canopies (e.g.
14 Anderson et al. 2013) would help clarify the exact reasons for these observed sensor
15 differences.”

16

17 2. In view of the impact that minor changes in sensor spectral configuration have on the
18 resulting PRI levels, how would the authors suggest/recommend to deal with sensor
19 heterogeneity and intercomparability of results? For example, if we have data from a network
20 of 10 flux sites each equipped with a slightly different SKR 1800 sensor, how would the
21 authors suggest to compare the PRIs based on their findings? Should one apply their
22 deconvolution method? use some scaled measure of PRI? I believe this is an interesting point
23 that the authors are well in place to discuss in the Concluding Remarks.

24

25 **Response:** We have added an additional section to the first paragraph in the Concluding
26 Remarks section to address this issue, namely “... a full characterisation of these sensors is
27 necessary if the data are to be compared across geographical locations, over time and
28 between instruments. Specifically, it is critical that the SKR 1800 sensors being used have
29 matching wavelengths and the same spectral response. Ideally, this could be confirmed by
30 the manufacturer or by independent laboratory tests. If independent, automated
31 spectrometers were also on site, then it would be possible to use convolution to understand
32 the sources of any differences that might occur. All sensors deployed should be mounted at
33 similar distances from the canopy and at similar angles. They should be checked and
34 cleaned annually and according to the manufacturer’s recommendations, returned for
35 laboratory calibration every two years. Additional corrections, for dark-current drift and
36 temperature drift in response to large variations in temperature, may also be required
37 (Eklundh et al. 2011). Regular cross-calibration can be used to assess and possibly correct
38 for such instrument drift.”

39

40 **Minor Corrections:**

1 1. The authors use the FWHM provided by the manufacturer to perform the spectral
2 deconvolution and compare the result with the SKR 1800 PRI. Was the manufacturers
3 FWHM provided for different wavelengths or for a single wavelength? how much can FWHM
4 be expected to vary across wavelengths (525-570 range)? Could that have an impact on the
5 deconvolution process?

6
7 **Response:** We used the spectral response curves for the SKR 1800 that were provided by
8 the manufacturer, and these were slightly different for each sensor and wavelength as
9 indicated in Figure 1. Individual response curves were used to simulate each of the two PRI
10 bands from the Unispec data. As we mention in the manuscript, we did not take into account
11 that the filters for the upward facing sensors were not exactly the same as the filters used for
12 the downward facing sensors for the equivalent PRI band. The differences in the spectral
13 response functions were not substantial, but this may have had an impact on the simulated
14 reflectance values. The individual spectral response curves for the SKR 1800 and Unispec
15 DC instrument are presented in Figure 1.

16
17 2. Section 2.3.1. “Dark-to-light transition experiments were performed over *five* different plant
18 canopies. . .” I believe it is *four*, the fifth being for the diurnal study?

19
20 **Response:** Yes, we have corrected this in the text

21
22 3. Section 2.3.2. 10-15, “. . .were also sampled (2x3 cm) and immediately. . .”. Please specify,
23 2x3 cm of what? total needle area? did you produce a mat of needles and then cut out a 2x3
24 square?

25
26 **Response:** For each plant, we sampled 2 needles, each 3 cm long, and have changed the
27 wording accordingly

28
29 4. Section 2.3.2. Please give at least some minor details on the temperature and relative
30 humidity measurements

31
32 **Response:** We already provide some written detail on the meteorological conditions and a
33 figure graphically depicting the diurnal meteorological trends in the results section i.e. section
34 3.2. We have moved the order of the sentences and added an additional sentence, which
35 refers to relative humidity levels i.e. *“Fig. 6 illustrates the environmental conditions present
36 during the diurnal experiment undertaken over a lodgepole pine canopy during July 2013.
37 Sky conditions were clear throughout the morning although some clouds were present at
38 noon and became more frequent from 16:00 onwards (Fig. 6a). Temperatures throughout
39 the measurement period ranged from 13°C at sunrise to a maximum of at 24°C at 17:08
40 (Fig.6c) whereas relative humidity was highest during the early part of the day (60-70%) and*

1 *lowest during early to mid-afternoon (~ 45%; Fig. 6d).*” Seeing as though this information is
2 already provided in the results section, we choose not to duplicate this text in the
3 methodology section i.e. 2.3.2.

4

5 5. Section 3.2.1. 15, “. . . after the SRF correction had been applied to both (add: UniSpec)
6 instruments”

7

8 **Response:** Change made

9

10 6. Pag 11924. 25. Although one can draw conclusions on the seasonal scale, the article by
11 Gamon and Berry deals with the spatial component of the PRI variability rather than the
12 temporal. The authors may consider adding a reference to a seasonal study that supports
13 their statement e.g. Stylinsky et al. 2002, Filella et al. 2009, or Porcar-Castell et al. 2012

14

15 **Response:** We have included the following references “Stylinski et al. 2002; Garrity et al.
16 2011; Porcar-Castell et al. 2013; Wong and Gamon in press”

17

18 **Anonymous Referee #2**

19 This is an interesting study on a key topic. For the last years different initiatives (SpecNet,
20 EUROSPEC, OPTIMISE) have worked on the integration and standardization of in situ optical
21 sampling. However, the wide range of sensors commercially available, both multi and hyper-
22 spectral, makes it difficult to achieve comparable data unless an appropriate characterization of
23 sensor features and measurement protocols are implemented. This study clearly contributes to
24 this research field as it compares two instruments, able to measure the narrow bands required to
25 calculate PRI and commonly used in field spectroscopy to long term in situ vegetation
26 monitoring. The research questions addressed are very relevant and clearly fall within the scope
27 of Biogeosciences.

28

29 The manuscript is clear and well written. Abstract and introduction are concise and properly
30 summarize relevant research to provide context. Regarding methods and results, authors clearly
31 identify and describe the procedures followed and the results obtained and they order them in a
32 meaningful way. However I would recommend including a more complete description of some
33 specific analysis as is the case for the method used to convolve the Unispec spectra in order to
34 make it comparable with the SKR data. Additional information is needed in order to explain how
35 the spectra acquired with an instrument having larger FWHM are transformed to one of higher
36 spectral resolution. This will allow their reproduction by fellow scientist.

37

38 **Response:** We have added some additional information to the end of section 2.2.4 i.e. “As the
39 SKR 1800 sensor only contains two wavebands we used the Unispec (1 nm interpolated

1 spectral data) to simulate each of the bands separately using the method outlined by Robinson
2 and MacArthur (2011) so that the output value for each band is the integral of the product of the
3 SKR 1800 SRF and the Unispec input spectrum. All calculations were implemented in the R
4 statistical environment (R Development Core Team, 2012).” We would like to re-iterate that we
5 are using this approach simply as an investigative tool to determine possible causes of the wide
6 differences in the values derived from the two instruments, as noted in the text.

7
8 Finally, in the discussion section, authors include an interesting analysis on the differences
9 found between PRI measured from different instruments and also on the correlation between
10 PRI and EPS at leaf and canopy scales. However, throughout the manuscript, and specifically in
11 this section, the discussion on the instrumental differences between the two sensors is focused
12 on the SRFs. Other technical differences (FOV, cosine response, etc) and their potential role on
13 the discrepancies found in PRI measurements should be further discussed here as, in my
14 opinion, the comparison between sensors is one of the most important contributions of the
15 paper.

16
17 **Response:** We believe we have addressed these concerns in response to a comment made by
18 reviewer 1, namely in the discussion section by adding a paragraph on issues relating to the
19 FOV of the instruments “*The complexity of the conifer canopy is such that even relatively small
20 differences in the FOV between instruments may result in each instrument measuring parts of
21 the canopy that may have been exposed to different levels of illumination (i.e. levels of sun and
22 shade; Gamon and Bond 2013)*” and the possibility of other extraneous factors influencing the
23 direct comparison of the instruments.. “*...., even when the SRFs of the SKR 1800 were simulated
24 by the Unispec canopy instrument, the diurnal pattern did not match that of the SKR 1800
25 sensors and the PRI-EPS relationship was consistently stronger than the relationship observed
26 between EPS and the SKR 1800-measured PRI suggesting that instrument differences other
27 than the spectral response (e.g. signal-to-noise ratio, FOV, the use of a cosine diffuser
28 compared to a Spectralon panel) may also have contributed to the observed divergence in
29 diurnal PRI values between instruments. Further inter-comparison studies, which utilise more
30 uniform vegetation canopies (e.g. Anderson et al. 2013) would help clarify the exact reasons for
31 these observed sensor differences.*”.

32
33 **Specific comments:**

34 **Abstract**

35 1. Authors references to lower cost vs expensive instruments should be clarified in the abstract
36 and all through the text. Cost is related to sensor characteristics (multispectral versus
37 hyperspectral sensors) and this should be clarified in the text, otherwise it can cause
38 confusion.

1 **Response:** In the abstract we have adjusted the text so that the following lines read “*This
2 interest has facilitated the production of a new range of lower-cost multispectral sensors
3 specifically designed to measure temporal changes in the PRI signal.*” and “*We compare the
4 results with those obtained using a more expensive industry-standard visible to near-infrared
5 hyperspectral spectrometer (PP-systems UniSpec) and determine the radiometric
6 compatibility of measurements made by the different instruments.*” We also clarify this
7 distinction in section 2.1 Instruments i.e. “*The instruments were chosen to facilitate a
8 comparison of the results obtained from a commonly used commercially available lower-cost
9 two-band sensor specifically designed for field deployment and continuous in situ
10 monitoring, with those obtained from more expensive hyperspectral industry-standard
11 instruments that are field-portable but not specifically designed to be deployed unattended in
12 the field without further hardening (e.g. Hilker et al. 2011).*”

13

14 2. Authors affirm that their results illustrate that “small differences in instrument configuration
15 can have a large impact on the PRI measurements”. But, can the differences between the
16 two compared instruments be considered small?

17

18 **Response:** In terms of the centre wavelengths used to calculate the PRI the differences
19 would “appear” to be small i.e. 531 nm and 570 nm for the Unispec and 531 nm (down) 530
20 nm (up) and 567 nm (down) and 569 nm (up) for the SKR 1800. However, we agree that
21 differences in the FWHM and shape of the spectral response curve are not necessarily
22 “small”. We now clarify this in the manuscript by rewording this sentence so that it now reads
23 “*....., illustrating that differences in instrument configuration (e.g. spectral response functions
24 and band positions) can have a large impact on the PRI measurement values obtained.*”

25

26 3. Correlation values obtained from the Unispec (and not only for the SKR 1800) should be also
27 included in the abstract.

28

29 **Response:** The wording has been changed to “*Despite differences in absolute PRI values,
30 significant correlations were observed between the canopy PRI derived from both the SKR
31 1800 and the Unispec instruments, and the epoxidation state of the xanthophyll cycle (r^2
32 =0.46 $p < 0.05$ and $r^2 = 0.76 p < 0.01$; respectively).*

33

34 **Methods**

35 4. Table 1 should include more information on technical characteristics of the instruments
36 compared: operating temperature range, radiometric resolution, sampling interval, etc, in
37 order to make it fully informative on the differences between them.

1 **Response:** We have added two additional columns to table 1, namely “*Sampling Interval*” and
2 “*Operating temperature*” and completed these columns to the best of our ability based on the
3 information provided by the manufacturer.

4

5 5. The use of four different instruments (1 SKR 1800, 1 Unispec DC and 2 different Unispec SC
6 should be clarified in section 2.2.2.

7

8 **Response:** We clarify this by adding the following sentence to the end of section 2.1 “*The*
9 *DC instrument was used to facilitate the collection of rapid continuous reflectance*
10 *measurements during dark-to-light experiments, whereas the two SC instruments were used*
11 *to obtain simultaneous canopy and leaf-level reflectance measurements during the diurnal*
12 *experiment.*”

13

14 6. In table 1, I suggest to replace operating range by Wavelength range

15

16 **Response:** Change has been made

17

18 7. If possible change (Jin and Eklundh, 2013) in page 11910 line 20 for other reference that can
19 be more widely accessible.

20

21 **Response:** At present this is the only reference which clearly documents this type of
22 calibration method.

23

24 8. The spectralon targets used with Unispec DC and SC and Skye SKR where all calibrated
25 panels? Please specify.

26

27 **Response:** The Spectralon targets were calibrated although this was not a recent calibration.
28 All panels were handled with care and regularly cleaned, however, there is likely to be some
29 degradation (in the order of <3%) to the panels since their original calibration. The same
30 panel was used for each set of Unispec measurements within any given experiment (e.g.
31 dark-to-light and diurnal) thus all the PRI measurements are at least relative to one another.
32 We do not compare data across experiments i.e. between experiments that utilise different
33 Spectralon panels.

34

35 9. In page 11913 line 11 authors state that the area viewed by each instrument was approx. 20
36 cm in diameter. Was a FOV characterization of the instruments performed in order to confirm
37 the area viewed by each of them or was this area calculated relying on manufacturer
38 specifications? Unless few researchers have acknowledged that it is necessary to
39 characterize the FOV of a spectroradiometer, some authors have demonstrated that these
40 may have great variability which, in this case, can affect the comparison, especially when the
41 target is heterogeneous as is the case for most vegetation covers.

1
2 **Response:** We did not characterise the SKR 1800 FOV ourselves but instead we relied on
3 the manufacturer specifications in terms of defining the FOV of each sensor head. We have
4 added some information to Table 1 regarding preliminary in-house investigations into the
5 FOV of the Unispec using fibre optics and a Hyper Tube manual restrictor. We agree that all
6 parts of the ground resolution element sampled may not be equally represented in our
7 measurements. In Section 4 we do discuss that issues relating to the positioning of the
8 sensors and the defined FOVs may also have led to some of the differences noted between
9 the two instruments.

10
11 10. Why different time intervals (1 and 15 min) were used for SKR and UniSpec measurements
12 during the diurnal experiment?

13
14 **Response:** Two different timing intervals were used as the SKR 1800 was set to
15 continuously monitor and log measurements but we were using a SC UniSpec, which meant
16 that we had to take a white panel reading before each spectral reading. Seeing as though
17 the experiment lasted for over 13 hours, we thought that a practical solution would be to
18 collect measurements from the UniSpec every 15 minutes. Since the text states that the SC
19 sensor was used in the diurnal study and how the SC measurements were collected, we
20 have chosen not to add any additional information to the manuscript at this point.

21
22 11. Figure 7: It is not easy to visually discriminate between Unispec SC leaf, canopy and SKR
23 1800 cross-calibration lines. The same for Unispec 531 and 570 HCRF in figure 8.

24
25 **Response:** Figure 7 and Figure 8 have been adjusted and now include colour to help
26 discrimination of different instruments and channels.

27
28 12. In figure 9. PRI values are those measured with the Unispec SC instrument at the canopy
29 level? Please clarify in the figure caption.

30
31 **Response:** The caption already states that these data were collected at the leaf-level i.e.
32 “*Fig. 9 Diurnal course of lodegepole pine (Pinus contorta) leaf-level photochemical*
33 *reflectance index (PRI) and the epoxidation state of the xanthophyll cycle components*
34 *(EPS). PRI values for each of the four directions are means of 10 sampled spectra. Error*
35 *bars represent ± 1 SEM.*” No further changes have been made

36
37 **Discussion and concluding remarks**

38
39 13. Regarding the statement in page 11921 lines 21-27, it would be interesting to include in the
40 text the correlations found for the leaves sampled from plants facing south in comparison to
the main values analyzed in figure 10.

1
2 **Response:** We have added the requested values. The paragraph now reads “*The strength*
3 *of the relationship between PRI and EPS measured at the leaf-level was weaker than that*
4 *measured at the canopy-scale using a similar UniSpec instrument. Diurnal PRI patterns at*
5 *the leaf-level were largely dominated by leaves sampled from plants facing south, but also*
6 *included measurements from leaves exposed to lower levels of illumination where diurnal*
7 *changes in EPS and PRI were minimal (Fig. 9). Consequently relationships between leaf-*
8 *level PRI and EPS were stronger for south facing leaves ($r^2 = 0.73, p < 0.05$ and $r^2 = 0.43, p$*
9 *< 0.05; for the SW and SE facing leaves respectively) than those facing north ($r^2 = 0.07, p =$*
10 *0.5 and $r^2 = 0.12, p = 0.4$; for the NW and NE facing leaves respectively).*”

11
12 14. In page 11923 authors state that a “full characterization of these sensors is necessary if the
13 data are to be compared across geographical locations, over time and between instruments”.
14 I fully agree with this statement but, in view of the results obtained, authors should be more
15 specific about recommendations on how to approach this characterization and which
16 instrumental factors should be analyzed, especially in the context of the outdoors unattended
17 systems explored in this paper as they can face wide ranges of environmental conditions in
18 terms of temperature, irradiance or sun height among others.

19
20 **Response:** Reviewer 1 has made a similar suggestion and we have responded to both
21 comments by including some additional text in the first paragraph of the concluding remarks
22 section; namely “*... a full characterisation of these sensors is necessary if the data are to be*
23 *compared across geographical locations, over time and between instruments. Specifically, it*
24 *is critical that the SKR 1800 sensors being used have matching wavelengths and the same*
25 *spectral response. Ideally, this could be confirmed by the manufacturer or by independent*
26 *laboratory tests. If independent, automated spectrometers were also on site, then it would be*
27 *possible to use convolution to understand the sources of any differences that might occur.*
28 *All sensors deployed should be mounted at similar distances from the canopy and at similar*
29 *angles. They should be checked and cleaned annually and according the manufacturers*
30 *recommendations, returned for laboratory calibration every two years. Additional*
31 *corrections, for dark-current drift and temperature drift in response to large variations in*
32 *temperature, may also be required (Eklundh et al. 2011). Regular cross-calibration can be*
33 *used to assess and possibly correct for such instrument drift.*”

34
35 15. Page 11919 lines 9-11. Review sentence. R2 values correspond to leaf and canopy
36 respectively and not canopy and leaf as stated?

37
38 **Response:** Corrected

39
40 **Anonymous Referee #3**

1 **General comments:**

2 In this study two different instruments for spectral measurements the Skye SKR1800 and the
3 PP-systems UniSpec. The final goal of the study is to recommend strategies for the effective use
4 and comparison of data from both sensors. The topic is pertinent with the scope of the journal.
5 The interest in continuous monitoring of ecosystems through unattended sensors increased
6 largely in the last years raising a need for the standardization and comparison of measurements.
7 This study can be an important contribution in this area. The experiment was well planned and
8 executed. The manuscript is well written. Methods and results are correctly described. The
9 Discussion needs an improvement for clarity. I would suggest to split the text into specific
10 paragraphs.

11

12 **Response:** The discussion section is already split into paragraphs. We have no control over the
13 formatting of those paragraphs as this is defined by the manuscript template.

14

15 **Specific comments:**

16 1. Page 11917 line 1-5 and figure 5. The larger fluctuation in the PRI response is more evident
17 in the Unispec than in the SKR1800 in the Aspen. Any comment on this?

18

19 **Response:** We have added an additional line to the first paragraph in section 3.1.2, which reads
20 “*Slight differences in the FOV of the two sensors over the aspen canopy may have led to the*
21 *more evident fluctuations in PRI measured by the UniSpec than measured by the SKR 1800*
22 *sensors*”.

23

24 2. Page 11919 line 5 and fig. 10 The figure 10 shows linear regression between EPS and PRI
25 derived from the SKR1800 and the Unispec canopy and leaf measurements. It would of
26 major interest to estimate the regression, not only evaluate the correlation coefficients. A
27 comparison of the slopes would be of great benefit to the knowledge on the relative
28 sensitivity of the sensors to physiological changes (expressed by EPS) and facilitate the
29 comparison between instruments. In addition, potential differences in the regression line are
30 mentioned in the discussion to explain differences between leaf and canopy measurements
31 (page 11921 line 29).

32

33 **Response:** We have added the estimated regressions to figure 10

34

35 **Technical details:**

36 3. Page 11913 2.2 Experimental set-up. Further details on leaf measurements would be
37 desirable.

1
2 **Response:** The leaf methods are described in section 2.2.2. (leaf reflectance) and section 2.3.2
3 (pigments).

4
5 4. Page 11913 2.3.1 line 24 details on plants age and size are lacking.

6
7 **Response:** We have added the following additional information “*The strawberry plants were*
8 *cultivated in a large (2 x 2 m) flat crate. The pine and aspen saplings were approximately 4 and*
9 *3 years old; respectively (approx. 1 m and 1.5 m in height; respectively). Both species were*
10 *grown in large pots (6.23 L) using a 1:2 mix of sandy loam and commercial potting soil*
11 *(Sunshine Mix 4, Sun Gro Horticulture, Agawam, MA, USA) supplemented with slow release*
12 *fertilizer (Nutricote 14-14-14, Sun Gro Horticulture, Agawam, MA, USA), and arranged in a*
13 *wooden crate (1 x 1 m) to simulate a dense seedling monoculture stand. The alfalfa (Medicago*
14 *sativa) was grown as a perennial crop on the university South Campus farm (Edmonton, Alberta)*
15 *and was approximately 0.4 m high at the time measurements were collected.* “

16
17 5. Page 11914 line 1 and following. It is unclear how the excess of irradiation could mask the
18 effects of canopy structure in the short term.

19
20 **Response:** Unfortunately we are not sure what point the reviewer is referring to here and so we
21 are unable to provide a full response to this comment. However, if the comment is related to an
22 issue associated with the ability to detect leaf-level signals at the canopy scale, then this study
23 and others (e.g. Gamon and Qiu 1999) demonstrate that for a closed canopy stand, such as
24 those used in this study, parallel leaf and stand level responses to irradiation can clearly be
25 observed.

26
27 6. Page 11915 line 6. Again few indications on the size and density of trees would be desirable.
28 “closed-canopy stand” . The term stand is used in forestry to indicate a community of trees in
29 the field, it cannot be applied to potted trees.

30
31 **Response:** We have changed the wording to “closed-canopy synthetic stand (1 x 1 m plot)”

32

33

1 **Retrieval of the Photochemical Reflectance Index for**
2 **assessing xanthophyll cycle activity: A comparison of near-**
3 **surface optical sensors**

4

5 **A. Harris¹, J.A. Gamon², G.Z. Pastorello³ and C. Wong²**

6 [1] {Geography, School of Environment, Education and Development, University of Manchester,
7 Manchester, M13 9PL, United Kingdom}

8 [2] {Departments of Earth & Atmospheric Sciences and Biological Sciences, University of
9 Alberta, Edmonton, Alberta, T6G 2E3, Canada}

10 [3] {Computational Research Division, Lawrence Berkley National Laboratory, California, CA
11 94720, USA}

12 Correspondence to: A. Harris (angela.harris@manchester.ac.uk)

13

14 **Abstract**

15 Unattended optical sensors are increasingly being deployed on eddy covariance flux towers and
16 are often used to complement existing vegetation and micrometeorological measurements to
17 enable assessment of biophysical states and biogeochemical processes over a range of spatial
18 scales. Of particular interest are sensors that can measure the photochemical reflectance index
19 (PRI), which can provide information pertaining to leaf pigments and photosynthetic activity.
20 This interest has facilitated the production of a new range of lower-cost multispectral sensors
21 specifically designed to measure temporal changes in the PRI signal. However, little is known
22 about the characteristics (spectral, radiometric and temporal) of many of these PRI sensors,
23 making it difficult to compare data obtained from these sensors across time, geographical
24 locations and instruments. Furthermore, direct testing of the capability of these sensors to
25 actually detect the conversion of the xanthophyll cycle, which is the original biological basis of
26 the PRI diurnal signal, is largely absent, which often results in an unclear interpretation of the
27 signal, particularly given the wide range of factors now known to influence PRI. Through a series

1 of experiments, we assess the sensitivity of one of the leading brands of PRI sensor (Skye SKR
2 1800) to changes in vegetation photosynthetic activity in response to changing irradiance. We
3 compare the results with those obtained using a more expensive industry-standard visible to near-
4 infrared hyperspectral spectrometer (PP-systems UniSpec) and determine the radiometric
5 compatibility of measurements made by the different instruments. Results suggest that the SKR
6 1800 instrument is able to track rapid (seconds to minutes) and more gradual diurnal changes in
7 photosynthetic activity associated with xanthophyll cycle pigment conversion. Measurements
8 obtained from both the high and lower cost instrument were significantly linearly correlated but
9 were subject to a large systematic bias, illustrating that differences in instrument configuration
10 (e.g. spectral response functions and band positions) can have a large impact on the PRI
11 measurement values obtained. Despite differences in absolute PRI values, significant correlations
12 were observed between the canopy PRI derived from both the SKR 1800 and the Unispec
13 instruments, and the epoxidation state of the xanthophyll cycle ($r^2 = 0.46$ $p < 0.05$ and $r^2 = 0.76$ $p <$
14 0.01; respectively). However, the dynamic range of the SKR 1800 PRI signal was often lower
15 than more expensive instruments and thus the lower cost multispectral instrument may be less
16 sensitive to pigment dynamics related to photosynthetic activity. Based on our findings, we make
17 a series of recommendations for the effective use of such sensors under field conditions and
18 advocate that sensors should be fully characterised prior to their field deployment.

19

20 **1 Introduction**

21 Quantitative estimates of carbon dioxide exchange at regional to global scales are critical for
22 understanding the links between carbon and climate. Eddy covariance (EC) flux tower
23 measurements are the key means of providing direct measures of trace gas and water fluxes
24 between the biosphere and the atmosphere. Whilst EC methods are of great importance for
25 carbon balance estimations (Balocchi et al., 2001), the measurements are often only
26 representative of a limited geographical region directly surrounding the flux tower and their
27 number and distribution across the globe is limited and uneven. Remote sensing can provide
28 spatially continuous data across a range of spatial scales and is rapidly becoming an important
29 supplementary source of information for carbon monitoring and modelling efforts (e.g. Liu et al.,

1 1999; Turner et al., 2003; Reichstein et al., 2007; Jung et al., 2011). Through the use of satellites
2 such as MODIS (Moderate Resolution Imaging Spectrometer), remote sensing can be used to
3 derive regional and global measures of vegetation parameters (e.g. leaf area index (LAI) and
4 fraction of absorbed photosynthetically active radiation (F_{APAR}); Myneni et al., 1997), which can
5 be utilised in biogeochemical models for estimating carbon exchange variables such as gross
6 primary productivity (GPP; Running et al., 2004). However, the growing availability of satellites
7 with high spatial and/or spectral resolutions (e.g. Hyperion, Worldview-2, VIIRS and the
8 forthcoming Sentinel-2 satellites), has resulted in an increasing number of investigations aimed at
9 providing quantitative information on the biophysical and chemical functions of vegetation (e.g.
10 Gitelson et al., 2005; Cheng et al., 2010; Harris and Dash, 2010; Huemmrich et al., 2010;
11 Garbulsky et al., 2011; Hilker et al., 2011) potentially providing a new source of data for existing
12 or new productivity models (Hill et al., 2006). Spectral vegetation indices, based on reflected
13 radiation, which have the potential to track changes in the light use efficiency (LUE) of
14 vegetation (Monteith and Moss, 1977), such as the photochemical reflectance index (PRI), are of
15 particular interest. Specifically, the PRI was formulated to measure changes in reflectance at
16 ~531 nm on a diurnal time scale, which are related to the state of epoxidation of the xanthophyll
17 cycle pigments caused by excess light energy (Gamon et al., 1990, 1992, 1993). Because of the
18 relationship between excess light and PSII photochemical efficiency, the PRI can also provide an
19 estimate of photosynthetic light-use efficiency (Gamon et al. 1992; Peñuelas et al. 1995).

20 Validation and correct interpretation of remotely sensed data is essential if they are to be used to
21 facilitate an improved understanding of global carbon fluxes (Gamon et al., 2006b). Near-surface
22 spectral measurements can provide a detailed characterisation of the Earth's surface and
23 minimize or eliminate exogenous influences (e.g. atmospheric conditions, changes in
24 illumination and geometry, and calibration drift) on the reflectance signal, which are often
25 apparent in airborne and satellite measurements. As a consequence, near-surface optical
26 measurements play an important role not only in the calibration and validation of airborne and
27 satellite data (Smith and Milton, 1999; Gamon et al., 2006b; Milton et al., 2009; Wright et al.,
28 2014), but also in their mechanistic interpretation and use for scaling carbon flux estimations
29 (Williams et al., 2008; Stoy et al., 2013).

1 The recent proliferation of interest in near-surface spectral data for carbon flux modelling,
2 coupled with a lowering in the cost of unattended optical instruments, is such that these
3 instruments are increasingly being deployed for long term in situ temporal monitoring, many of
4 which are mounted on eddy covariance flux towers (Eklundh et al., 2011; Rossini et al., 2012;
5 Soudani et al., 2012; Hilker et al. 2011; Hmimina et al., 2013). However, the comparability and
6 reproducibility of the spectral data between monitoring sites is often compromised because of
7 differences in instrument configurations (e.g. differences in internal optics, spectral wavelengths
8 and bandwidths) and deployment (e.g. distance from the ground and angle of measurement;
9 Milton et al., 2009; Anderson et al., 2013; Pacheco-Labrador and Martin, 2014). In response,
10 international networks such as SpecNet (<http://www.specnet.info>; Gamon et al., 2006b) and Cost
11 Action ES0903-EUROSPEC (<http://www.cost-es0903.fem-environment.eu>) have been formed to
12 help standardize and develop optical sampling methodologies. However, there are comparatively
13 few studies that have investigated the comparability and reproducibility of near-surface optical
14 measurements (e.g. Anderson et al., 2003; Castro-Esau et al., 2006; Pacheco-Labrador and
15 Martin, 2014), and few that have focused on the comparability of data obtained from lower cost
16 instruments specifically developed for unattended field deployment (e.g. Fitzgerald, 2010;
17 Eklundh et al., 2011; Erdle et al., 2011; Yao et al., 2013). Most of these focus on characterising
18 instruments designed to measure broad-band spectral indices such as the normalised difference
19 vegetation index (NDVI) whereas comparisons of automated sensors designed to collect fine
20 spectral resolution multispectral data, such as those used to measure the narrow bands required to
21 calculate the PRI, are sorely lacking. The narrow-band nature of the PRI is such that the index is
22 likely to be highly sensitive to between-sensor differences in spectral bandwidths and locations of
23 the spectral bands (Castro-Esau et al., 2006). The potential of narrow-band indices, such as the
24 PRI, for monitoring carbon relevant physiological changes in vegetation is such that cross-sensor
25 comparison studies of these types of instruments are essential if these data are to be effectively
26 utilised by the scientific community.

27 This paper reports the results of a series of comparative experiments aimed at assessing both the
28 sensitivity of near-surface optical instruments to changes in vegetation photosynthetic activity
29 and the radiometric compatibility of PRI measurements from instruments that differ in their
30 spectral configuration and cost (PP-systems UniSpec and Skye SKR 1800), with the goal of

1 recommending a strategy for their effective use. We present results from a series of shade-
2 removal and diurnal experiments designed to test each instrument's capability for detecting rapid
3 (seconds to minutes) changes in the de-epoxidation state of the xanthophyll cycle under clear and
4 stable lighting conditions, and more gradual changes in photosynthetic activity in response to
5 diurnal changes in illumination. We further assessed the quality of the PRI measurements by
6 comparing them with leaf-level measurements and pigments, to determine whether canopy PRI
7 measurements from each sensor are related to changes in the xanthophyll cycle or an artefact of
8 other non-physiological processes. We also investigated the impacts of differences in the spectral
9 response function and working principles of individual instruments, by means of measurement
10 inter-comparisons, in which magnitudes of systematic differences between the sensors and
11 vegetation canopy dependencies were examined.

12

13 **2 Methods**

14 **2.1 Instruments**

15 Performance comparisons were assessed using a pool of 3 different instruments (Table 1). The
16 instruments were chosen to facilitate a comparison of the results obtained from a commonly used
17 commercially available lower-cost two-band sensor specifically designed for field deployment
18 and continuous in situ monitoring, with those obtained from more expensive hyperspectral
19 industry-standard instruments that are field-portable but not specifically designed to be deployed
20 unattended in the field without further hardening (e.g. Hilker et al. 2011). Towards this aim, over
21 the duration of the study, we used three industry-standard UniSpec spectroradiometers (PP
22 Systems, USA), which are capable of measuring reflectance throughout the visible to near
23 infrared regions (VIS-NIR) of the electromagnetic spectrum at ~3 nm sampling intervals, and a
24 pair of SKR 1800 sensors (Skye Instruments, UK), which incorporate just two narrow green
25 wavebands for computation of the photochemical reflectance index (PRI), the exact wavelengths
26 of which depend on the manufacturer's filter selection and calibration (see section 2.2).

27

1 UniSpec instruments are available in both a single channel (SC) and dual channel (DC)
2 configuration. The DC instrument was used to facilitate the collection of rapid continuous
3 reflectance measurements during dark-to-light experiments, whereas the two SC instruments
4 were used to obtain near simultaneous canopy and leaf-level reflectance measurements during the
5 diurnal experiment. When using the SC configuration, measurements of the solar radiance (often
6 obtained from measuring the reflectance of a highly reflective Lambertian white panel) and the
7 reflectance from the target are obtained sequentially; whereas the DC configuration obtains
8 measures of solar irradiance and target reflectance simultaneously (often by means of an
9 additional upward looking sensor head fitted with a cosine diffuser), thereby minimizing the
10 impact of changes in the atmosphere on reflectance measurements (Rollin et al., 1998) and
11 facilitating automation. To calculate reflectance, the DC requires a cross-calibration between the
12 upward- and downward-looking sensors (Gamon et al. 2006a). The SKR 1800 sensors operate in
13 a similar configuration to the DC instrument; consisting of a pair of sensors where one looks
14 downward towards the target and the other is equipped with a cosine correction diffuser and
15 points upwards to measure hemispherical irradiance. The first generation SKR 1800 sensors use
16 relative calibration factors of two detectors on the same sensor to generate PRI. Following the
17 manufacture's guidelines, these sensors can only calculate ratio-based indices and not reflectance
18 values. Although not part of the manufacture's recommendations, a user-level in situ cross-
19 calibration between the upward and downward SKR 1800 sensors can be undertaken to allow the
20 user to retrieve reflectance values for individual spectral bands (see section 2.2). Furthermore,
21 this type of user-level cross-calibration can be used to provide a relative calibration for the
22 sensors if the manufacturer's calibration certificate has expired and to check the stability of
23 sensor calibrations over time (Jin and Eklundh, 2013).

24 **2.2 Processing of spectral data**

25 The photochemical reflectance index (PRI) was calculated from data obtained by each of the
26 different instruments. The means by which the PRI values were obtained differed depending on
27 the instrument configuration but the formulation of the PRI equation remained the same
28 throughout (Eq. 1).

$$1 \quad \quad PRI = \frac{R_{531\text{ nm}} - R_{570\text{ nm}}}{R_{531\text{ nm}} + R_{570\text{ nm}}} \quad (1)$$

2 Where $R_{531\text{ nm}}$ and $R_{570\text{ nm}}$ refer to the reflectance factor at 531 nm and 570 nm, respectively.
3 We refer to 531 nm and 570 nm as the PRI wavelengths for the UniSpec and SKR 1800
4 instruments in subsequent equations, although slight differences in the PRI wavelengths for the
5 SKR 1800 should be noted (Table 1).

6 2.2.1 UniSpec dual channel (DC) instrument

7 The UniSpec DC instrument was operated in cosine-conical mode where downwelling and
8 upwelling radiation are sampled simultaneously. To account for potential differences in sensor
9 properties between the upward and downward sensor channels, measures of a white reference
10 panel (Spectralon, LabSphere, North Sutton NH, USA) were made at the start and end of each
11 experiment to provide a cross-calibration function, which was used to calculate the
12 hemispherical-conical reflectance factor (HCRF) using Eq. (2) (Gamon et al., 2006a).

$$13 \quad R_{corrected} = \frac{R_{target}/I_{downwelling}}{R_{panel}/I_{downwelling}} \quad (2)$$

14 Where $R_{corrected}$ is the corrected reflectance factor and $R_{target}/I_{downwelling}$ is the raw
 15 reflectance factor and $R_{panel}/I_{downwelling}$ is the cross-calibration function.

16 2.2.2 UniSpec single channel (SC) instrument

17 Canopy HCRFs were measured by the UniSpec SC using periodic measurements taken from the
18 horizontal white reference panel using Eq. (3)

$$19 \quad R_{corrected} = \frac{R_{target}}{R_{panel}} \quad (3)$$

20 Where $R_{corrected}$ is the corrected reflectance factor, R_{target} is the radiance from the target and
 21 R_{panel} is the radiance from the white Spectralon panel. PRI was calculated from the reflectance
 22 spectrum using Eq. (1)

Leaf-level spectral measurements were made using the UniSpec SC attached to a leaf clip with an integrated illumination source, which enabled repeatable sampling of radiance at a fixed geometry and under identical illumination conditions (Gamon and Surfus, 1999). Each set of

1 measurements was preceded by the measurement of a white Spectralon disc and the leaf-level
2 HCRF was obtained using Eq. (3).

3 2.2.3 SKR 1800 sensors

4 The SKR 1800 upward-looking cosine sensor (180° FOV) was calibrated to irradiance ($\text{mol m}^{-2} \text{ s}^{-1} / \mu\text{A}$) by the manufacturer, however for first generation sensors such as those used in this study,
5 the downward sensor did not have an absolute calibration. Consequently, the HCRF at individual
6 wavelengths cannot be obtained directly although the PRI can be calculated from the relative
7 sensitivity of the two wavelength channels in the same sensor. The PRI was calculated following
8 the manufacturer's guidance using Eq. (4)

$$10 \quad PRI = \frac{(R_{531 \text{ nm}}/I_{531 \text{ nm}}) - (Z \cdot R_{570 \text{ nm}}/I_{570 \text{ nm}})}{(R_{531 \text{ nm}}/I_{531 \text{ nm}}) + (Z \cdot R_{570 \text{ nm}}/I_{570 \text{ nm}})} \quad (4)$$

11 Where Z is the ratio sensitivity of reflected 570 nm: 531 nm, $R_{531 \text{ nm}}$ and $R_{570 \text{ nm}}$ are the
12 reflected readings at 531 nm and 570 nm (nA), respectively; and $I_{531 \text{ nm}}$ and $I_{570 \text{ nm}}$ are the
13 incident ($\mu\text{mol/m}^{-2}/\text{s}^{-1}/\mu\text{A}$) readings for 531 nm and 570 nm; respectively.

14 An in situ relative cross-calibration was also used to calculate the HCRF for each of the SKR
15 1800 wavelength channels (i.e. 531 nm and 570 nm) for the diurnal experiment. At regular
16 intervals throughout the day, a white Spectralon panel was positioned underneath the downward
17 facing SKR 1800 sensor. A robust linear regression was subsequently performed on the white
18 panel data to determine the relative sensitivity of the upward and downward facing sensors, for
19 each wavelength channel. The resultant coefficients were used to normalize the raw data (nA)
20 using Eq. (5) prior to calculating the HCRF for each wavelength channel.

$$21 \quad Reflectance_x = \frac{R_x}{m \cdot I_x + c} \quad (5)$$

22 Where $Reflectance_x$ is the reflectance factor at a given wavelength (i.e. 531 nm or 570 nm), R_x
23 and I_x are the raw readings (nA) from the downward and upward looking sensors (respectively)
24 for wavelength channel x , and m and c are the coefficients derived from the white panel
25 measurements. Robust linear regression was implemented in the R statistical environment (R
26 Development Core Team, 2012) using the MASS package (Venables and Ripley, 2002).

1 2.2.4 Correcting for differences in instrument spectral response function

2 The UniSpec instruments and each of the SKR 1800 sensors have different spectral response

3 functions (SRF) (e.g. band centres and full width at half maximum; FWHM), which result in

4 differences between instruments in the PRI wavelengths (Fig. 1). The spectral resolution

5 (FWHM) of the UniSpec instruments is approximately 10 nm with a ~3 nm sampling interval.

6 The data are subsequently interpolated to 1 nm intervals during processing and the HCRF at 531

7 nm and 570 nm is used for the calculation of PRI in both the SC and DC configurations. For the

8 SKR 1800 sensors the PRI wavelengths are centred at 530 nm and 569 nm for the reflected

9 radiation (i.e. downward facing sensor) and 531 nm and 567 nm for the upward looking sensor

10 recording incoming irradiance. As noted above, these values are a function of the particular filters

11 chosen by the manufacturer and can vary from one batch of sensors to the next. To understand

12 how instrument SRFs may influence the PRI, we convolved the UniSpec spectra with the

13 manufacturer supplied SRFs for the SKR 1800 downward-facing sensors and compared SKR

14 1800 PRI values to those obtained from the UniSpec before and after spectral convolution. As the

15 SKR 1800 sensor only contains two wavebands we used the UniSpec (1 nm spectral data) to

16 simulate each of the bands separately using the method outlined by Robinson and MacArthur

17 (2011) so that the output value for each band is the integral of the product of the SKR 1800 SRF

18 and the UniSpec input spectrum. All calculations were implemented in the R statistical

19 environment (R Development Core Team, 2012).

20 **2.3 Experimental set-up**

21 All experiments were performed at the University of Alberta campus, Edmonton, Canada during

22 July and August 2012 and 2013. Two types of experiment were undertaken during this period; (i)

23 a series of midday shade removal studies, which provided an abrupt transition from low to high

24 light intensities over a range of plant canopies; and (ii) a single diurnal study that followed PRI

25 change under ambient sunlight. Both types of experiment were designed to observe the canopies

26 as they underwent physiological transitions from their dark state to full illumination, and

27 facilitated an investigation of the sensitivity of the different instruments to changes in vegetation

28 photosynthetic activity and the radiometric compatibility of the PRI measurements. A series of

29 custom sensor mounts were designed to ensure that on each occasion all instruments used for

1 inter-comparisons were viewing a similar portion of the plant canopy as was physically possible.
2 The area viewed by each instrument was approx. 20 cm in diameter. Similar experimental
3 protocols were applied to all sets of measurements collected.

4 **2.3.1 Experiment 1: Dark-to-light transitions**

5 Dark-to-light transition experiments were performed over four different plant canopies (Table 2)
6 following a similar approach to that described in Gamon et al. (1990). Strawberry (*Fragaria x*
7 *ananassa*), ponderosa pine (*Pinus ponderosa*) and aspen (*Populus tremuloides*) were all grown
8 on the roof of the Biological Sciences building, University of Alberta. The strawberry plants were
9 cultivated in a large (2 x 2 m) flat crate. The pine and aspen saplings were approximately 4 and 3
10 years old; respectively (approx. 1 m and 1.5 m in height; respectively). Both species were grown
11 in large pots (6.23 L) using a 1:2 mix of sandy loam and commercial potting soil (Sunshine Mix
12 4, Sun Gro Horticulture, Agawam, MA, USA) supplemented with slow release fertilizer
13 (Nutricote 14-14-14, Sun Gro Horticulture, Agawam, MA, USA), and arranged in a wooden crate
14 (1 x 1 m) to simulate a dense seedling monoculture stand. The alfalfa (*Medicago sativa*) was
15 grown as a perennial crop on the university South Campus farm (Edmonton, Alberta) and was
16 approximately 0.4 m high at the time measurements were collected. With the exception of the
17 alfalfa, all plants were irrigated and fertilized regularly. Alfalfa received no supplemental
18 fertilizer or irrigation.

19 On each sampling occasion plants were covered with a black shade cloth the evening prior to the
20 experimental measurements. Near solar noon the following day the shade cloth was abruptly
21 removed, exposing the plants to full sunlight. The rapid response of plants to excess
22 photosynthetic photon flux density (PPFD) is such that changes in sun angle, canopy structure
23 and leaf movement, which can confound PRI measurements, will have limited influence on the
24 spectral measurements (Gamon et al., 1990, 1992). Over the next ~30 minutes, canopy HCRF
25 was collected from multiple instruments (Table 2) at ~10 second intervals over the previously
26 shaded plant canopy. The PRI from the UniSpec DC was obtained using equations 1 and 2
27 whereas the PRI from the SKR 1800 sensors was derived from equation 4 (see section 2.2 for
28 equations and details of spectral processing).

1 Time series plots were used to visually examine dynamic changes in the canopy PRI. The mean
2 difference (MD) between the values of PRI derived from the SKR 1800 and UniSpec DC
3 instruments, along with the standard deviation of the differences (SDs) and of the mean
4 difference (or standard error, SE) were computed as a quantitative measure of discrepancies:

5 $MD = \frac{1}{n} \sum_{i=1}^n (x_{i,SKR\ 1800} - x_{i,UniSpec\ DC})$ (6)

6 $SD = \sqrt{\frac{1}{n-1} \sum_{i=1}^n [x_{i,SKR\ 1800} - x_{i,UniSpec\ DC} - MD]^2}$ (7)

7 $SE = \frac{SD}{\sqrt{n}}$ (8)

8 Where $x_{i,SKR\ 1800}$ and $x_{i,UniSpec\ DC}$ are the PRI values of SKR 1800 and UniSpec DC instruments,
9 respectively. The same comparative analysis was repeated for pooled data and data stratified by
10 species.

11 2.3.2 Experiment 2: A diurnal study

12 The diurnal experiment was undertaken to explore the relationships between PRI measurements
13 and the epoxidation state of the xanthophyll cycle pigments under naturally changing sunlight.
14 The influence of changing sun angle and low light levels on measured PRI and diurnal
15 dependencies of sensor differences were also assessed. Measurements were collected from 06:30
16 to 19:50 on 25th July 2013 over a potted lodgepole pine (*Pinus contorta*) closed-canopy synthetic
17 stand (1 x 1 m plot). The pine saplings were approximately 4 years old, well-watered and located
18 on the roof of the Biological Sciences building at the University of Alberta.

19 Canopy PRI was measured at 1 minute intervals from the automated SKR 1800 sensors and at
20 ~15 minute intervals for the UniSpec SC instrument. In addition, hourly leaf-level HRCFs were
21 measured using a separate UniSpec SC instrument fitted with a needle leaf clip, bifurcated fiber
22 optic and an internal light source. On each occasion, leaf spectral measurements were recorded
23 from the same four plants, one located in each of the four corners of the study plot (n = 40).
24 Sample leaves were randomly chosen from the top of each plant canopy. Needles with a similar
25 orientation and sun exposure to those used for leaf reflectance factor measurements were also

1 | sampled ([2 needles per plant, each 3 cm long](#)) and immediately frozen in liquid nitrogen for
2 | analysis of xanthophyll cycle pigments using high-performance liquid chromatography (HPLC;
3 | 1260 Infinity, Agilent Technologies, Santa Clara, CA, USA) and the procedure of Thayer and
4 | Björkman (1990). The epoxidation state (EPS) was calculated from the area-based molar
5 | concentrations of the three xanthophyll cycle pigments, violaxanthin (V), antheraxanthin (A), and
6 | zeaxanthin (Z) using Eq. (9):

7 |
$$EPS = \frac{V+0.5*A}{V+A+Z} \quad (9)$$

8 | Incident PPFD was recorded throughout the experiment with a quantum sensor (LI190SB, LI-
9 | COR, Lincoln NE, USA). Time series were used to visually examine relationships between PRI
10 | and the epoxidation state of the pine canopy as a function of illumination conditions, and
11 | regression relationships were formulated between PRI and EPS.

12 |

13 | **3 Results**

14 | **3.1 Experiment 1: Dark-to-light transitions**

15 | **3.1.1 Sensor comparisons**

16 | Fig. 2 shows an example of the observed changes in the PRI as an alfalfa canopy was suddenly
17 | exposed to high light levels. The dynamic pattern of the PRI was similar for both instruments,
18 | although the actual values of the index measured by the SKR 1800 sensors were much higher.
19 | When data from all plant canopies used in the dark-to-light experiments were pooled, there was a
20 | near-linear relationship between the PRI recorded by both sensors ($r^2 = 0.98$; Fig. 3a), although
21 | the values obtained from the SKR 1800 sensor-pair exhibited a lower dynamic range and were
22 | consistently and significantly higher ($p < 0.0001$, Student's t-test) than the UniSpec DC, with a
23 | mean difference (MD) of 0.1. After normalising for instrument configuration differences, using
24 | the SRFs for the SKR 1800, the SKR 1800 PRI remained consistently and significantly higher (p
25 | < 0.0001 , Student's t-test) than those derived from the UniSpec DC, but the values were closer to
26 | the 1:1 line, and the MD was reduced by a factor of 10 (MD=0.01, Fig. 3b). Fig. 4 summarizes
27 | the differences between the two instruments by plant species, after SRF corrections had been

1 applied. Mean PRI instrument differences were similar for alfalfa, aspen and strawberry canopies
2 (~10-15%), but SKR 1800 PRI values were often more than twice as high than those measured by
3 the UniSpec DC over the ponderosa pine canopy.

4 **3.1.2 Tracking physiological change**

5 The full results of the dark-to-light experiment, after normalising for different instrument SRFs,
6 can be seen in Fig. 5. For most species, the PRI rapidly decreased upon initial removal of the
7 shade cloth. Largest decreases occurred within the first 5 minutes after exposure to sunlight.
8 After the initial reduction, the PRI for aspen and ponderosa pine began to gradually increase as
9 the leaves became acclimatised to the light. The fluctuating nature of the PRI response for aspen
10 can be explained by intermittent cloud cover that was present during the latter part of the
11 experiment (data not shown). Additionally, aspen leaves are prone to fluttering in the wind
12 (Roden and Pearcy 1992), which may have caused additional fluctuation in the PRI response.
13 Slight differences in the FOV of the two sensors over the aspen canopy may have led to the more
14 evident fluctuations in PRI measured by the UniSpec than measured by the SKR 1800 sensors.

15 **3.2 Experiment 2: A diurnal study**

16 Fig. 6 illustrates the environmental conditions present during the diurnal experiment undertaken
17 over a lodgepole pine canopy during July 2013. Sky conditions were clear throughout the
18 morning although some clouds were present at noon and became more frequent from 16:00
19 onwards (Fig. 6a). Temperatures throughout the measurement period ranged from 13°C at sunrise
20 to a maximum of at 24°C at 17:08 (Fig. 6c) whereas relative humidity was highest during the
21 early part of the day (60-70%) and lowest during early to mid-afternoon (~ 45%; Fig. 6d).

22 **3.2.1 Sensor comparisons**

23 Diurnal PRI profiles for the pine canopy (UniSpec SC canopy and SKR 1800) and individual
24 pine needles (UniSpec SC leaf) are shown in Fig. 7a. The PRI was highest in the morning and
25 early evening and lowest during the early to mid-afternoon when both temperature and
26 illumination were greatest (Fig. 6a and 6c). Leaf-level PRI followed a similar trend to that of the
27 canopy but did not replicate the high values measured at the canopy-level during the early part of

1 the day when solar zenith angles (SZA) were high ($> \sim 60^\circ$). These anomalously high canopy
2 PRI values are unlikely to accurately indicate physiological state. A closer inspection of the full
3 VIS-NIR reflectance spectrum for data collected with the canopy UniSpec instrument, illustrated
4 that the observed artefacts at high SZAs were not confined to reflectance factors at 531 nm and
5 570 nm (data not shown), but were probably general responses to high SZAs and low light. When
6 differences in the SRF of each instrument were not taken into account, the SKR 1800 PRI values
7 were significantly higher than those obtained from either of the UniSpec instruments, and the PRI
8 values measured at the leaf-level were generally higher than those recorded with the UniSpec
9 instrument over the canopy.

10 To further investigate the reasons surrounding the comparatively high PRI values derived from
11 the SKR 1800 sensor-pair, we used white panel measurements collected throughout the course of
12 the day to perform an in situ cross-calibration of the sensors. The cross-calibration enabled the
13 HCRF to be derived from each of the two SKR 1800 wavelength channels (see section 2.2.3).
14 The diurnal pattern of reflectance factors for the 531 nm and 570 nm channels, in comparison to
15 those measured by the UniSpec canopy instrument, are shown in Fig. 8. The figure clearly
16 illustrates differences in the HCRFs measured by each instrument. The 531 nm reflectance factor
17 recorded by the SKR 1800 sensors is consistently higher than that recorded at 570 nm. However,
18 the opposite is true for both the UniSpec canopy measurements (Fig. 8), and the UniSpec leaf
19 measurements (data not shown). Using Eq. (1) to obtain PRI for these data resulted in a lower
20 PRI for data collected with the UniSpec instruments than those obtained by the SKR 1800
21 sensors, as shown in Fig. 7a.

22 Fig. 7b compares the diurnal patterns of the PRI from all sensors after the SRF correction had
23 been applied to both Unispec instruments. The results show that instrument differences observed
24 in the diurnal pattern of the PRI were not purely a consequence of differences in the spectral
25 response. Small differences can be seen between the PRI obtained by the SKR 1800 sensor-pair
26 using the manufacturer's calibration and the in situ cross-calibration procedure. These differences
27 were magnified when illumination conditions became more erratic during the late afternoon.

1 **3.2.2 Tracking physiological change**

2 Fig. 9 illustrates the diurnal PRI and EPS patterns of individual needle leaves sampled from each
3 of the four corners of the pine canopy. Temporal changes were most pronounced in leaves
4 located in the southern corners of the sampling plot. Over the course of the experiment these
5 leaves were exposed to higher light levels for a longer duration and showed a clear decrease in
6 both PRI and EPS as illumination increased during the early to mid-afternoon, before gradually
7 increasing towards the early evening. A similar decrease in the PRI during the early to mid-
8 afternoon was observed at the canopy-scale by the SKR 1800 sensors, although a less prominent
9 pattern was observed by the UniSpec instrument (Fig. 9).

10 The PRI was significantly correlated with EPS both at the leaf and at the canopy-level (Fig. 10).
11 The strongest correlations were observed at the canopy-scale when PRI was measured with the
12 UniSpec instrument ($r^2 = 0.76$), and weakest when using the SKR 1800 sensors ($r^2 = 0.46$).
13 Differences in instrument SRFs did not influence the strength of the correlations between EPS
14 and the UniSpec canopy PRI, and UniSpec leaf PRI (after SRF corrections were applied, $r^2 =$
15 0.77 , $p < 0.001$ and $r^2 = 0.56$, $p < 0.01$; respectively (data not shown)).

16 We calculated the NDVI from the UniSpec canopy data to explore whether the PRI was
17 influenced by diurnal changes in plant canopy architecture. The results showed that there was no
18 correlation between NDVI and EPS ($r^2 = 0.007$; data not shown), indicating that the diurnal
19 variation observed in the canopy PRI was not simply a consequence of changing canopy
20 architecture but instead reflected actual changes in the xanthophyll cycle related to altered
21 photosynthetic activity.

22

23 **4 Discussion**

24 Our results suggest that under environmental conditions (e.g. temperature and relative humidity)
25 similar to those observed in the current study, both the UniSpec and SKR 1800 instruments are
26 able to track changes in the PRI signal in response to short-term (or facultative) plant responses
27 to changing illumination conditions. Differences between the values of the PRI obtained from
28 each instrument were significant, but generally consistent across a range of species and canopy

1 architectures. Although the centre wavelengths of each of the SKR 1800 channels were located
2 very close to the standard 531 nm and 570 nm wavelengths commonly used to calculate the PRI,
3 the SRFs of the two instruments were different (Fig. 1). For the SKR 1800 sensor-pair, these
4 differences resulted in a higher HCRF at 531 nm, a region where changing absorption takes place
5 due to the activity of xanthophyll pigments, than at the reference wavelength of 570 nm; which is
6 opposite to that observed by the UniSpec instruments. Simulating the SKR 1800 measurements
7 from the UniSpec via convolution resulted in PRI values from both instruments that were more
8 similar, although statistically significant differences remained. Differences in the SRFs between
9 instruments are common and not confined to the two instruments used in this study. Castro-Esau
10 et al. (2006) compared a range of spectral indices obtained from multiple industry-standard
11 spectrometers and also found values of the PRI to be particularly sensitive to instrument
12 configuration. One possible reason for the remaining differences in PRI values post convolution,
13 in the current study, may be that the corresponding spectral channels on the upward and
14 downward facing SKR 1800 sensors are not identical i.e. their SRFs differ (Fig. 1). This was not
15 accounted for in the spectral convolution, which only used the SRFs generated for the downward
16 facing sensor. Even though great care was taken to match the ground resolution element observed
17 by each instrument, small differences in the area of the canopy that was observed may remain.

18 Diurnal patterns of PRI, showing a decline in PRI towards mid-day and a recovery during late
19 afternoon, were similar to those reported by other studies (e.g. Gamon et al. 1992; Filella et al.
20 1996). Anomalously high canopy PRI values were noted in the early morning when SZAs
21 exceeded $\sim 60^\circ$, although the reasons for such values are likely to be instrumental and a
22 combination of a low signal-to-noise ratio under low light conditions and the departure of the
23 white reference panel and SKR 1800 cosine diffuser from true cosine behaviour at high SZAs
24 (e.g. Duggin 1980). Consequently the collection of data when the SZA is high or illumination
25 conditions are highly variable is not recommended.

26 The physiological PRI responses reported here from the dark-to-light transition experiments are
27 similar to those of others (Gamon et al., 1990, 1992; Gamon and Berry, 2012, Hmimina et al.,
28 2014). All species showed a decline in the PRI as plants were exposed to rapid increases in
29 illumination, suggesting changes in the epoxidation state of the xanthophyll cycle in response to
30 increased sun exposure (Demmig-Adams, 1990). The very low dynamic range of the PRI

1 observed for the ponderosa pine canopy (Fig. 5d) was most likely a consequence of the saplings
2 becoming excessively hot under the black cloth prior to the experimental measurements, which
3 lead to the visible death of many top canopy leaves by the end of the experiment.

4 After normalisation for different instrument SRFs, instrument differences between PRI values
5 were similar for all canopies, apart from the ponderosa pine where the PRI measured by the SKR
6 1800 sensors was often double of that recorded by the UniSpec (Fig. 4). Due to the death of many
7 of the top canopy leaves during the canopy shading, the PRI remained extremely low throughout
8 the experiment (Fig. 5d) and thus the large between-instrument differences in index values may
9 be a consequence of a low signal-to-noise ratio for the SKR 1800 sensors under conditions where
10 the reflectance signal is weak.

11 Even though the PRI is often used as an indicator of photosynthetic efficiency in many remote
12 sensing studies, few studies actually relate the index to the changes in the xanthophyll pigment
13 pool, which it aims to detect (e.g. Gamon et al., 1990, 1992, 2001; Filella et al., 1996; Gamon
14 and Berry, 2012). Significant correlations were observed between diurnal changes in EPS and
15 PRI at both the canopy- and leaf-level (Fig. 10), and indicate leaf responses are also detectable at
16 the canopy scale with both instruments. These results are similar to previous diurnal studies by
17 Gamon et al. (1992) and Filella et al. (1996).

18 The strength of the relationship between PRI and EPS measured at the leaf-level was weaker than
19 that measured at the canopy-scale using a similar UniSpec instrument. Diurnal PRI patterns at the
20 leaf-level were largely dominated by leaves sampled from plants facing south, but also included
21 measurements from leaves exposed to lower levels of illumination where diurnal changes in EPS
22 and PRI were minimal (Fig. 9). Consequently relationships between leaf-level PRI and EPS were
23 stronger for south facing leaves ($r^2 = 0.73, p < 0.05$ and $r^2 = 0.43, p < 0.05$; for the SW and SE
24 facing leaves respectively) than those facing north ($r^2 = 0.07, p = 0.5$ and $r^2 = 0.12, p = 0.4$; for
25 the NW and NE facing leaves respectively). Both temporal patterns were incorporated into the
26 mean values of EPS and PRI, which introduced scatter into the leaf-level EPS-PRI regression and
27 thus weakening the overall relationship (Fig. 10). Differences in the linear regression coefficients
28 of the EPS-PRI relationship for the leaf and canopy, when using similar UniSpec instruments,
29 were also apparent. Such differences may have resulted from the use of two different UniSpec

1 instruments, which were not cross-calibrated, but may also be a consequence of comparing leaf-
2 level measurements made under controlled illumination conditions with those obtained from an
3 entire canopy under natural sunlight. Similar offsets in PRI values between leaf and canopy-
4 levels have been reported previously (e.g. Gamon and Qiu 1999).

5 Canopy PRI obtained by both the SKR 1800 and UniSpec instruments predominantly reflected
6 changes in the sun-exposed canopy. However, the SKR 1800 sensors recorded a prominent
7 decrease in the PRI during the early afternoon (Fig. 7). This pattern was also reflected in some of
8 the more southerly facing leaf-level measurements and coincided with increased variability in the
9 measures of the EPS. Consequently the observed between-sensor differences are likely due to
10 each sensor having a slightly different FOV. The complexity of the conifer canopy is such that
11 even relatively small differences in the FOV between instruments may result in each instrument
12 measuring parts of the canopy that may have been exposed to different levels of illumination (i.e.
13 levels of sun and shade; Gamon and Bond 2013).

14 Although differences in the spectral configuration of the two instruments resulted in significantly
15 different PRI values, the strength of the PRI-EPS relationship for the UniSpec instruments prior
16 to and after applying the SRF corrections, was not significantly different. Early work on the
17 initial formulation of the PRI (e.g. Gamon et al, 1992) showed that there may not be a single
18 optimum reference wavelength for the PRI equation. In these early studies, using a Spectron
19 instrument (FWHM ~10 nm), Gamon et al. (1992) showed that significant correlations between
20 EPS and PRI could be obtained using a reference wavelength within the ~ 550 nm to ~570 nm
21 range. Consequently, whilst the SRF centred at ~570 nm differed between the SKR 1800 and
22 UniSpec instruments, resulting in differences in the wavelengths and relative contribution of light
23 to the 570 nm radiance measurements, the light contributing to the reference wavelength for each
24 instrument was within the optimum range reported by Gamon et al. (1992). However, even when
25 the SKR 1800 sensors were simulated by the UniSpec canopy instrument, the diurnal pattern did
26 not match that of the actual SKR 1800 sensors and the PRI-EPS relationship was consistently
27 stronger than the relationship observed between EPS and the SKR 1800-measured PRI
28 suggesting that instrument differences other than the spectral response (e.g. signal-to-noise ratio,
29 FOV, the use of a cosine diffuser compared to a Spectralon panel, quality of the optics) may also
30 have contributed to the observed divergence in diurnal PRI values between instruments. Further

1 inter-comparison studies, which utilise more uniform vegetation canopies (e.g. Anderson et al.
2 2013) would help clarify the exact reasons for these observed sensor differences.

3

4 **5 Concluding remarks**

5 Near-surface optical sampling can be used to complement existing vegetation and
6 micrometeorological measurements to enable assessment of biogeochemical processes over a
7 range of spatial scales. Sensors that are capable of measuring reflectance across narrow spectral
8 bands are of particular interest for monitoring changes in plant physiological processes (e.g.
9 photochemical reflectance index; PRI) linked to carbon exchange and photosynthetic
10 downregulation via xanthophyll cycle pigments. The cost of unattended optical instruments is
11 now such that these instruments are increasingly being deployed for long term temporal
12 monitoring. However, a full characterisation of these sensors is necessary if the data are to be
13 compared across geographical locations, over time and between instruments. Specifically, it is
14 critical that the SKR 1800 sensors being used have matching wavelengths and the same spectral
15 response. Ideally, this could be confirmed by the manufacturer or by independent laboratory tests.
16 If independent, automated spectrometers were also on site, then it would be possible to simulate
17 the SKR 1800 response to understand the sources of any differences that might occur. All sensors
18 deployed should be mounted at similar distances from the canopy and at similar angles. They
19 should be checked and cleaned annually and according to the manufacturer's recommendations,
20 returned for laboratory calibration every two years. Additional corrections, for dark-current drift
21 and temperature drift in response to large variations in temperature, may also be required
22 (Eklundh et al. 2011). Regular cross-calibration can be used to assess and possibly correct for
23 such instrument drift.

24 In this paper, we compared the physical capabilities of two brands of field-portable narrow-band
25 instruments commonly used to measure PRI; namely UniSpec spectroradiometer (PP Systems,
26 USA) and SKR 1800 (Skye Instruments, UK). The shade-removal experiments revealed that both
27 instruments were able to track rapid apparent changes in the epoxidation state of xanthophyll
28 cycle pigments, although the dynamic range of the PRI was lower for the SKR 1800 sensors
29 suggesting a lower sensitivity to changes in xanthophyll cycle pigments related to photosynthetic

1 activity. The PRI values measured from each instrument were subject to a systematic difference
2 (bias), the magnitude of which appeared to be generally consistent across the range of species
3 studied and could primarily be explained by differences in the spectral configuration of each
4 instrument.

5 Despite the recent proliferation in the use of SKR 1800 unattended PRI sensors, to the best of our
6 knowledge there are no published data reporting relationships between the PRI measurements
7 obtained from this instrument and actual changes in xanthophyll pigments. In this study, the
8 diurnal course of the PRI obtained from both the UniSpec and SKR 1800 instruments compared
9 well with leaf-level HCRF measurements and physical measures of the EPS. However, both
10 instruments were susceptible to the well-documented issues associated with the collection of
11 spectral data at high solar zenith angles ($> 60^\circ$) and under fluctuating illumination conditions
12 independent of whether the mode of operation was dual or single beam (SKR 1800 and UniSpec
13 SC, respectively). The findings suggest that the SKR 1800 sensors can be used for tracking short-
14 term facultative changes in plant photosynthetic activity although the apparent lower sensitivity
15 of the instrument to changes in EPS weakens the relationship in comparison to the more
16 expensive instruments.

17 The collective results clearly indicate the importance of characterizing the physical capabilities of
18 sensors before field deployment. The spectral configuration of the SKR 1800 sensor-pair is often
19 dependent on the customers preferred bandwidth (e.g. 5 nm or 10 nm) and the manufacturers
20 selection of filters, such that different SKR 1800 sensor-pairs may also give PRI values that are
21 not directly comparable. Consequently the physiological interpretation of the PRI values should
22 be undertaken with care, particularly when data from different instruments or sites are being
23 compared.

24 Data collected at high solar zenith angles are unlikely to be related to physiological changes in
25 the vegetation canopy and the sensitive nature of the PRI signal is such that values obtained
26 under varying illumination conditions could also be subject to large errors. These errors can be
27 eliminated or reduced at the leaf-level by using active methods (e.g. using the artificial light
28 source provided with a leaf clip), and additional efforts to develop active PRI measurements,

1 such as the use of green lasers centred at 532 nm, might help reduce these illumination errors at
2 the canopy scale (e.g. Magney et al. 2014).

3 Although the strength of the relationship between the SKR 1800 PRI and the epoxidation state of
4 the xanthophyll cycle (EPS) was weaker than those obtained from more expensive instruments, at
5 seasonal timescales variations in PRI may be larger than diurnal changes (e.g. Sims et al. 2006)
6 and thus more easily detected by the SKR 1800. At these longer timescales, the PRI has been
7 shown to be an indicator of constitutive pool size changes in pigment content as opposed to rapid
8 xanthophyll cycle pigment activity ([Stylianski et al. 2002; Garrity et al. 2011; Porcar-Castell et al. 2013; Wong and Gamon in press](#)) and thus data from these sensors could help to elucidate how
9 plants respond to changing environmental and physiological conditions across multiple temporal
10 scales, and aid in the development of improved PRI-based photosynthesis models. However,
11 further work is required regarding the temperature-dependency and long-term stability of such
12 sensors, especially if data are to be compared across seasons.

14 In conclusion, the SKR 1800 sensors were able to track changes in the PRI in a consistent manner
15 across a range of plant canopies and if combined with contextual information, such as the
16 expected range in PRI values for healthy/stressed canopies, PRI data from these sensors could be
17 used to effectively monitor dynamic changes in vegetation physiology.

18

19 **Acknowledgements**

20 The work was partially supported by a EUROSPEC – Cost Action ES0903 Short Term Scientific
21 Mission grant (awarded to AH). Additional support was provided by NSERC discovery grant,
22 iCORE/AITF award and CFI grant (awarded to JAG). Olga Kovalchuk (University of Alberta,
23 Canada) and Enrica Nestola (Institute of AgroEnvironmental & Forest Biology, National
24 Research Council, Porano, Italy) are also thanked for their help during the fieldwork.

25

26 **References**

27 Anderson, K., Milton, E. J., and Rollin, E. M.: Calibration of dual-beam spectroradiometric data,
28 Int. J. Remote Sens., 27, 975-986, 10.1080/01431160500213375, 2006.

1 Anderson, K., Rossini, M., Pacheco-Labrador, J., Balzarolo, M., Mac Arthur, A., Fava, F., Julitta,
2 T., and Vescovo, L.: Inter-comparison of hemispherical conical reflectance factors (HCRF)
3 measured with four fibre-based spectrometers, *Optics Express*, 21, 605-617, 2013.

4 Anderson, M. C., Kustas, W. P., and Norman, J. M.: Upscaling and downscaling--A regional
5 view of the soil-plant-atmosphere continuum, *Agron J*, 95, 1408-1423, 2003.

6 Baldocchi, D., Falge, E., Gu, L. H., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer,
7 C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X. H., Malhi, Y.,
8 Meyers, T., Munger, W., Oechel, W., U, K. T. P., Pilegaard, K., Schmid, H. P., Valentini, R.,
9 Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A new tool to study the temporal
10 and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities,
11 Bulletin of the American Meteorological Society, 82, 2415-2434, 10.1175/1520-
12 0477(2001)082<2415:fantts>2.3.co;2, 2001.

13 Castro-Esau, K. L., Sanchez-Azofeifa, G. A., and Rivard, B.: Comparison of spectral indices
14 obtained using multiple spectroradiometers, *Remote Sens. Environ.*, 103, 276-288,
15 10.1016/j.rse.2005.01.019, 2006.

16 Cheng, Y. B., Middleton, E. M., Huemmrich, K. F., Zhang, Q. Y., Campbell, P. K. E., Corp, L.
17 A., Russ, A. L., and Kustas, W. P.: Utilizing in situ directional hyperspectral measurements to
18 validate bio-indicator simulations for a corn crop canopy, *Ecological Informatics*, 5, 330-338,
19 10.1016/j.ecoinf.2010.03.001, 2010.

20 Duggin, M. J.: The field measurement of reflectance factors, *Photogramm. Eng. Rem. Sens.*, 46,
21 643-647, 1980.

22 Demmig-Adams, B.: Carotenoids and photoprotection in plants - A role for the xanthophyll
23 zeaxanthin, *Biochim. Biophys. Acta*, 1020, 1-24, 10.1016/0005-2728(90)90088-1, 1990.

24 Eklundh, L., Jin, H., Schubert, P., Guzinski, R., and Heliasz, M.: An optical sensor network for
25 vegetation phenology monitoring and satellite data calibration, *Sensors*, 11, 7678-7709, 2011.

26 Erdle, K., Mistele, B., and Schmidhalter, U.: Comparison of active and passive spectral sensors in
27 discriminating biomass parameters and nitrogen status in wheat cultivars, *Field Crops Research*,
28 124, 74-84, 10.1016/j.fcr.2011.06.007, 2011.

1 Filella, I., Amaro, T., Araus, J. L., and Peñuelas, J.: Relationship between photosynthetic
2 radiation-use efficiency of Barley canopies and the photochemical reflectance index (PRI),
3 *Physiol. Plant.*, 96, 211-216, 10.1111/j.1399-3054.1996.tb00204.x, 1996.

4 Fitzgerald, G. J.: Characterizing vegetation indices derived from active and passive sensors, *Int.*
5 *J. Remote Sens.*, 4335-4348, 2010.

6 Gamon, J. A., Field, C. B., Bilger, W., Bjorkman, O., Fredeen, A. L., and Peñuelas, J.: Remote
7 sensing of xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies,
8 *Oecologia*, 85, 1-7, 1990.

9 Gamon, J. A., Peñuelas, J., and Field, C. B.: A narrow-waveband spectral index that tracks
10 diurnal changes in photosynthetic efficiency, *Remote Sens. Environ.*, 41, 35-44, 1992.

11 Gamon, J. A., Filella, I., and Peñuelas, J.: The dynamic 531 nm Δ reflectance signal: A survey of
12 twenty angiosperm species, *Current Topics in Plant Physiology*, 8, 172-177, 1993.

13 Gamon, J. A., and Qiu, H. L.: Ecological applications of remote sensing at multiple scales,
14 *Handbook of Functional Plant Ecology*, 805-846, 1999.

15 Gamon, J. A., Field, C. B., Fredeen, A. L., and Thayer, S.: Assessing photosynthetic
16 downregulation in sunflower stands with an optically-based model, *Photosynth. Res.*, 67, 113-
17 115, 2001.

18 Gamon, J. A., Cheng, Y., Claudio, H., MacKinney, L., and Sims, D. A.: A mobile tram system
19 for systematic sampling of ecosystem optical properties, *Remote Sens. Environ.*, 103, 246-254,
20 10.1016/j.rse.2006.04.006, 2006a.

21 Gamon, J. A., Rahman, A. F., Dungan, J. L., Schildhauer, M., and Huemmrich, K. F.: Spectral
22 Network (SpecNet)--What is it and why do we need it?, *Remote Sens. Environ.*, 103, 227-235,
23 2006b.

24 Gamon, J. A., and Berry, J. A.: Facultative and constitutive pigment effects on the Photochemical
25 Reflectance Index (PRI) in sun and shade conifer needles, *Israel Journal of Plant Sciences*, 60,
26 85-95, 10.1560/ijps.60.1-2.85, 2012.

1 [Gamon, J. A., and Bond, B.: Effects of irradiance and photosynthetic downregulation on the](#)
2 [photochemical reflectance index in Douglas-fir and ponderosa pine, Remote Sens. Environ., 135,](#)
3 [141-149, 10.1016/j.rse.2013.03.032, 2013.](#)

4 Garbulsky, M. F., Peñuelas, J., Gamon, J., Inoue, Y., and Filella, I.: The photochemical
5 reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use
6 efficiencies: A review and meta-analysis, *Remote Sens. Environ.*, 115, 281-297,
7 10.1016/j.rse.2010.08.023, 2011.

8 [Garrity, S. R., Eitel, J. U. H., and Vierling, L. A.: Disentangling the relationships between plant](#)
9 [pigments and the photochemical reflectance index reveals a new approach for remote estimation](#)
10 [of carotenoid content, Remote Sens. Environ., 115, 628-635, 10.1016/j.rse.2010.10.007, 2011.](#)

11 Gitelson, A. A., Vina, A., Ciganda, V., Rundquist, D. C., and Arkebauer, T. J.: Remote
12 estimation of canopy chlorophyll content in crops, *Geophys. Res. Lett.*, 32,
13 10.1029/2005GL022688, 2005.

14 Harris, A., and Dash, J.: The potential of the MERIS Terrestrial Chlorophyll Index for carbon
15 flux estimation, *Remote Sens. Environ.*, 114, 1856-1862, 10.1016/j.rse.2010.03.010, 2010.

16 Hilker, T., Gitelson, A., Coops, N., Hall, F., and Black, T.: Tracking plant physiological
17 properties from multi-angular tower-based remote sensing, *Oecologia*, 165, 865-876,
18 10.1007/s00442-010-1901-0, 2011.

19 Hill, M. J., Held, A. A., Leuning, R., Coops, N. C., Hughes, D., and Cleugh, H. A.: MODIS
20 spectral signals at a flux tower site: Relationships with high-resolution data, and CO₂ flux and
21 light use efficiency measurements, *Remote Sens. Environ.*, 103, 351-368, 2006.

22 Hmimina, G., Dufrene, E., Pontailler, J. Y., Delpierre, N., Aubinet, M., Caquet, B., de
23 Grandcourt, A., Burban, B., Flechard, C., Granier, A., Gross, P., Heinesch, B., Longdoz, B.,
24 Moureaux, C., Ourcival, J. M., Rambal, S., Saint Andre, L., and Soudani, K.: Evaluation of the
25 potential of MODIS satellite data to predict vegetation phenology in different biomes: An
26 investigation using ground-based NDVI measurements, *Remote Sens. Environ.*, 132, 145-158,
27 10.1016/j.rse.2013.01.010, 2013.

1 Hmimina, G., Dufrene, E., and Soudani, K.: Relationship between photochemical reflectance
2 index and leaf ecophysiological and biochemical parameters under two different water statuses:
3 towards a rapid and efficient correction method using real-time measurements, *Plant Cell and*
4 *Environment*, 37, 473-487, 10.1111/pce.12171, 2014.

5 Huemmrich, K. F., Gamon, J. A., Tweedie, C. E., Oberbauer, S. F., Kinoshita, G., Houston, S.,
6 Kuchy, A., Hollister, R. D., Kwon, H., Mano, M., Harazono, Y., Webber, P. J., and Oechel, W.
7 C.: Remote sensing of tundra gross ecosystem productivity and light use efficiency under varying
8 temperature and moisture conditions, *Remote Sens. Environ.*, 114, 481-489,
9 10.1016/j.rse.2009.10.003, 2010.

10 Jin, H., and Eklundh, L.: Guidelines for multispectral measurement of vegetation, ver 1.0, Lund
11 University, 2013.

12 Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D., Arain, M. A., Arneth,
13 A., Bernhofer, C., Bonal, D., Chen, J., Gianelle, D., Gobron, N., Kiely, G., Kutsch, W., Lasslop,
14 G., Law, B. E., Lindroth, A., Merbold, L., Montagnani, L., Moors, E. J., Papale, D., Sottocornola,
15 M., Vaccari, F., and Williams, C.: Global patterns of land-atmosphere fluxes of carbon dioxide,
16 latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological
17 observations, *J. Geophys. Res.* 116, G00J07, 10.1029/2010JG001566, 2011.

18 Liu, J., Chen, J. M., Cihlar, J., and Chen, W.: Net primary productivity distribution in the
19 BOREAS region from a process model using satellite and surface data, *J. Geophys. Res.*, 104,
20 27735-27754, 10.1029/1999jd900768, 1999.

21 Magney, T. S., Eusden, S. A., Eitel, J. U. H., Logan, B. A., Jiang, J., and Vierling, L. A.:
22 Assessing leaf photoprotective mechanisms using terrestrial LiDAR: towards mapping canopy
23 photosynthetic performance in three dimensions, *New Phytol.*, 201, 344-356, 10.1111/nph.12453,
24 2014.

25 Milton, E. J., Schaepman, M. E., Anderson, K., Kneubühler, M., and Fox, N.: Progress in field
26 spectroscopy, *Remote Sens. Environ.*, 113, Supplement 1, S92-S109,
27 <http://dx.doi.org/10.1016/j.rse.2007.08.001>, 2009.

1 Monteith, J. L., and Moss, C. J.: Climate and efficiency of crop production in Britain,
2 Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 281,
3 277-294, 10.1098/rstb.1977.0140, 1977.

4 Myneni, R. B., Nemani, R. R., and Running, S. W.: Estimation of global leaf area index and
5 absorbed par using radiative transfer models, IEEE Trans. Geosci. Remote Sensing, 35, 1380-
6 1393, 10.1109/36.649788, 1997.

7 Pacheco-Labrador, J., and Martin, M.P.: Nonlinear response in a field portable spectroradiometer:
8 Characterization and effects on output reflectance, IEEE Trans. Geosci. Remote Sensing, 52,
9 920-928, 10.1109/tgrs.2013.2245671, 2014.

10 Peñuelas J., Filella I., Gamon J.A.: Assessment of photosynthetic radiation-use efficiency with
11 spectral reflectance, New Phytol., 131, 291-296, 1995.

12 Porcar-Castell, A., Garcia-Plazaola, J., Nichol, C., Kolari, P., Olascoaga, B., Kuusinen, N.,
13 Fernández-Marín, B., Pulkkinen, M., Juurola, E., and Nikinmaa, E.: Physiology of the seasonal
14 relationship between the photochemical reflectance index and photosynthetic light use efficiency,
15 Oecologia, 170, 313-323, 10.1007/s00442-012-2317-9, 2012.

16 R Development Core Team: R: A language and environment for statistical computing, R
17 Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, <http://www.R-project.org/>, 2012.

19 Reichstein, M., Ciais, P., Papale, D., Valentini, R., Running, S., Viovy, N., Cramer, W., Granier,
20 A., Ogee, J., Allard, V., Aubinet, M., Bernhofer, C., Buchmann, N., Carrara, A., Grunwald, T.,
21 Heimann, M., Heinesch, B., Knohl, A., Kutsch, W., Loustau, D., Manca, G., Matteucci, G.,
22 Miglietta, F., Ourcival, J. M., Pilegaard, K., Pumpanen, J., Rambal, S., Schaphoff, S., Seufert, G.,
23 Soussana, J. F., Sanz, M. J., Vesala, T., and Zhao, M.: Reduction of ecosystem productivity and
24 respiration during the European summer 2003 climate anomaly: a joint flux tower, remote
25 sensing and modelling analysis, Glob. Change Biol., 13, 634-651, 10.1111/j.1365-
26 2486.2006.01224.x, 2007.

27 Robinson, I., and MacArthur, A. The Field Spectroscopy Facility Post Processing Toolbox User
28 Guide: Post processing spectral data in MATLAB, 2011, 1-26.

1 Roden, J., and Pearcy, R.W.: Effect of leaf flutter on the light environment of poplars.
2 *Oecologia*, 93, 201-207, 1992.

3 Rollin, E. M., Emmery, D. R., Kerr, C. D., and Milton, E. J.: Dual-beam reflectance
4 measurements and the need for a field inter-calibration procedure, *Proceedings of RSS'98: 5 Developing International Connections*, Nottingham, UK, 1998, 552-558.

6 Rossini, M., Cogliati, S., Meroni, M., Migliavacca, M., Galvagno, M., Busetto, L., Cremonese,
7 E., Julitta, T., Siniscalco, C., di Cella, U. M., and Colombo, R.: Remote sensing-based estimation
8 of gross primary production in a subalpine grassland, *Biogeosciences*, 9, 2565-2584, 10.5194/bg-
9 9-2565-2012, 2012.

10 Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M. S., Reeves, M., and Hashimoto, H.: A
11 continuous satellite-derived measure of global terrestrial primary production, *Bioscience*, 54,
12 547-560, 2004.

13 Sims, D. A., Luo, H. Y., Hastings, S., Oechel, W. C., Rahman, A. F., and Gamon, J. A.: Parallel
14 adjustments in vegetation greenness and ecosystem CO₂ exchange in response to drought in a
15 Southern California chaparral ecosystem, *Remote Sens. Environ.*, 103, 289-303, 2006.

16 Smith, G. M., and Milton, E. J.: The use of the empirical line method to calibrate remotely sensed
17 data to reflectance, *Int. J. Remote Sens.*, 20, 2653-2662, 1999.

18 Soudani, K., Hmimina, G., Delpierre, N., Pontailler, J. Y., Aubinet, M., Bonal, D., Caquet, B., de
19 Grandcourt, A., Burban, B., Flechard, C., Guyon, D., Granier, A., Gross, P., Heinesh, B.,
20 Longdoz, B., Loustau, D., Moureaux, C., Ourcival, J. M., Rambal, S., Saint Andre, L., and
21 Dufrene, E.: Ground-based network of NDVI measurements for tracking temporal dynamics of
22 canopy structure and vegetation phenology in different biomes, *Remote Sens. Environ.*, 123, 234-
23 245, 10.1016/j.rse.2012.03.012, 2012.

24 Stoy, P. C., Williams, M., Evans, J. G., Prieto-Blanco, A., Disney, M., Hill, T. C., Ward, H. C.,
25 Wade, T. J., and Street, L. E.: Upscaling tundra CO₂ exchange from chamber to eddy covariance
26 tower, *Arct. Antarct. Alp. Res.*, 45, 275-284, 10.1657/1938-4246-45.2.275, 2013.

27 Stylinks, C., Gamon, J., and Oechel, W.: Seasonal patterns of reflectance indices, carotenoid
28 pigments and photosynthesis of evergreen chaparral species, *Oecologia*, 131, 366, 2002.

1 Thayer, S. S., and Bjorkman, O.: Leaf xanthophyll content and composition in sun and shade
2 determined by HPLC Photosynth. Res., 23, 331-343, 10.1007/bf00034864, 1990.

3 Turner, D., Urbanski, S., Bremwe, D., Wofsy, S. C., Meyers, T., Gower, S. T., and Gregory, M.:
4 A cross-biome comparison of daily light use efficiency for gross primary production, Glob.
5 Change Biol., 9, 383-395, 2003.

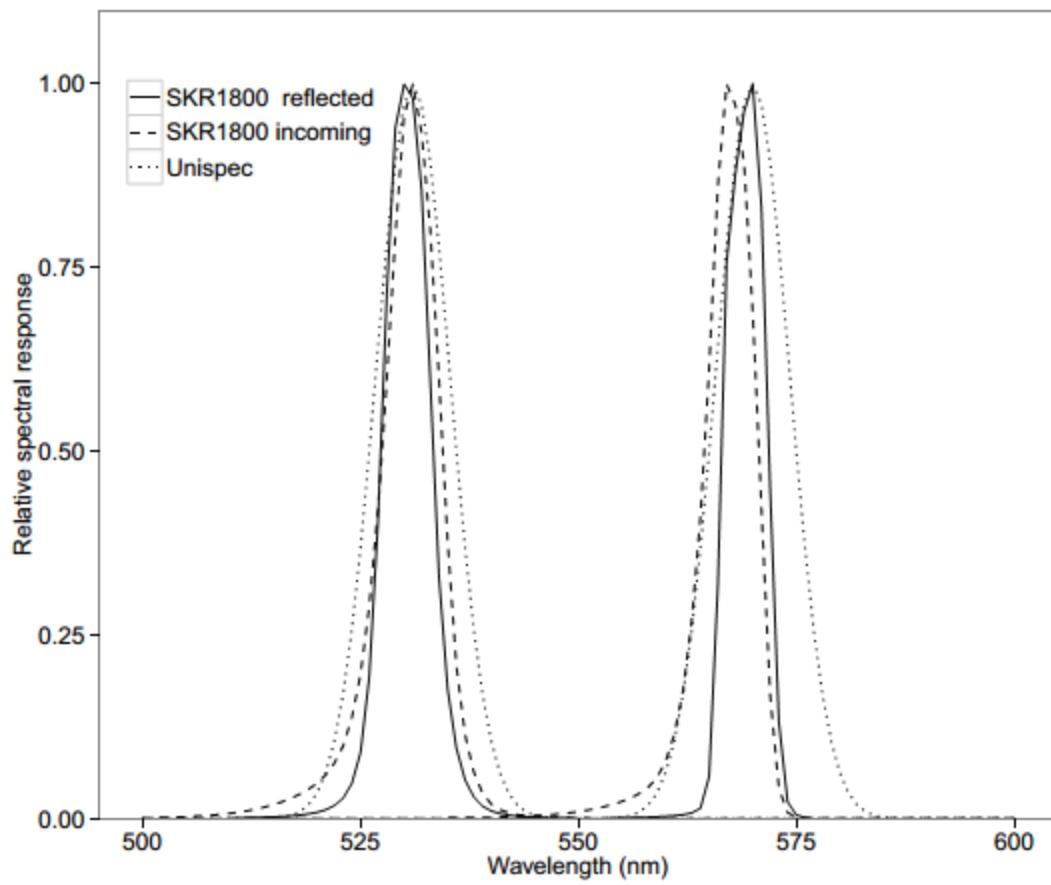
6 Venables, W. N., and Ripley, B. D.: Modern Applied Statistics with S. Fourth Edition. Springer,
7 New York, ISBN 0-387-95457-0, 2002.

8 Williams, M., Bell, R., Spadavecchia, L., Street, L. E., and Van Wijk, M. T.: Upscaling leaf area
9 index in an Arctic landscape through multiscale observations, Glob. Change Biol., 14, 1517-
10 1530, 10.1111/j.1365-2486.2008.01590.x, 2008.

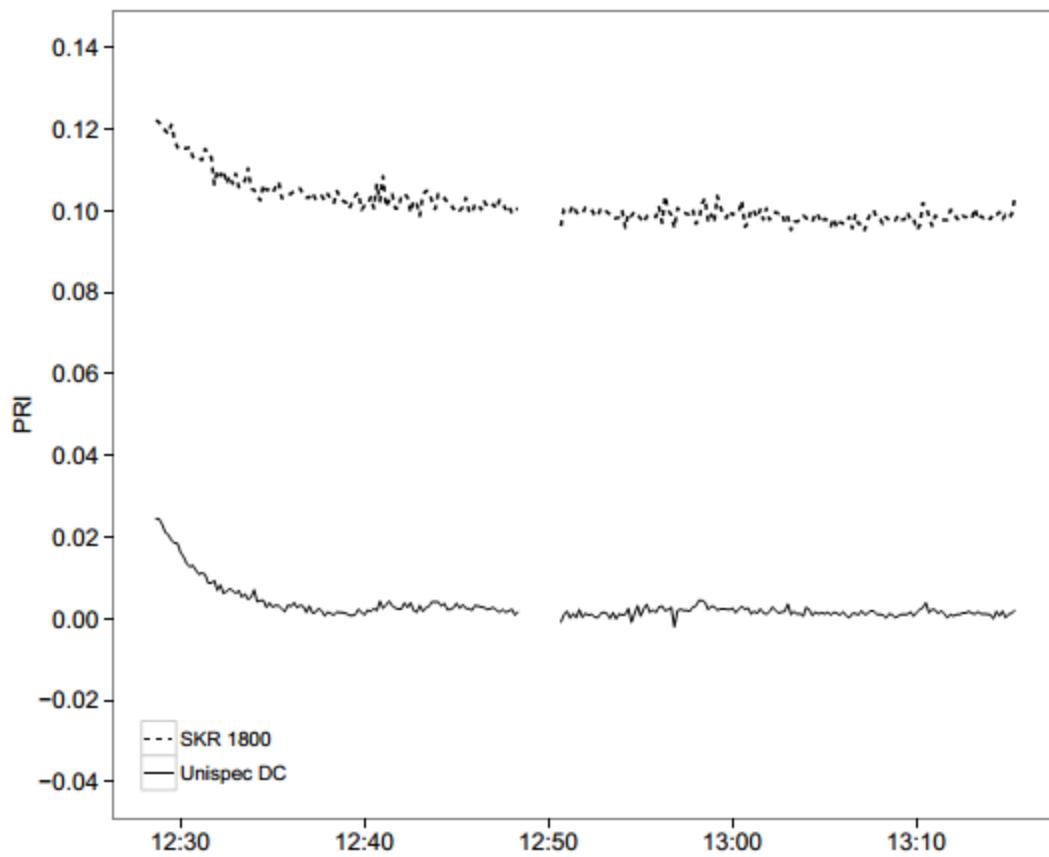
11 Wong, C., and Gamon, J.: Three causes of variation in the photochemical reflectance index (PRI)
12 in evergreen conifers, New Phytol., in press.

13 Wright, P., Bergin, M., Dibb, J., Lefer, B., Domine, F., Carman, T., Carmagnola, C., Dumont,
14 M., Courville, Z., Schaaf, C., and Wang, Z.: Comparing MODIS daily snow albedo to spectral
15 albedo field measurements in Central Greenland, Remote Sens. Environ., 140, 118-129, 2014.

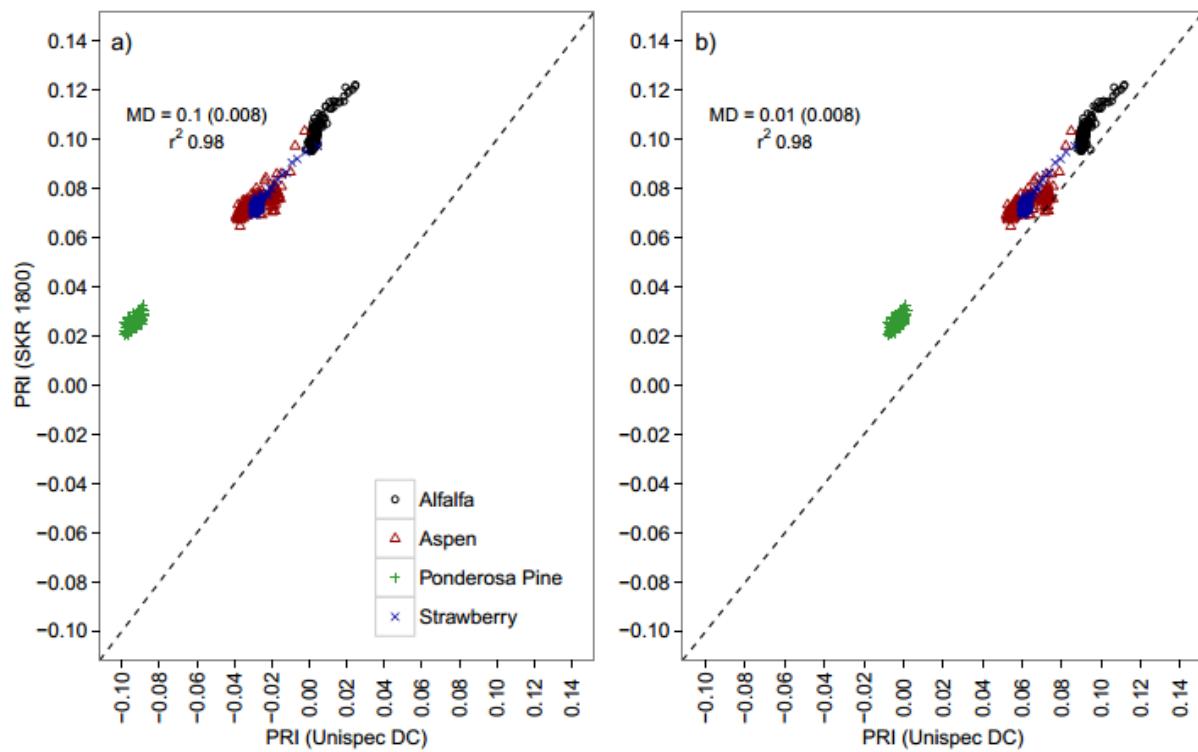
16 Yao, X., Yao, X., Jia, W., Tian, Y., Ni, J., Cao, W., and Zhu, Y.: Comparison and intercalibration
17 of vegetation indices from different sensors for monitoring above-ground plant nitrogen uptake in
18 winter wheat, Sensors, 13, 3109-3130, 2013.

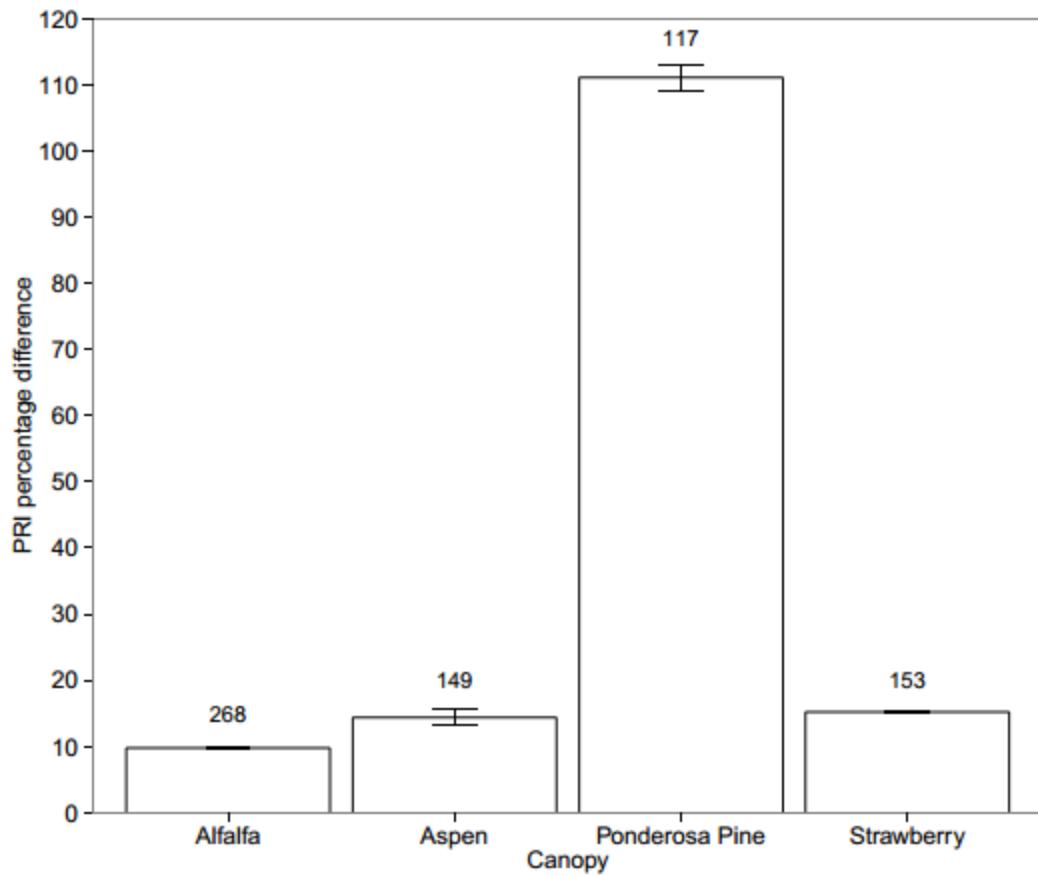

1 Table 1. Principal characteristics of the optical instruments used.

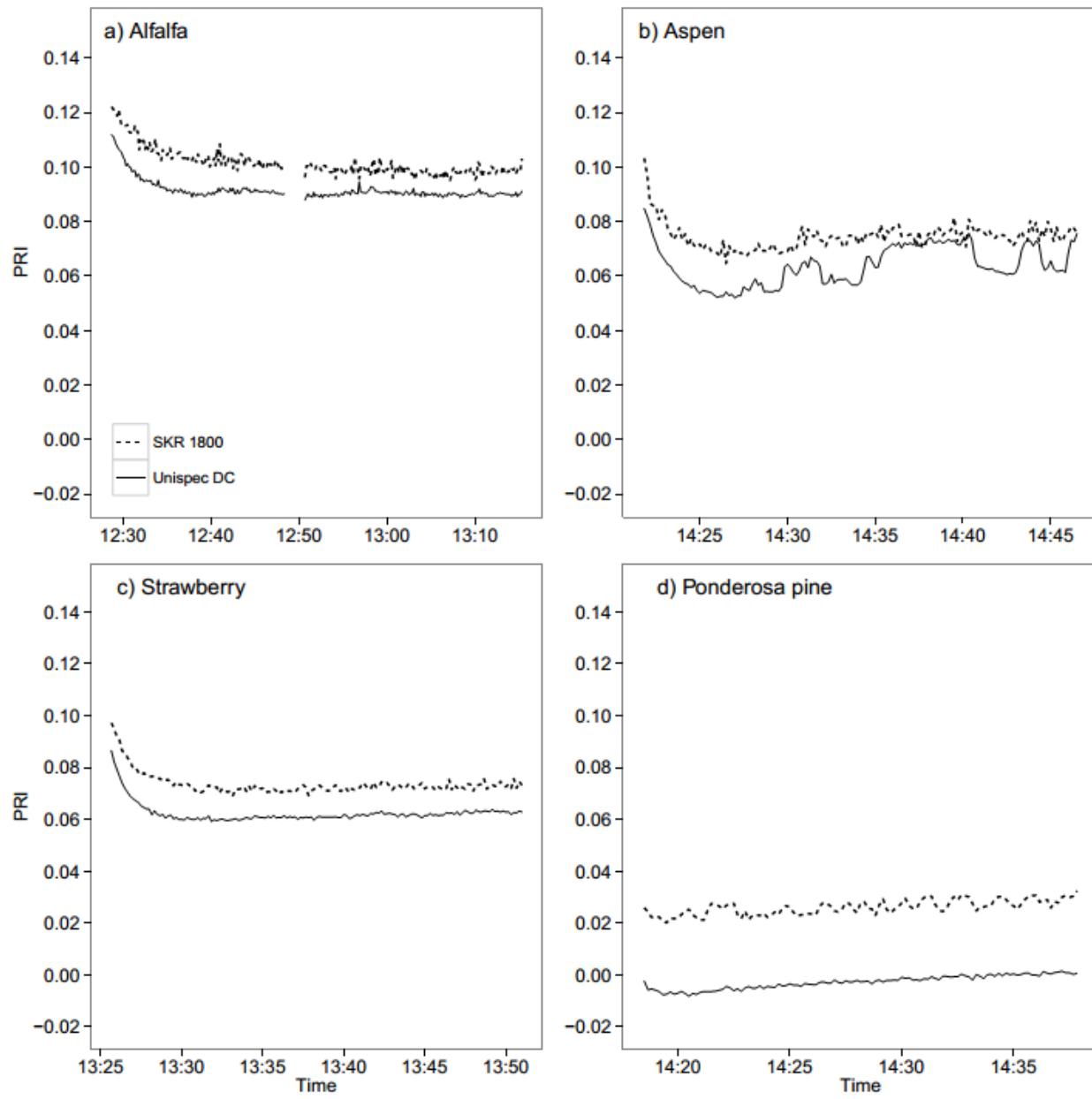
Instrument name	Wavelength range	FWHM	Sampling interval	Downward FOV	Operating temperature range
PP Systems UniSpec Dual Channel (DC)	310-1100 nm	10 nm	3.3 nm	20° ^a	0 – 50°C
PP Systems UniSpec Single Channel (SC)	310-1100 nm	10 nm	3.3 nm	20° ^a	0 – 50°C
Skye SKR 1800					
<i>Upward sensor</i>	531 nm 567 nm	7.0 nm 6.3 nm	NA	NA	-25 – +25°C ^c
<i>Downward sensor</i>	530 nm 569 nm	6.1 nm 5.5 nm	NA	25 ^b 25° ^b	-25 – +25°C ^c

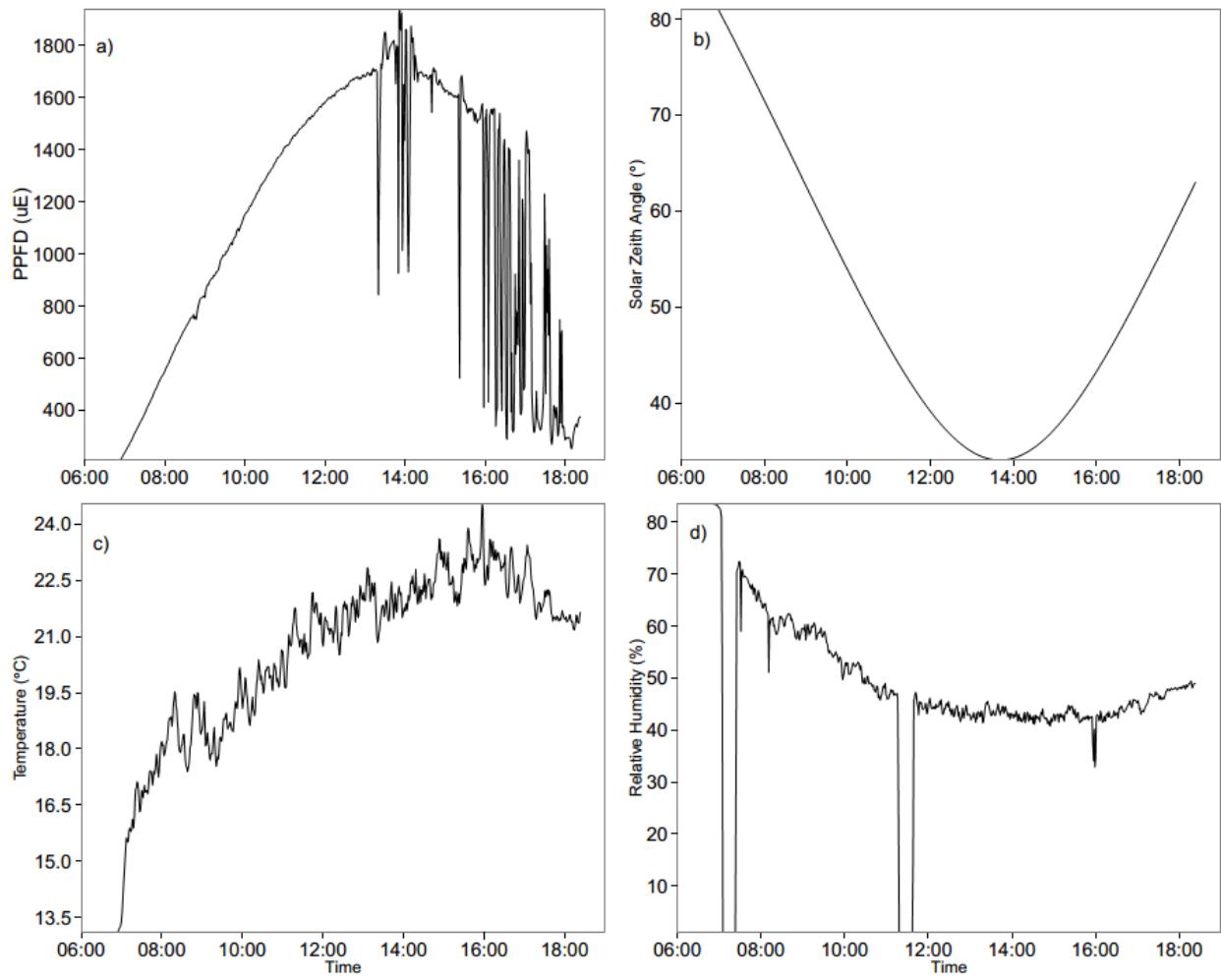

^a These values refer to the manufacturers nominal FOV for the UniSpec using a fibre optic fitted with a FOV restrictor (Hypo-Tube, PP Systems, Amesbury, MA, USA), although preliminary user tests suggest the actual FOV is closer to 15°; ^b 12.5° off perpendicular; ^c manufacturers values for a fixed PVC cable.

1 Table 2. Type of experiment undertaken, the species over which measurements were performed,
 2 the sensors that were used and whether spectral data were collected at the canopy- or leaf-level

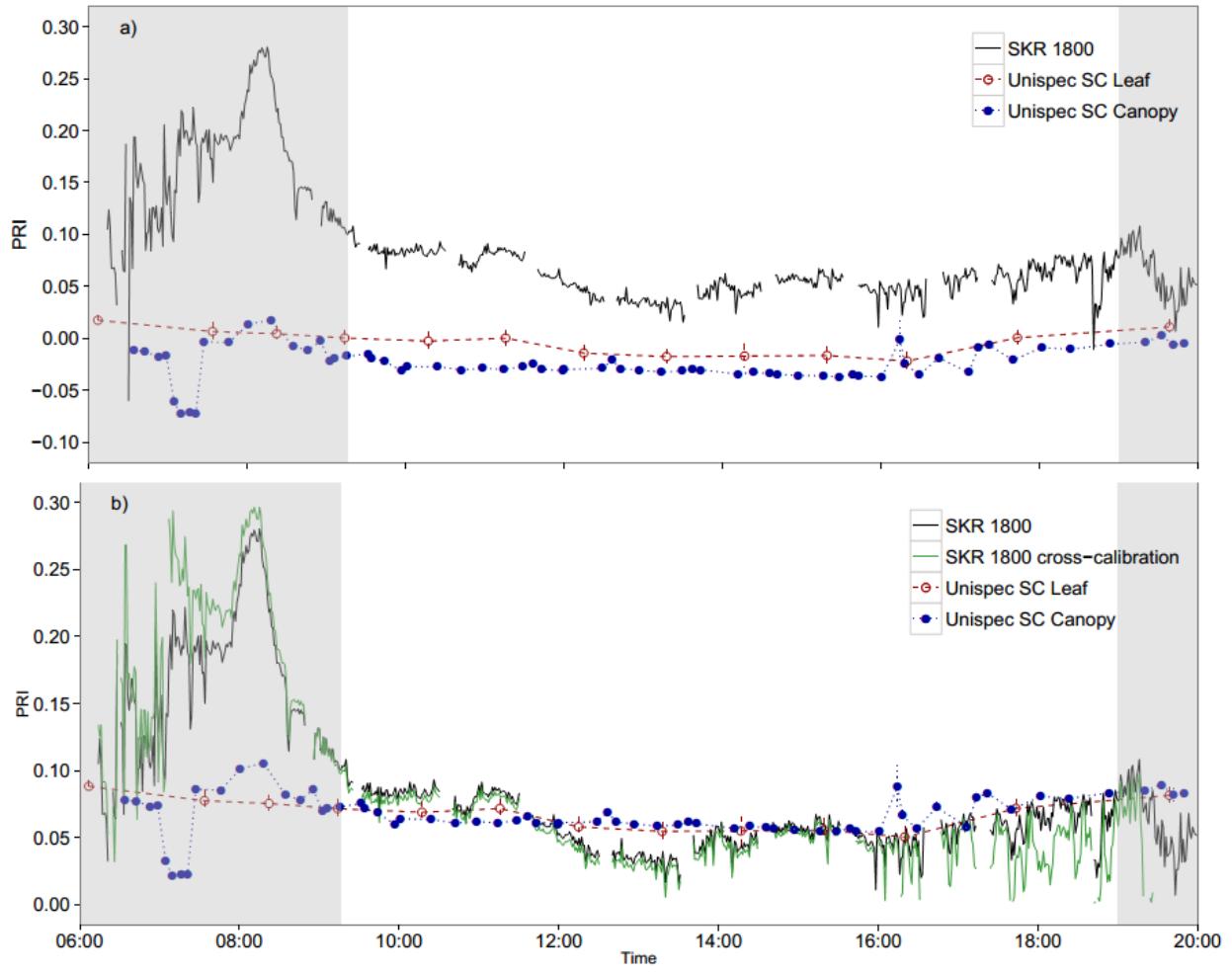

Species	Type of experiment	Scale	Instruments used	Additional data	Date and time
Alflafa (<i>Medicago sativa</i>)	Dark-to-light	Canopy	UniSpec DC; SKR 1800	PPFD ; temperature	26/7/2012 13:30 – 14:00
Aspen (<i>Populus tremuloides</i>)	Dark-to-light	Canopy	UniSpec DC; SKR 1800	PPFD; temperature	3/8/2012 14:00 – 15:00
Ponderosa Pine (<i>Pinus ponderosa</i>)	Dark-to-light	Canopy	UniSpec DC; SKR 1800	PPFD; temperature	28/6/2013 14:20 – 14:40
Strawberry (<i>Fragaria x ananassa</i>)	Dark-to-light	Canopy	UniSpec DC SKR 1800	PPFD; temperature	28/6/2013 13:20 – 13:50
Lodgepole pine (<i>Pinus contorta</i>)	Diurnal	Canopy and leaf	UniSpec SC; SKR 1800;	PPFD; temperature; xanthophyll pigments	25/7/2013 6:30 – 19:50


1
2 Fig. 1 Spectral response curves for the UniSpec instruments and the upward- (incoming) and
3 downward-looking (reflected) SKR 1800 sensor-pair.

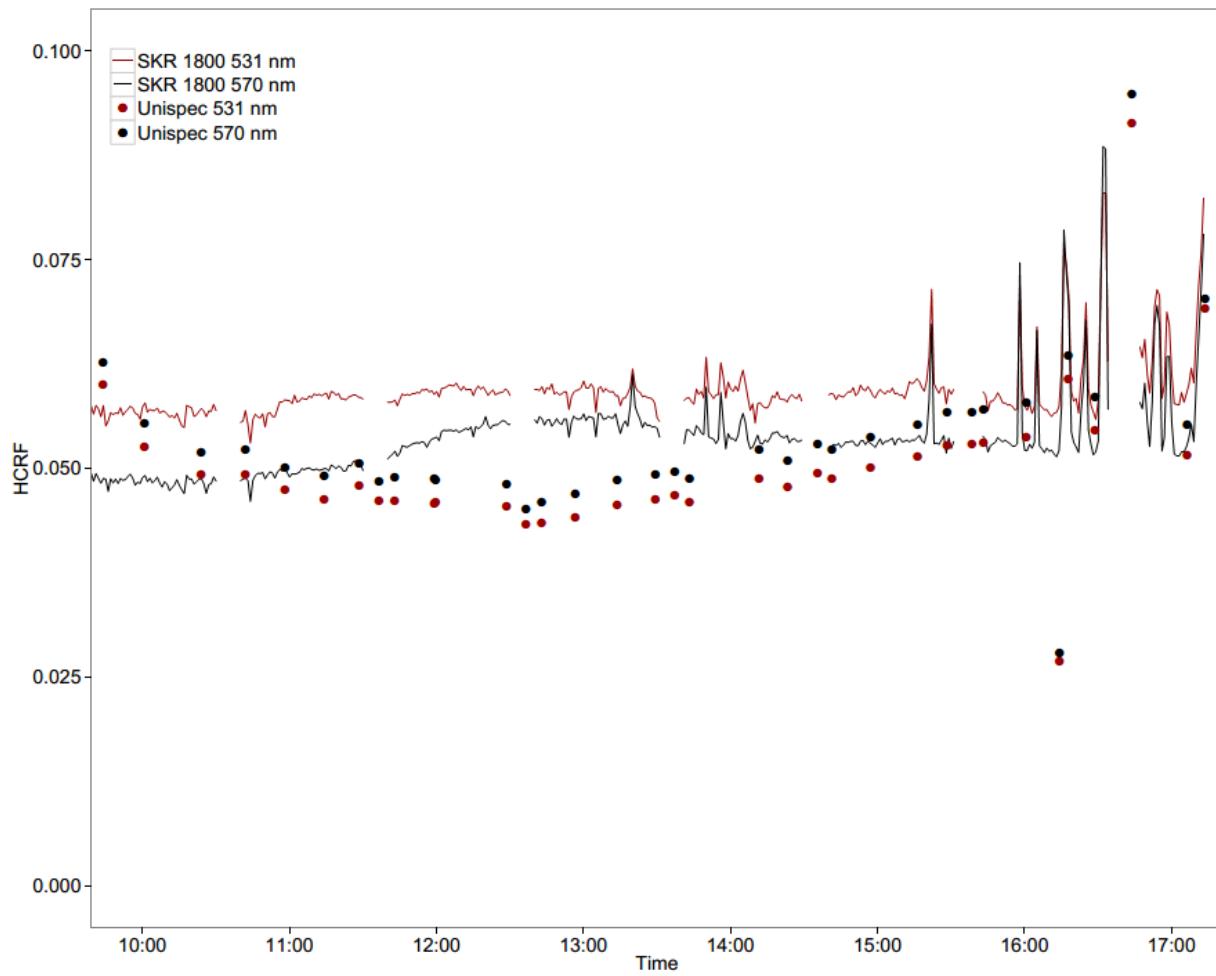

1
2 Fig. 2 Photochemical reflectance index (PRI) response to a dark-to-light transition for alfalfa
3 (*Medicago sativa*), as recorded by a UniSpec DC instrument and the SKR 1800 sensor-pair.


1
2 Fig.3 Scatterplots of UniSpec DC photochemical reflectance index (PRI) vs. SKR 1800
3 photochemical reflectance index (PRI) across a range of plant canopies during a series of dark-to-
4 light transitions. Fig. 3a depicts the data without correction for differences in SRFs and figure
5 Fig.3b depicts the data after normalization for differences in the spectral configuration. The
6 dotted lines represent the 1:1 line. MD in the plots stands for mean differences and the values in
7 the parentheses are the standard deviation of the differences.

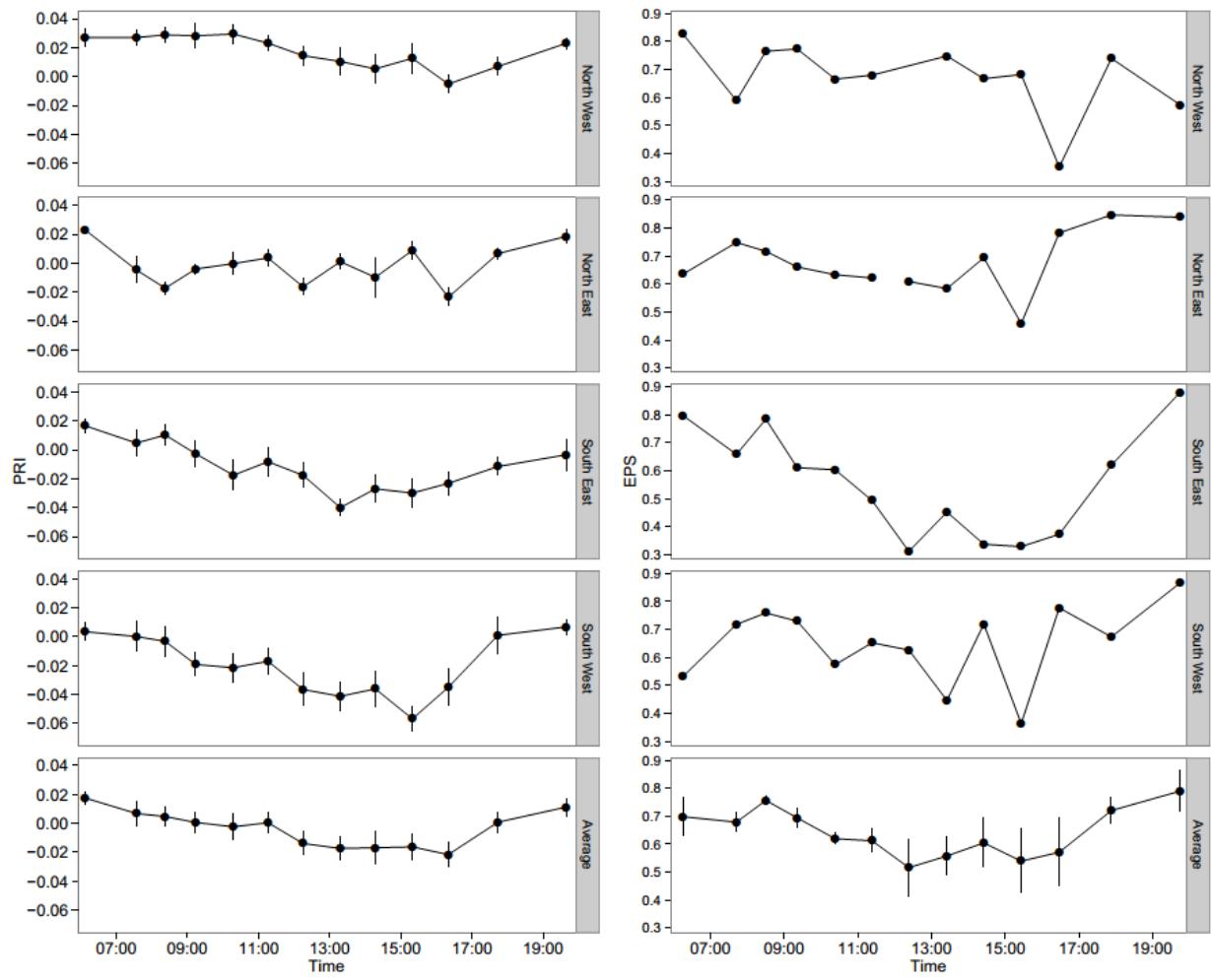
1
 2 Fig. 4 Plant canopy dependencies of UniSpec DC photochemical reflectance index (PRI) vs. SKR
 3 1800 photochemical reflectance index across a range of plant canopies during a series of dark-to-
 4 light transitions. Per-canopy mean percentage differences are plotted along with 95% confidence
 5 intervals. The sample sizes (number of pairs) used to compute the mean differences and
 6 confidence intervals are given at the tops of the bars. Data shown are those that have been
 7 corrected to normalize the SRF differences between instruments.
 8



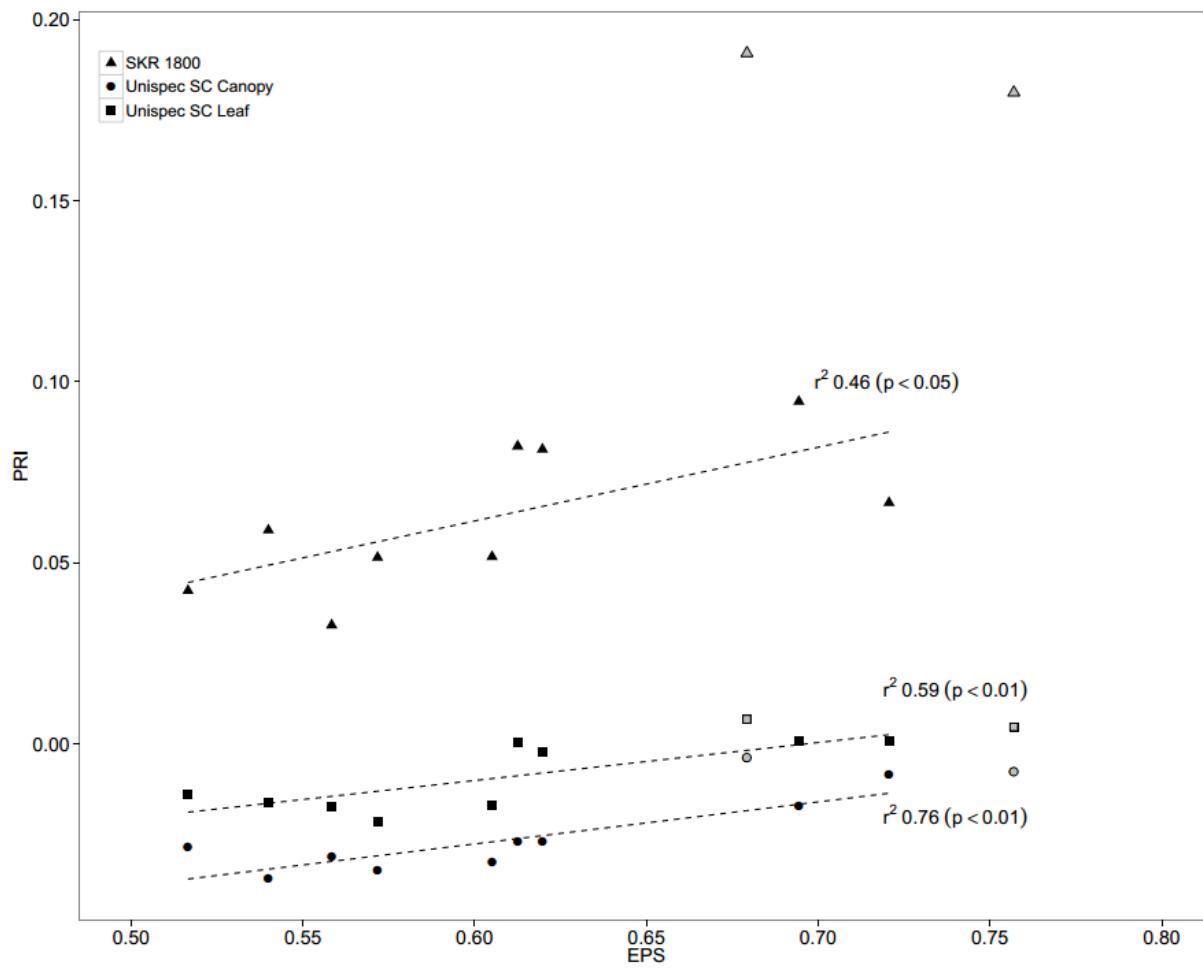
1
2
3 Fig. 5 Photochemical reflectance index (PRI) response to a dark-to-light transition for a) alfalfa
4 (*Medicago sativa*), b) aspen (*Populus tremuloides*), c) strawberry (*Fragaria x ananassa*), and d)
5 ponderosa pine (*Pinus ponderosa*); as recorded by a UniSpec DC instrument and the SKR 1800
6 sensor-pair. Data shown are those that have been corrected to normalize the SRF differences
7 between instruments.


1

2 Fig. 6 a) Photosynthetic photon flux density (PPFD), b) solar zenith angle (SZA), c) temperature
 3 and d) relative humidity as a function of time-of-day (July 25, 2013).


1
2 Fig. 7 Lodgepole pine (*Pinus contorta*) canopy and leaf photochemical reflectance index (PRI) as
3 a function of time-of-day. Mean values for each sampling period are shown for both UniSpec
4 instruments and the error bars represent +/- 1 SE. Panel a) shows the original data values and the
5 shaded areas indicate times of day where the solar zenith angle (SZA) exceeds 60°. Panel b)
6 shows data that have been corrected to normalize the SRF differences between instruments and
7 the shaded areas indicate times of day beyond those used for generating the SKR 1800 cross-
8 calibration functions using white panels.

9



1 Fig. 8 Hemispherical-conical reflectance factors (HCRFs) at 531 nm and 570 nm obtained by a
 2 UniSpec and SKR 1800 sensor-pair, as a function of time-of-day. Data were collected over a
 3 lodepole pine (*Pinus contorta*) canopy and corrected to reflectance using cross-calibration
 4 functions determined from white panel measurements. Only data that were collected within the
 5 time frame of white panel measurements are shown. Data shown have not been normalized to
 6 correct for the SRF differences between instruments.
 7

8

1
2 Fig. 9 Diurnal course of lodegepole pine (*Pinus contorta*) leaf-level photochemical reflectance
3 index (PRI) and the epoxidation state of the xanthophyll cycle components (EPS). PRI values for
4 each of the four directions are means of 10 sampled spectra. Error bars represent ± 1 SEM.

1
2 Fig. 10 The photochemical reflectance index (PRI) as a function of the epoxidation state of the
3 xanthophyll cycle components (EPS) for a lodgepole pine (*Pinus contorta*) canopy and individual
4 leaves as measured by several different instruments. EPS and UniSpec SC leaf values are the
5 means of the sampled plot corners ($n=4$ and $n=40$; respectively), UniSpec SC canopy values are
6 the mean of the PRI measurements collected coincident to the leaf-level measurements ($n=3$;
7 collected over < 60 secs) and SKR 1800 values are single values corresponding to the same time
8 period. Symbols shaded in grey represent measurements collected at a time when the solar zenith
9 angle was $> 60^\circ$ and have been excluded from the regressions, for both canopy and leaf-level
10 measurements. Data shown have not been normalized to correct for the SRF differences between
11 instruments.