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Abstract 7 

The use of eddy covariance CO2 flux measurements in data assimilation and other 8 

applications requires an estimate of the random uncertainty. In previous studies, the 9 

(classical) two-tower approach has yielded robust uncertainty estimates, but care must be 10 

taken to meet the often competing requirements of statistical independence (non-overlapping 11 

footprints) and ecosystem homogeneity when choosing an appropriate tower distance. The 12 

role of the tower distance was investigated with help of a roving station separated between 8 13 

m and 34 km from a permanent EC grassland station. Random uncertainty was estimated for 14 

five separation distances with the classical two-tower approach and an extended approach 15 

which removed systematic differences of CO2 fluxes measured at two EC towers. This 16 

analysis was made for a dataset where (i) only similar weather conditions at the two sites 17 

were included, and (ii) an unfiltered one. The extended approach, applied to weather-filtered 18 

data for separation distances of 95 m and 173 m gave uncertainty estimates in best 19 

correspondence with an independent reference method. The introduced correction for 20 

systematic flux differences considerably reduced the overestimation of the two-tower based 21 

uncertainty of net CO2 flux measurements and decreased the sensitivity of results to tower 22 

distance. We therefore conclude that corrections for systematic flux differences (e.g. caused 23 

by different environmental conditions at both EC towers) can help to apply the two-tower 24 

approach to more site pairs with less ideal conditions.  25 
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1 Introduction 28 

The net ecosystem exchange of CO2 between the land surface and the atmosphere (NEE) can 29 

be determined with the eddy covariance (EC) method. Eddy covariance CO2 flux 30 

measurements are commonly used to analyze the interactions between terrestrial ecosystems 31 

and the atmosphere which is crucial for the understanding of climate-ecosystem feedbacks. In 32 

this regard reliable EC data with appropriate uncertainty estimates are crucial for many 33 

application fields, such as the evaluation and improvement of land surface models (e.g. 34 

Braswell et al., 2005; Hill et al., 2012; Kuppel et al., 2012).  35 

When using the term ‘uncertainty’, we here focus on the random error following the 36 

definition in Dragoni et al. (2007). It differs from the systematic error in that it is 37 

unpredictable and impossible to correct (but can be quantified). Uncertainty doesn’t 38 

accumulate linearly but “averages out” and can be characterized by probability distribution 39 

functions (Richardson et al., 2012). Systematic errors are considered to remain constant for a 40 

longer time period (> several hours). Ideally they can be corrected, but in case of EC 41 

measurements this is still limited by either our understanding of various error sources or 42 

insufficient background data. Systematic errors arise not only from instrumental calibration 43 

and data processing deficits, but also from unmet underlying assumptions about the 44 

meteorological conditions (Richardson et al., 2012). A main assumption is that turbulence is 45 

always well developed in the lowest atmospheric boundary layer and responsible for the mass 46 

transport while horizontal divergence of flow and advection are assumed to be negligible 47 

(Baldocchi, 2001). Moreover, the EC method is based on the mass conservation principle, 48 

which requires the assumption of steady state conditions of the meteorological variables 49 

(Baldocchi, 2003). In case of CO2 fluxes, night-time respiration is often underestimated due 50 

to low wind velocities conditions and a temperature inversion which hinders the upward 51 
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carbon dioxide transport (Baldocchi, 2001). Hence, night-time data are commonly rejected 52 

for further analysis (Barr et al., 2006).  53 

After a possible correction of the EC flux data for systematic errors a random error will 54 

remain which can arise from different sources such as (a) the assumption of a constant 55 

footprint area within a measurement interval and the negligence of flux footprint 56 

heterogeneity (e.g. due to temporal variability of wind direction, wind speed and atmospheric 57 

stability which cause temporal variations of the footprint area); (b) turbulence sampling errors 58 

which are related to the fact that turbulence is a highly stochastic process and especially the 59 

sampling or not sampling of larger eddies is associated with considerable random fluctuations 60 

of fluxes, even if they are already averaged over a 30-minutes period; and (c) instrumentation 61 

deficits that can e.g. cause random errors in the measured variables (such as the CO2 mixing 62 

ratio and the vertical wind velocity) used to calculate the net CO2 flux (Aubinet et al., 2011, 63 

p. 179; Flanagan and Johnson, 2005).  64 

Within the past decade, several approaches have been proposed to quantify the uncertainty of 65 

eddy covariance CO2 flux measurements. With the “two-tower” or “paired tower” approach 66 

simultaneous flux measurements of two EC towers are analyzed (Hollinger et al., 2004; 67 

Hollinger and Richardson, 2005). For the uncertainty quantification with the two-tower 68 

approach, it is necessary that environmental conditions for both towers are nearly identical 69 

(Hollinger et al., 2004; Hollinger and Richardson, 2005). However, most eddy covariance 70 

sites do not have a nearby second EC tower to provide nearly identical environmental 71 

conditions. Therefore, Richardson et al. (2006) introduced the “one-tower” or “24-h 72 

differencing” method which is based on the two-tower approach. The main difference is that 73 

the uncertainty estimate is based on differences between fluxes measured on subsequent days 74 

if environmental conditions were similar on both days. Because most often environmental 75 
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conditions are not the same on two subsequent days (Liu et al., 2006), the applicability of this 76 

method suffers from a lack of data and the random error is overestimated (Dragoni et al., 77 

2007). The model residual approach (Dragoni et al., 2007; Hollinger and Richardson, 2005; 78 

Richardson et al., 2008) calculates CO2 fluxes with a simple model and compares calculated 79 

values with measured values. The model residual is attributed to the random measurement 80 

error. The method is based on the assumption that the model error is negligible, which is 81 

however a very questionable assumption. Alternatively, if the high-frequency raw-data of an 82 

EC tower are available, uncertainty can be estimated directly from their statistical properties 83 

(Billesbach, 2011). Finkelstein and Sims (2001) introduced an operational quantification of 84 

the instrumental noise and the stochastic error by calculating the auto- and cross-covariances 85 

of the measured fluxes. This method was implemented into a standard EC data processing 86 

scheme by Mauder et al. (2013). The advantage is that a second tower or the utilization of 87 

additional tools such as a simple model to estimate the EC measurement uncertainty is no 88 

longer required. However, many data users do not have access to the raw-data but to 89 

processed EC data only. Moreover, a large amount of solid metadata about the setup of the 90 

EC measurement devices is required (but often not provided at second hand) to obtain 91 

reliable raw-data based uncertainty estimates adequately.  Therefore a two-tower based 92 

approach has still a large group of users. In particular with regard to pairs of nearby towers 93 

from local clusters which play an increasing role in the monitoring strategies of e.g. ICOS 94 

and NEON, and have already been employed in case studies (e.g. Ammann et al., 2007). 95 

Important advantages of the two-tower approach are (1) its simplicity and user friendliness, 96 

(2) its usability for relatively short non gap-filled time series of several months, and (3) the 97 

independence of a model.  98 

The classical two-tower approach (Hollinger et al., 2004; Hollinger and Richardson, 2005; 99 

Richardson et al., 2006) is based on the assumption that environmental conditions for both 100 
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EC towers are identical and flux footprints should not overlap to guarantee statistical 101 

independence. Hollinger and Richardson (2005) use threshold values for three variables 102 

(photosynthetically active photon flux density PPFD, temperature & wind speed) to 103 

determine whether environmental conditions are equivalent. Independent of this definition, 104 

our understanding of “environmental conditions” includes both weather conditions and land 105 

surface properties such as soil properties (texture, density, moisture, etc.), plant 106 

characteristics (types, height, density, rooting depth, etc.), nutrient availability and fauna  107 

(microorganisms, etc.), which are irregularly distributed and affect respiration and/or 108 

photosynthesis. Strictly speaking, if footprints do not overlap 100%, the assumption of 109 

identical environmental conditions is already not fulfilled. When applying a two-tower based 110 

approach it is important to assure that systematic differences of the measured fluxes, which 111 

are partly caused by within site or among site heterogeneity, are not attributed to the random 112 

error estimate of the measured NEE. Our assumption that even within a site with apparently 113 

one uniformly distributed vegetation type (and for very short EC tower distances) land 114 

surface heterogeneity can cause significant spatial and temporal variability in measured NEE 115 

is e.g. supported by Oren et al. (2006). They found that the spatial variability of ecosystem 116 

activity (plants and decomposers) and LAI within a uniform pine plantation contributes to 117 

about half of the uncertainty in annual eddy covariance NEE measurements while the other 118 

half is attributed to micrometeorological and statistical sampling errors. This elucidates the 119 

relevance of considering systematic flux differences caused by within site ecosystem 120 

heterogeneity when calculating a two-tower based uncertainty estimate. 121 

Given the fact that site specific, adequate uncertainty estimates for eddy covariance data are 122 

very important but still often neglected due to a lack of resources, we are aiming to advance 123 
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the two-tower approach so that it can also be applied if environmental conditions at both eddy 124 

covariance towers are not very similar. 125 

The main objectives of this study were (1) to analyze the effect of the EC tower distance on 126 

the two-tower based CO2 flux measurement uncertainty estimate and (2) to extend the two-127 

tower approach with a simple correction term that removes systematic differences in CO2 128 

fluxes measured at the two sites. This extension follows the idea of the extended two-tower 129 

approach for the uncertainty estimation of energy fluxes presented in Kessomkiat et al. 130 

(2013). The correction step is important for providing a more reliable random error estimate. 131 

In correspondence with these objectives we analyzed the following questions: What is an 132 

appropriate EC tower distance to get a reliable two-tower based uncertainty estimate? Can the 133 

random error be quantified in reasonable manner with the extended two-tower approach, even 134 

though environmental conditions at both EC towers are clearly not identical? The total 135 

random error estimated with the raw-data based method (Mauder et al., 2013) was used as a 136 

reference to evaluate our extended two-tower approach based results.  137 

2 Test sites and EC Tower setup 138 

The Rollesbroich test site is an extensively used grassland site, located in the Eifel region of 139 

western Germany (Fig.1). The mean temperature in Rollesbroich is ~ 7.7°C and the mean 140 

precipitation is ~ 1033mm per year (Korres et al., 2010). Predominating soil types at the site 141 

are Cambisols with a high clay and silt content (Arbeitsgruppe BK50, 2001). The grass 142 

species grown in Rollesbroich are mainly ryegrass, particularly perennial ryegrass (lolium 143 

perenne), and smooth meadow grass (poa pratensis) (Korres et al., 2010). A permanent eddy 144 

covariance tower (EC1) is installed at the Rollesbroich site since May 2011 at a fixed 145 

position. The measurement height of the sonic anemometer (CSAT3, Campbell Scientific, 146 
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Logan, UT, U.S.A.) and the open-path gas analyzer (Li7500, Li-Cor, Lincoln, NE, U.S.A.) is 147 

2.6 m above ground. The canopy height was measured every 1-2 weeks and varied between 148 

0.03 m and 0.88 m during the measurement period. A second EC tower, the roving station 149 

(EC2), has been installed at four different distances (8 m, 95 m, 173 m and 20.5 km) from 150 

EC1 for time periods ranging between 3 and 7.5 months (Tab.1). The EC2 location “Kall-151 

Sistig” 20.5 km north-east of Rollesbroich is another grassland site with similar 152 

environmental conditions as Rollesbroich. The vegetation in Kall-Sistig is extensively 153 

managed C3 grass, the same as for Rollesbroich. However, the average plant height measured 154 

between Aug. 14
th

 and Oct. 30
th

 2012 was lower (~ 0.15 m) than the respective average for 155 

Rollesbroich (~ 0.2 m), which is also true for the plant height measured in May and June 156 

2012 (Kall-Sistig: ~ 0.22 m; Rollesbroich: ~ 0.29 m). As in Rollesbroich, clayey-silty 157 

Cambisols are most widespread (Arbeitsgruppe BK50, 2001). The mean temperature for the 158 

entire measurement interval in Kall-Sistig (Tab.1) measured at the EC station is 11.4 °C and 159 

the soil moisture 32% compared to 11.0 °C and 35% in Rollesbroich (same time interval for 160 

averaging). Additionally a third EC tower was located in Merzenhausen in ~ 34 km distance 161 

to EC1 (Fig.1). Merzenhausen (MH) is an agricultural site, where winter wheat was grown 162 

during the measurement period. Both the land use conditions and the average weather 163 

conditions differ from those in Rollesbroich and Kall-Sistig. The climate at the lowland site 164 

Merzenhausen is comparable to the one in Selhausen at a distance of 13 km from 165 

Merzenhausen, where the mean precipitation  is ~ 690 mm/a and the yearly mean temperature 166 

~9.8°C (Korres et al., 2010). The soils are mainly Luvisols with some patches of Kolluvisols 167 

(Arbeitsgruppe BK50, 2001). The measurement devices of EC2 and EC3 are the same as the 168 

EC1 devices and were installed 2.6 m above ground as well. Both, the sonic anemometers 169 

and the open-path gas analyzers have been calibrated every 1-3 months thoroughly and 170 

consistently. Details on the EC data acquisition are summarized in Sect. 3.1. 171 
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Rollesbroich is part of the TERENO network (Zacharias et al., 2011). Information and 172 

additional data were collected showing that land surface properties are spatially 173 

heterogeneous distributed at the Rollesbroich site: (1) Single fields at the Rollesbroich site 174 

are managed by different farmers. Information the land owners provided, as well as periodic 175 

camera shots and grass height measurements around the EC towers indicated that the timing 176 

of fertilization and grass cutting as well as the amount of manure applied varied between the 177 

single fields during the measurement period; (2) Soil type distribution as displayed in the 178 

German soil map shows heterogeneity (Arbeitsgruppe BK50, 2001); (3) Soil carbon and 179 

nitrogen pools [g/kg] as well as bulk density [g/cm
3
] and content of rock fragments [%] 180 

measured from April-May 2011 in three soils horizons at 94 locations across the Rollesbroich 181 

site are spatially highly variable (H. Schiedung 2013, personal communication); (4) During 182 

the eddy covariance measurement period, soil moisture and soil temperature data were 183 

collected in 10 min. resolution at three depths (5 cm, 20 cm and 50 cm ) and 84 points by the 184 

wireless sensor network (“SoilNet”; Bogena et al., 2009), calibrated for the Rollesbroich site 185 

by Qu et al., (2013). SoilNet data shows that soil moisture is heterogeneously distributed 186 

within the Rollesbroich site (Qu et al., 2014). 187 

3 Data and Methods 188 

3.1. EC data processing  189 

The EC raw data were measured with a frequency of 20 Hz and fluxes were processed for 190 

flux intervals of 30 minutes. The complete processing of the data was performed with the 191 

TK3.1 software (Bayreuth, Department of Micrometeorology, Germany; Mauder and Foken, 192 

2011), using the standardized strategy for EC data calculation and quality assurance 193 

presented in detail by Mauder et al., 2013. The strategy includes established EC conversions 194 
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and corrections such as e.g. correction of spectral loss (Moore, 1986) and correction for 195 

density fluctuations (Webb et al., 1980). It includes tests on high frequency data (site specific 196 

plausibility limits, statistical spike detection) as well as on processed half hourly fluxes such 197 

as stationarity and integral turbulence tests (Foken and Wichura, 1996). The tests on half 198 

hourly fluxes are the basis for a standardized quality flagging according to Mauder and Foken 199 

(2011) that classifies flux measurements as high (0), moderate (1) or low (2) quality data. For 200 

this analysis only flux measurements assigned to 0 or 1 were used, while low quality data 201 

were treated as missing values. Besides quality flags TK3.1 also provides footprint estimates 202 

(Kormann and Meixner, 2001) and uncertainty estimates that were used for interpreting and 203 

analyzing flux data. To avoid introduction of additional uncertainty no gap filling of flux time 204 

series was performed.  205 

3.2. Uncertainty estimation based on the two-tower approach 206 

The two-tower approach (Hollinger et al., 2004; Hollinger and Richardson, 2005; Richardson 207 

et al., 2006) defines the random error of NEE eddy covariance measurements as the  standard 208 

deviation σ(𝛿)  of the difference between the CO2 fluxes [μmol m
-2

s
-1

] simultaneously 209 

measured at  two different EC towers (𝑁𝐸𝐸1, 𝑁𝐸𝐸2): 210 

𝜎(𝛿) =  
𝜎 (𝑁𝐸𝐸1 − 𝑁𝐸𝐸2)

√2
 

Eq. 1 

 

Based on Eq.1 we calculated the two-tower based uncertainty estimates using the NEE1 data 211 

measured at the permanent EC tower in Rollesbroich (EC1) and the NEE2 data of a second 212 

tower which was either the roving station (EC2) or – in case of the 34 km EC tower distance 213 

–  another permanent EC tower (EC3, Tab.1).  214 
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For comparison, the measurement uncertainty σ(𝛿) was calculated separately for each EC 215 

tower distance (Tab.1) and independently for each of the following schemes:  216 

1. The classical two-tower approach (Hollinger et al., 2004; Hollinger and Richardson, 217 

2005; Richardson et al., 2006). 218 

2. The classical two-tower approach including a filter for similar weather conditions 219 

(Sect. 3.4). 220 

3. The extended two-tower approach with an added correction for systematic flux 221 

differences (sfd-correction; Sect. 3.3), without weather-filter.  222 

4. The extended two-tower approach with sfd-correction and the previously applied 223 

weather-filter. 224 

The uncertainty estimate of the two-tower approach is obtained by dividing the NEE data 225 

series into several groups (“bins”) according to the flux magnitude and then using Eq. 1 to 226 

calculate the standard deviation σ(𝛿) for each group (Richardson et al., 2006). Finally, a 227 

linear regression function between the flux magnitude and the standard deviation can be 228 

derived. The linear correlation of the uncertainty and the flux magnitude can be explained by 229 

the fact that the flux magnitude is a main driving factor for the random error and can explain 230 

about 63% of the variance in the CO2 flux error as shown in a case study by Richardson et al. 231 

(2006). Accordingly, we calculated the standard deviation σ(𝛿)  [μmol m
-2

 s
-1

] based on 12 232 

groups of the CO2 flux magnitude; six groups for positive and six groups for negative fluxes. 233 

(NEE is positive if the amount of CO2 released to the atmosphere via respiration is higher 234 

than the amount of CO2 assimilated during photosynthesis. In contrast, negative NEE values 235 

denote a higher CO2 uptake and a net flux from the atmosphere into the ecosystem.) Fixed 236 

class limits for the flux magnitude would have led to a different number of samples in each 237 

group. Now class limits were set such that all groups with positive NEE values had an equal 238 
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amount of half hourly data, the same holds for all groups with negative NEE values. For each 239 

single group the standard deviation σ(𝛿) was calculated using the single half-hourly flux 240 

differences of NEE1 and NEE2. The corresponding mean NEE magnitude for each group 241 

member was determined by averaging all half-hourly means of NEE1 and NEE2 in the 242 

respective group. Then, the linear regression equation was derived separately for negative and 243 

positive NEE values using the 6 calculated standard deviations σ(𝛿) and the 6 mean NEE 244 

values. This procedure was carried out for each dataset of the five EC tower distances and 245 

again for each of the four uncertainty estimation schemes so that altogether 20x2 linear 246 

regression equations were derived. The significance of the correlation between the NEE 247 

magnitudes and the standard deviations σ(𝛿) was tested with the p- value determined with the 248 

Student’s t-test based on Pearson's product moment correlation coefficient r. Moreover, the 249 

95% confidence intervals of the slope and the intercept for each liner regression equation 250 

were determined. The linear regression equations were calculated imposing as constraint an 251 

intercept >= 0, because a negative standard deviation is not possible. With those linear 252 

regression equations, the uncertainty for the individual half-hourly NEE measurement values 253 

of the permanent EC tower in Rollesbroich (EC1) were estimated using the individual half-254 

hourly NEE1 values [μmol m
-2

 s
-1

] as input (x) to calculate the corresponding uncertainty 255 

σ(𝛿) [μmol m
-2

 s
-1

] (y).  256 

The described calculation of the individual NEE uncertainty values was done for all half 257 

hourly NEE data, including those data points that were discarded by the weather filter 258 

(Sect.3.4) and/or the sfd-correction (Sect.3.3). Hence, for each of the four two-tower based 259 

uncertainty estimation schemes the same amount of individual NEE uncertainty values was 260 

generated. These mean uncertainty estimates were used to evaluate the effect of the EC tower 261 

distance as well as the sfd-correction and the weather-filter on the two-tower based 262 
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uncertainty estimation. Even though Hollinger et al. (2004) and Richardson and Hollinger 263 

(2005) already pointed out that the two-tower approach assumes similar environmental 264 

conditions and non-overlapping footprints, we applied the classical approach for all EC tower 265 

distances, even if these basic assumptions were not fulfilled, to allow for a comparison of the 266 

results before and after the usage of the weather-filter and the sfd-correction (extended two-267 

tower approach). 268 

3.3. Correction for systematic flux differences (sfd-correction) 269 

Different environmental conditions and other factors such as instrumental calibration errors 270 

can cause systematic flux differences between two towers. Because these flux differences are 271 

not inherent to the actual random error of the measured NEE at one EC tower station they 272 

lead to an overestimation of the two-tower approach based uncertainty. Therefore, we 273 

extended the classical two-tower approach with a simple correction step for systematic flux 274 

differences (sfd-correction). The reason why systematic flux differences can statistically be 275 

separated quite easily from random differences of the EC flux measurements is their 276 

fundamentally different behavior in time: random differences fluctuate highly in time 277 

whereas systematic differences tend to be constant over time or vary slowly. The sfd-278 

correction introduced is similar to the second correction step in Kessomkiat et al. (2013, 279 

Equation 6 therein), but adapted to the measured NEE instead of latent and sensible heat 280 

fluxes. An averaging time interval of 12 hours was used to calculate the running mean for the 281 

sfd-correction. For each moving average interval, the mean NEE12h of one EC tower 282 

(separately for EC1 and EC2) [μmol m
-2

 s
-1

] and the mean CO2 flux averaged over both EC 283 

towers NEE2T_12h [μmol m
-2

 s
-1

] were calculated to define the sfd-correction term which was 284 

used to calculate the corrected NEEcorr [μmol m
-2

 s
-1

]:  285 
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𝑁𝐸𝐸𝑐𝑜𝑟𝑟 =
𝑁𝐸𝐸2𝑇_12ℎ𝑟

𝑁𝐸𝐸12ℎ
∙ 𝑁𝐸𝐸  

Eq. 2 

NEE is the single half-hourly, processed NEE value [μmol m
-2

 s
-1

] of one EC tower. Only if 286 

both NEE data, NEE-EC1- for the permanent EC1 tower and NEE-EC2- for the second tower, 287 

were available at a particular half hourly time step and if both values were either positive or 288 

negative, the respective data were included to calculate the correction term. The running 289 

averages were only calculated if at least 50% of the data for NEE-EC1- and NEE-EC2 remained 290 

for averaging in that particular window. Due to the frequent occurrence of gaps in the data 291 

series the amount of available NEEcorr values considerably decreased by applying stricter 292 

criteria like 70% or 90% data availability (Tab. A2). We assume a 12 hour averaging period 293 

to be long enough to exclude most of the random error part but short enough to consider daily 294 

changes of systematic flux differences. For a six hour interval for instance the uncertainty of 295 

the mean NEE is usually higher. For larger window sizes (24 or 48 hours) further analysis 296 

was hampered by too many data gaps, i.e. the 50% criterion was hardly ever fulfilled and not 297 

enough averages remained to allow for the two-tower based uncertainty estimation (Tab. A2). 298 

The correction was done separately for positive and negative fluxes, due to the different 299 

sources, properties and magnitudes of the CO2 flux measurements and different errors for 300 

daytime (negative) and night-time (positive) fluxes (e.g. Goulden et al., 1996; Oren et al., 301 

2006; Wilson et al., 2002).  302 

The final sfd-corrected NEE1corr values for EC1 and NEE2corr values for EC2 should not be 303 

understood as corrected NEE flux data. They were used only to enhance the two-tower based 304 

uncertainty estimation in a way that systematic flux differences which cause an 305 

overestimation of the uncertainty are filtered out. Moreover, systematic flux differences at 306 



 

 

13 

 

two EC towers are not to be confused with systematic errors, which are independent of the 307 

uncertainty estimation method and optimally corrected before the random error is estimated. 308 

3.4. Filter for weather conditions 309 

For larger distances of two EC towers, such as the 20.5 km and 34 km distance in this study, 310 

different weather conditions can cause differences of the measured fluxes in addition to the 311 

different land surface properties. Some weather variables (e.g. temperature) are following a 312 

clear diurnal and annual course and differences in e.g. temperature at two EC towers are 313 

therefore relatively constant. This is expected to cause rather systematic differences in the 314 

measured NEE which can be captured with the sfd-correction. However, other variables such 315 

as wind speed or incoming short wave radiation are spatially and temporally much more 316 

variable, for example related to single wind gusts or cloud movement. Differences in the 317 

measured fluxes at two EC towers caused by those spatial-temporally highly variable weather 318 

variables cannot be captured well with the sfd-correction term due to this “random character”.  319 

However, a weather filter can account for this because it compares the differences in weather 320 

variables at each single time step. Therefore a filter for similar weather conditions was 321 

applied in addition to the sfd-correction following Hill et al. (2012) and Richardson et al. 322 

(2006) to only include half hourly NEE data, if the weather conditions at the second EC tower 323 

are similar to those at the permanent EC1 tower location in Rollesbroich. Following the 324 

definition in Richardson et al. (2006), similar weather conditions were defined by a 325 

temperature difference < 3°C; wind speed difference < 1 m/s and difference in PPFD < 75 326 

μmol m
-2

 s
-1

. The weather-filter was applied before the (classical) uncertainty estimation and 327 

the sfd-correction. As shown e.g. in Tsubo and Walker (2005), the incoming short wave 328 

radiation (or solar irradiance SI) and the photosynthetically active radiation (PAR) are 329 

linearly correlated. Accordingly SI and PPFD measured at the EC1 station in Rollesbroich 330 
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were also linearly correlated. Because direct PPFD measurements were not available for all 331 

measurement periods, we derived a linear regression equation on the basis of all SI and PPFD 332 

data for the permanent EC tower station (EC1). Using this equation, missing PPFD values 333 

were estimated if only SI but no PPFD data were available at a certain time step. 334 

3.5. Footprint analysis 335 

The footprint analysis was applied to quantify the percentage footprint overlap of the two EC-336 

stations during the measurement periods. This information was not used to filter the data but 337 

to allow for a better understanding of the mean uncertainty estimates for the different 338 

scenarios. Using the analytical model of Kormann and Meixner (2001) implemented in the 339 

TK3.1 software (Mauder and Foken, 2011), a grid of estimated source weights (resolution 2 340 

m, extension 1 km by 1 km) was computed for each half-hour and station position. The 341 

overlap between the footprints of two simultaneously measuring towers was then quantified 342 

as: 343 

𝑂12(𝑡) = ∑ ∑ 𝑚𝑖𝑛 (𝑓1(𝑥, 𝑦, 𝑡), 𝑓2(𝑥, 𝑦, 𝑡))

𝑀

𝑦=1

𝑁

𝑥=1

  
Eq. 3 

The indices 1 and 2 indicate the tower and t the time (in our case, half-hour). N and M are the 344 

number of pixels in east-west and north-south direction, x and y the respective running 345 

indices. The minimum function min() includes the source weight f computed for the 346 

respective tower, x and y location, and half-hour. O is 1 if both source weight grids are 347 

identical, and 0 in case of no overlap. During stable conditions, the footprint area of a tower 348 

increases and can result in considerable source weight contributions from outside the 349 

modeling domain. Assuming that two footprints which overlap highly in the modeling 350 

domain likely continue to overlap outside the modeling domain, O as defined above might be 351 
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low-biased in such cases. We therefore additionally considered a normalized version 352 

O/min(ΣΣf1, ΣΣf1) as an upper limit estimate of the overlap. The overlap for the additional 353 

sites Kall and Merzenhausen more than 20 km away was assumed zero. 354 

3.6. Comparison measures 355 

To compare and evaluate the two-tower based uncertainty estimates, we calculated random 356 

error estimates based on Mauder et al. (2013) as a reference. This reference method is 357 

independent of the two-tower based approach, because data of only one EC tower are used to 358 

quantify the random error of the measured fluxes and raw data instead of the processed fluxes 359 

are used. The raw-data based random error estimates – the instrumental noise σ𝑐𝑜𝑣
𝑛𝑜𝑖𝑠𝑒 and the 360 

stochastic error  σ𝑐𝑜𝑣
𝑠𝑡𝑜𝑐ℎ – were calculated independently. Mauder et al. (2013) determine the 361 

instrumental noise based on signal autocorrelation. Following Finkelstein and Sims (2001) 362 

the stochastic error is calculated as the statistical variance of the covariance of the flux 363 

observations. Generally, σ𝑐𝑜𝑣
𝑛𝑜𝑖𝑠𝑒 was considerably lower than σ𝑐𝑜𝑣

𝑠𝑡𝑜𝑐ℎ. The total raw-data based 364 

random error σ𝑐𝑜𝑣 [μmol m
-2

s
-1

] was calculated by adding σ𝑐𝑜𝑣
𝑛𝑜𝑖𝑠𝑒 and σ𝑐𝑜𝑣

𝑠𝑡𝑜𝑐ℎ “in quadrature” 365 

(σ𝑐𝑜𝑣 = √σ𝑐𝑜𝑣
𝑠𝑡𝑜𝑐ℎ2

+ σ𝑐𝑜𝑣
𝑛𝑜𝑖𝑠𝑒2

) according to Aubinet et al. (2011, p.176). The mean reference 366 

σ𝑐𝑜𝑣  used for the evaluation of the two-tower based random error estimates was calculated 367 

by averaging the single half-hourly σ𝑐𝑜𝑣 values for the permanent EC1 tower in Rollesbroich. 368 

In order to be consistent with the two-tower based calculations, exactly the same half hourly 369 

time steps of the EC1 data series used for the two-tower based uncertainty estimation were 370 

used to calculate the corresponding mean reference values σcov. As indicator for the 371 

performance of the two-tower based uncertainty estimation schemes applied for the five 372 

different EC tower distances, the relative difference Δσcov [%] of a two-tower based 373 

uncertainty value [μmol m
-2

 s
-1

] and σcov [μmol m
-2

 s
-1

] was calculated: 374 
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∆𝜎𝑐𝑜𝑣[%] =
𝜎(𝛿) − 𝜎𝑐𝑜𝑣

𝜎𝑐𝑜𝑣
∗ 100 

Eq. 4 

Then, Δσcov values were compared for the different EC tower separation distances and two-375 

tower based uncertainty estimation schemes. The performance of the two-tower based 376 

uncertainty estimation was considered better if σcov[%] was closer to zero. 377 

4 Results 378 

4.1. Classical two-tower based random error estimates 379 

Fig.2 and Fig.3 show the linear regressions of the random error σ(δ) (also referred to as 380 

“standard error” or “uncertainty”) as function of the NEE magnitude according to the 381 

classical two-tower approach for the different EC tower distances without weather-filter 382 

(Fig.2) and with weather-filter (Fig.3). The dashed linear regression lines denote that the 383 

linear correlation between σ(δ) and NEE is weak (p > 0.1), which is in particular true for the 384 

positive NEE values measured for 173 m and 20.5 km EC tower distances as well as for the 385 

negative NEE values for 20.5 km and 34 km distance. The 95% confidence intervals of the 386 

respective slopes and the intercepts are summarized in the Appendix (Tab.A1). Uncertainty 387 

estimation with the classical two-tower approach is critical for those larger distances because 388 

measured flux differences caused by different environmental conditions at both EC towers 389 

can superimpose the random error signal which e.g. originates from instrumental or 390 

turbulence sampling errors. This weakens the correlation of the random error and the flux 391 

magnitude. This is not surprising since Hollinger et al. (2004) and Richardson and Hollinger 392 

(2005) already pointed out that similar environmental conditions are a basic assumption of 393 
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the two-tower approach. Therefore, statements of how the weather filter affects the mean 394 

uncertainty estimate σ(δ) for those large distances need to be treated with caution.  395 

The weather-filtering only increased the correlation between the flux magnitude and the 396 

random error σ(δ) for positive fluxes for separation distances of 173 m and 20 km whereas in 397 

most cases the linear correlation was weakened, mainly due to a decreased number of 398 

samples in each averaging group of the NEE flux magnitude. Therefore, testing stricter 399 

weather-filter criteria (e.g. wind speed < 0.5 m/s, PPFD < 50 μmol m
-2

 s
-1

, Temp < 2 °C), 400 

which caused a decline of samples in each group from e.g. n > 1000 to 24 or less, resulted in 401 

little meaningful results.  402 

As illustrated in Tab.2, the mean NEE uncertainty estimate based on the classical two-tower 403 

approach increased as a function of EC tower distance. However, without applying the 404 

weather-filter, the mean uncertainty σ(δ) was nearly identical for the two largest distances 405 

(20.5 km and 34 km), although e.g. the land cover and management in Merzenhausen (EC3 406 

tower at 34 km separation) were different from the Rollesbroich site. As a result of the 407 

weather-filtering, the mean uncertainty was less overestimated for the distances 173m and 408 

20.5 km. However, for the 95 m and 34 km distance, the overestimation of the uncertainty 409 

estimate increased by the weather-filtering (Tab.2). This implies that for the classical two-410 

tower approach (without sfd-correction) weather-filtering did not clearly reduce the 411 

overestimation of the uncertainty for largest EC tower distances (20.5 km and 34 km) where 412 

weather-filtering is expected to be particularly relevant.  413 

Comparing the mean uncertainty estimates of the classical two-tower approach with the 414 

reference random error estimates σcov, indicates that both with and without weather filter the 415 

uncertainties were overestimated (Tab.2), for all EC tower differences. This could be 416 
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expected for the large distances, because basic assumptions for the application of the classical 417 

two-tower approach are violated for these large distances. But results illustrate that even for 418 

short EC tower distances NEE uncertainty estimated with the classical two-tower approach is 419 

larger than the raw-data based estimates (Tab.2). 420 

4.2. Extended two-tower approach 421 

The scatter plots in Fig.4 illustrate the effect the sfd-correction (Eq.2) had on the difference 422 

of the NEE data simultaneously measured at both EC towers (NEE-EC1- and NEE-EC2-). The 423 

sfd-correction reduced the bias and scattering, because systematic differences of the 424 

measured fluxes, e.g. induced by different environmental conditions, were removed. As 425 

expected, the effect of the sfd-correction was considerably higher for the larger EC tower 426 

distances because environmental conditions are also expected to differ more if the distance of 427 

two locations is larger. For the 8 m EC tower distance for instance, the effect of the sfd-428 

correction is very minor because footprints are often nearly overlapping. However, for the EC 429 

tower distances >= 173 m, the bias and scattering of NEE-EC1- and NEE-EC2- was considerably 430 

reduced by the sfd-correction. 431 

A comparison of Fig.2 and Fig.5 illustrates how the sfd-correction affected the linear 432 

regression of the NEE standard error as function of NEE flux magnitude: The sfd-correction 433 

considerably enhanced the correlation of NEEcorr and the standard error σ(δ)corr for the EC 434 

tower distances 20.5 km and 34 km from R
2 

>= 0.15 to R
2 

>= 0.43.  435 

Applying the sfd-correction (without weather-filter) reduced the mean uncertainty value by 436 

41.6% to 56.9% for the EC tower distances from 8m to 34 km. The relative differences Δσcov 437 

indicate that the correction for systematic flux differences considerably improved the two-438 

tower based uncertainty estimate for the distances >8 m (Tab.2): The difference Δσcov was 439 
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notably smaller (< 56.8%) for all distances except the 8 m distance compared to Δσcov 440 

determined with the classical two-tower approach (< 274.7%). The most considerable 441 

improvement was achieved for the 95 m EC tower distance and the 173 m distance. 442 

Additional application of the weather-filter (Fig.6) on the sfd-corrected NEEcorr data reduced 443 

the mean uncertainty estimate σ(δ)corr by 23.3% and 2.9% for the 20.5 km and the 34 km EC 444 

tower distance and reduced Δσcov by 57.7% and 7.7%. The effect of the weather-filter on the 445 

uncertainty estimates of the shorter EC tower distances was very minor (Tab.2). The 446 

uncertainty estimates σ(δ)corr,f determined with the extended two-tower approach agree best 447 

with the independent reference values σcov for the EC tower distances 95m and 173 m, 448 

suggesting that those distances were most suitable for the application of the extended two-449 

tower approach.  450 

4.3. Discussion 451 

The results show that the two-tower based uncertainty estimates (both classical and extended 452 

two-tower approach) were smallest for the 8 m distance. This can be explained with the 453 

results of the footprint analysis: While the average percentage footprint overlap is 13% 454 

(normalized 19%) for the 95 m EC tower distance and only 4% (7%) for the 173m EC tower 455 

distance, it is 68% (80%) for the 8 m EC tower distance. The stronger overlap of the 8 m 456 

distance footprint areas is associated with a more frequent sampling of the same eddies. As a 457 

consequence, part of the random error was not captured with the two-tower approach. If EC 458 

towers are located very close to each other (< 10 m) and the footprint overlap approaches 459 

100%, only instrumental errors and stochasticity related to sampling of small eddies will be 460 

captured with the two-tower based uncertainty estimate. Because the EC measurements are 461 

statistically not independent if the footprints are overlapping, the classical EC tower method 462 
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is not expected to give reliable uncertainty estimates for very short EC tower distances 463 

(Hollinger et al., 2004; Hollinger and Richardson, 2005). However, without applying the sfd-464 

correction, the mean uncertainty estimate σ(δ) was higher than the raw-data based reference 465 

value σcov which includes both the instrumental noise σ𝑐𝑜𝑣
𝑛𝑜𝑖𝑠𝑒and the stochastic error σ𝑐𝑜𝑣

𝑠𝑡𝑜𝑐ℎ. 466 

The raw-data based σ𝑐𝑜𝑣
𝑛𝑜𝑖𝑠𝑒  itself was only 0.04 μmol m

-2 
s

-1 
of 0.64 μmol m

-2
s 

-1 
for the 467 

dataset of the 8 m EC tower distance. The mean uncertainty value derived with the extended 468 

two-tower approach σ(δ)corr,f for the same dataset was lower than σ(δ) but still considerably 469 

higher than σ𝑐𝑜𝑣
𝑛𝑜𝑖𝑠𝑒, suggesting that even at 8 m EC tower distance instrumentation errors were 470 

only a minor part of the two-tower based uncertainty estimate. For the larger separation 471 

distances 95 m or 173 m with notably less footprint overlap turbulence sampling errors are 472 

almost fully accounted for by a two-tower approach. (It should be noted that forest stations, 473 

with a typically larger aerodynamic measurement height and footprint size, will require larger 474 

separation distances). However, different land surface properties and management are more 475 

likely for the larger separation distances and can cause systematic flux differences that should 476 

not be attributed to the random error estimate. As outlined in section 2, land surface 477 

properties related to management (e.g. nutrient availably due to fertilization), soil properties 478 

(bulk density, skeleton fraction), soil carbon-nitrogen pools, soil moisture and soil 479 

temperature are heterogeneously distributed at the Rollesbroich site. The effect of soil 480 

moisture, soil temperature and soil properties on CO2 fluxes (respiration mainly) is well 481 

known (e.g. Herbst et al., 2009; Flanagan and Johnson, 2005; Xu et al., 2004; Lloyd and 482 

Taylor, 1994; Orchard and Cook, 1983) as well as the role of grassland management (e.g. 483 

Allard et al., 2007). Results indicate that an overestimation of the two-tower based 484 

uncertainty caused by different land surface properties in the footprint area of both EC towers 485 

can be successfully filtered out by the extended approach. It should be noted that a shorter 486 

moving average interval of the sfd-correction term (e.g. 6 hours instead of the applied 12 487 
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hours window; Tab.A2), results in slightly lower uncertainty estimates compared to the 488 

reference. This can be explained by a possible “over-correction” of the NEE data related to a 489 

too short moving average interval for calculating the sfd-correction term. It needs to be 490 

emphasized that the estimated mean NEE values of the moving average intervals are 491 

associated with uncertainty. As mentioned, the moving average interval should be long 492 

enough to exclude random differences of the simultaneously measured fluxes but short 493 

enough to limit the impact of non-stationary conditions. However, the 12hr running mean 494 

NEE1 and NEE2 values (𝑁𝐸𝐸12 ) as well as the respective means  of NEE1 and NEE2 495 

(𝑁𝐸𝐸2𝑇_12 ) used to calculate NEEcorr (Eq.2) are uncertain because they still contain the 496 

random error part which cannot be corrected or filtered out. This uncertainty in the mean is 497 

expected to be higher for a shorter averaging interval such as 6 hours. Therefore, completely 498 

correcting the difference in mean NEE slightly overcorrects systematic differences in NEE. In 499 

general results were not very sensitive to different moving average sizes of the sfd-correction 500 

term and data coverage percentages defined for this interval (Tab.A3).     501 

It is expected that systematic differences in measured NEE caused by spatially variable land 502 

surface properties are stronger during the night than during the day since they affect 503 

respiration more directly than photosynthesis (see e.g. Oren et al., 2006). Moreover, during 504 

night-time and/or winter (positive NEE), some conditions associated with lower EC data 505 

quality such as low turbulence, strong stability, and liquid water in the gas analyzer path 506 

prevail more often than in summer and/or daytime (negative NEE). The less severe cases of 507 

such conditions are not always completely eliminated by the quality control. In time series of 508 

eddy-covariance fluxes this typically shows up as implausible fluctuations of the flux during 509 

calm nights. This is reflected by plots of NEE flux magnitude versus uncertainty (Fig.2-3; 510 
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Fig.5-6) showing higher uncertainties for positive compared to negative NEE data which 511 

agrees with previous findings (e.g. Richardson et al., 2006).  512 

At very large EC tower distances (20.5 km, 34 km) footprints were not overlapping and the 513 

environmental conditions were considerably different; in particular for the EC tower setup 514 

Rollesbroich/Merzenhausen with different land use (grassland/crop) and climate conditions. 515 

For those distances, the relative difference Δσcov between σcov and σ(δ) (classical two-tower 516 

approach) was much larger than Δσcov between σcov and σ(δ)corr,f (extended two-tower 517 

approach). Δσcov  was reduced by 85.7% for the 20.5km distance and 79.3% for the 34km if 518 

both sfd-correction and weather filter were used. However, after applying the sfd-correction 519 

and the weather-filtering, the mean uncertainty estimate was still higher than the raw-data 520 

based reference value (Tab.2), suggesting that for these large EC tower distances the sfd-521 

correction and the weather-filter do not fully capture systematic flux differences and 522 

uncertainty is still overestimated by the extended two-tower approach. This can have 523 

different reasons. We assume the major reason is that the weather-filter is supposed to 524 

capture all measured flux differences that can be attributed to different weather conditions at 525 

both EC towers which cannot be captured with the sfd-correction. Applying stricter 526 

thresholds could increase the efficiency of the weather filter but in our case the reduced 527 

dataset was too small to allow further analysis. In general, the weather-filter did not improve 528 

the uncertainty estimates as much as the sfd-correction. However, this does not imply that 529 

differences in weather conditions are negligible when applying the extended two-tower 530 

approach for larger EC tower distances. In fact the systematic part of measured EC flux 531 

differences between both towers caused by (steady, systematic) among-site differences in 532 

weather conditions were already partly captured with the sfd-correction. In contrast, such 533 
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systematic differences were difficult to capture with the weather-filter because much lower 534 

thresholds would have been required.  535 

 The absolute corrected and weather-filtered uncertainty value σ(δ)corr,f [μmol m
-2

 s
-1

] was 536 

slightly lower for the 34 km EC tower distance than for the 20.5 km EC tower distance 537 

(Tab.2). The raw-data based reference σcov [μmol m
-2

 s
-1

] however was also smaller for the 34 538 

km dataset than for the 20.5 km dataset which can be related to the different lengths and 539 

timing (i.e., different seasons) of the measurement periods for each of the five EC tower 540 

distances: The roving station was moved from one distance to another within the entire 541 

measurement period of ~ 27 months. During this entire time period of data collection, the 542 

length and timing of the single measurement periods varied for the five EC tower separation 543 

distances (Tab.1). This is not optimal because the random error is directly related to the flux 544 

magnitude and the flux magnitude itself is directly related to the timing of the measurements. 545 

Because in spring and summer flux magnitudes are higher, the random error is generally 546 

higher as well (Richardson et al., 2006). To reduce this effect, we captured spring/summer as 547 

well as autumn/winter months in each measurement period. However, the timing of the 548 

measurements and the amount of data available were not the same for the five EC datasets. In 549 

particular the permanent EC tower in Merzenhausen was measuring considerably longer (> 2 550 

years) than the roving station did for the other four EC tower distances. Therefore, 551 

differences of the mean uncertainty estimates for the five measurement periods were partly 552 

independent of the EC tower distance. This effect gets obvious when looking at the mean 553 

uncertainties σcov estimated with the reference method, which should be independent of the 554 

distance but were also found to be different for each dataset of the five EC tower distances. 555 

Against this background, statements about how EC tower distances affect the two-tower 556 

based uncertainty estimate need to be treated with caution.  557 
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The NEE uncertainty σ(δ)corr,f estimated for the grassland site Rollesbroich agree well with 558 

the NEE uncertainty values for grassland sites by Richardson et al. (2006), and also the 559 

regression coefficients (Fig. 2-3; Fig.5-6, Tab. A1) do not show large differences. This can be 560 

expected since Richardson et al. (2006) applied their method for a very well-suited tower pair 561 

with low systematic differences, such that the classical approach and our extended approach 562 

should approximately converge. However, identical results are unlikely because even for two 563 

very similar neighboring sites some systematic differences occur. In addition, the random 564 

error is expected to vary between sites (see e.g. Mauder et al., 2013) which is in part related 565 

to instrumentation.  566 

5 Conclusions 567 

When estimating the uncertainty of eddy covariance net CO2 flux (NEE) measurements with 568 

a two-tower based approach it is important to consider that the basic assumptions of identical 569 

environmental conditions (including weather conditions and land surface properties) on the 570 

one hand and non-overlapping footprints on the other hand are contradicting and impossible 571 

to fulfill. If the two EC towers are located in a distance large enough to ensure non 572 

overlapping footprints, different environmental conditions at both EC towers can cause 573 

systematic differences of the simultaneously measured fluxes that should not be included in 574 

the uncertainty estimate. This study for the grassland site Rollesbroich in Germany showed 575 

that the extended two-tower approach which includes a correction for systematic flux 576 

differences (sfd-correction) can be used to derive more reliable (less overestimated) 577 

uncertainty estimates compared to the classical two-tower approach. An advantage of this 578 

extended two-tower approach is its simplicity and the fact that there is no need to quantify the 579 

differences in environmental conditions (which is usually not possible due to a lack of data). 580 

Comparing the uncertainty estimates for five different EC tower distances showed that the 581 
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mean uncertainty estimated with our extended two-tower approach for the 95 m and 173 m 582 

distances were nearly identical to the random error estimated with the raw-data based 583 

reference method. This suggests that these distances were most appropriate for the 584 

application of the extended two-tower approach in this study. Accordingly, we consider the 585 

regressions in Fig.6 (b,c) to be most reliable. Also for the largest EC tower distances (20.5 586 

km, 34 km) the sfd-correction significantly improved the correlations of the flux magnitude 587 

and the random error and significantly reduced the difference to the independent, raw data 588 

based reference value. We therefore conclude that if no second EC tower is available at a 589 

closer distance (but available further away), a rough, probably overestimated NEE 590 

uncertainty estimate can be acquired with the extended two-tower approach although 591 

environmental conditions at the two sites are not identical. 592 

A statement about the transferability of our experiment to other sites and EC tower distances 593 

requires further experiments. However, we assume transferability is given if both EC towers 594 

are located at sites of the same vegetation type (e.g. C3-grasses, C4-crops, deciduous forest, 595 

coniferous forest, etc.). Flux differences caused by a different phenology can be very hard to 596 

separate from the random error estimate, even though they are expected to be mainly 597 

systematic and could therefore be partly captured with the sfd-correction. Moreover, the EC 598 

raw data should be processed in the same way (as done here) and the measurement devices 599 

should be identical and installed at about the same measurement height. Important is also that 600 

the instruments are calibrated thoroughly and consistently. Because this was true for the three 601 

EC towers included in this study, we conclude that systematic flux differences that are 602 

corrected for with the sfd-correction arise mainly from different environmental conditions 603 

whereas calibration errors are assumed to have a very minor effect. Different weather 604 

conditions at both EC tower sites are a main drawback for applications of the two-tower 605 
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approach. While systematic differences of the weather conditions are expected to be captured 606 

by the sfd-correction, less systematic weather fluctuations e.g. related to cloud movement, are 607 

difficult to be filtered of the two-tower based uncertainty estimate. Applying very strict 608 

thresholds can lead to a too small dataset, especially if the measurement periods are short. If 609 

EC raw data is available, we recommend to use an uncertainty estimation scheme like the one 610 

presented in Mauder et al. (2013). Raw-data based NEE uncertainty estimation methods like 611 

the one suggested by  Finkelstein and Sims (2001) and implemented by Mauder et al. (2013) 612 

have not been extensively applied yet and – to the best of our knowledge – never been 613 

compared to the ones derived with the more well-known two-tower approach. The fact that 614 

the two uncertainty estimates (extended two-tower approach and raw-data based reference) 615 

give very similar results therefore contributes to the confidence in both methods.  616 

Appendix A 617 

Tab. A1 618 

Summary of the 95% confidence intervals for the linear regression coefficients of the NEE 619 
magnitudes - standard error relationships determined with Eq.1 for the four two two-tower based 620 
correction schemes and the five EC tower distances 621 

Variables: Two towers: m mlower mupper b blower bupper 

NEEnegative / 

σ(δ)  

EC1 / EC2 (8 m) -0.012 -0.041 0.017 0.691 0.442 0.940 

EC1 / EC2 (95 m) -0.045 -0.099 0.010 1.163 0.680 1.647 

EC1 / EC2 (173 m) -0.052 -0.067 -0.036 1.747 1.537 1.957 

EC1 / EC2 (20.5 km) -0.088 -0.272 0.097 2.544 0.696 4.392 

EC1 / EC3 (34 km) -0.130 -0.330 0.069 2.849 0.772 4.926 

NEEnegative / 

σ(δ)f 

EC1 / EC2 (8 m) -0.008 -0.043 0.026 0.746 0.497 0.995 

EC1 / EC2 (95 m) -0.005 -0.036 0.026 1.569 1.286 1.853 

EC1 / EC2 (173 m) -0.055 -0.088 -0.021 1.416 1.009 1.824 

EC1 / EC2 (20.5 km) -0.011 -0.087 0.066 2.606 1.929 3.284 

EC1 / EC3 (34 km) -0.039 -0.190 0.113 3.527 1.737 5.317 

NEEnegative /  

σ(δ)corr   

EC1 / EC2 (8 m) -0.036 -0.048 -0.024 0.227 0.125 0.329 

EC1 / EC2 (95 m) -0.043 -0.072 -0.014 0.699 0.379 1.018 

EC1 / EC2 (173 m) -0.052 -0.087 -0.017 0.485 -0.059 1.030 

EC1 / EC2 (20.5 km) -0.085 -0.142 -0.028 1.033 0.312 1.754 

EC1 / EC3 (34 km) -0.092 -0.129 -0.055 0.963 0.421 1.505 

NEEnegative / 

σ(δ)corr,f  

EC1 / EC2 (8 m) -0.040 -0.060 -0.019 0.211 0.053 0.369 

EC1 / EC2 (95 m) -0.044 -0.074 -0.013 0.574 0.252 0.895 

EC1 / EC2 (173 m) -0.071 -0.122 -0.021 0.272 -0.440 0.983 

EC1 / EC2 (20.5 km) -0.106 -0.204 -0.009 0.493 -0.685 1.671 
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EC1 / EC3 (34 km) -0.070 -0.108 -0.031 0.981 0.346 1.616 

NEEpositive / 

σ(δ)  

EC1 / EC2 (8 m) 0.101 0.027 0.174 0.346 -0.024 0.715 

EC1 / EC2 (95 m) 0.161 0.028 0.294 0.734 0.285 1.183 

EC1 / EC2 (173 m) 0.061 -0.284 0.406 1.340 -0.775 3.455 

EC1 / EC2 (20.5 km) 0.118 -0.272 0.507 1.332 -0.500 3.164 

EC1 / EC3 (34 km) 0.235 0.113 0.356 0.731 0.323 1.140 

NEEpositive / 

σ(δ)f 

EC1 / EC2 (8 m) 0.101 0.020 0.182 0.340 -0.080 0.760 

EC1 / EC2 (95 m) 0.029 -0.299 0.357 1.333 -0.114 2.780 

EC1 / EC2 (173 m) 0.179 -0.122 0.480 0.535 -1.316 2.385 

EC1 / EC2 (20.5 km) 0.145 -0.174 0.464 1.134 -0.365 2.632 

EC1 / EC3 (34 km) 0.320 0.059 0.580 0.763 -0.330 1.857 

NEEpositive / 

σ(δ)corr   

EC1 / EC2 (8 m) 0.083 0.043 0.123 0.089 -0.106 0.284 

EC1 / EC2 (95 m) 0.074 0.054 0.094 0.165 0.094 0.236 

EC1 / EC2 (173 m) 0.172 -0.093 0.436 -0.110 -1.979 1.759 

EC1 / EC2 (20.5 km) 0.245 0.122 0.367 -0.328 -0.938 0.282 

EC1 / EC3 (34 km) 0.162 0.135 0.189 0.080 -0.015 0.175 

NEEpositive / 

σ(δ)corr,f  

EC1 / EC2 (8 m) 0.078 0.037 0.118 0.101 -0.102 0.303 

EC1 / EC2 (95 m) 0.090 0.030 0.150 0.136 -0.142 0.414 

EC1 / EC2 (173 m) 0.163 -0.132 0.459 -0.040 -2.081 2.000 

EC1 / EC2 (20.5 km) 0.159 -0.094 0.413 0.072 -1.205 1.349 

EC1 / EC3 (34 km) 0.205 0.132 0.279 0.029 -0.278 0.337 

*mlower; mupper: lower and upper 95% confidence interval for slope m   

*blower; bupper: lower and upper 95% confidence interval for intersect b  

σ(δ), σ(δ)f: uncertainty estimated with classical two-tower approach without & with weather filter (f) 

σ(δ)corr, σ(δ)corr,f: uncertainty estimated with extended two-tower approach  

 

 

 

Tab. A2: R
2
 for NEE uncertainty determined with the extended two-tower approach (including sfd-

correction and weather-filter) as function of NEEcorr magnitude and for 20.5km EC tower 

distance. Results are given for different moving average time intervals (6 hr, 12 hr, 24hr) and data 

coverage percentages (25%, 50%, 70%) for the calculation of the sfd-correction factor (Eq.2) 

 

6h 12h 24h 

30% 0.73; 0.84; (937) 0.92; 0.72; (904) 0.84; 0.82; (597) 

50% 0.58; 0.85; (710) 0.7; 0.43; (463) -; -; (32) 

70% 0.77; 0.78; (408) 0.66; 0.08; (148) -; -; (0) 

black: for negative NEE; grey: for positive NEE; (): total number of half-hourly NEE left after sfd-correction 

and weather filter to build bins for NEE uncertainty versus NEE magnitude regressions (Fig.5 for 12h & 50 %) 

 

 622 

Tab. A3: Relative difference [%] of mean uncertainty σ(δ)corr,f  estimated with the extended two 623 
tower approach and the reference σcov for EC tower distances > 8m 624 

Diff Δσcov (6h) Δσcov (12h) Δσcov (24h) 

30% -0.8; 39.3 4.8; 55.5 10.9; 59.9 

50% -9.3; 32.5 -1.5; 41.2 - 

70% -10.5; 24.3 -5.2; 10.2 - 

black: mean Δσcov for 95m and 173m distance ; grey: mean Δσcov  for 20.5 km and 34 km distance 625 
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Table Captions  761 

Tab. 1. Measurement periods and locations of the permanent EC towers in Rollesbroich 762 

(EC1) and Merzenhausen (EC3) and the roving station (EC2) 763 

Tab. 2. Mean NEE uncertainty [μmol m
-2

 s
-1

] for five EC tower distances estimated with the 764 

classical two-tower approach, with and without including a weather-filter (σ(δ), σ(δ)f 765 

). and with the extended two-tower approach (sfd-correction), also with and without 766 

including a weather-filter (σ(δ)corr, σ(δ)corr,f ). The table also provides the random error 767 

σcov [μmol m
-2

 s
-1

] estimated with the raw-data based reference method (Mauder et al. 768 

2013).  769 

Figure Captions  770 

Fig. 1. Eddy covariance (EC) tower locations in the Rur-Catchment (center) including the 771 

Rollesbroich test site (left), with the target areas defined for the footprint analysis  772 
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Fig. 2. NEE uncertainty σ(δ) determined with the classical two-tower approach as function of 773 

the NEE flux magnitude for the EC tower distances 8m (a), 95m (b) , 173m (c), 774 

20.5km (d) and 34km (e). (Dashed line: linear correlation not significant (p>0.1)) 775 

Fig. 3. NEE uncertainty σ(δ) determined with the classical two-tower approach as function of 776 

the NEE flux magnitude including the application of the weather-filter for the EC 777 

tower distances 8m (a), 95m (b) , 173m (c), 20.5km (d) and 34km (e). (Dashed line: 778 

linear correlation not significant (p>0.1)) 779 

Fig. 4. Scatter of the NEE measured at EC1 (NEE-EC1-) and NEE measured at a second tower 780 

EC2/EC3 (NEE-EC2-) for the uncorrected NEE (left) and the sfd-corrected NEEcorr 781 

(right) for the EC tower distances 8m (a), 95m (b) , 173m (c), 20.5km (d) and 34km 782 

(e) 783 

Fig. 5. NEE uncertainty σ(δ)corr  determined with the extended two-tower approach as 784 

function of sfd-corrected NEEcorr magnitude (Eq.2) for the EC tower distances 8m (a), 785 

95m (b) , 173m (c), 20.5km (d) and 34km (e) (Dashed line: linear correlation not 786 

significant (p>0.1)) 787 

Fig. 6. NEE uncertainty σ(δ)corr determined with the extended two-tower approach as function 788 

of sfd-corrected NEEcorr magnitude (Eq.2) including application of the weather-filter 789 

for the EC tower distances 8m (a), 95m (b) , 173m (c), 20.5km (d) and 34km (e) 790 

(Dashed line: linear correlation not significant (p>0.1)) 791 

 792 

Tab. 1. Measurement periods and locations of the permanent EC towers in Rollesbroich (EC1) and 793 
Merzenhausen (EC3) and the roving station (EC2) 794 

 Coordinates Sitename 
Distance 

to EC1 
Measurement period 

alt. 

(m) 

EC1 50.6219142 N / 6.3041256 E Rollesbroich – 13.05.2011 – 15.07.2013 514.7 

EC2 

50.6219012 N / 6.3040107 E 

50.6219012 N / 6.3040107 E 
Rollesbroich 8m 

29.07.2011 – 06.10.2011 

05.03.2013 – 15.05.2013 
514.8 

50.6217990 N / 6.3027962 E 

50.6210472 N / 6.3042120 E 
Rollesbroich 95m 

07.10.2011 – 15.05.2012 

01.07.2013 – 15.07.2013 

516.3 

517.3 

50.6217290 N / 6.3016925 E Rollesbroich 173m 24.05.2012 – 14.08.2012 

 

517.1 

 

50.5027500 N / 6.5254170 E Kall-Sistig 20.5 km 
14.08.2012 – 01.11.2012 

15.05.2013 – 01.07.2013 
498.0 

EC3 50.9297879 N / 6.2969924 E Merzenhausen 34 km 10.05.2011– 16.07.2013   93.3 

 795 

 796 



 

 

33 

 

Tab. 2. Mean NEE uncertainty [μmol m
-2

 s
-1

] for five EC tower distances estimated with the 797 
classical two-tower approach, with and without including a weather-filter (σ(δ), σ(δ)f ). and with 798 
the extended two-tower approach (sfd-correction), also with and without including a weather-filter 799 
(σ(δ)corr, σ(δ)corr,f ). The table also provides the random error σcov [μmol m

-2
 s

-1
] estimated with the 800 

raw-data based reference method (Mauder et al. 2013).  801 
 802 

EC tower 

distance 
N σ(δ) (Δσcov ) σ(δ)f  (Δσcov ) σ(δ)corr (Δσcov ) σ(δ)corr,f (Δσcov) σcov 

8m 3167 0.76 (18.8)    0.77 (20.5) 0.44 (-30.6) 0.44 (-30.8) 0.64 

95m 3620 1.30 (116.7) 1.50 (149.4) 0.65 (8.2) 0.60 (0.2) 0.60 

173m 2410 2.04 (98.5) 1.82 (77.0) 1.03 (-0.3) 1.00 (-2.5) 1.03 

20.5 km 2574 2.72 (200.6) 2.35 (159.7) 1.52(67.8) 1.16 (28.7) 0.91 

34 km 15571 2.73 (274.7) 2.86 (292.4) 1.18 (61.5) 1.14 (56.8) 0.73 

mean 

 

1.91  1.86  0.98  0.93  0.78 

 (Δσcov): relative differences [%] between two-tower based uncertainty estimates and the references value σcov  803 
(Eq.4) 804 
 805 
 806 

 807 

 Fig. 1. Eddy covariance (EC) tower locations in the Rur-Catchment (center) including the 808 
Rollesbroich test site (left)  809 
  810 
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 811 

Fig. 2. NEE uncertainty σ(δ) determined with the classical two-tower approach as function of the 812 
NEE flux magnitude for the EC tower distances 8m (a), 95m (b) , 173m (c), 20.5km (d) and 34km 813 
(e). (Dashed line: regression slope not significantly different from zero (p>0.1)) 814 
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 815 

Fig. 3. NEE uncertainty σ(δ) determined with the classical two-tower approach as function of the 816 
NEE flux magnitude including the application of the weather-filter for the EC tower distances 8m 817 
(a), 95m (b) , 173m (c), 20.5km (d) and 34km (e). (Dashed line: regression slope not significantly 818 
different from zero (p>0.1)) 819 
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 820 

Fig.4. Scatter of the NEE measured at EC1 (NEE-EC1-) and NEE measured at a second tower 821 
EC2/EC3 (NEE-EC2-) for the uncorrected NEE (left) and the sfd-corrected NEEcorr (right) for the 822 
EC tower distances 8m (a), 95m (b) , 173m (c), 20.5km (d) and 34 km 823 
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 824 

Fig.5. NEE uncertainty σ(δ)corr  determined with the extended two-tower approach as function of 825 
sfd-corrected NEEcorr magnitude (Eq.2) for the EC tower distances 8m (a), 95m (b), 173m (c), 826 
20.5km (d) and 34km (e) (Dashed line: regression slope not significantly different from zero 827 
(p>0.1)) 828 
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 829 

Fig.6. NEE uncertainty σ(δ)corr determined with the extended two-tower approach as function of 830 
sfd-corrected NEEcorr magnitude (Eq.2) including application of the weather-filter for the EC tower 831 
distances 8m (a), 95m (b) , 173m (c), 20.5km (d) and 34km (e) (Dashed line: regression slope not 832 
significantly different from zero (p>0.1)) 833 


