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Abstract

The use of eddy covariance CO2 flux measurements in data assimilation and other
applications requires an estimate of the random uncertainty. In previous studies, the
two-tower approach has yielded robust uncertainty estimates, but care must be taken
to meet the often competing requirements of statistical independence (non-overlapping5

footprints) and ecosystem homogeneity when choosing an appropriate tower distance.
The role of the tower distance was investigated with help of a roving station sepa-
rated between 8 m and 34 km from a permanent EC grassland station. Random un-
certainty was estimated for five separation distances with an extended two-tower ap-
proach which removed systematic differences of CO2 fluxes measured at two EC tow-10

ers. This analysis was made for a dataset where (i) only similar weather conditions at
the two sites were included and (ii) an unfiltered one. The extended approach, applied
to weather-filtered data for separation distances of 95 m and 173 m gave uncertainty
estimates in best correspondence with the independent reference method The intro-
duced correction for systematic flux differences considerably reduced the overestima-15

tion of the two-tower based uncertainty of net CO2 flux measurements, e.g. caused by
different environmental conditions at both EC towers. It is concluded that the extension
of the two-tower approach can help to receive more reliable uncertainty estimates be-
cause systematic differences of measured CO2 fluxes which are not part of random
error are filtered out.20

1 Introduction

Eddy covariance (EC) measurements of the CO2 flux are commonly used to analyze
the interactions between terrestrial ecosystems and the atmosphere. This is crucial
for the understanding of climate-ecosystem feedbacks as well as for an improved rep-
resentation of vegetation and related processes (photosynthesis, respiration, transpi-25

ration, etc.) in land surface models. EC fluxes are used to evaluate and to improve
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land surface models. Because both model predictions and measurements comprise
errors and because measurements are sparse in geographical space, the application
of data assimilation and parameter optimization approaches in climate-ecosystem re-
search is increasing (e.g. Braswell et al., 2005; Hill et al., 2012; Kuppel et al., 2012).
These approaches allow for an identification of model deficits and can enhance model5

accuracy. During data assimilation (DA) model estimates are updated or corrected with
measurement data that are weighted by the according uncertainty values. Therefore,
a reliable uncertainty estimate of the EC measurement data is necessary for DA based
studies (Richardson et al., 2008, 2006). Due to the widespread application of land sur-
face models which are often combined with data assimilation and parameter estimation10

approaches there is a need for reliable EC data uncertainty estimates.
Following the definition in Dragoni et al. (2007) we denote uncertainty as the ran-

dom error which differs from the systematic error in terms of properties and sources.
Systematic errors are considered to remain constant for a given set of environmental
conditions. Ideally they can be corrected, but in case of EC measurements this is still15

limited by either our understanding of various error sources or insufficient background
data. Systematic errors arise not only from instrumental calibration and data processing
deficits, but also from unmet underlying assumptions about the meteorological condi-
tions (Richardson et al., 2012). As described in Sect. 3.1, a main assumption is, e.g.
that turbulence is always well developed in the lowest atmospheric boundary layer and20

responsible for the mass transport. In case of CO2 fluxes, nighttime respiration is of-
ten underestimated due to low wind velocities conditions and a temperature inversion
which hinders the upward carbon dioxide transport (Baldocchi, 2001). Hence, nighttime
data are commonly rejected for further analysis (Barr et al., 2006). Besides, the sum
of measured energy fluxes (latent heat, sensible heat and ground heat flux) is often25

found to be 10–30 % smaller than the measured net radiation which refers to an en-
ergy closure problem (Foken, 2008; Foken et al., 2006; Wilson et al., 2002). Possible
reasons for this energy balance deficit (EBD) are (a) the negligence or incorrect esti-
mation of the energy storage in the canopy and the soil (Kukharets et al., 2000) and (b)
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the underestimation of turbulent energy fluxes and/or an overestimation of the available
energy (Wilson et al., 2002). The latter is closely linked to (c) an omission of low or high
frequency turbulent fluxes (Foken, 2008; Wilson et al., 2002) and the situation that (d)
land surface heterogeneity can even on flat terrain induce advection (Finnigan, 2008;
Foken et al., 2006; Liu et al., 2006; Panin et al., 1998).5

Sometimes, measured energy fluxes are corrected for EBD (e.g. Todd et al., 2000;
Twine et al., 2000; Hendricks Franssen et al., 2010). Because atmospheric CO2 trans-
port processes are very similar to those of latent and sensible heat and because their
calculation with the eddy covariance method is based on the same physical assump-
tions, the energy balance closure problem might also result in a systematic underes-10

timation of errors of the CO2 fluxes (Mauder et al., 2010; Foken, 2008; Wilson et al.,
2002). However, the correction of measured CO2 fluxes with the EBD is not widely
accepted, because the connection between energy- and CO2 deficits has not been
firmly proven and depends on the actual reason for the imbalance (Barr et al., 2006;
Foken et al., 2006; Wilson et al., 2002). In a comparison of EC and chamber measure-15

ments, Graf et al. (2013) found different biases for CO2 flux and latent heat flux, and
only the latter showed some relation to the EBD of the EC systems. Oren et al. (2006)
also pointed out that errors related to the EBD do not necessarily translate to errors in
measured CO2 which is supported by findings of Scanlon and Albertson (2001).

After a possible correction of the EC flux data for systematic errors a random er-20

ror will remain which originates e.g. from instrumentation errors, flux footprint hetero-
geneity or turbulence sampling errors (Flanagan and Johnson, 2005). The uncertainty
cannot be corrected or predicted like systematic errors due to its random character
but can be quantified by statistical analysis and characterized by probability distribu-
tion functions (Richardson et al., 2012). Errors due to flux footprint heterogeneity are25

related to the simplifying assumption that the flux footprint originates from one (con-
stant) footprint area within the measurement interval. However, temporal variability of
e.g. wind direction, wind speed and atmospheric stability cause temporal variations of
the the footprint area. Turbulence sampling errors are related to the fact that turbulence
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is a highly stochastic process and especially the sampling or not sampling of larger
eddies is associated with considerable random fluctuations of fluxes, even if they are
already averaged over a 30 min period.

Within the past decade, several approaches have been proposed to quantify the un-
certainty of eddy covariance CO2 flux measurements. With the “two-tower” or “paired5

tower” approach simultaneous flux measurements of two EC towers are analyzed
(Hollinger and Richardson, 2005; Hollinger et al., 2004). For the uncertainty quantifica-
tion with the two-tower approach, it is necessary that environmental conditions for both
towers are nearly identical (Hollinger and Richardson, 2005; Hollinger et al., 2004).
However, most eddy covariance sites do not have a nearby second EC tower to pro-10

vide nearly identical environmental conditions. Therefore, Richardson et al. (2006) in-
troduced the “one-tower” or “24 h differencing” method which is based on the two-tower
approach. The main difference is that the uncertainty estimate is based on differences
between fluxes measured on subsequent days if environmental conditions were similar
on both days. Because most often environmental conditions are not the same on two15

subsequent days (Liu et al., 2006), the applicability of this method suffers from a lack
of data and the random error is overestimated (Dragoni et al., 2007). The model resid-
ual approach (Dragoni et al., 2007; Hollinger and Richardson, 2005; Richardson et al.,
2008) calculates CO2 fluxes with a simple model and compares calculated values with
measured values. The model residual is attributed to the random measurement error.20

The method is based on the assumption that the model error is negligible, which is how-
ever a very questionable assumption. The instrumental uncertainty contributing to the
total random error can be estimated with the random shuffle method (Billesbach, 2011).
Finkelstein and Sims (2001) introduced an operational quantification of the instrumen-
tal noise and the stochastic error by calculating the auto- and cross-covariances of the25

measured fluxes. This method was implemented into a standard EC data processing
scheme by Mauder et al. (2013). In contrast to the previous approaches this method
uses the high-frequency raw-data. The advantage is that a second tower or the uti-
lization of additional tools such as a simple model to estimate the EC measurement
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uncertainty is no longer required. Hence, the raw-data based uncertainty estimate is
not affected by not fulfilled underlying assumptions such as similar environmental con-
ditions or a correct simulation model. However, because many data users do not have
access to the raw-data but to processed EC data only, random error estimates by the
raw-data based approach are not commonly available. Therefore a two-tower based5

approach is still of great potential. Important advantages of the two-tower approach
are (1) its simplicity and user friendliness, (2) its usability for relatively short non gap-
filled time series of several months, and (3) the independence of a model. Given the
fact that site specific, adequate uncertainty estimates for eddy covariance data are very
important but still often neglected due to a lack of resources, we are aiming to advance10

the two-tower approach so that it can also be applied if environmental conditions at
both eddy covariance towers are not very similar.

The main objectives of this study were (1) to analyze the effect of the EC tower dis-
tance on the two-tower based CO2 flux measurement uncertainty estimate and (2) to
extend the two-tower approach with a simple correction term that corrects for system-15

atic differences in CO2 fluxes measured at the two sites. This extension follows the idea
of the extended two-tower approach for the uncertainty estimation of energy fluxes pre-
sented in Kessomkiat et al. (2013). The correction step is important for providing a more
reliable random error estimate. In correspondence with these objectives we analyzed
the following questions: what is an appropriate EC tower distance to get a reliable two-20

tower based uncertainty estimate? Can the random error be quantified in reasonable
manner with the extended two-tower approach, even though environmental conditions
at both EC towers are clearly not identical? The total random error estimated with the
raw-data based method (Mauder et al., 2013) was used as a reference to evaluate our
extended two-tower approach based results.25
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2 Test sites and EC Tower setup

The Rollesbroich test site is an extensively used grassland site, located in the Eifel
region of western Germany (Fig. 1). The mean temperature in Rollesbroich is ∼ 7.7 ◦C
and the mean precipitation is ∼ 1033 mm year−1 (Korres et al., 2010). Predominating
soil types at the site are Cambisols with a high clay and silt content (Arbeitsgruppe5

BK50, 2001). The grass species grown in Rollesbroich are mainly ryegrass, particularly
perennial ryegrass (lolium perenne) and smooth meadow grass (poa pratensis) (Korres
et al., 2010). A permanent eddy covariance tower (EC1) is installed at the Rollesbroich
site since May 2011 at a fixed position (Table 1). The measurement height of the sonic
anemometer (CSAT3, Campbell Scientific, Logan, UT, USA) and the open-path gas10

analyzer (Li7500, Li-Cor, Lincoln, NE, USA) is 2.6 m above ground. The canopy height
in the two target areas of EC1 (Fig. 1) was measured every 1–2 weeks and varied
between 0.03 m and 0.88 m during the measurement period. A second EC tower, the
roving station (EC2), has been installed at four different distances (8 m, 95 m, 173 m
and 20.5 km) from EC1 for time periods ranging between 3 and 7.5 months (Table 1).15

The EC2 location “Kall-Sistig” 20.5 km north-east of Rollesbroich is another grassland
site with similar environmental conditions as Rollesbroich. The vegetation in Kall-Sistig
is extensively managed C3 grass, the same as for Rollesbroich. However, the average
plant height measured between 14 August and 30 October 2012 was lower (∼ 0.15 m)
than the respective average for Rollesbroich (∼ 0.2 m), which is also true for the plant20

height measured in May and June 2012 (Kall-Sistig: ∼ 0.22 m; Rollesbroich: ∼ 0.29 m).
As in Rollesbroich, clayey-silty Cambisols are most widespread (Arbeitsgruppe BK50,
2001) The mean temperature for the entire measurement interval in Kall-Sistig (Table 1)
measured at the EC station is 11.4 ◦C and the soil moisture 32 % compared to 11.0 ◦C
and 35 % in Rollesbroich (same time interval for averaging). Additionally a third EC25

tower was located in Merzenhausen in ∼ 34 km distance to EC1 (Fig. 1). Merzenhausen
(MH) is an agricultural site, where winter wheat was grown during the measurement
period. Both the land use conditions and the average weather conditions differ from
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those in Rollesbroich and Kall-Sistig. The climate at the lowland site Merzenhausen
is comparable to the one in Selhausen in 13 km distance to Merzenhausen, where
the mean precipitation is ∼ 690 mm year−1 and the yearly mean temperature ∼ 9.8 ◦C
(Korres et al., 2010). The soils are mainly Luvisols with some patches of Kolluvisols
(Arbeitsgruppe BK50, 2001). The measurement devices of EC2 and EC3 are the same5

as the EC1 devices and were installed in 2.6 m above ground as well. Both, the sonic
anemometers and the open-path gas analyzers have been calibrated every 1–3 months
thoroughly and consistently. Rollesbroich is part of the TERENO network (Zacharias
et al., 2011) and in this regard equipped with multiple measurement devices in addition
to the EC towers, such as the wireless sensor network “SoilNet” (Bogena et al., 2009).10

3 Data and methods

3.1 The eddy covariance method

The net ecosystem exchange of CO2 between the land surface and the atmosphere
(NEE) can be determined with the eddy covariance method. Eddy covariance stations
measure the wind speed in three dimensions and simultaneously the gas concentra-15

tion with an infrared gas analyzer (Pumpanen et al., 2009) at a temporal resolution
of e.g. 10 or 20 Hz. The height of the measurement devices is usually ∼ 1.5–3 m at
agricultural and grassland sites and > 20 m at forest sites (e.g. Hollinger et al., 2004).
In the lowest atmospheric boundary layer close to the land surface turbulent flow pre-
dominates. Accordingly, the eddy covariance method determines the turbulent mass20

transfer assuming that all vertical mass transport within this part of the boundary layer
is transported by turbulent flow (so called “eddies”). The EC-method assumes that hor-
izontal divergence of flow and advection are negligible, and therefore the terrain where
EC stations are located is ideally flat and the land surface homogeneous (Baldocchi,
2001). A main fundament which allows the utilization of the EC method is the mass25
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conservation principle, which requires the assumption of steady state conditions of the
meteorological variables (Baldocchi, 2003).

By sampling both wind speed in three dimensions and the CO2 concentration
over time, the vertical net flux density F of CO2 [mmol m−2 s−1] across the canopy–
atmosphere interface can be calculated as a function of the dry air molar density ρa,5

the CO2 mixing ratio c [mmol m3] and the vertical wind velocity ω (m s−1):

F = ρa ×ω′ ×c′ (1)

The prime denotes fluctuations around the mean; the bar the average over the mea-
surement interval (e.g. half hour), i.e.:10

c′ ×ω′ =
∑n

k=0

[(
ωk −ω

)(
ck −c

)]
n−1

(2)

with n being the number of measurements during the measurement interval.
The CO2 mixing ratio c is equal to the ratio of the CO2 molar density ρc to the dry

air molar density ρa, implying the necessity of a correction (Webb et al., 1980) if CO215

concentration was originally measured per unit volume (as in our case).
NEE is positive if the amount of CO2 released to the atmosphere via respiration is

higher than the amount of CO2 assimilated during photosynthesis. In contrast, negative
NEE values denote a higher CO2 uptake and a net flux from the atmosphere into the
ecosystem.20

3.2 EC data processing

The EC raw data were measured with a frequency of 20 Hz and fluxes were calculated
for intervals of 30 min. The complete processing of the data was performed with the
TK3.1 software (Bayreuth, Department of Micrometeorology, Germany; Mauder and
Foken, 2011), using the standardized strategy for EC data calculation and quality as-25

surance presented in detail by Mauder et al., 2013. The strategy includes established
11951
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EC conversions and corrections such as e.g. correction of spectral loss and correc-
tion for density fluctuations (Webb et al., 1980). It includes tests on high frequency
data (site specific plausibility limits, statistical spike detection) as well as on processed
half hourly fluxes such as stationarity and integral turbulence tests, footprint analysis
(Kormann and Meixner, 2001) and uncertainty estimates for final fluxes. All tests lead5

to a standardized quality flagging with data flagged as high, moderate or low quality
data. For this analysis only high and moderate quality data were used, while low qual-
ity data were treated as missing values. To avoid introduction of additional uncertainty
no gap filling was performed.

3.3 Uncertainty estimation based on the two-tower approach10

The two-tower approach (Hollinger and Richardson, 2005; Hollinger et al., 2004;
Richardson et al., 2006) defines the random error of NEE eddy covariance mea-
surements as the standard deviation σ (δ) of the difference between the CO2 fluxes
[µmol m−2 s−1] simultaneously measured at two different EC towers (NEE1, NEE2):

σ (δ) =
σ(NEE1 −NEE2)

√
2

(3)15

Based on Eq. (3) we calculated the two-tower based uncertainty estimates using
the NEE1 data measured at the permanent EC tower in Rollesbroich (EC1) and the
NEE2 data of a second tower which was either the rowing station (EC2) or – in case
of the 32 km EC tower distance – another permanent EC tower (EC3, Table 1). For20

comparison, the measurement uncertainty σ (δ) was calculated separately for each
EC tower distance (Table 1) and independently for each of the following schemes:

1. the classical two-tower approach (Hollinger and Richardson, 2005; Hollinger et al.,
2004; Richardson et al., 2006)
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2. the classical two-tower approach including a weather-filter previously applied to
the actual uncertainty estimation procedure (conditions of weather filter summa-
rized in Sect. 3.5)

3. the extended two-tower approach with an added correction for systematic flux
differences (sfd-correction; Sect. 3.4), without weather-filter5

4. the extended two-tower approach with weather-filter

The uncertainty estimate of the two-tower approach is obtained by dividing the NEE
data series into several groups (“bins”) according to the flux magnitude and then us-
ing Eq. (3) to calculate the standard deviation σ (δ) for each group (Richardson et al.,
2006). Finally, a linear regression function between the flux magnitude and the stan-10

dard deviation can be derived. The linear correlation of the uncertainty and the flux
magnitude can be explained by the fact that the flux magnitude is a main driving factor
for the random error and can explain about 63 % of the variance in the CO2 flux error
as shown in a case study by Richardson et al. (2006). Accordingly, we calculated the
standard deviation σ (δ) [µmol m−2 s−1] based on 12 groups of the CO2 flux magnitude;15

six groups for positive and six groups for negative fluxes. Fixed class limits for the flux
magnitude would have led to a different number of samples in each group. Separately
for positive and negative NEE values, the data were sorted and divided into 6 groups
with an equal amount of half hourly data. For each single group the standard deviation
σ (δ) was calculated using the single half-hourly flux differences of NEE1 and NEE2.20

The corresponding mean NEE magnitude for each group member was determined by
averaging all half-hourly means of NEE1 and NEE2 in the respective group. Then, the
linear regression equation was derived separately for negative and positive NEE val-
ues using the 6 calculated standard deviations σ (δ) and the 6 mean NEE values. This
procedure was carried out for each dataset of the five EC tower distances and again25

for each of the four uncertainty estimation methods so that altogether 20×2 linear re-
gression equations were derived. The significance of the correlation between the NEE
magnitudes and the standard deviations σ (δ) was tested with the p value determined
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with the Student’s t test based on Pearson’s product moment correlation coefficient
r . Moreover, the 95 % confidence intervals of the slope and the intercept for each liner
regression equation were determined. The linear regression equations were calculated
imposing as constraint an intercept ≥ 0, because a negative standard deviation is not
possible. With those linear regression equations, the uncertainty for the individual half-5

hourly NEE measurement values of the permanent EC tower in Rollesbroich (EC1)
were estimated using the individual half-hourly NEE1 values [µmol m−2 s−1] as input
(x) to calculate the corresponding uncertainty σ (δ) [µmol m−2 s−1] (y).

The described calculation of the individual NEE uncertainty values was done for all
half hourly NEE data, including those data points that were discarded by the weather10

filter and/or the sfd-correction. Hence, for each of the four two-tower based uncertainty
estimation schemes the same amount of individual NEE uncertainty values was gen-
erated In correspondence with the NEE uncertainty datasets generated for the 5 EC
tower distances × 4 schemes, 20 mean two-tower approach basedNEE uncertainty
estimates for the EC1 station were calculated by averaging the individual half hourly15

uncertainty values (Table 2). These mean uncertainty estimates were used to evaluate
the effect of the EC tower distance as well as the sfd-correction (Sect. 3.4) and the
weather-filter (Sect. 3.5) on the two-tower based uncertainty estimation. Even though
Hollinger et al. (2004) and Richardson and Hollinger (2005) already pointed out that the
two-tower approach assumes similar environmental conditions and non-overlapping20

footprints, we applied the classical approach for all EC tower distances, even if these
basic assumptions were not fulfilled, to allow for a comparison of the results before
and after the usage of the weather-filter and the sfd-correction (extended two-tower
approach).

3.4 Correction for systematic flux differences (sfd-correction)25

The classical two-tower approach (Hollinger and Richardson, 2005; Hollinger et al.,
2004; Richardson et al., 2006) is based on the assumption that environmental condi-
tions for both EC towers are identical and flux footprints should not overlap to guar-
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antee statistical independence. Hollinger and Richardson (2005) use threshold values
for three variables (photosynthetically active photon flux density PPFD, temperature
and wind speed) to determine whether environmental conditions are equivalent. In-
dependent of this definition, our understanding of “environmental conditions” includes
both weather conditions and land surface properties such as soil properties (texture,5

density, moisture, etc.), plant characteristics (types, height, density, rooting depth, etc.)
nutrient availability and fauna (rabbits, earthworms, microorganisms, etc.), which are
irregularly distributed and effect respiration and/or photosynthesis. Strictly speaking, if
footprints do not overlap 100 %, the assumption of identical environmental conditions
is already not fulfilled. When applying a two-tower based approach it is important to10

assure that systematic differences of the measured fluxes which are partly caused by
within site or among site heterogeneity are not attributed to the random error estimate
of the measured NEE. Our assumption that even within a site with apparently one
uniformly distributed vegetation type (and for very short EC tower distances) land sur-
face heterogeneity can cause significant spatial and temporal variability in measured15

NEE is e.g. supported by Oren et al. (2006). They found that the spatial variability of
ecosystem activity (plants and decomposers) and LAI within a uniform pine plantation
contributes to about half of the uncertainty in annual eddy covariance NEE measure-
ments while the other half is attributed to micrometeorological and statistical sampling
errors. This elucidates the relevance of considering systematic flux differences caused20

by within site ecosystem heterogeneity when calculating a two-tower based uncertainty
estimate.

The introduced sfd-correction ensures that the random error estimate determined
with a two-tower approach does not include systematic flux differences because they
are not inherent to the actual random error of the measured NEE at one EC tower sta-25

tion In addition to different land surface properties other factors such as instrumental
calibration errors can cause systematic flux differences between two towers. Therefore
we extended the classical two-tower approach with a simple correction step for sys-
tematic flux differences (sfdcorrection). The reason why systematic flux differences can
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statistically be separated quite easily from random differences of the EC flux measure-
ments is their fundamentally different behavior in time: random differences fluctuate
highly in time whereas systematic differences tend to be constant over time or show
slow variations. The sfd-correction introduced is similar to the second correction step
in Kessomkiat et al. (2013, Eq. 6 therein), but adapted to the measured NEE instead5

of latent and sensible heat fluxes. To define the correction term it was necessary to
find a moving averaging interval that is long enough to exclude most of the random
error part but short enough to consider daily changes of these systematic flux differ-
ences. Twelve hours (including 24 half hourly time steps) were found to be a suitable
time interval to calculate the running mean for the sfd-correction term. This period also10

corresponds well with the coefficient of spatial variation (CV) which Oren et al. (2006)
found to be stable after ∼ 7 daytime and ∼ 12 nighttime hours in case of a uniform pine
plantation.

For each moving averaging interval, the meanNEE12h of one EC tower (separately for
EC1 and EC2) [µmol m−2 s−1] and the mean CO2 flux averaged over both EC towers15

NEE2T12h
[µmol m−2 s−1] were calculated to define the sfdcorrection term which was

used to calculate the corrected NEEcorr [µmol m−2 s−1]:

NEEcorr =
NEE2T12h

NEE12h
×NEE (4)

NEE is the single half-hourly, processed NEE value [µmol m−2 s−1] of one EC tower.20

Only if both NEE data, NEE-EC1- for the permanent EC1 tower and NEE-EC2- for the
second tower, were available at a particular half hourly time step and if both values
were either positive or negative the respective data were included to calculate the sfd-
correction term. The correction was done separately for positive and negative fluxes,
due to the different sources, properties and magnitudes of the CO2 flux measurements25

and different errors for daytime (negative) and nighttime (positive) fluxes (e.g. Goulden
et al., 1996; Oren et al., 2006; Wilson et al., 2002). NEEcorr was calculated only if at
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least 50 % of the data for NEE-EC1- and NEE-EC2- were available for a particular mov-
ing averaging interval. Due to the frequent occurrence of gaps in the data series the
amount of available NEEcorr values considerably decreased by applying this 50 % cri-
terion. Hence it was not possible to choose a stricter criterion such as 70 % or 90 %
data availability. The final sfd-corrected NEE1corr values for EC1 and NEE2corr values5

for EC2 should not be understood as corrected NEE flux data. They were used only to
enhance the two-tower based uncertainty estimation in a way that systematic flux dif-
ferences which cause an overestimation of the uncertainty are filtered out. Moreover,
systematic flux differences at two EC towers are not to be confused with systematic
errors, which are independent of the uncertainty estimation method and optimally cor-10

rected before the random error is estimated.

3.5 Filter for weather conditions

For larger distances of two EC towers, such as the 20.5 km and 34 km distance in
this study, different weather conditions can cause differences of the measured fluxes
in addition to the different land surface properties. Some weather variables (e.g. tem-15

perature) are following a clear diurnal and annual course and differences in e.g. tem-
perature at two EC towers are therefore relatively constant. This is expected to cause
rather systematic differences in the measured NEE which can be captured with the sfd-
correction. However, other variables such as wind speed or incoming short wave radia-
tion are spatially and temporally much more variable, for example related to single wind20

gusts or cloud movement. Differences in the measured fluxes at two EC towers caused
by those spatial-temporally highly variable weather variables cannot be captured well
with the sfd-correction term due to this “random character”. However, a weather filter
can account for this because it compares the differences in weather variables at each
single time step. Hence, we additionally applied a weather filter to investigate its effect25

on the two-tower based uncertainty in comparison to the sfd-correction. Some of the
most important variables directly affecting the measured fluxes are the photosynthetic
active radiation (PAR), the temperature and the wind speed. Those variables were also
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used in e.g. Hill et al. (2012) and Richardson et al. (2006) as indicators for similar
environmental conditions. Accordingly, a filter for different weather conditions was in-
troduced to only include half hourly NEE data, if the weather conditions at the second
EC tower are similar to those at the permanent EC1 tower location in Rollesbroich.
Following the definition in Richardson et al. (2006), similar weather conditions were5

assumed to be present if the temperature difference was < 3 ◦C; the difference in wind
speed < 1 m s−1 and the difference in PPFD< 75 µmol m−2 s−1. The weather-filter was
applied for each half-hourly time step for both the sfd-corrected dataset as well as for
the non-corrected NEE data. As shown e.g. in Tsubo and Walker (2005), the incoming
short wave radiation (or solar irradiance SI) and the photosynthetically active radiation10

(PAR) are linearly correlated. Accordingly SI and PPFD measured at the EC1 station in
Rollesbroich were also linearly correlated. Because direct PPFD measurements were
not available for all measurement periods, we derived a linear regression equation on
the basis of all SI and PPFD data for the permanent EC tower station (EC1). Using
this equation, missing PPFD values were estimated if only SI but no PPFD data were15

available at a certain time step.

3.6 Footprint analysis

The footprint analysis was applied to quantify the percentage footprint overlap of the
two EC-stations during the measurement periods. This information was not used to
filter the data but to allow for a better understanding of the mean uncertainty estimates20

for the different scenarios. Using the analytical model of Kormann and Meixner (2001)
implemented in the TK3.1 software (Mauder et al., 2013), the cumulative source contri-
bution was quantified separately for two contiguous areas adjacent to the tower. Both
contiguous areas (target 1 and target 2; Fig. 1) were covered with grass, but managed
by different farmers. The footprints of two halfhourly flux measurements were defined25

as “overlapping”, if the difference of target 1 between EC1 and EC2 was < 5 % and if
the difference of target 2 between EC1 und EC2 was also < 5 %. Using this criterion,
the percentage footprints overlap for a certain EC tower distance over the correspond-
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ing measurement period (Table 1) was calculated by dividing the number of NEE data
with overlapping footprints (×100) by the total number of NEE data available for the
same measurement period. This implies that the calculated average footprint overlap
[%] for a particular EC tower distance is not the total percentage area of footprint over-
lap but the percentage of time steps CO2 fluxes originate from nearly the same area5

(defined by target 1 and target 2).

3.7 Comparison measures

To compare and evaluate the two-tower based uncertainty estimates, we calculated
random error estimates based on Mauder et al. (2013) as a reference. This reference
method is independent of the two-tower based approach, because data of only one10

EC tower are used to quantify the random error of the measured fluxes and raw data
instead of the processed fluxes are used. The raw-data based random error estimates
– the instrumental noise σnoise

cov and the stochastic error σstoch
cov – were calculated in-

dependently. Generally, the instrument noise σnoise
cov was considerably lower than the

stochastic error σstoch
cov . The total raw-data based random error σcov was calculated by15

adding σnoise
cov and σstoch

cov The absolute random error σcov [µmol m−2 s−1] used for the
evaluation of the two-tower based random error estimates was calculated by averaging
the single raw-data based NEE uncertainty values measured at the permanent EC1
tower in Rollesbroich. In order to be consistent with the two-tower based calculations,
exactly the same half hourly time steps of the EC1 data series used for the two-tower20

based uncertainty estimation were used to calculate the corresponding mean refer-
ence values σcov. As indicator for the performance of the two-tower based uncertainty
estimation schemes applied for the five different EC tower distances, the relative differ-
ence ∆σcov [%] of a two-tower based uncertainty value [µmol m−2 s−1] and the reference
value σcov [µmol m−2 s−1] was calculated:25

∆σcov [%] =
σ (δ)−σcov

σcov
×100 (5)
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Then, ∆σcov values were compared for the different EC tower separation distances
and two-tower based uncertainty estimation schemes outlined in Sect. 3.3. The perfor-
mance of the two-tower based uncertainty estimation was considered better if σcov [%]
was smaller.

4 Results5

4.1 Classical two-tower based random error estimates

Figures 2 and 3 show the linear regressions of the random error σ(δ) (also referred
to as “standard error” or “uncertainty”) as function of the NEE magnitude determined
with the classical two-tower approach (without sfd-correction) for the different EC tower
distances without weather-filter (Fig. 2) and with weather-filter (Fig. 3). The dashed lin-10

ear regression lines denote that the linear correlation between σ(δ) and NEE is weak
(p > 0.1), which is in particular true for the positive NEE values measured at 173 m
and 20.5 km EC tower distances as well as for the negative NEE values at 20.5 km
and 34 km distance. The 95 % confidence intervals of the respective slopes and the
intercepts are summarized in the Appendix (A1). Uncertainty estimation with the clas-15

sical two-tower approach is critical for those larger distances because measured flux
differences caused by different environmental conditions at both EC towers can super-
impose the random error signal which e.g. originates from instrumental or turbulence
sampling errors. This weakens the correlation of the random error and the flux magni-
tude. This is not surprising since Hollinger et al. (2004) and Richardson and Hollinger20

(2005) already pointed out that similar environmental conditions are a basic assump-
tion of the two-tower approach. Therefore, statements of how the weather filter affects
the mean uncertainty estimate σ(δ) for those large distances need to be treated with
caution. The weather-filtering only increased the correlation between the flux magni-
tude and the random error σ(δ) for positive fluxes for separation distances of 173 m25

and 20 km whereas in most cases the linear correlation was weakened, mainly due

11960

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/11943/2014/bgd-11-11943-2014-print.pdf
http://www.biogeosciences-discuss.net/11/11943/2014/bgd-11-11943-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
11, 11943–11983, 2014

Uncertainty analysis
of eddy covariance

CO2 flux
measurements

H. Post et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

to a decreased number of samples in each averaging group of the NEE flux mag-
nitude. Therefore, testing stricter weather-filter criteria (e.g. wind speed < 0.5 m s−1,
PPFD< 50 µmol m−2 s−1, T < 2 ◦C) which caused a decline of samples in each group
from n > 1000 to 24 or less, resulted in an even weaker correlation of the flux magni-
tude and the random error σ(δ).5

As illustrated in Table 2, the mean NEE uncertainty estimate based on the classical
two-tower approach increased as a function of EC tower distance. However, without
applying the weather-filter the mean uncertainty σ(δ) was nearly identical for the two
largest distances (20.5 km and 34 km), although e.g. the land cover and management
in Merzenhausen (EC3 tower at 34 km separation) were different to the Rollesbroich10

site. As a result of the weather-filtering, the mean uncertainty estimate decreased for
the distances 173 m (by 10.8 %) and 20.5 km (by 13.6 %). However, for the 95 m and
34 km distance, the mean uncertainty estimate increased by the weather-filtering by
up to 15 % (95 m). This implies that for the classical two-tower approach (without sfd-
correction) weather-filtering did not clearly reduce the overestimation of the uncertainty15

for largest EC tower distances (20.5 km and 34 km) where weather-filtering is expected
to be particularly relevant.

Comparing the mean uncertainty estimates determined with the classical two-tower
approach without weather filter (σ(δ)) and with weather filter (σ(δ)f ) with the reference
random error estimates σcov (Table 2) indicates that σ(δ) and σ(δ)f were overestimated20

for each of the five EC tower differences. This could be expected for the large distances,
because basic assumptions for the application of the classical two-tower approach are
violated for these large distances. But results illustrate that even for short EC tower
distances the classical two-tower approach results in an overestimation of the NEE
uncertainty compared to the raw-data based approach (Table 2).25

4.2 Extended two-tower approach

The scatter plots in Fig. 6 illustrate the effect the sfd-correction (Eq. 4) had on the dif-
ference of the NEE data simultaneously measured at both EC towers (NEE-EC1- and
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NEE-EC2-). The sfd-correction reduced the bias and scattering, because systematic dif-
ferences of the measured fluxes, e.g. induced by different environmental conditions,
were removed. As expected, the effect of the sfd-correction was considerably higher
for the larger EC tower distances because environmental conditions are also expected
to differ more if the distance of two locations is larger. For the 8 m EC tower distance5

for instance, the effect of the sfd-correction is very minor because footprints are often
nearly overlapping. However, for the EC tower distances ≥ 173 m, the bias and scatter-
ing of NEE-EC1- and NEE-EC2- was considerably reduced by the sfd-correction.

A comparison of Figs. 2 and 4 illustrates how the sfd-correction affected the lin-
ear regression of the NEE standard error as function of NEE flux magnitude: the10

sfd-correction considerably improved the correlation of NEEcorr and the standard er-
ror σ(δ)corr for the EC tower distances 20.5 km and 34 km from R2 ≥ 0.15 to R2 ≥ 0.79
(with p ≤ 0.05).

Applying the sfd-correction (without weather-filter) reduced the mean uncertainty
value by 36.7 % for the 8 m distance, 48.4 % for the 95 m distance, 48.7 % for the15

173 m, 47 % for the 20.5 km distance, and 54.2 % for the 34 km EC tower distance.
Comparing the relative differences ∆σcov (Eq. 5) of the mean two-tower based un-
certainty estimates and the raw-data based reference value σcov (Table 2) indicates
that the correction for systematic flux differences considerably improved the two-tower
based uncertainty estimate: as Table 2 shows, the difference ∆σcov of the independent20

uncertainty estimates σ(δ)corr and σcov was notably smaller (≤ 49.6 %) for all distances
except the 8 m distance compared to ∆σcov between σcov and the uncertainty estimate
σ(δ) determined with the classical two-tower approach (≤ 249.1 %). The most consid-
erable improvement was achieved for the 95 m EC tower distance (∆σcov = 101.4 %
before and −2.6 % after sfd-correction) and the 173 m distance (∆σcov = 87.7 % be-25

fore and −1.7 % after sfd-correction). Additional application of the weather-filter (Fig. 5)
on the sfd-corrected NEEcorr data reduced the mean uncertainty estimate σ(δ)corr by
11.0 % for the 20.5 km EC tower distance and by 6.4 % for the 34 km distance and
improved the uncertainty estimates by 33.3 % and 17 % compared to ∆σcov without
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the weather filter applied. The effect of the weather-filter on the uncertainty estimates
of the shorter EC tower distances was very minor (Table 2). As shown in Table 2 the
uncertainty estimates σ(δ)corr, f determined with the extended two-tower approach are
nearly identical to the independent reference values σcov for the EC tower distances
95 m and 173 m suggesting that those distances were most suitable for the application5

of the extended two-tower approach. The NEE uncertainty σ(δ)corr, f estimated for the
grassland site Rollesbroich agree well with the NEE uncertainty values for grassland
sites by Richardson et al. (2006), ranging between ∼ 0.2 µmol CO2 m−2 s−1 in winter
months and ∼ 1 µmol CO2 m−2 s−1 in summer months.

4.3 Discussion10

The results show that the two-tower based uncertainty estimates (both classical and
extended two-tower approach) were smallest for the 8 m distance. This can be ex-
plained with the results of the footprint analysis: while the percentage footprint over-
lap is 20.4 % for the 95 m EC tower distance and only 0.9 % for the 173 m EC tower
distance, it is 61.2 % for the 8 m EC tower distance. The more frequent overlapping15

of the 8 m distance footprint areas is associated with a more frequent sampling of
the same eddies. As a consequence part of the random error was not captured with
the two-tower approach. If EC towers are located very close to each other (< 10 m)
and the footprint overlap approaches 100 %, only instrumental errors and stochastic-
ity related sampling of small eddies will be captured with the two-tower based un-20

certainty estimate. Because the EC measurements are statistically not independent
if the footprints are overlapping, the classical EC tower method is not expected to
give reliable uncertainty estimates for very short EC tower distances (Hollinger and
Richardson, 2005; Hollinger et al., 2004). However, without applying the sfd-correction,
the mean uncertainty estimate σ(δ) was still higher than the raw-data based refer-25

ence value which includes both the instrumental noise σnoise
cov and the stochastic error

σstoch
cov . The raw-data based instrumental noise σnoise

cov itself was only 0.04 µmol m−2 s−1
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of 0.69 µmol m−2 s−1 (σnoise
cov +σstoch

cov ) for the dataset of the 8 m EC tower distance. The
mean uncertainty value derived with the classical two-tower approach for the same
dataset was 0.76 µmol m−2 s−1 and thus higher than σnoise

cov suggesting that even at 8 m
EC tower distance instrumentation errors were only a minor part of the two-tower based
uncertainty estimate. This is in correspondence with the result that the sfd-corrected5

uncertainty estimate was lower than the reference for the 8 m distance (Table 2).
For the larger separation distances 95 m or 173 m, footprints were notably less over-

lapping and turbulence sampling errors are almost fully accounted for by a two-tower
approach. (It should be noted that forest stations, with a typically larger aerodynamic
measurement height and footprint size, will require larger separation distances.) How-10

ever, different land surface properties and management are more likely for the larger
separation distances and can cause systematic flux differences that should not be at-
tributed to the random error estimate. The effect of within site heterogeneity of land
surface properties on the spatial and temporal variability in measured NEE and how
it contributes to the uncertainty in annual NEE measurements is e.g. shown in Oren15

et al. (2006). Different information and data were available showing that land surface
properties are spatially heterogeneous distributed at the Rollesbroich site: (1) single
fields at the Rollesbroich site including the two target areas (Sect. 3.6) are managed
by different farmers. Information the land owners provided, as well as periodic camera
shots and grass height measurements around the EC towers indicated that the timing20

of fertilization and grass cutting as well as the amount of manure applied varied be-
tween the single fields (and the two target areas of the footprint analysis) during the
measurement period, (2) soil type distribution as displayed in the German soil map
shows heterogeneity (Arbeitsgruppe BK50, 2001), (3) soil carbon and nitrogen pools
[g kg−1] as well as bulk density [g cm−3] and skeleton fraction [%] measured from April–25

May 2011 in 3 layers at 94 locations across the Rollesbroich site are spatially highly
variable (H. Schiedung, personal communication, 2013), (4) during the eddy covari-
ance measurement period, soil moisture and soil temperature data were collected in
10 min. resolution in 3 depths (5 cm, 10 cm and 20 cm) at 84 points by the wireless
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sensor network (“SoilNet”; Bogena et al., 2009), calibrated for the Rollesbroich site
by Qu et al. (2013). This data shows that both soil moisture and soil temperature are
heterogeneous within the site (Qu et al., 2014). The effect of soil moisture, soil temper-
ature and soil properties on CO2 fluxes (respiration mainly) is well known (e.g. Herbst
et al., 2009; Flanagan and Johnson, 2005; Xu et al., 2004; Lloyd and Taylor, 1994;5

Orchard and Cook, 1983) as well as the role of grassland management (e.g. Allard
et al., 2007). It is expected that systematic differences in measured NEE caused by
those spatial variable land surface properties are stronger during night than during
day since they affect respiration more directly than photosynthesis which also agrees
with the findings in Oren et al. (2006). However, since our focus was on estimating10

the total uncertainty of measured NEE and since it is expected that the sfd-correction
also captures systematic differences in weather conditions (e.g. temperature, solar ra-
diation) that strongly determine the magnitude of carbon uptake during day, we did
not distinguish between the uncertainty of daytime and nighttime data. At very large
EC tower distances (20.5 km, 34 km) footprints were not overlapping and the envi-15

ronmental conditions were considerably different; in particular for the EC tower setup
Rollesbroich/Merzenhausen with different land use (grassland/crop) and climate condi-
tions (Sect. 2). For those distances, the relative difference ∆σcov between the reference
value σcov and σ(δ) (classical two-tower approach) was much larger than for the rela-
tive difference ∆σcov between σcov and σ(δ)corr, f (extended two-tower approach). The20

uncertainty estimate improved by 80 % for the 20.5 km distance and 82 % for the 34 km
if both sfd-correction and weather filter were used. However, after applying the sfd-
correction and the weather-filtering, the mean uncertainty estimate for the large EC
tower distances was still 33.2 % and 49.6 % higher than the raw-data based reference
value (Table 2) suggesting that these large EC tower distances were less suitable for25

estimating the NEE uncertainty on the basis of the extended two-tower approach com-
pared to the 95 m and 173 m distance. The absolute corrected and weather-filtered
uncertainty value σ(δ)corr, f [µmol m−2 s−1] was slightly lower for the 34 km EC tower
distance than for the 20.5 km EC tower distance (Table 2), which is counterintuitive.
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The raw-data based reference value σcov [µmol m−2 s−1] however was also smaller for
the 34 km dataset than for the 20.5 km dataset which can be related to the different
lengths and timing (i.e., different seasons) of the measurement periods for each of the
five EC tower distances: the roving station was moved from one distance to another
within the entire measurement period of ∼ 27 months. During this entire time period of5

data collection, the length and timing of the single measurement periods varied for the
five EC tower separation distances (Table 1). This is not optimal because the random
error is directly related to the flux magnitude and the flux magnitude itself is directly
related to the timing of the measurements. Because in spring and summer flux magni-
tudes are higher, the random error is generally higher as well (Richardson et al., 2006).10

To reduce this effect, we captured spring/summer as well as autumn/winter months in
each measurement period (Table 1). However, the timing of the measurements and
the amount of data available were not the same for the five EC datasets In particular
the permanent EC tower in Merzenhausen (EC3 in 34 km distance to EC1) was mea-
suring considerably longer (> 2 years) than the roving station did for the other four EC15

tower distances. Therefore, differences of the mean uncertainty estimates for the five
measurement periods were partly independent of the EC tower distance. This effect
gets obvious when looking at the mean uncertainties σcov estimated with the refer-
ence method, which should be independent of the distance but were also found to be
different for each dataset of the five EC tower distances. Against this background, state-20

ments about how EC tower distances affect the two-tower based uncertainty estimate
need to be treated with caution.

Another point that should be emphasized is that there is an uncertainty in mean
NEE values of the 12 h moving averaging intervals which were used to calculate the
sfd-correction term (Sect. 3.4). As mentioned the moving averaging interval should25

be long enough to exclude random differences of the simultaneously measured fluxes
but short enough to limit the impact of non-stationary conditions. However, the 12 h
running mean NEE1 and NEE2 values (NEE12h) as well as the respective means of
NEE1 and NEE2 (NEE2T12h

) used to calculate NEEcorr (Eq. 4) are uncertain because
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they still contain the random error part that cannot be corrected or filtered out. There-
fore, completely correcting the difference in mean NEE slightly overcorrects systematic
differences in NEE.

In general, the weather-filter did not improve the uncertainty estimates as much as
the sfd-correction. However, this does not imply that differences in weather conditions5

are negligible when applying the extended two-tower approach for larger EC tower dis-
tances In fact the systematic part of measured EC flux differences between both towers
caused by (steady, systematic) among-site differences in weather conditions were al-
ready partly captured with the sfd-correction. In contrast such systematic differences
were difficult to capture with the weather-filter because it was not possible to define10

weather-filter criteria that allow the assumption of data similarity without reducing the
dataset too much for further meaningful analysis.

5 Conclusions

When estimating the uncertainty of eddy covariance net CO2 flux (NEE) measurements
with a two-tower based approach it is important to consider that the basic assumptions15

of identical environmental conditions (including weather conditions and land surface
properties) on the one hand and non-overlapping footprints on the other hand are con-
tradicting and impossible to fulfill. If the two EC towers are located in a distance large
enough to ensure non overlapping footprints, different environmental conditions at both
EC towers can cause systematic differences of the simultaneously measured fluxes20

that should not be included in the uncertainty estimate. This study for the grassland site
Rollesbroich in Germany showed that the extended two-tower approach which includes
a correction for systematic flux differences (sfd-correction) can be used to derive more
reliable (less overestimated) uncertainty estimates compared to the classical two-tower
approach. An advantage of this extended two-tower approach is its simplicity and the25

fact that there is no need to quantify the differences in environmental conditions (which
is usually not possible due to a lack of data). Comparing the uncertainty estimates for
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five different EC tower distances showed that the mean uncertainty estimated with our
extended two-tower approach for the 95 m and 173 m distances were nearly identical
to the random error estimated with the raw-data based reference method. This sug-
gests that these distances were most appropriate for the application of the extended
two-tower approach in this study. Also for the largest EC tower distances (20.5 km,5

34 km) the sfd-correction significantly improved the correlations of the flux magnitude
and the random error and significantly reduced the difference to the independent, raw
data based reference value. We therefore conclude that if no second EC tower is avail-
able at a closer distance (but available further away), a rough, typically overestimated
NEE uncertainty estimate can be acquired with the extended two-tower approach even10

although environmental conditions at the two sites are not identical.
A statement about the transferability of our experiment to other sites and EC tower

distances requires further experiments. However, we assume transferability is given if
both EC towers are located at sites of the same vegetation type (e.g. C3-grasses, C4-
crops, deciduous forest, coniferous forest, etc.). Flux differences caused by a different15

phenology can be very hard to separate from the random error estimate, even though
they are expected to be mainly systematic and could therefore be partly captured with
the sfd-correction. Moreover, the EC raw data should be processed in the same way (as
done here) and the measurement devices should be identical and installed at about the
same measurement height. Important is also that the instruments are calibrated thor-20

oughly and consistently Because this was true for the three EC towers included in this
study (Table 1, Sect. 2), we conclude that systematic flux differences that are corrected
for with the sfd-correction arise mainly from different environmental conditions whereas
calibration errors are assumed to have a very minor effect. If those prerequisites are
not given, it is very difficult to distinguish and quantify sources of measured flux dif-25

ferences and get reliable uncertainty estimates based on the two-tower approach. Dif-
ferent weather conditions at both EC tower sites are a main drawback for two-tower
approach applications. While systematic differences of the weather conditions are ex-
pected to be captured by the sfd-correction, less systematic weather fluctuations e.g.
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related to cloud movement, are difficult to be filtered of the two-tower based uncertainty
estimate. Applying very strict thresholds is good in theory but can in practice lead to
a reduction of the data in a way that afterwards it often cannot be applied for further
statistical analysis. This is in particular problematic if the measurement periods are
short as in this study. If EC raw data is available we recommend to use an uncertainty5

estimation scheme like the one presented in Mauder et al. (2013).
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Table 1. Measurement periods and locations of the permanent EC towers in Rollesbroich (EC1)
and Merzenhausen (EC3) and the roving station (EC2).

Coordinates Sitename Distance to EC1 Measurement period alt. (m)

EC1 50.6219142◦ N/6.3041256◦ E Rollesbroich – 13 May 2011–15 Jul 2013 514.7

EC2 50.6219012◦ N/6.3040107◦ E Rollesbroich 8 m 29 Jul 2011–6 Oct 2011 514.8
50.6219012◦ N/6.3040107◦ E 5 Mar 2013–15 May 2013

50.6217990◦ N/6.3027962◦ E Rollesbroich 95 m 7 Oct 2011–15 May 2012 516.3
50.6210472◦ N/6.3042120◦ E 1 Jul 2013–15 Jul 2013 517.3

50.6217290◦ N/6.3016925◦ E Rollesbroich 173 m 24 May 2012–14 Aug 2012 517.1

50.5027500◦ N/6.5254170◦ E Kall-Sistig 20.5 km 14 Aug 2012–1 Nov 2012 498.0
15 May 2013–1 Jul 2013

EC3 50.9297879◦ N/6.2969924◦ E Merzenhausen 34 km 10 May 2011–16 Jul 2013 93.3
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Table 2. Mean NEE uncertainty [µmol m−2 s−1] for five EC tower distances estimated with the
classical two-tower approach, with and without including a weather-filter (σ(δ), σ(δ)f). and with
the extended two-tower approach (sfd-correction), also with and without including a weather-
filter (σ(δ)corr, σ(δ)corr, f). The table also provides the random error σcov [µmol m−2 s−1] estimated
with the raw-data based reference method (Mauder et al., 2013).

EC tower distance N σ(δ) (∆σcov) σ(δ)f (∆σcov) σ(δ)corr (∆σcov) σ(δ)corr, f (∆σcov) σcov

8 m 3167 0.76 (10.9) 0.77 (12.4) 0.48 (−29.8) 0.49 (−28.1) 0.69
95 m 3620 1.30 (101.4) 1.50 (131.8) 0.67 (3.9) 0.63 (−2.6) 0.65
173 m 2410 2.04 (87.7) 1.82 (67.4) 1.05 (−3.7) 1.07 (−1.7) 1.09
20.5 km 2574 2.72 (182.4) 2.35 (144.1) 1.44 (49.6) 1.28 (33.2) 0.96
34 km 15 571 2.73 (249.1) 2.86 (265.5) 1.25 (59.8) 1.17 (49.6) 0.78

mean 1.91 1.86 0.98 0.93 0.83

(∆σcov): relative differences [%] between two-tower based uncertainty estimates and the references value σcov (Eq. 5).
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Table A1. Summary of the 95 % confidence intervals for the linear regression coefficients be-
tween the 6 average NEE magnitudes and the 6 corresponding standard errors determined
with Eq. (3) as described in Sect. 3.3 for the 4 two two-tower based correction schemes and
the 5 EC tower distances.

Variables: Two towers: m mlower mupper b blower bupper

NEEnegative/σ(δ) EC1/EC2 (8 m) −0.012 −0.041 0.017 0.691 0.442 0.940
EC1/EC2 (95 m) −0.045 −0.099 0.010 1.163 0.680 1.647
EC1/EC2 (173 m) −0.052 −0.067 −0.036 1.747 1.537 1.957
EC1/EC2 (20.5 km) −0.088 −0.272 0.097 2.544 0.696 4.392
EC1/EC3 (34 km) −0.130 −0.330 0.069 2.849 0.772 4.926

NEEnegative/σ(δ)f EC1/EC2 (8 m) −0.008 −0.043 0.026 0.746 0.497 0.995
EC1/EC2 (95 m) −0.005 −0.036 0.026 1.569 1.286 1.853
EC1/EC2 (173 m) −0.055 −0.088 −0.021 1.416 1.009 1.824
EC1/EC2 (20.5 km) −0.011 −0.087 0.066 2.606 1.929 3.284
EC1/EC3 (34 km) −0.039 −0.190 0.113 3.527 1.737 5.317

NEEnegative/σ(δ)corr EC1/EC2 (8 m) −0.039 −0.054 −0.025 0.237 0.102 0.372
EC1/EC2 (95 m) −0.045 −0.080 −0.010 0.663 0.305 1.021
EC1/EC2 (173 m) −0.053 −0.078 −0.028 0.484 0.108 0.860
EC1/EC2 (20.5 km) −0.098 −0.130 −0.066 0.867 0.501 1.233
EC1/EC3 (34 km) −0.097 −0.140 −0.054 1.000 0.399 1.602

NEEnegative/σ(δ)corr,f EC1/EC2 (8 m) −0.039 −0.061 −0.017 0.254 0.082 0.427
EC1/EC2 (95 m) −0.040 −0.067 −0.014 0.617 0.350 0.883
EC1/EC2 (173 m) −0.064 −0.118 −0.009 0.391 −0.343 1.125
EC1/EC2 (20.5 km) −0.096 −0.138 −0.055 0.722 0.287 1.157
EC1/EC3 (34 km) −0.073 −0.120 −0.026 0.927 0.206 1.647

NEEpositive/σ(δ) EC1/EC2 (8 m) 0.101 0.027 0.174 0.346 −0.024 0.715
EC1/EC2 (95 m) 0.161 0.028 0.294 0.734 0.285 1.183
EC1/EC2 (173 m) 0.061 −0.284 0.406 1.340 −0.775 3.455
EC1/EC2 (20.5 km) 0.118 −0.272 0.507 1.332 −0.500 3.164
EC1/EC3 (34 km) 0.235 0.113 0.356 0.731 0.323 1.140

NEEpositive/σ(δ)f EC1/EC2 (8 m) 0.101 0.020 0.182 0.340 −0.080 0.760
EC1/EC2 (95 m) 0.029 −0.299 0.357 1.333 −0.114 2.780
EC1/EC2 (173 m) 0.179 −0.122 0.480 0.535 −1.316 2.385
EC1/EC2 (20.5 km) 0.145 −0.174 0.464 1.134 −0.365 2.632
EC1/EC3 (34 km) 0.320 0.059 0.580 0.763 −0.330 1.857

NEEpositive/σ(δ)corr EC1/EC2 (8 m) 0.085 0.048 0.122 0.123 −0.072 0.317
EC1/EC2 (95 m) 0.103 0.090 0.116 0.149 0.105 0.193
EC1/EC2 (173 m) 0.178 −0.061 0.418 −0.037 −1.619 1.545
EC1/EC2 (20.5 km) 0.222 0.061 0.382 −0.168 −0.985 0.650
EC1/EC3 (34 km) 0.164 0.135 0.193 0.145 0.045 0.245

NEEpositive/σ(δ)corr, f EC1/EC2 (8 m) 0.080 0.046 0.114 0.153 −0.027 0.333
EC1/EC2 (95 m) 0.100 0.064 0.135 0.143 −0.019 0.305
EC1/EC2 (173 m) 0.182 −0.068 0.431 −0.057 −1.698 1.585
EC1/EC2 (20.5 km) 0.175 −0.035 0.384 0.074 −0.997 1.145
EC1/EC3 (34 km) 0.218 0.126 0.309 0.072 −0.277 0.421

∗mlower; mupper: lower and upper 95 % confidence interval for slope m
∗blower; bupper: lower and upper 95 % confidence interval for intersect b
σ(δ), σ(δ)f: uncertainty estimated with classical two-tower approach without and with weather filter (f)
σ(δ)corr, σ(δ)corr, f: uncertainty estimated with extended two-tower approach
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Figure 1. Eddy covariance (EC) tower locations in the Rur-Catchment (center) including the
Rollesbroich test site (left), with the target areas defined for the footprint analysis.
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Figure 2. NEE uncertainty σ(δ) determined with the classical two-tower approach as function
of the NEE flux magnitude for the EC tower distances 8 m (a), 95 m (b), 173 m (c), 20.5 km (d)
and 34 km (e). (Dashed line: regression slope not significantly different from zero (p > 0.1).)
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Figure 3. NEE uncertainty σ(δ) determined with the classical two-tower approach as function of
the NEE flux magnitude including the application of the weather-filter for the EC tower distances
8 m (a), 95 m (b), 173 m (c), 20.5 km (d) and 34 km (e). (Dashed line: regression slope not
significantly different from zero (p > 0.1).)
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Figure 4. NEE uncertainty σ(δ)corr determined with the extended two-tower approach as func-
tion of sfd-corrected NEEcorr magnitude (Eq. 3) for the EC tower distances 8 m (a), 95 m (b),
173 m (c), 20.5 km (d) and 34 km (e). (Dashed line: regression slope not significantly different
from zero (p > 0.1).)
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Figure 5. NEE uncertainty σ(δ)corr determined with the extended two-tower approach as func-
tion of sfd-corrected NEEcorr magnitude (Eq. 3) including application of the weather-filter for
the EC tower distances 8 m (a), 95 m (b), 173 m (c), 20.5 km (d) and 34 km (e). (Dashed line:
regression slope not significantly different from zero (p > 0.1).)
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Figure 6. Scatter of the NEE measured at EC1 (NEE-EC1-) and NEE measured at a second
tower EC2/EC3 (NEE-EC2-) for the uncorrected NEE (left) and the sfd-corrected NEEcorr (right)
for the EC tower distances 8 m (a), 95 m (b), 173 m (c), 20.5 km (d) and 34 km.
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