

Environment, Earth and Ecosystems

The Open University Walton Hall Milton Keynes United Kingdom MK7 6AA

Tel +44 (0) 1908 654470

Email: kate.salmon@open.ac.uk

Dear Jelle,

Please note that the point-by-point response to reviewers and list of relevant changes to the manuscript have already been stated in the author comments published on BGD.net (AC C6596 and AC C6598), which were requested before the submission of a revised manuscript. Enclosed here again are these already published author comments (AC C6596 and AC C6598), which stated our responses to reviewers and how the manuscript would be changed. In addition, and as requested, we have also enclosed a revised manuscript with track changes on how it has been modified in accordance with reviewers' requests.

The manuscript has been revised as stated in AC C6596 and AC C6598, but the page and line numbers for the changes may differ slightly in this revised manuscript, as AC C6596 and AC C6598 were based on the first submitted manuscript (bg-2014-389). In addition, some of the text written in response to reviewer's comments in AC C6596 and AC C6598 has been modified slightly to read better when incorporated into the manuscript.

Please do not hesitate to contact me if you require further information,

Kind Regards,

Kate Salmon.

Response to Anonymous Referee #1

We would like to thank Anonymous reviewer #1 for his/her time and insightful thoughts on our manuscript. Here, we address all the major and minor comments highlighted by reviewer #1. Reviewer's comments are in Arial font and italicised, responses are in Times font, and suggested additions if necessary are in bold, italic Times font within inverted commas:

1. "In the introduction the authors Nevertheless, when attempting to explain what drives the variability in the fluxes they ignore this species-specific behaviour and only describe the total PF flux. This needs to be addressed. At the minimum the authors need to discuss the different patterns in the three groups of species they distinguish (surface, intermediate and deep dwellers), but ideally they also attempt to explain what drives the differences between the individual species in these groups"

The citation of Kuroyanagi and Kawahata (2004) in its current form is perhaps a bit misleading considering we do not concentrate on species-specific responses in this paper. We propose to remove the species-specific comment in Section 1, page 12225, line 16: *"in addition, different environmental variables may induce species-specific responses (Kuroyanagi and Kawahata (2004)"*

We agree with the reviewer that the species-specific variability is interesting as we observe in section 4.2, page 12231, lines 12-15. However, for a detailed discussion of seasonal species-specific variability and assemblage shifts at this site, the remaining 15 species present need to be taken into account. Such a detailed study is ongoing by Prof. Warren Prell at Brown University from the 3200m-depth trap, which will include our overlapping species-specific data (for 11 PF species) from the shallower trap. This combined long-term data from two different depths will be published separately and would make a more comprehensive comparison with previous time-series work from same location.

We deliberately wanted to focus on what causes interannual changes in total PF flux as a whole in this specific manuscript because it better describes the overall biological response to distinct oceanographic features such as eddies. Seasonal variations in PF species have been extensively studied at this site (Fairbanks et al.,1980, Deuser et al. 1981, Deuser 1987, Deuser and Ross 1989 and Tolderlund and Bé 1971) and flux changes in groups of PF species have been previously linked to phytoplankton succession here and at other sites (Tolderlund and Bé 1971, Thunell and Reynolds, 1984, Deuser and Ross 1989, Sautter and Thunell, 1989) so we found it unnecessary to include a separate discussion on individual species groups and instead focus our study on an interannual-based total PF flux which makes a unique and perhaps valuable contrast to the species-specific seasonal-based studies previously published.

For current purposes, we hope that figures 4-6 show readers how the species selected for this study relate to one another on a seasonal and interannual timescale (species studied= 11 and total PF species present= 26). In addition, we have added a brief discussion of surface dweller variability in contrast to deeper dweller variability in answer to comment 4.

2. "Moreover, the division into the groups in terms of depth habitat is in this respect perhaps not the most useful and the authors may want to divide the species into groups that share similar shell flux patterns."

In general, we observe that the depth-habitat grouping also tends to describe similar flux patterns, but will be willing to change "*Figures 4-6*" according to the similar flux patterns as below, if essential:

"Group 1: G. ruber (white and pink), G. sacculifer Group 2: N. dutertrei, G. siphonifera O. universa Group 3: P. obliquiloculata, G. truncatulinoides, G. hirsuta, G. crassaformis, G. inflata"

3. "When it comes to the species specific flux patterns, the difference between the timing of the peak flux of the deeper dwellers is interesting and something the authors point out, but do not discuss" We agree with the reviewer that it is interesting that *G. truncatulinoides* flux peaks before other deeper dwelling species. We will add the following text to section 5.1.1, page 12233, line 2:

"from the spring phytoplankton bloom (Hemleben et al. 1989). The discrepancy in timing of peaks between the deeper dwellers (Figure 7) is likely due to subtle changes in food availability and diet of species and phytoplankton succession (Deuser and Ross, 1989, Hemleben et al. 1989). Overall, the seasonal PF species succession is broadly similar to previous observations from 1959-63 and 1978-84 (Tolderlund and Bé, 1971, Deuser 1987, Deuser and Ross, 1989) which suggests that despite long-term environmental change, there has been no significant shift in species seasonality and environmental controls have remained consistent over the past 50 years."

As mentioned above in response to comment 1, we hope to explore these relationships in more detail with long-term species seasonality data set in a separate manuscript.

4. "Similarly, there seem to be clear changes in variability in the flux between years for several species (G. sacculifer, G. ruber (white) and G. siphonifera) and (surprisingly) apparent absence of seasonal variability in some surface dwellers (large changes in temperature and other environmental parameters)."

We suggest the interannual changes in surface dwellers may be due to the relatively 'stable' environmental variables prevalent within an oligotrophic subtropical gyre. For instance, the thermal tolerance of the surface-dwelling species are never exceeded throughout the ~8°C seasonal surface temperature changes at BATS and the nutrient content of the upper mixed layer is almost always negligible. In addition, their shorter lifecycles (~couple of weeks compared to months for deeper dwellers) suggests they may be more adaptable to environmental changes in the surface ocean and therefore their fluxes may reflect more environmental noise when compared to deeper-dwelling species. As we mentioned in response to comment 1 above, species-specific seasonal and interannual responses will be described in detail in a different manuscript but we will add a brief explanation on the interannual flux changes in the surface dwellers, section, 5.1.1, page 12233, line 5:

"...and the export flux of phytodetritus to depth. The surface-dwelling symbiontbearing foraminifera have lifecycles which benefit from strongly stratified surface waters in order to photosynthesise so they can succeed in low nutrient conditions (Hemleben et al. 1989) and do not bloom when the mixed layer is deepest. Surface dwellers generally bloom in late summer when sea surface temperatures are at a maximum and dinoflagellates are abundant (Tolderlund and Bé, 1971). We thus conclude that the depth of the mixed layer plays an important role in regulating PF flux....."

5. "I find this section of the manuscript (5.1.1 and 5.1.2) difficult to understand, or rather, difficult to understand the mechanisms that would underlie the observed relationships. At the beginning of the authors mention observations from the high latitudes that show a relation between MLD deepening rate and deepening timing and productivity. Subsequently the deepening rate and its potential influence on PFF is discussed and another parameter (shoaling rate) is introduced, but the timing of the MLD deepening is not discussed. I find this confusing and have several comments on this section: First of all, the mechanism the authors use to explain how MLD can exert an influence on the PFF is indirect and via export productivity, which they derive from surface chl-a concentrations and carbon fluxes at different depths. Since the authors state that the foraminifera rely on the organic matter flux from the surface ocean for food (and hence growth and hence flux), it would make sense to explore this relation first and then focus on the relations between OM export and MLD dynamics. The relation between PFF and MLD is only indirect and correlations between PFF and MLD could therefore be misleading."

We only acknowledge the fact that the seasonal flux in export fluxes of organic carbon may fuel PF production in section 5.1.1, page 12232, section 5.1.1, line 19.

However, we realise that export fluxes of organic carbon will only benefit the symbiont-barren foraminifera with herbivorous diets, in particular deeper dwelling foraminifera. Therefore, Chlorophyll *a* is a much more inclusive indicator for foraminifera food concentration; it is generally correlated with copepods, a prey of spinose foraminifera (*O. universa*, *G. ruber*, *G. sacculifer*, Hembleben et al. 1989), and non-spinose foraminifera with herbivorous or detritivorous diets generally feed on prey which contain chlorophyll *a* (Lombard et al. 2011). It therefore follows that environmental controls on Chlorophyll *a* should also control the abundance of planktonic foraminifera (if not light-limited, and within thermally favourable conditions- Ortiz et al. 1995). There may be some light-limitation at this site as suggested by Lombard et al. 2009 but there was not enough data to confirm this during their study. Our findings are consistent with other PF flux studies where seasonal changes in the mixed layer depth and associated changes in chlorophyll *a* concentrations show strong association to seasonal changes in species fluxes (King and Howard, 2003, Thunell and Reynolds, 1984).

We will change section 5.1.1, Page 12232, line 17 to clarify this (changes in bold italic):

"Here, we also observed a simultaneous seasonal peak in chlorophyll a and maximum depth of the MLD *as seen by previous studies at BATS (Cianca et al. 2012)*, the timing and amplitude of which coincides with the maximum PF flux (Fig. 2c and d). *This observation is consistent with previous findings in other ocean basins where seasonal changes in mixed layer depth are closely associated with changes in foraminifera production (Thunell and Reynolds, 1984, Sautter and Thunell, 1989, Pujol and Vergnaud Grazzini 1995, Schmuker and Sciebel 2002) and chlorophyll a concentrations (King and Howard, 2003, 2005). Siegel et al. (2002) proposed that south of 40°N, the initiation and extent of the spring bloom is dominantly limited by nutrients rather than light, and this is supported by the simultaneous increase in phytoplankton concentrations with mixing depth at BATS (Treusch et al. 2012).* Vertical mixing in late winter and spring distribute nutrients into the euphotic zone to support the spring phytoplankton bloom *which fuels foraminifera production*, as indicated by the seasonal peak in export fluxes of organic carbon (Fig. 1d)" "Secondly, while the observed relationships the authors identify in Fig. 9 are statistically convincing, I struggle to grasp what the actual mechanism(s) explaining these observation is (are). Does it mean that the spring bloom has always approximately the same length (relation between Dr and MLD)?"

In this study, the seasonal peak in PF flux is always of approximately the same length. The spring bloom only starts when the MLD penetrates the nitricline and deep chlorophyll maximum which lies at 80-100m at this site. The MLD starts to deepen with increased wind stress and decreased heat flux at the surface and this can vary due to changes in the North Atlantic Oscillation (NAO). For instance, winter 2009 experienced the deepest MLD (and fastest deepening rate) driven by the negative NAO causing increased wind stress and convective mixing. However, slower deepening rates such as in 2007-2008, led to the formation of a shallow mixed layer depth. The deepening rate is controlled by wind forcing and heat fluxes in the surface ocean and thus it primarily reflects the maximum depth reached by the mixed layer and therefore concentration of nutrients entrained into the euphotic zone and consequent size of the following spring bloom. We will re-write section 5.1.2. to incorporate this explanation.

7. And if Sr has a major influence on productivity and PFF why do fluxes increase when conditions are changing to less optimal conditions (stratification) more rapidly?

There are potentially two factors, which could control the size of the phytoplankton spring bloom at BATS and therefore the food availability for PF that we will clarify in section 5.1.2, page 12233.

- 1. The dominant control is the depth of the mixed layer (determined by the strength of convective mixing reflected in the deepening rate)
- There is some evidence that light availability could be a secondary, weaker control (Dutkiewicz et al. 2001, Cianca et al. 2012, Lomas et al, 2009) as the euphotic zone at this site lies ~100m (Steinberg et al. 2001).

The shoaling rate reflects the rate at which the nutrients mixed in the water column are entrained to the surface where they can be utilised by phytoplankton,

which require light to bloom. A faster shoaling rate will also concentrate the food for foraminifera in the euphotic zone, producing a shorter and sharper bloom, as mentioned in section 5.1.2, page 12233, line 11, or as we see here, a larger bloom. Years with quicker shoaling rates (1998-99 and 2009-10), have greater fluxes of thermocline dwelling species such as *N. dutertrei*, *P. oblquiloculata*, *G. siphonifera*, and in 2009-10, *O. universa* suggesting that during higher rates of shoaling, the seasonal thermocline is nearer to the surface which is beneficial for these symbiont-bearing and symbiont-facultative species. We will re-write section 5.1.2. to incorporate this explanation.

8. "This needs more explanation and the authors need to be clear about whether it is absolute MLD, Dr, Sr, or their ratio (or something else) that controls the PFF (see also P12233, L28 and beyond where in one year the large flux is suggested to be related to Dr and MLD and in another year only to MLD, whereas in Fig. 9 and on P12233, L 21-23 PFF is said to depend on the Dr/Sr, which mainly reflects the Sr)."

We have re-written section 5.1.2, page 12233-34 discussing the explanations written above and will alter references to the D_r/S_r to just discussing the shoaling and deepening rates in this section of the text. We will more fully describe the controls of deepening and shoaling rate and how this relates to the depth of the mixed layer by including some of the explanations in answers to comments 6-7.

9. "1. What is the basis of the 80m limit used to determine the relation between MLD and PFF? It seems arbitrary. "

The '80m' limit corresponds to the Deep Chlorophyll Maximum Layer (DCLM), where many species of PF reside in association with other zooplankton (Fairbanks and Wiebe, 1980) is \geq 80m for the majority of the year (Steinberg et al. 2001). This is supported by Treusch et al. 2012, who found that the DCML developed between 80-120m during the summer stratification period. In addition, Steinberg et al. 2001 found that deeper mixed layers (>100m) are associated with higher chlorophyll *a* values. >80m is also the depth horizon at which the nitrate concentrations exceed 0.1 umol/kg which defines the nitricline (Sciebel et al. 2001) (see page 12232, line 22). This means that unless the mixed layer penetrates at least 80m, then access to the food supply for PF is limited and this is why we see a correlation in Figure 3c.

We will add the following to section 5.1.1, Page 12232, line 21:

" In contrast, there is no correlation during the late spring to autumn when the MLD is less than ~80m (Fig. 3d), the minimum depth of the deep chlorophyll maximum layer where many species of planktonic foraminifera reside in association with other zooplankton and algal cells (Fairbanks and Wiebe, 1980). During summertime, the mixed layer fails to penetrate this layer also known as the nitricline (defined as nitrate concentrations > 0.1 umol kg⁻¹"

10. "2. The shoaling rate in year 2000 represents only a minimum value since there is a month missing during the decrease of the MLD. This could affect the results of the regression. "

This is true. We will omit this value from the regression and in Table 2.

11. "3. The deepening rate is defined as the average of the rate between Oct and Jan. Why this interval and not the average rate over the entire period of MLD deepening (which extends beyond Jan)?"

The deepening rate used in Table 2 does in fact represent the entire period of deepening regardless of the month. This will be re-written on Section 5.1.2, page 12233, line 13:

"At our subtropical study site, the mean rate of deepening of the mixed layer is strongly correlated to the maximum MLD reached ($r^2 = 0.88$)"

12. "4. How are the start and end of the spring bloom period defined? And therefore the average winter-spring flux? This needs to be done objectively in order to compare different years.

Currently the spring bloom and winter-spring flux varies in its start, length and end point each year but is always within approximately the same 6-month period (end of November to April). The spring bloom average here was calculated based on the time when the PF flux began to first increase dramatically (which varies year to year, see table below). We therefore calculated the duration of the bloom and the average flux based the table below:

Year of bloom	Month of bloom 'start'	Month of bloom 'finish'
1998	February	April
1999	February	April
2000	January	April
2008	December	February
2009	December	March
2010	January	March (but continued to
		May due to eddy
		interference)

We make each year comparable by integrating the total PF flux over the spring bloom so it is independent of the start, finish and duration of the bloom.

13. And in addition, wouldn't the integrated flux be a better parameter to investigate?"

We do use integrated flux - we will change the legend in Table 2 to describe this as 'integrated winter-spring PF flux' and on the y-axis labels on figures 9b and 9d.

14. "5. What is the physical reason the fit a logarithmic curve to the data in Fig. 9D? Would one expect such a relationship with decreased sensitivity at faster rates?"

There is no physical mechanism to explain why higher rates of shoaling should cause lower sensitivities of the PF flux. The logarithmic relationship was simply applied to include an anomalously quick shoaling rate in spring 1999 (Table 2). We will apply a linear relationship in Figure 9D. 15. "The suggestion that eddies can under certain circumstances prolong and/or enhance primary productivity and PFF is very interesting. Discussing what these circumstances are exactly would contribute to the quality of the paper. There are several times when the passing of an eddy did not have an effect on the PFF (e.g. winter 98/99, 07/08). Where they too early? Or were other conditions not met?"

We will put our findings on eddies into more context with other observations of PF flux changes within eddies in section 5.2, page 12234, line 12 (changes in bold italic):

The negative sea level anomalies in spring 2009 and 2010 indicate that the large (and in 2010 prolonged) PF fluxes in these years are clearly associated with the passage of cyclonic eddies (Fig 2b). Eddy pumping of nitrate into the euphotic zone has been extensively studied at BATS and shown to significantly increase new production (Oschlies and Garçon, 1998) although estimates of eddy nitrate contribution range from ~30-70% in the Sargasso Sea. The upwelling/downwelling of nutrients by cyclonic/anticyclonic eddies have been shown to either promote or suppress phytoplankton blooms (Eden et al., 2009; Goldthwait and Steinberg, 2008; McGillicuddy et al., 1998, 1999, 2007; Sweeney et al., 2003; McGillicuddy and Robinson, 1997, Lomas et al. 2013, Cianca et al. 2012) and therefore affect the PF food source (Schmuker and Schiebel, 2002). In addition, eddy pumping may vary on decadal timescales in concert with NAO changes as suggested by Cianca et al. 2007. Previous studies have found higher fluxes of certain PF species such as Globigerinita glutinata associated with cyclonic eddy structures in the Caribbean Sea (Schmuker and Schiebel, 2002), North Atlantic (Beckman et al. 1987), in conjunction with upwelling frontal regions in the Mexican Pacific (Machain-Castillo et al. 2008) and deep mixed layers during winter in the Mediterranean (Pujol and Vergnaud Grazzini, 1995). We see a similar response in our record in spring 2009 particularly for deeper dwelling species, which was the largest PF flux observed over the entire record, even though the maximum MLD was modest, and the average rates of mixed layer deepening and shoaling were similar to lower flux years (Table 2).

And in Section 5.2, page 12235, line 4:

...during the seasonal flux of deeper dwellers (Fig. 6). This observation is in agreement with findings from the Eastern Basin of the Mediterranean where greater numbers of grazing species such as G. truncatulinoides and G. inflata are found in association with numerous eddy structures and deep mixed layers (Pujol and Vergnaud Grazzini, 1995). These findings suggest that cyclonic eddies enhance the abundance of deeper dwelling species through aiding their annual reproductive migration through mixing of the water column in addition to driving large carbon export flux.

Section 5.2, page 12235, line 8:

Occurrence of cyclonic eddies synchronous with deep MLDs act to enhance the existing seasonal cycle of certain PF species associated with mixed water columns by increasing cyclonic mixing, and therefore chlorophyll concentrations and organic carbon flux. From our results, we observe no biological response when cyclonic eddies do not occur synchronously with deep MLDs, such as in winter 2007-08 when the mixed layer barely penetrated the nitricline. This suggests that the extent of the spring bloom and PF flux is dominantly controlled by the mixed layer dynamics and cyclonic eddies act to enhance this existing seasonal cycle. For instance, spring 2010 experienced the deepest mixed layer observed during the entire BATS time series (Lomas et al. 2013), enhanced by a cyclonic eddy. Our observations also suggest that eddies need to be present for a minimum of 1 month to elicit responses in PF which have minimum lifecycles of two weeks. For instance, in winter 1998-99 a cyclonic eddy passed over the sediment trap site in only one month but elicited no biological response, compared to cyclonic eddies in 2009 and 2010, which both remained over the site for a minimum of 2-3 months and elicited large biological responses. Similarly, recent studies have found that biological responses differ depending on the type and age of the eddy (Mouriño-Carballido and McGillicuddy, 2006) and eddies that are a minimum of 1-2 months old are more likely to induce a larger biological response (Sweeny et al. 2003). In our record, spring 2010 experienced the deepest mixed layer observed during the entire BATS time series (Lomas et al. 2013), when the deepest MLD and fast shoaling rate was combined with a particularly negative NAO index and a large cyclonic eddy which remained at the trap site for up to 3 months. The deep MLD and fast shoaling rate during spring 2010 caused elevated chlorophyll a

concentrations in the surface 25m (Figure 2d) and the following cyclonic eddy caused a large peak in chlorophyll a concentrations at 80-100m (the level of the deep chlorophyll maximum), similar to elevated subsurface chlorophyll a concentrations following a cyclonic eddy observed by Cianca et al. 2007. These conditions prolonged the PF flux and all other mass fluxes in 2010 (Figure 1).

16. It is interesting that the eddy in 2010 seems to be associated with increased PFF and organic carbon fluxes, but not with higher chl-a (i.e. no bloom?). Could this perhaps point to lateral advection of foraminifera or of organic matter (which would fuel foraminifera growth without requiring an increase in primary productivity) within the eddy?"

Although the concentrations in the surface (0-25m) chlorophyll *a* are not elevated, the subsurface chlorophyll *a* concentrations within the province of the deep chlorophyll maximum and nitricline (80-100m) are the highest recorded at BATS since 1990. This is similar to observations of eddies made by Cianca et al. 2007 who found elevation of chlorophyll *a* and nutrients at 100m during a cyclonic eddy in the Eastern North Atlantic. This increase in primary productivity during spring 2010 is also supported by the high, prolonged fluxes of all the mass fluxes (Figure 1).

We will change Section 5.2, page 12235, line 10 (as stated in answer to comment 15):

The deep MLD and fast shoaling rate during spring 2010 caused elevated chlorophyll a concentrations at the surface (Figure 2d) and the following cyclonic eddy caused a large peak in chlorophyll a concentrations at 80-100m (the level of the deep chlorophyll maximum), similar to elevated subsurface chlorophyll a concentrations following a cyclonic eddy as observed by Cianca et al. 2007. These conditions prolonged the PF flux and all other mass fluxes (Figure 1).

The increased subsurface Chl *a* suggests that the cyclonic eddy caused an isopycnal uplift which increased primary productivity to drive the sustained PF flux, rather than lateral advection of the foraminifera population. This corresponds to increases in thermocline species such as *O. universa* coincident with the subsurface Chl *a* peak. This argues against a PF population being laterally advected independent of any primary productivity increase, although we do acknowledge that eddies could provide a mechanism to transport foraminifera in other instances.

17. The influence of the NAO: "The suggested link with NAO is very interesting. It is based on two years with positive- neutral NAO and one year of negative NAO. Of the years of positive/neutral NAO one is from a trap more than 1500m further down and it has often been shown that PFF recorded at different depths can differ significantly. Therefore the suggestion that NAO might have an influence on the PFF is effectively based on only two years of observations (what about the other years in this study? How do they relate to NAO?)""

We will add a new figure 10 incorporating all PF flux from this study and Deuser, (1987), Deuser and Ross, (1989) (NAO vs. PF flux) and rewrite section 6, page 12236, line 6:

"To test this, we compare PF fluxes covering a range in NAO indexes, from this study using the 1500m sediment trap to those made by Deuser and Ross, (1989) between 1978-84 using the 3200m sediment trap. Despite comparing traps from different depths, the annual integrated PF fluxes are comparable and all are plotted in Figure 10 against the wintertime (DJFM) NAO index, the months coinciding with the period of maximum PF flux. In this comparison, the wintertime NAO index from the previous year (before the PF flux) was used because there is likely to be a time lag of between 6-12 months before the ocean responds to atmospheric forcing (Bates, 2001, 2007, Cianca et al. 2012). Generally PF fluxes are higher during negative NAO phases and lower during positive phases, consistent with correlations between NAO and chlorophyll a variability (Lomas et al. 2010) and MLD (Bates, 2012). The regression in Figure 10 does not include the year 1978-79 because the NAO index for February 1978 is skewed towards an anomalously negative sign in February, despite a positive sign in January and March. The PF flux may not have responded as expected in 1978 due to a shallow MLD or even an anticyclonic eddy which can suppress the spring bloom and hence PF flux, as seen in 1994 at BATS by Lomas et al. (2013). Furthermore, we find on average a 28% reduction in PF flux in NAO positive compared to NAO negative years (p < 0.025), when combining PF flux data with those from 1979-84 in Deuser and Ross (1989)." *NAO data available from http://www.cpc.ncep.noaa.gov/data/teledoc/nao.shtml

18. "While it is an interesting suggestion that the NAO can have an influence on the PFF and therefore on the C-pump I think it's only that: a suggestion and the conclusions should be toned down accordingly (also in abstract)."

We would be happy to include figure 10 (NAO vs. PF flux) to strengthen the implications section (section 6, page 12236) but include a statement to acknowledge the limitation of the dataset such as on page 12236, section 6:

"We do recognise that the data set used in this example is limited and a more flux data collected over a longer time period is needed to fully test the observed decadal changes between NAO and PF flux."

And on page 12237, section 7, line 22:

"Our findings suggest that the North Atlantic Oscillation, via its influence on mixed layer depth, *eddy pumping and nutrient upwelling could act to modulate the total PF flux* and the foraminiferal component of the carbonate pump in the subtropical North Atlantic on decadal timescales. *However, this finding is only based on 8 years of PF flux data and a much longer-term dataset will be needed to fully understand if the NAO can modulate the PF flux on decadal timescales.*"

19. The shell flux data should be made available, either as a table in the paper or through an on-line database such as Pangaea.de.

Yes, this will be done (available from Pangeaa.de after acceptance)

20. P12224, L2: oligotrophic regions are by definition nutrient poor.

Changed

21.P12226, L20: warm temperatures should be high temperatures and similarly cold should be low. Please change throughout the manuscript.

Changed

22. P12229, L9-16: this should be part of the paragraph describing the OFP time-series (3.1).

This section has been added to Section 3.1, page 12228, line 22.

23. P12229, L19: perhaps change 'relative' to 'in relation'? Done.

24. P12229, L24: 'deep spring fluxes' is not clear.

We have changed 'deep spring fluxes' to 'spring mass fluxes'.

25. P12231, L20: t is not clear that the timing of the maximum is really later. I suspect that given the inter-annual variability this difference is insignificant.

We have changed section 4.2, page 12231, line 18 to read:

G. truncatulinoides is then followed by G. hirsuta, G. crassaformis and G. inflata which all peak between March and April.

26.P12234, L11: mesoscale eddies are also an environmental control on the PF, the §should therefore be 5.1.3.

Changed to 5.1.3.

27. Fig. 2: please be consistent in the use of symbols for the parameters other then PF.

Fig. 2 c,d,e have all been changed to the same symbol

28. Fig. 3c,d: what is the criterion for splitting at 80m?

Please see response to Comment 9.

29. Fig. 4-6: please add SST curve to graphs to provide clearer information about when the peaks occurred. There is no gap in the time-series of G. sacculifer in Fig. 4.

Done.

30. Fig. 7: place G. crassaformis on its own axis to show the variability.

Done.

31. Fig. 9c: I assume that the extreme chl-a datum has been excluded from the regression. Please indicate this clearly.

Done.

New References

Beckman, A., Auras, A., Hemleben, C., (1987) Cyclonic cold-core eddy in the eastern North Atlantic, 111. Zooplankton. Marine Ecology Progress Series, 39, 165-173.

Cianca, A., Helmke, P., Mouriño, B., Rueda, M.J., Llinás, O., Neuer, S., (2007) Decadal analysis of hydrography and in situ nutrient budgets in the western and eastern North Atlantic subtropical gyre, Journal of Geophysical Research, 112, doi:10.1029/2006JC003788.

Cianca, A., Godoy, J.M., Martin, J.M., Perez-Marrero, J., Rueda, M.J., Llinás, O., Neuer, S., (2012) Interannual variability of chlorophyll and the influence of lowfrequency climate modes in the North Atlantic subtropical gyre, Global Biogeochemical Cycles, 26, doi:10.1029/2010GB004022. DuRand, M.D., Olson, R.J., Chisholm, S.W., (2001) Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea, Deep-Sea Research II, 48, 1983-2003.

Dutkiewicz, S., Follows, M., Marshall, J., Gregg, W.W., (2001) Interannual variability of phytoplankton abundances in the North Atlantic, Deep-Sea Research II 48, 2323-2344.

Fairbanks, R.G., and Wiebe, P.H., (1980) Foraminifera and Chlorophyll Maximum: Vertical Distribution, Seasonal Succession, and Paleoceanographic Significance, Science, 209, 1524-1526

King, A.L., and Howard, W.R., (2001) Seasonality of foraminiferal flux in sediment traps at Chatham Rise, SW Pacific: implications for paleotemperature estimates, Deep-Sea Research I, 48, 1687-1708

King, A.L., and Howard, W.R., (2003) Planktonic foraminiferal flux seasonality in Subantarctic sediment traps: A test for paleoclimate reconstructions, Paleoceanography, 18, doi:10.1029/2002PA000839

King, A.L., Howard W.R., (2005) δ^{18} O seasonality of planktonic foraminifera from Southern Ocean sediment traps: Latitudinal gradients and implications for paleoclimate reconstructions, Marine Micropaleontology, 56, 1-24.

Lomas, M.W., Lipschultz, F., Nelson, D.M., Krause, J.W., Bates N.R., (2009) Biogeochemical responses to late winter storms in the Sargasso Sea I- Pulses of primary and new production, Deep-Sea Research I, 56, 843-860.

Lombard, F., Labeyrie, L., Michel, E., Bopp, L., Cortijo, E., Retailleau, S., Howa, H., Jorissen, F., (2011) Modelling planktic foraminifer growth and distribution using an ecophysiological multi-species approach, Biogeosciences, 8, 853-873

Machain-Castillo, M.L., Monreal-Gómez, M., Arellano-Torres, E., Merino-Ibarra, M., González-Chávez, G., (2008) Recent planktonic foraminiferal distribution patterns and their relation to hydrographic conditions of the Gulf of Tehuantepec, Mexican Pacific, Marine Micropaleontology, 66, 103-119.

Mouriño-Carballido, B., McGillicuddy, D.J., (2006) Mesoscale variability in the metabolic balance of the Sargasso Sea, Limnology and Oceanography, 51, 2675-2689

Ortiz, J.D., Mix, A.C., Collier, R.W., (1995) Environmental control of living symbiotic and asymbiotic foraminifera of the California Current, Paleoceanography, 10, 987-1009

Oschlies, A., and Garçon, V., (1998) Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean, Nature, 394, 266-269.

Pujol, C., and Vergnaud Grazzini, C., (1995) Distribution patterns of live planktic foraminifers as related to regional hydrography and productive systems of the Mediterranean Sea, Marine Micropaleontology, 25, 187-217

Rigual-Hernández, A., Sierro, F.J., Bárcena, M.A., Flores, J.A., Heussner, S., (2012) Seasonal and interannual changes of planktic foraminiferal fluxes in the Gulf of Lions (NW Mediterranean) and their implications for paleoceanographic studies: Two 12year sediment trap records, Deep-Sea Research I, 66, 26-40.

Sautter, L., and Thunell, R.C., (1989) Seasonal succession of planktonic foraminifera: Results from a four-year time series sediment trap experiment in the northeast Pacific, Journal of Foraminiferal Research, 19, 253-267.

Schmuker B., and Schiebel, R., (2002) Planktic foraminifers and hydrography of the eastern and northern Caribbean Sea, Marine Micropaleontology, 46, 387-403

Siegel, D.A., Doney, S.C., Yoder, J.A., (2002) The North Atlantic Spring Phytoplankton Bloom and Sverdrup's Critical Depth Hypothesis, Science, 296, 730

Thunell, R.C., and Reynolds, L.A., (1984) Sedimentation of planktonic foraminifera: seasonal changes in species flux in the Panama Basin, Micropaleontology, 30, 243-262.

Treusch, A.H., Demir-Hilton, E., Vergin, K.L., Worden, A.Z., Carlson, C.A., Donatz, M.G., Burton, R.M., Giovannoni, S.J., (2012) Phytoplankton distribution patterns in

the northwestern Sargasso Sea revealed by small subunit rRNA genes from plastids, ISME Journal, 6, 481-492

Response to Anonymous Referee #2

We would like to thank anonymous reviewer #2 for his/her time and insightful thoughts on our manuscript. We would like to stress here again that the main focus of this manuscript is to describe the interannual variability of the total PF flux and discuss reasons for such variability. As mentioned in the response to the reviewer #1 comment, we cannot make detailed comments on the seasonal variability in PF species flux because our dataset does not represent all PF species but our PF species flux (11 species) will be combined with another long term overlapping time-series study [Prof. W. Prell] with a view to achieving this goal. Here we would like to address all comments and will revise the manuscript by incorporating other suggested changes. Reviewer's comments are in Arial font and italicised, responses are in Times font, and suggested additions if necessary are in bold, italic Times font within inverted commas:

 "In general the paper is concise, well written, clear and well-focused on the Bermuda. The latter, however is also a limitation as similar studies from elsewhere are not included in the discussion of results, which would increase the value of this study, e.g. with respect to both seasonality and eddy perturbation."

We have not discussed species seasonality specifically in the discussion of the results because our manuscript is focusing on interannual variability (also see response to reviewer #1 comments).

We are happy to add some more discussion within this context in section 5.1.1 and section 5.2 taking into consideration other global studies on total PF flux variability, as below:

(Interannual variability) Section 5.1.1, Page 12232, line 17 (changes in bold italic):

"Here, we also observed a simultaneous seasonal peak in chlorophyll a and maximum depth of the MLD *as seen by previous studies at BATS (Cianca et al. 2012)*, the timing and amplitude of which coincides with the maximum PF flux (Fig. 2c and d). *This observation is consistent with previous findings in other oceans*

where seasonal changes in mixed layer depth are closely associated with changes in foraminifera production (Thunell and Reynolds, 1984, Sautter and Thunell, 1989, Pujol and Vergnaud Grazzini 1995, Schmucker and Sciebel 2002) and chlorophyll a concentrations (King and Howard, 2003, 2005). Siegel et al. 2002 proposed that south of 40°N, the initiation and extent of the spring bloom is limited by nutrients rather than light, and this is supported by the simultaneous increase in phytoplankton concentrations with mixing depth at BATS (Treusch et al. 2012). Vertical mixing in late winter and spring distribute nutrients into the euphotic zone to support the spring phytoplankton bloom which fuels foraminifera production, as indicated by the seasonal peak in export fluxes of organic carbon (Fig. 1d)"

(Eddy perturbation) Section 5.2, page 12234, line 12:

"The negative sea level anomalies in spring 2009 and 2010 indicate that the large (and in 2010 prolonged) PF fluxes in these years are clearly associated with the passage of cyclonic eddies (Fig 2b). Eddy pumping of nitrate into the euphotic zone has been extensively studied at BATS and shown to significantly increase new production (Oschlies and Garçon, 1998) although estimates of eddy nitrate contribution range from ~30-70% in the Sargasso Sea. The upwelling/downwelling of nutrients by cyclonic/anticyclonic eddies have been shown to either promote or suppress phytoplankton blooms (Eden et al., 2009; Goldthwait and Steinberg, 2008; McGillicuddy et al., 1998, 1999, 2007; Sweeney et al., 2003; McGillicuddy and Robinson, 1997, Lomas et al. 2013, Cianca et al. 2012) and therefore affect the food source of planktonic foraminifera (Schmuker and Schiebel, 2002). Previous studies have found higher fluxes of certain PF species such as Globigerinita glutinata associated with cyclonic eddy structures in the Caribbean Sea (Schmuker and Schiebel, 2002), North Atlantic (Beckman et al. 1987), in conjunction with upwelling frontal regions in the Mexican Pacific (Machain-Castillo et al. 2008) and deep mixed layers during winter in the Mediterranean (Pujol and Vergnaud Grazzini, 1995). We see a similar response in our record in spring 2009, which was the largest PF flux observed over the entire record, even though the maximum MLD was modest, and the average rates of mixed layer deepening and shoaling were similar to lower flux years (Table 2)."

(Eddy perturbation) Section 5.2, page 12235, line 4

"...during the seasonal flux of deeper dwellers (Fig. 6). This observation is in agreement with findings from the eastern Basin of the Mediterranean where greater numbers of grazing species such as G. truncatulinoides and G. inflata are found in association with numerous eddy structures and deep mixed layers (Pujol and Vergnaud Grazzini, 1995). These findings suggest that cyclonic eddies enhance the abundance of deeper dwelling species through aiding their annual reproductive migration through mixing of the water column in addition to driving large carbon export flux."

2. "Having said that, the manuscript is well within the scope of BG, presents novel data and discusses these data in a broader oceanographic perspective. The manuscript would benefit from the addition of a map showing the location of the site with major surface currents, as well as with a full data table (supplementary)."

We will add a map without surface currents, as there are not significant boundary currents or fronts present at this site. We will include all data in Pangeea.de (also see our response to reviewer #1).

3. "Materials and Methods, 3.2, line 15-16: The authors state that the fast settling rates for individual tests of larger species would not cause a temporal offset between the hydrography and their arrival at 1500m depth (3 days for G. inflata and 7 days for G. ruber). However, this time period is taken from the moment the export of shells starts, not the time of life before that, which may be anywhere from two weeks to a full year. How does a living foram population respond to perturbances like eddies, or do they only generate a pulse of settling shells?"

The two cyclonic eddies focused on in this study both remained over the sediment trap site from between 1 month (January-February 2009) up to 3 months (April-June 2010). Both of these eddies span a typical PF lifecycle (2-weeks to a month) and would have lasted long enough for the next generation of PF to respond. In this study, the 2009 eddy coincided with this narrow reproductive window of the deeper-

dwellers (*globorotaliid* species e.g. *G. truncatulinoides*) and boosted their numbers, through increasing their food availability in addition to aiding their vertical migration through destabilisation of the water column. The large flux of *globorotaliid* species, in particular *G. truncatulinoides*, associated with a cyclonic eddy e.g. in 2009 (this study) and 2007 (unpublished results) suggests that the physical disruption of the water column benefits the reproduction of this particular species. A pulse of settling shells would be less species-specific and presumably represent increased numbers of all PF species abundant at that time rather than just this one.

We suggest that eddies enhance the existing seasonal cycle which is dominantly constrained by MLD and food availability, rather than sparking spontaneous production of foraminifera.

4. "Fig. 3a. From the graph it seems that the relationship of PF flux to Chla concentration is curvilinear rather than rectilinear, i.e. while Chla increases, PF fluxes level off. If so, linear correlation is not warranted."

We could amend the trendline in Figure 3a from linear to curvilinear but this produces a smaller r^2 suggesting that the dominant relationship is actually linear. In addition, we have no reason to believe that there should be less sensitivity of PF flux at higher Chl *a* concentrations.

5. "Given the title of the paper (".. strength of the carbonate pump.."), what is the contribution of planktonic foraminifera to the carbonate mass flux?"

~40 % of total carbonate flux during winter as stated in the submitted manuscript:

- Abstract, page 12224, line 11
- Section 4.2, page 12231, line 27-28
- Section 6, page 12236, line 29
- Section 7, page 12237, line 18

6. "Conclusions, 7, line 16-19: The authors argue that the heavy tests of particularly the winter globorotaliids "...may serve as ballasting mechanisms for carbonate...". It is unclear, however, what is meant here as the large heavy tests concerned have settling velocities that exceed those of organic matter aggregates and would settle as individual particles rather than ballasting these aggregates as e.g. coccoliths do. Please clarify and include the reasoning in the discussion of results rather than in the conclusions."

The use of term 'ballasting' was used to describe the *Globorotaliid* tests as ballasts for their own carbonate as they are three times denser than surface dwelling species. These tests do not aggregate with other particles but settle out of water column quickly due to their high settling velocities. We are happy to change this as below.

Adding a sentence to Section 5.1.1, Page 12234, line 5. Changes are shown in bold italic:

"We thus conclude that the depth of the mixed layer plays an important role in regulating PF flux by controlling the abundance and timing of their food availability. *This in turn controls the flux of the denser tests of Globorotaliids (up to three times denser than surface species). These tests accelerate the transfer of carbonate from surface to deep ocean, thereby strengthening the carbonate pump.*

And changing Conclusion, 7, page 12238, line 17 to:

"We suggest that these dense carbonate tests (*up to three times denser than surface dwellers*) may *strengthen the carbonate pump by accelerating the transfer of carbonate from surface to deep ocean* and contribute up to 40% of the contemporaneous peak in total carbonate export fluxes"

7. "There are various repetitive typos with respect to taxonomy that need correction: Globorotalia rather than Globoratalia; crassaformis rather than crassiformis; Globigeri- noides rather than Globignerioides"

Corrected.

New References

Beckman, A., Auras, A., Hemleben, C., (1987) Cyclonic cold-core eddy in the eastern North Atlantic, 111. Zooplankton. Marine Ecology Progress Series, 39, 165-173.

Cianca, A., Helmke, P., Mouriño, B., Rueda, M.J., Llinás, O., Neuer, S., (2007) Decadal analysis of hydrography and in situ nutrient budgets in the western and eastern North Atlantic subtropical gyre, Journal of Geophysical Research, 112, doi:10.1029/2006JC003788.

Cianca, A., Godoy, J.M., Martin, J.M., Perez-Marrero, J., Rueda, M.J., Llinás, O., Neuer, S., (2012) Interannual variability of chlorophyll and the influence of lowfrequency climate modes in the North Atlantic subtropical gyre, Global Biogeochemical Cycles, 26, doi:10.1029/2010GB004022.

Dutkiewicz, S., Follows, M., Marshall, J., Gregg, W.W., (2001) Interannual variability of phytoplankton abundances in the North Atlantic, Deep-Sea Research II 48, 2323-2344.

Fairbanks, R.G., and Wiebe, P.H., (1980) Foraminifera and Chlorophyll Maximum: Vertical Distribution, Seasonal Succession, and Paleoceanographic Significance, Science, 209, 1524-1526

King, A.L., and Howard, W.R., (2001) Seasonality of foraminiferal flux in sediment traps at Chatham Rise, SW Pacific: implications for paleotemperature estimates, Deep-Sea Research I, 48, 1687-1708

King, A.L., and Howard, W.R., (2003) Planktonic foraminiferal flux seasonality in Subantarctic sediment traps: A test for paleoclimate reconstructions, Paleoceanography, 18, doi:10.1029/2002PA000839

King, A.L., Howard W.R., (2005) δ^{18} O seasonality of planktonic foraminifera from Southern Ocean sediment traps: Latitudinal gradients and implications for paleoclimate reconstructions, Marine Micropaleontology, 56, 1-24. Lombard, F., Labeyrie, L., Michel, E., Bopp, L., Cortijo, E., Retailleau, S., Howa, H., Jorissen, F., (2011) Modelling planktic foraminifer growth and distribution using an ecophysiological multi-species approach, Biogeosciences, 8, 853-873 Machain-Castillo, M.L., Monreal-Gómez, M., Arellano-Torres, E., Merino-Ibarra, M., González-Chávez, G., (2008) Recent planktonic foraminiferal distribution patterns and their relation to hydrographic conditions of the Gulf of Tehuantepec, Mexican Pacific, Marine Micropaleontology, 66, 103-119.

Mouriño-Carballido, B., McGillicuddy, D.J., (2006) Mesoscale variability in the metabolic balance of the Sargasso Sea, Limnology and Oceanography, 51, 2675-2689

Ortiz, J.D., Mix, A.C., Collier, R.W., (1995) Environmental control of living symbiotic and asymbiotic foraminifera of the California Current, Paleoceanography, 10, 987-1009

Oschlies, A., Garçon, V., (1998) Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean, Nature, 394, 266-269.

Pujol, C., and Vergnaud Grazzini, C., (1995) Distribution patterns of live planktic foraminifers as related to regional hydrography and productive systems of the Mediterranean Sea, Marine Micropaleontology, 25, 187-217

Sautter, L., and Thunell, R.C., (1989) Seasonal succession of planktonic foraminifera: Results from a four-year time series sediment trap experiment in the northeast Pacific, Journal of Foraminiferal Research, 19, 253-267.

Schmuker B., and Schiebel, R., (2002) Planktic foraminifers and hydrography of the eastern and northern Caribbean Sea, Marine Micropaleontology, 46, 387-403

Siegel, D.A., Doney, S.C., Yoder, J.A., (2002) The North Atlantic Spring Phytoplankton Bloom and Sverdrup's Critical Depth Hypothesis, Science, 296, 730

Thunell, R.C., and Reynolds, L.A., (1984) Sedimentation of planktonic foraminifera: seasonal changes in species flux in the Panama Basin, Micropaleontology, 30, 243-262.

Treusch, A.H., Demir-Hilton, E., Vergin, K.L., Worden, A.Z., Carlson, C.A., Donatz, M.G., Burton, R.M., Giovannoni, S.J., (2012) Phytoplankton distribution patterns in the northwestern Sargasso Sea revealed by small subunit rRNA genes from plastids, ISME Journal, 6, 481-492.

1	Upper ocean mixing controls the seasonality of planktonic foraminifer fluxes and
2	associated strength of the carbonate pump in the oligotrophic North Atlantic
3	
4	K.H.Salmon ¹ , P. Anand ¹ , P.F. Sexton ¹ , M. Conte ²
5	[1] Environment, Earth and Ecosystems, The Open University, United Kingdom
6	[2] Bermuda institute of Ocean Sciences, St Georges GE01, Bermuda
7	
8	Abstract
9	
10	Oligotrophic regions represent up to 75% of Earth's open-ocean environments, They
11	are thus areas of major importance in understanding the plankton community
12	dynamics and biogeochemical fluxes. Here we present fluxes of total planktonic
13	foraminifera and eleven planktonic foraminifer species measured at the Oceanic Flux
14	Program (OFP) time series site in the oligotrophic Sargasso Sea, subtropical western
15	North Atlantic Ocean. Foraminifera flux was measured at 1500 m water depth, over
16	two ~ 2.5 year intervals, 1998-2000 and 2007-2010. We find that for a flux
17	was closely correlated with total mass flux, carbonate and organic carbon fluxes. We
18	show that the planktonic foraminifera flux increases approximately five-fold during
19	the winter-spring, contributing up to $\sim 40\%$ of the total carbonate flux. This was
20	primarily driven by increased fluxes of deeper dwelling globorotaliid species, which
21	contributed up to 90% of the foraminiferal-derived carbonate during late winter-early
22	spring. Interannual variability in total foraminifera flux, and in particular fluxes of
23	the deep dwelling species (Globorotalia truncatulinoides, Globorotalia hirsuta and
24	Globorotalia <u>inflata</u> , was related to differences in seasonal mixed layer dynamics
25	affecting the strength of the spring phytoplankton bloom and export flux, and by the

- 44 passage of mesoscale eddies. <u>As these heavily calcified</u>, dense carbonate tests of
- 45 deeper dwelling species (3 times denser than surface dwellers) have greater sinking
- 46 <u>rates, this implies</u> a high seasonality of the biological carbonate pump in oligotrophic
- 47 oceanic regions. Our data suggest that climate cycles, such as the North Atlantic
- 48 Oscillation, which modulates nutrient supply into the euphotic zone and the strength
- 49 of the spring bloom, may also in turn modulate the production and flux of these
- 50 <u>heavily calcified deep-dwelling foraminifera by increasing their food supply, thereby</u>
- 51 intensifying the biological carbonate pump,
- 52 53

Kate Salmon 24/11/2014 13:58

Kate Salmon 24/11/2014 13:57

Kate Salmon 24/11/2014 13:58 **Deleted:** can contribute up to 90% of the

foraminiferal-derived carbonate in this region during late winter-early spring, implying

Deleted: The

Deleted: that modulate the depth of the mixed layer, intensity of nutrient upwelling and primary production could also modulate the strength of the biological carbonate pump in the oligotrophic North Atlantic.

63 1. Introduction

64 Planktonic foraminifera (PF) comprise 23-56% of the total open marine calcite flux and thus exert an important control on global carbon cycling (Schiebel, 2002). They 65 66 are used extensively in palaeoceanographic and palaeoclimatic reconstructions via 67 utilisation of their species abundance and assemblage composition (e.g., Lutz, 2011; 68 Sexton and Norris, 2011), geochemical signatures (e.g., Zeebe et al. 2008), shell mass 69 (e.g., Barker and Elderfield, 2002) and in evolutionary and biogeographic studies (e.g. 70 Sexton and Norris, 2008). However, gaps remain in our understanding of the controls 71 on their spatial and temporal distribution in the upper water column. Following the 72 early 1980s when sea surface temperatures (SSTs) were thought to dominantly control 73 PF distributions and abundance (CLIMAP project members, 1994), a number of other 74 environmental parameters have also been shown to exert influence on the distribution 75 and abundance of PF, such as salinity (Kuroyanagi and Kawahata, 2004), productivity, 76 nutrient availability (Schiebel, 2002, Northcote et al. 2005, Žarić et al. 2005; Storz et 77 al. 2009; Sexton and Norris, 2011) and water column stability (Hemleben et al. 1989, 78 Lohmann and Schweitzer 1990, King and Howard, 2003). Jt is thus imperative to 79 better understand the environmental factors controlling modern-day PF abundance in 80 order to produce accurate interpretations of palaeorecords based on PF assemblages. 81 82 The response of PF flux and species composition to environmental and/or 83 oceanographic factors have been studied using plankton tow materials which can give 84 information about living populations' species distribution and depth habitats within 85 the upper ocean (Tolderlund and Be, 1971, Fairbanks et al., 1980; Schiebel 2002).

86 However, temporal resolution is often limited when using plankton tows. The

87 continuous time series records provided by sediment-traps allow a more complete

Kate Salmon 9/11/2014 09: Deleted:

Kate Salmon 9/11/2014 09:43 **Deleted:** In addition, different environmental variables may induce species-specific responses (Kuroyanagi and Kawahata, 2004).

- 92 understanding of the seasonal and interannual changes in PF flux and can aid in
- 93 integrating living assemblages with the sedimentary record.

94

95 Earlier studies of planktonic foraminifer flux off Bermuda at the Seasonal Changes in 96 Foraminifera Flux (SCIFF) site (Figure 1) (Deuser et al. 1981, Hemleben et al. 1985, 97 Deuser 1987, Deuser and Ross 1989) were based on a bi-monthly sampling interval 98 and provide a general description of foraminifera flux, species composition and 99 seasonality. These studies found that PF >125µm comprise on average 22% of the 100 total calcium carbonate flux in the Sargasso Sea (Deuser and Ross 1989), although 101 this average underestimates the importance of the PF flux contribution during 102 different seasons. Here we utilise a higher resolution bi-weekly sediment trap time 103 series from the Oceanic Flux Program (OFP), ideal for studying the detailed response 104 of PF species flux to physical oceanographic changes because PF species lifespan is 105 approximately 2-3 weeks (Spero, 1998, Erez et al. 1991). These samples also benefit 106 from the availability of upper ocean hydrographic and biogeochemical data collected 107 at the nearby Bermuda Atlantic Time Series (BATS) site, as well as remote sensing 108 data, which allows us to evaluate the environmental factors that control the total 109 foraminifer flux as well as the response of individual species flux. Furthermore, we 110 assess the relative contribution of PF flux to regional carbonate export and explore the 111 implications of our findings for carbonate cycling in the oligotrophic North Atlantic. 112

Kate Salmon 24/11/2014 13:59
Deleted: Previous work has shown
Kate Salmon 24/11/2014 14:04
Deleted: but
Kate Salmon 24/11/2014 14:05
Deleted: their
Kate Salmon 24/11/2014 14:05
Deleted: which may vary on a seasonal scale
Kate Salmon 29/11/2014 15:31
Deleted: Initial studies of planktonic foraminifer flux in the Oceanic Flux Program (OFP) sediment traps off Bermuda (Deuser et

foraminifer flux in the Oceanic Flux Program (OFP) sediment traps off Bermuda (Deuser et al. 1981, Hemleben et al. 1985, Deuser 1987, Deuser and Ross 1989) were based on a bimonthly trap cup sampling interval and provided a general description of foraminifera flux, species composition and seasonality.

Deleted: , covering the 2-3 week lifespan of most PF

Kate Salmon 29/11/2014 15:33

Deleted: that will capture the detailed seasonal response of PF species flux to physical oceanographic changes

130 2. Oceanographic Setting

132	The Sargasso Sea is located within the North Atlantic gyre, which is characterised by		
133	high temperatures, and salinities, and weak, variable surface currents (Lomas et al.		Kate Salmon 9/11/2014 12:14
134	2013 and references therein). The OFP and BATS sites are situated in a transition	\mathbb{N}	Deleted: warm Kate Salmon 29/11/2014 15:38
135	region between the northern eutrophic waters and the relatively oligotrophic		Deleted: , high Kate Salmon 29/11/2014 15:38
136	subtropical convergence zone in the south (Steinberg et al. 2001 and references		Deleted: and Kate Salmon 29/11/2014 15:38
137	therein). Subtropical Mode Water (STMW) forms on the fringes, north of the gyre,		Deleted:
138	owing to convective deep winter mixing and entrainment of nutrients and is		
139	characterized by temperatures of 17.8-18.4 $^{\rm o}{\rm C}$ and salinities of ~36.5 +/- 0.05 (Bates et		
140	al. 2002), typically occurring between ~250-400 m water depth (Bates, 2007).		
141			
142	The hydrography and biogeochemistry of the area have been summarized by Michaels		
143	and Knap (1996), Steinberg et al. (2001), Lomas et al. (2013) and references therein.		
144	In the absence of large changes in salinity, the 10 [°] _c C seasonal change in surface		Kate Salmon 29/11/2014 15:37
145	temperatures driven by solar insolation, controls the shoaling and erosion of the		Deleted: °
146	mixed layer, which reaches a maximum of 250-400m in late winter, increasing		
147	vertical mixing and entraining nutrient-rich waters. The depth of mixing determines		
148	the strength of seasonal particulate flux, nutrient concentrations and primary		
149	production during the subsequent spring bloom (Michaels and Knap, 1996, Steinberg		
150	et al., 2001). With the onset of seasonal stratification in late February-March, a spring		
151	bloom develops when phytoplankton biomass and particulate organic carbon standing		
152	stocks are maximal. As seasonal stratification intensifies, a nutrient-depleted, shallow		
153	surface mixed layer develops which is underlain by a subsurface chlorophyll		
154	maximum at approximately <u>80-100m depth. Strong stratification in summer and</u>		Kate Salmon 12/11/2014 14:53
I			Deleted: 9

- autumn results in low vertical mixing that limits nutrient availability and primary
- 162 production. Seasonal cooling in late autumn results in erosion and gradual deepening
- 163 of the mixed layer, with renewed nutrient entrainment into the euphotic zone and an
- 164 increase in primary production. Mesoscale physical variability in this area is the
- 165 dominant method of nutrient transport (McGillicuddy et al., 1998). In particular,
- 166 passage of cyclonic and mode water eddies may lead to nutrient entrainment which
- 167 generates short-lived phytoplankton blooms and community restructuring (Wiebe and
- 168 Joyce, 1992, Olaizola et al., 1993, McNeil et al., 1999, Letelier et al., 2000, Seki et al.,
- 169 2001, Sweeny et al., 2003) which could, in turn, impact higher trophic levels such as
- 170 planktonic foraminifera. In addition, these blooms often result in short-lived,
- 171 episodic periods of enhanced export fluxes of labile organic material to depth (Conte

- 172 et al. 1998, 2003, 2014).
- 173 174

175	3. Materials and methods	
176		
177	3.1 The OFP Sediment trap time-series	
178		
179	The OFP mooring is located at 31° 50'N, 64° 10'W, about 55 km southeast of	
180	Bermuda at 4200m water depth (Figure 1). Three Mark VII Parflux sediment traps	
181	(McLane Labs, Falmouth, MA) are deployed at depths of 500 m, 1500 m and 3200 m.	
182	The traps (0.5 m^2 surface area) are programmed to collect a continuous bi-weekly	
183	time-series of the particle flux. Collected samples were processed according to Conte	
184	et al. (2001) and split into < 125 μ m, 125-500 μ m, <u>500-1000 μm and >1000 μm size</u>	Kate Salmon 24/11/2014 14:06
185	fractions. We analyzed for aminifera in the 125-500 μm and 500-1000 μm size	Deleted: and
186	fractions of 1500m trap samples collected during two time periods: 1998-2000 and	
187	2008-2010 (109 samples total). We selected the two equivalent 2.5 year intervals a	
188	decade apart to generate a bi-weekly resolved time-series which would enable	
189	assessment of seasonality as well as interannual variability. Our analyses focused on	
190	eleven species that fall within three general groupings: i) surface dwelling species	
191	living within the upper 50 m water column (Globigerinoides ruber var. white/pink,	Kate Salmon 11/11/2014 16:47
192	Globigerinella siphonifera, Globigerinoides sacculifer), ii) intermediate dwelling	Deleted: Globignerioides
193	species living in the ~50-200 m depth range (Orbulina universa, Globigerinoides	Kate Salmon 11/11/2014 16:47
194	conglobatus, Neogloboquadrina dutertrei, Pulleniatina obliquiloculata) and iii) deep	Deleted: n
195	dwelling species (or species that are thought to calcify over a large depth range) living	
196	in the ~100-800 m depth range (Globorotalia inflata, Globorotalia <u>crassaformis</u> ,	Kate Salmon 11/11/2014 16:43
197	Globorotalia truncatulinoides, Globorotalia hirsuta). Our assignments of the depth	Deleted: crassiformis
198	habitats were based on measured species depth distributions and/or inferred	
199	distributions based on oxygen isotopic composition (Fairbanks et al., 1980, Anand et	

204	al., 2003). The temporal offset between the foraminiferal species fluxes reaching the
205	trap at 1500m depth versus the timing of these species' growth in overlying waters
206	will vary depending on habitat depths and individual species' sinking rates (Takahashi
207	and Bé, 1984). A surface-dwelling G. ruber living at 25 m depth may sink at ~198 m
208	day-1, taking ~7 days to reach the 1500 m trap, whereas a more heavily calcified
209	deeper-dwelling species such as G. inflata may sink \sim 504 m day ⁻¹ , taking only \sim 3
210	days to reach the 1500 m trap. These fast sinking rates are much shorter than the
211	typical lifespans of PF and are thus not anticipated to cause any offset between the
212	hydrographic and sediment trap flux data (Honjo and Manganini, 1993).
213	
214	On average, ~440 tests were counted in each sample fraction. To generate the flux
215	data, counts of total and individual foraminifera species in the sample aliquots for
216	each size fraction was converted to total counts per sample fraction and then the totals
217	for the two fractions were combined (i.e. total planktonic foraminifera between 125-
218	1000 um in size). Total counts were then scaled for the processing split (60%) and
219	converted to flux (tests $m^{-2} d^{-1}$).
220	
221	3.2 BATS and remote sensing data
222	
223	The BATS site (31°40'N, 64°10'W) is located just south of the OFP mooring (Figure
224	1). Monthly hydrographic and biogeochemical data collected by the BATS time-
225	series was obtained from the BATS website (http://bats.bios.edu). Mixed layer depth
226	(MLD) was available from Lomas et al. (2013) and was calculated from CTD profiles
227	using the variable sigma-t criterion equivalent to a 0.2 C temperature change
228	(Sprintall and Tomczak, 1992). The mesoscale eddy field was assessed using

Kate Salmon 29/11/2014 15:51 Deleted: °

230 interpolated data on sea surface anomaly available from the CCAR Global Historical

9

- 231 Gridded SSH Data Viewer
- 232 (<u>http://eddy.colorado.edu/ccar/ssh/hist_global_grid_viewer</u>).

Kate Salmon 9/11/2014 12:16

Deleted: The temporal offset between the foraminiferal species fluxes measured in the 1500m trap and their growth environment in overlying waters will vary depending on habitat depths and individual sinking rates (Takahashi and Bé, 1984). A surface-dwelling *G. ruber* living at 25m depth may sink at ~198 m day⁻¹, taking ~7 days to reach the 1500m trap, whereas a more calcified deeper-dwelling species such as *G. inflata* may sink ~504 m day⁻¹, taking ~3 days to reach the 1500m trap. These fast sinking rates are not anticipated to cause any offset between the hydrographic and sediment trap data.

247	4.1. Total planktonic foraminiferal fluxes	
248		
249	4.1.1. <u>In relation</u> to other mass fluxes	
250	••	Kate Salmon 9/11/2014 12:17 Deleted: <i>Relative</i>
250		Deleted. Actuality
251	The seasonal cycle and interannual variability of the PF flux at 1500m depth is highly	
252	correlated with that of the total mass, carbonate and organic carbon fluxes. All fluxes	
253	are strongly characterized by an abrupt spring maximum during February-April,	Kate Salmon 24/11/2014 14:08 Deleted: particle flux and other mass
254	which varies significantly on an interannual basis (Figure 2). For example, the spring	
255	PF flux peak ranged from a low of 400 tests m ⁻² day ⁻¹ in 2008, coinciding with	Kate Salmon 11/11/2014 17:32 Deleted: Figure 1
256	minimal spring mass fluxes, to a high of 900 tests m ⁻² day ⁻¹ in 2009, coinciding with	Kata Salman 0/44/2014 42:40
257	an extreme peak in spring mass fluxes. All fluxes typically drop to a minimum over	Kate Salmon 9/11/2014 12:18 Deleted: deep
258	the summer months (May-August) and remain low until the following spring bloom.	Kate Salmon 24/11/2014 14:09 Deleted: deep
259	During these minima, the PF flux generally amounts to $<200 \text{ tests/m}^2/\text{day}$. In some	
260	years (e.g. 2009 and, to a lesser extent, 2008), the PF flux displays a smaller, but	
261	distinct second peak in the months September-October. This secondary autumn peak	
262	can also be seen in the mass flux and carbonate flux in 2009 but is absent in the	
263	organic carbon flux. Over the entire record, the correlation between PF flux and mass,	
264	carbonate and organic carbon flux is 0.65, 0.64 and 0.55, respectively.	
265		
266	4.1.2 Relative to upper ocean hydrography	
267		
268	In Figure 3 we compare interannual variations in bi-weekly resolved total PF flux to	Kate Salmon 11/11/2014 17:33
269	~monthly resolved changes in key upper ocean hydrographic parameters, measured at	Deleted: Figure 2
270	the BATS site. PF flux exhibits an inverse relationship with seasonal variations in sea	
271	surface temperatures (SST) and reaches a maximum when SST is coolest in January-	

278	March (Figure 3a). Of note, is the particularly large and prolonged PF bloom in 2010,	
279	which coincided with a cyclonic eddy that passed through the area causing the lowest	Kate Salmon 11/11/2014 17:33 Deleted: Figure 2
280	SSTs on record for this site ~18.9°C (Figure 3a-b).	Kate Salmon 24/11/2014 14:10 Deleted: s
281	Sea level anomaly (SLA) provides information about eddies passing through the area	Kate Salmon 29/11/2014 15:53 Deleted: , a cyclonic eddy,
282	(Figure 3b). A negative anomaly is associated with cyclonic eddies and a positive	Kate Salmon 9/11/2014 12:14 Deleted: cold
		Kate Salmon 29/11/2014 15:52
283	anomaly associated with anticyclonic and mode water eddies. The SLA data show	Deleted: °C Kate Salmon 29/11/2014 15:53
284	that the particularly high and prolonged <u>PF fluxes</u> , total mass flux and organic carbon	Deleted: (see Sea level anomaly data in Figure 3)
285	flux in spring 2009 and 2010 coincided with the passage of cold, cyclonic eddies	Kate Salmon 11/11/2014 17:33
		Deleted: Figure 2 Kate Salmon 12/11/2014 15:21
286	(Figure 2), which enhance nutrient upwelling into the euphotic zone.	Deleted: fluxes in PF,
0.07		Kate Salmon 12/11/2014 15:22
287		Deleted: (Figure 1)
288	The annual and interannual PF flux is in phase with the deepening and shoaling of the	
289	mixed layer depth (MLD) (Figure 3c) and with chlorophyll a concentrations (Figure	Kate Salmon 11/11/2014 17:33
290	$\underline{3}$ d). The seasonal PF flux maximum coincides with the chlorophyll <i>a</i> maximum	Deleted: Figure 2
291	(which is used here as a proxy for the spring phytoplankton bloom) and the organic	Kate Salmon 11/11/2014 17:33 Deleted: Figure 2
292	carbon flux from 200m, which represents organic carbon export from surface	
293	productivity (Figure 3e), and the deepest MLD during February-March. During April-	
		Kate Salmon 11/11/2014 17:33
294	May, the MLD shoals back towards the surface coinciding with decreasing	Deleted: Figure 2
295	chlorophyll a concentrations and PF flux. The strong correlations between the	
296	seasonality in PF flux and that of primary production and export is demonstrated by	
297	the regressions between total PF flux and chlorophyll a concentration (Figure. $4a$) and	Kate Salmon 11/11/2014 17:43
298	the 1500m mass flux (Figure. 4b). During the winter-spring period the magnitude of	Deleted: 3 Kate Salmon 11/11/2014 17:43
299	PF flux generally follows the evolution in MLD and is maximal when the MLD is	Rate Salmon 11/11/2014 17:43 Deleted: 3
300	maximal (Figure. $4c$). However, when the mixed layer depth shoals to <80 m during	Kata Salman 11/11/2014 17:42
301	the low productivity period in late spring and summer, this correlation is not	Kate Salmon 11/11/2014 17:43 Deleted: 3
		Kate Salmon 29/11/2014 15:58 Deleted: is not significant ?
302	significant (Figure. 4d).	Kate Salmon 11/11/2014 17:43
303		Deleted: 3

4.2 Planktonic foraminifera species fluxes

323

324 In general, all planktonic foraminifera, and especially deeper dwelling species, show

325 strong, consistent seasonal variance (Figures <u>5,7</u>). Our results demonstrate a clear

326 depth progression towards more pronounced seasonality in the deeper species,

327 compared to a larger intra-seasonal variability in the surface and intermediate

328 dwellers. In addition, the deep dwelling PF species exhibit repeatable species

329 successions throughout the winter and early spring (Figure & Table 1). Figure &

330 shows that *Globorotalia truncatulinoides* dominates the flux of deeper dwellers, and

thrives each December, reaching a maximum during January. G. truncatulinoides is

332 then followed by G. hirsuta, G. <u>crassaformis</u>, and G. inflata which all peak between

333 March and April. *G. truncatulinoides* displays large interannual variability (Table 1),

ranging from lows of ~4000 tests/m²/year in 2009-2010 to highs of up to ~14 000

335 tests/m²/year in 1999-2000 (Figure 6). The remaining deeper dwellers (*Globorotalia*

336 hirsuta, <u>Globorotalia</u> inflata, <u>Globorotalia crassaformis</u>) also vary on an interannual

basis. Figure <u>1</u> and Table 1 show that the largest fluxes of deeper dwelling species

338 occurred during the winter/spring of 1999-2000 and 2008-2009. Using shell weights

from this study averaged with shell weights (125-1000um) measured by Deuser,

340 $\,$ (1987) and Deuser and Ross, (1989), we estimate that PF flux contributes up to ${\sim}40\%$

341 of the total carbonate flux during winter-spring but <10% during summer (Figure $\frac{9}{2}a$).

342 Deeper dwelling species account for 60-90% of PF carbonate flux (Figure 9b) and up

343 to 37.5% of the total carbonate flux (e.g. during the winter-spring of 2000) (Figure 9c).

344 345 Kate Salmon 11/11/2014 17:43 Deleted: 4 Kate Salmon 11/11/2014 17:43 Deleted: 6

Kate Salmon 11/11/2014 17:44
Deleted: 7
Kate Salmon 11/11/2014 17:44
Deleted: 7
Kate Salmon 11/11/2014 16:44
Deleted: Globoratalia
Kate Salmon 12/11/2014 15:42
Deleted: and
Kate Salmon 11/11/2014 16:43
Deleted: crassiformis
Kate Salmon 12/11/2014 14:22
Formatted: Font:Not Italic
Kate Salmon 12/11/2014 14:22
Formatted: Font:Not Bold, Not Italic
Kate Salmon 12/11/2014 14:22
Formatted: Font:Not Bold
Kate Salmon 12/11/2014 14:22
Formatted: Font:Not Bold, Not Italic
Kate Salmon 9/11/2014 12:20
Deleted: both reaching their maxima in
Deleted: both reaching their maxima in March, closely followed by <i>G. inflata</i> , which
Deleted: both reaching their maxima in March, closely followed by <i>G. inflata</i> , which peaks between March and April.
Deleted: both reaching their maxima in March, closely followed by <i>G. inflata</i> , which
Deleted: both reaching their maxima in March, closely followed by <i>G. inflata</i> , which peaks between March and April. Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i>
Deleted: both reaching their maxima in March, closely followed by <i>G. inflata</i> , which peaks between March and April. Kate Salmon 11/11/2014 16:44
Deleted: both reaching their maxima in March, closely followed by <i>G. inflata</i> , which peaks between March and April. Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i>
Deleted: both reaching their maxima in March, closely followed by <i>G. inflata</i> , which peaks between March and April. Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:44
Deleted: both reaching their maxima in March, closely followed by <i>G. inflata</i> , which peaks between March and April. Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:44
Deleted: both reaching their maxima in March, closely followed by <i>G. inflata</i> , which peaks between March and April. Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i>
Deleted: both reaching their maxima in March, closely followed by <i>G. inflata</i> , which peaks between March and April. Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:43
Deleted: both reaching their maxima in March, closely followed by <i>G. inflata</i> , which peaks between March and April. Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:43 Deleted: crassiformis
Deleted: both reaching their maxima in March, closely followed by <i>G. inflata</i> , which peaks between March and April. Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:43 Deleted: crassiformis Kate Salmon 11/11/2014 17:45
Deleted: both reaching their maxima in March, closely followed by <i>G. inflata</i> , which peaks between March and April. Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:43 Deleted: crassiformis Kate Salmon 11/11/2014 17:45 Deleted: 6
Deleted: both reaching their maxima in March, closely followed by <i>G. inflata</i> , which peaks between March and April. Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:43 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:43 Deleted: <i>crassiformis</i> Kate Salmon 11/11/2014 17:45 Deleted: 6 Kate Salmon 11/11/2014 17:45
Deleted: both reaching their maxima in March, closely followed by <i>G. inflata</i> , which peaks between March and April. Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:43 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:43 Deleted: <i>crassiformis</i> Kate Salmon 11/11/2014 17:45 Deleted: 6 Kate Salmon 11/11/2014 17:45 Deleted: 8
Deleted: both reaching their maxima in March, closely followed by <i>G. inflata</i> , which peaks between March and April. Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:43 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:43 Deleted: <i>crassiformis</i> Kate Salmon 11/11/2014 17:45 Deleted: 6 Kate Salmon 11/11/2014 17:45 Deleted: 8 Kate Salmon 11/11/2014 17:45
Deleted: both reaching their maxima in March, closely followed by <i>G. inflata</i> , which peaks between March and April. Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:44 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:43 Deleted: <i>Globoratalia</i> Kate Salmon 11/11/2014 16:43 Deleted: <i>crassiformis</i> Kate Salmon 11/11/2014 17:45 Deleted: 6 Kate Salmon 11/11/2014 17:45 Deleted: 8 Kate Salmon 11/11/2014 17:45 Deleted: 8

364	5. Discussion	
365		
366	The controls on PF flux in the Sargasso Sea was first introduced by Bé, (1960) and	
367	later developed by Tolderlund and Bé, (1971) who suggested that PF flux is	
368	dominantly controlled by the availability of their food phytoplankton. Thus, the	
369	environmental factors controlling PF flux should be closely aligned with the factors	
370	controlling phytoplankton productivity and export flux.	
371		
372	5.1 Environmental controls on PF fluxes	
373		
374	5.1.1. Depth of the mixed layer	
375		
376	Previous studies suggest that increased chlorophyll concentrations and larger	
377	phytoplankton abundances occur when the MLD deepens (Townsend et al. 1994,	
378	Waniek, 2003, Nelson et al. 2004) and the amplitude and timing of MLD deepening	
379	determines the size of the following spring bloom (Menzel and Ryther, 1961,	
380	Michaels et al. 1994). Here, we also observe a simultaneous seasonal peak in	
381	chlorophyll a and maximum depth of the MLD, as observed by previous studies at	
382	BATS (Steinberg et al. 2001, Cianca et al. 2012), the timing and amplitude of which	
383	coincides with the maximum PF flux (Figure. <u>3</u> c, d). Similarly, seasonal changes in	Kate Salmon 11/11/2014 17:46
384	mixed layer depth are closely associated with changes in foraminifer production	Deleted: 2
385	(Thunell and Reynolds, 1984, Sautter and Thunell, 1989, Pujol and Vergnaud	
386	Grazzini 1995, Schmuker and Sciebel 2002) and chlorophyll a concentrations (King	
387	and Howard, 2003, 2005) in other ocean basins. Siegel et al. (2002) proposed that	
388	south of 40,°N, the initiation and extent of the spring bloom is dominantly limited by	Kate Salmon 29/11/2014 16:01
		Deleted: °

391	nutrients, and this is supported by the simultaneous increase in phytoplankton	
392	concentrations with mixing depth at BATS (Treusch et al. 2012). Vertical mixing in	
393	late winter and spring distributes nutrients into the euphotic zone to support the spring	
394	phytoplankton bloom, <u>causing the consequent</u> seasonal peak in export fluxes of	Kate Salmon 20/11/2014 18:14
395	organic carbon, to fuel symbiont-barren foraminifera production (Figure. 2d), In	Deleted: , and in turn Kate Salmon 20/11/2014 18:16
396	contrast, no correlation exists between PF flux and MLD during the late spring to	Deleted: the Kate Salmon 11/11/2014 17:46
397	autumn when the <u>mixed layer fails to penetrate the minimum depth of the deep</u>	Deleted: 1 Kate Salmon 20/11/2014 18:16
398	chlorophyll maximum layer (~80m), where many species of planktonic foraminifera	Deleted:) to fuel foraminifera production Kate Salmon 5/12/2014 15:54
399	reside in association with other zooplankton and algal cells (Fairbanks and Wiebe,	Deleted: there is Kate Salmon 11/11/2014 10:22
400	1980) (Figure 4d). This is also the depth of the nitricline where nitrate concentrations	Deleted: MLD Kate Salmon 12/11/2014 14:21
401	\geq 0.1 umol kg ⁻¹ , (Sciebel et al. 2001).	Formatted: Font:Not Bold, Not Italic Kate Salmon 11/11/2014 10:23
402	۲	Deleted: is less than ~80m (Figure 3
403	The majority of the increased PF flux in the winter-spring is driven by <u>increased</u>	Kate Salmon 9/11/2014 11:42 Deleted: During this period, the mixed layer fails to penetrate the nitricline (defined at
404	fluxes of deeper dwelling species, in particular G. truncatulinoides and G. hirsuta	nitrate concentrations > 0.1 umol/kg, Sciebel et al. 2001).
404		Kata Salman 20/11/2014 19:17
405	(Figure. <u>9b). These species</u> are symbiont-barren and rely on the flux of phytodetritus	Kate Salmon 20/11/2014 18:17 Deleted: an larger
	(Figure. <u>9b). These species</u> are symbiont-barren and rely on the flux of phytodetritus and other labile organic carbon as a food source from the spring phytoplankton bloom	Deleted: an larger Kate Salmon 11/11/2014 17:48 Deleted: 8
405		Deleted: an larger Kate Salmon 11/11/2014 17:48
405 406	and other labile organic carbon as a food source from the spring phytoplankton bloom	Deleted: an larger Kate Salmon 11/11/2014 17:48 Deleted: 8 Kate Salmon 24/11/2014 14:18
405 406 407	and other labile organic carbon as a food source from the spring phytoplankton bloom (Hemleben et al. 1989). <u>The discrepancy in timing of peaks between the deeper</u>	Deleted: an larger Kate Salmon 11/11/2014 17:48 Deleted: 8 Kate Salmon 24/11/2014 14:18 Deleted: , which
405 406 407 408	and other labile organic carbon as a food source from the spring phytoplankton bloom (Hemleben et al. 1989). The discrepancy in timing of peaks between the deeper dwelling species (Figure 8) is likely due to subtle changes in phytoplankton	Deleted: an larger Kate Salmon 11/11/2014 17:48 Deleted: 8 Kate Salmon 24/11/2014 14:18
405 406 407 408 409	and other labile organic carbon as a food source from the spring phytoplankton bloom (Hemleben et al. 1989). The discrepancy in timing of peaks between the deeper dwelling species (Figure 8) is likely due to subtle changes in phytoplankton succession related to the species' diets (Deuser and Ross, 1989, Hemleben et al. 1989).	Deleted: an larger Kate Salmon 11/11/2014 17:48 Deleted: 8 Kate Salmon 24/11/2014 14:18 Deleted: , which Kate Salmon 29/11/2014 16:04
405 406 407 408 409 410	and other labile organic carbon as a food source from the spring phytoplankton bloom (Hemleben et al. 1989). The discrepancy in timing of peaks between the deeper dwelling species (Figure 8) is likely due to subtle changes in phytoplankton succession related to the species' diets (Deuser and Ross, 1989, Hemleben et al. 1989). Overall, the seasonal PF species succession is broadly similar to previous	Deleted: an larger Kate Salmon 11/11/2014 17:48 Deleted: 8 Kate Salmon 24/11/2014 14:18 Deleted: , which Kate Salmon 29/11/2014 16:04
405 406 407 408 409 410 411	and other labile organic carbon as a food source from the spring phytoplankton bloom (Hemleben et al. 1989). The discrepancy in timing of peaks between the deeper dwelling species (Figure 8) is likely due to subtle changes in phytoplankton succession related to the species' diets (Deuser and Ross, 1989, Hemleben et al. 1989). Overall, the seasonal PF species succession is broadly similar to previous observations from 1959-63 and 1978-84 (Tolderlund and Bé, 1971, Deuser 1987,	Deleted: an larger Kate Salmon 11/11/2014 17:48 Deleted: 8 Kate Salmon 24/11/2014 14:18 Deleted: , which Kate Salmon 29/11/2014 16:04
405 406 407 408 409 410 411 412	and other labile organic carbon as a food source from the spring phytoplankton bloom (Hemleben et al. 1989). The discrepancy in timing of peaks between the deeper dwelling species (Figure 8) is likely due to subtle changes in phytoplankton succession related to the species' diets (Deuser and Ross, 1989, Hemleben et al. 1989). Overall, the seasonal PF species succession is broadly similar to previous observations from 1959-63 and 1978-84 (Tolderlund and Bé, 1971, Deuser 1987, Deuser and Ross, 1989) which suggests that despite long-term environmental change,	Deleted: an larger Kate Salmon 11/11/2014 17:48 Deleted: 8 Kate Salmon 24/11/2014 14:18 Deleted: , which Kate Salmon 29/11/2014 16:04

430	The correlation observed here between the seasonality in the PF flux, chlorophyll a	
431	concentration and mass flux at 1500m (Figure 4 a and b) clearly demonstrates that the	Kate Salmon 9/11/2014 09:53 Deleted:
432	seasonality of non symbiont-bearing foraminifera, such as the globorotaliids is	Kate Salmon 14/11/2014 12:07 Deleted: Kate Salmon 24/11/2014 14:19
433	controlled by phytoplankton production and the export flux of phytodetritus to depth.	Deleted: Kate Salmon 29/11/2014 16:06
434	As these globorotaliids are up to three times denser than surface species (unpublished	Deleted: at 1500m Kate Salmon 11/11/2014 17:34
435	data), their sinking rates are significantly higher than those of other species. Thus,	Deleted: Figure 3 Kate Salmon 12/11/2014 16:00
436	increased production by these species can accelerate the transfer of carbonate from	Deleted: is Kate Salmon 12/11/2014 16:00
437	surface to deep-ocean, thereby strengthening the carbonate pump.	Deleted: strongly Kate Salmon 21/11/2014 10:00
438		Deleted: at
439	In contrast, the surface-dwelling symbiont-bearing foraminifera have lifecycles which	
440	strongly benefit from stratified surface waters and shallow mixed layers in order to	
441	photosynthesise allowing them to succeed in low nutrient conditions (Hemleben et al.	
442	1989). Surface dwellers generally calcify in late summer when sea surface	
443	temperatures are at a maximum and dinoflagellates are abundant (Tolderlund and Bé,	Kate Salmon 29/11/2014 16:10 Deleted: calcify
444	<u>1971).</u> We thus conclude that the depth <u>and structure</u> of the mixed layer plays an	
445	important role in regulating PF <u>species</u> flux by controlling the abundance and timing	
446	of their food availability throughout the seasonal cycle,	Kate Salmon 11/11/2014 14:48
447		Deleted: .
448	5.1.2. MLD deepening and shoaling rates	
449		
450	Current models based on the light-limited higher latitudes (Waniek, 2003; Mao, Y.,	
451	2013- personal communication), suggest that if the MLD shoals early and slowly, the	
452	consequent bloom will be long and weak compared to if the MLD shoals late and	
453	quickly, which causes a short and sharp bloom, At our subtropical study site, the	
454	spring bloom is predominantly limited by nutrient input into the euphotic zone, which	Kate Salmon 12/11/2014 10:18 Deleted: At our subtropical study site

466	is determined by the depth of the mixed layer. Increased heat loss and wind stress	
467	leading to higher convective mixing during the winter months controls the rate of	
468	deepening of the mixed layer, which is strongly correlated to the maximum MLD	
469	reached ($r^2 = 0.88$) (Figure 10a). Years with faster deepening rates have deeper	
470	mixed layers and hence larger spring blooms (e.g. winter 2009), whereas slow	
471	deepening rates cause shallower mixed layers and smaller spring blooms. There is	
472	also some evidence that light-limitation could be a secondary control on the peak	
473	productivity of the spring bloom at this site (Dutkiewicz et al. 2001, Lomas et al. 2009,	
474	Cianca et al. 2012) as the euphotic zone extends to ~100m (Steinberg et al. 2001) and	
475	a faster shoaling rate during the spring could control could concentrate the food	
476	available for symbiotic-foraminifera in the euphotic zone, resulting in a larger PF flux.	
477	v	
478	To test whether the rates of mixed layer deepening in early winter and of shoaling in	Kate Salmon 12/11/2014 10:25 Deleted: the mean rate of deepening of the mixed layer between October and January is
479	spring affect the PF flux, we computed a mixed layer dynamics index, D_r/S_r , which is	strongly correlated to the maximum MLD reached ($r^2 = 0.88$) (Figure 9a). If the MLD
480	the ratio of the rate of deepening to the rate of shoaling and compared this to the	maximum is deeper, then the consequent shoaling rate in spring is also more likely to higher.
481	integrated PF flux (Table 2). The D_r/S_r ratio never exceeds 1, indicating that the	
400		Kate Salmon 12/11/2014 11:10 Deleted: maximum
482	shoaling rate always exceeds the deepening rate, For all the years studied, there is a	Kate Salmon 12/11/2014 10:57
483	strong inverse relationship between the integrated PF flux over the duration of spring	Deleted: and variability of the shoaling ramainly controls changes in the D _r /S _r ratio
484	bloom, and the D_r/S_r ratio (Figure 10b, $r^2 = 0.93$). This relationship is also present in	
485	the maximum in chlorophyll <i>a</i> concentration and the D_t/S_t ratio (Figure 10c, $r^2 = 0.76$).	
486	This correlation indicates that when the MLD shoals more quickly during spring	
487	stratification (lower D_t/S_t ratio), the chlorophyll <i>a</i> concentrations and PF flux are	
488	higher, as supported by a strong correlation ($r^2 = 0.87$) between shoaling rate and	
489	integrated PF flux (Figure 10d).	
490		

be

- 501 Years where the shoaling rate is twice as quick as the deepening rate (e.g. winters
- 502 <u>1997</u>, 2008, and 2009) have average D_r/S_r ratios, average-length blooms and PF flux
- 503 (~30 tests/m²/day, Table 2). Years with comparatively equal rates of shoaling and
- 504 deepening (e.g. winter 2007) have larger D_t/S_r ratios, longer and slower blooms with
- 505 shallower MLDs and small PF fluxes. Years when the shoaling rate is much quicker
- 506 than deepening rate e.g. winter 1999 have the smallest D_r/S_r ratios and shorter, sharper
- 507 <u>blooms with greater numbers of intermediate thermocline dwelling species such as N.</u>
- 508 *dutertrei*, *P. oblquiloculata*, *G. siphonifera*, suggesting that when the rate of shoaling
- 509 is higher the seasonal thermocline is nearer to the surface for longer, which is
- 510 <u>beneficial for these symbiont-bearing and symbiont-facultative species</u>. The PF
- 511 fluxes were large (and prolonged) respectively in winter 2008-09 and 2009-10 despite
- 512 <u>having average D_r/S_r ratios but were probably enhanced by additional factors</u>
- 513 discussed in the next section.
- 514 515

Kate Salmon 12/11/2014 12:52

Deleted: . For all the years studied, there is a strong inverse relationship between the average PF flux over the duration of spring bloom, and the D_r/S_r ratio (Figure 9b, r^2 0.93). This is also mirrored in the maximum in chlorophyll *a* concentration and the D_r/S_r ratio (Figure 9c, $r^2 = 0.76$). This correlation suggests that when the MLD shoals more quickly during spring stratification (lower D_r/S_r ratio), the chlorophyll *a* concentrations and PF flux are higher, as supported by a strong correlation ($r^2 = 0.93$) between shoaling rate and PF flux over the duration of the bloom (Figure 9d). For example, an unusually fast shoaling rate and deep MLD in 1999 led to a large but short maximum in PF flux, whereas the large PF flux in spring 2010 coincided with an exceptionally deep MLD.

Kate Salmon 12/11/2014 14:12

Deleted: As the winter-spring PF flux maximum is largely associated with increased fluxes of deeper dwelling species, this relationship further implies greater export fluxes to depth during periods of more rapid MLD shoaling to fuel deep foraminifera production and thereby strengthen the seasonal carbonate pump. Conversely, the slow deepening rate in the winter of 2007 yielded an especially shallow MLD in 2008 and the subsequently slow shoaling rate in spring 2008 produced the smallest spring peak in PF flux of all the years studied (Table 2). Both the large (and prolonged) PF fluxes in spring 2009 and 2010 respectively

549	5. <u>1.3.</u> Eddies
550	
551	The negative sea level anomalies in spring of 2009 and 2010 indicate that the large
552	(and in 2010 prolonged) PF fluxes in these years were clearly associated with the
553	passage of cyclonic eddies (Figure 3b). Eddy pumping of nitrate into the euphotic
554	zone has been shown to significantly increase new production (Oschlies and Garçon,
555	1998, Oschlies, 2002). Cianca et al. (2007) estimate that eddy pumping contributes
556	~50% of the nutrient input into the euphotic zone in the Sargasso Sea. Studies at the
557	BATS site have demonstrated the influence of cyclonic and mode water eddies in
558	promoting phytoplankton blooms and increased secondary production (Eden et al.,
559	2009, McGillicuddy et al. 2007, Goldthwait and Steinberg, 2008, McGillicuddy et al.,
560	1999, Sweeney et al., 2003, Lomas et al. 2013, Cianca et al. 2012) and therefore
561	affecting PF food availability and quality (Schmuker and Schiebel, 2002). Previous
562	studies have found higher fluxes of certain PF species such as Globigerinita glutinata
563	associated with cyclonic eddy structures in the Caribbean Sea (Schmuker and
564	Schiebel, 2002) and North Atlantic (Beckman et al. 1987), also in conjunction with
565	upwelling frontal regions in the Mexican Pacific (Machain-Castillo et al. 2008) and
566	deep mixed layers during winter in the Mediterranean (Pujol and Vergnaud Grazzini,
567	1995). Here we observe a similar response during the passage of a cyclonic eddy in
568	spring 2009, particularly for deeper dwelling species. In fact, the largest PF flux
569	observed over the entire record was associated with this eddy passage, even though
570	the maximum MLD and D_{r}/S_{r} were modest (Table 2). Similarly, the mass and organic
571	carbon flux measured during passage of this eddy (Figure. 2b-d) were the highest
572	fluxes measured over the last 25 years of the OFP time-series, indicating that the
573	conditions in this eddy promoted an extremely large export flux to fuel the production

Kate Salmon 9/11/2014 12:21 Formatted: Font:Italic

Kate Salmon 9/11/2014 12:21 Deleted: 2

Kate Salmon 9/11/2014 12:21 Formatted: Font:Italic

Kate Salmon 11/11/2014 17:33

Deleted: Figure 2

577	especially G. inflata which all experienced higher seasonal fluxes in 2009 (Figure 7).	
578		
579	This observation is consistent with an exceptionally large increase in the flux of G .	
580	<i>truncatulinoides</i> (> 600 tests $m^{-2} day^{-1}$) seen at the OFP traps during the spring of	Kate Salmon 9/11/20 Deleted: Eddies contrequired by new produ
581	2007, which was <u>also</u> influenced by the passage of a productive cyclonic eddy (Fang	zone in the Sargasso S phytoplankton blooms
582	et al. 2010. Conte et al. 2014). Both the 2007 and 2009 eddies occurred between	Goldthwait and Steinb et al. 2007, Sweeney e et al. 1999, McGillicut
583	January-March during the seasonal flux of the deeper dwellers (Figure 7).	McGillicuddy and Rot therefore food for PF a Although the maximum
584	underscoring the importance of the timing of eddy passage in enhancing PF flux. The	modest and the averag deepening and shoalin
585	influence of eddies here is similar to observations from the Eastern Mediterranean	flux years, the spring 2 the largest flux observ (Table 2). The chlorop
586	where increased numbers of grazing species such as G. truncatulinoides and G. inflata,	measured at BATS due not elevated, but the m flux measured during
587	have been found in association with eddy structures and deep mixed layers (Pujol and	(Figure. 1b-d) were the measured over the last
588	Vergnaud Grazzini, 1995). These findings suggest that productive cyclonic eddies,	time-series. This indic in this eddy promoted carbon export flux to f
589	when co-occurring with deep MLDs, act to enhance the existing seasonal abundance	non-symbiont bearing such as G. truncatuling especially G. inflata w
590	of deeper dwelling species through mixing of the water column, which aids their	higher seasonal fluxes Kate Salmon 24/11/2
591	annual reproductive migration in addition to increasing food supply.	Deleted: similarly
592	v	
593	Along with the timing of the eddy passage, our observations also suggest that the PF	Kate Salmon 11/11/2 Deleted: The season dwellers seem to be en
594	flux response is dependent on whether the eddy is intensifying or weakening. For	of the cyclonic eddies, annual reproductive m
595	instance, both cyclonic eddies in 2009 and 2010 intensified over the spring bloom	of the water column, in large carbon export flu
596	(Figure 3b) eliciting a large biological response indicated by elevated subsurface Chl-	
597	a concentrations and increased PF flux. In contrast, the cyclonic eddy in winter 2007-	
598	08 was weakening over the spring bloom and therefore elicited no PF flux response.	

576 of deep dwelling foraminifera species such as G. truncatulinoides, G. hirsuta, and

014 12:03 ntribute ~30-73% nitrate

ction into the euphotic Sea, promoting s (Eden et al. 2009, perg, 2008, McGillicuddy et al. 2003, McGillicuddy ddy et al. 1998, binson 1997) and and increasing PF flux. Im MLD in 2009 was ge rates of mixed layer ng were similar to lower 2009 peak in PF flux was ved over the entire record, phyll *a* concentrations uring the 2009 eddy were nass and organic carbon passage of this eddy e highest fluxes 25 years of the OFP cates that the conditions an extremely large fuel the production of foraminifera species noides, G. hirsuta, and hich all experienced in 2009 (Figure 6).

2014 14:41

2014 14:14

al abundance of deeper nhanced by the passage , which may aid their igration through mixing n addition to driving a ıx.

19

Recent studies have found that eddies which are a minimum of 1-2 months in duration

are more likely to induce a larger biological response (Mouriño-Carballido and

599

635	McGillicuddy, 2006, Sweeny et al. 2003). Our observations also suggest that eddies	
636	need to be present for at least a month to elicit responses in the flux of PF which have	Kate Salmon 14/11/2014 12:09
637	minimum lifecycles of two weeks. For instance, in winter 1998-99 a cyclonic eddy	Deleted: more than
638	passed over the sediment trap site in only one month and elicited no biological	
639	response, compared to cyclonic eddies in 2009 and 2010, which both remained over	
640	the site for a minimum of 2-3 months and elicited large biological responses (Figure	
641	3b). These findings suggest that cyclonic eddies which intensify over the spring	
642	bloom and last for 1-3 months can elicit a significant biological response and	
643	increased PF flux,	Kate Salmon 24/11/2014 15:19
644		Formatted: Font:NimbusSanL, Not Bold
645		

647	6. Implications
648	
649	Our results show that environmental factors and mesoscale eddy variability play an
650	important role in regulating the planktonic foraminifera fluxes, by regulating the
651	MLD and consequent magnitude of the spring bloom and biological export flux.
652	
653	An overarching climatological variable affecting this region especially is the North
654	Atlantic Oscillation (NAO), which exerts a strong influence on air temperature,
655	storminess, heat loss, winter mixed layer depth, and, therefore, nutrient injection into
656	the upper ocean during the winter months (Bates, 2012, Bates and Hansell, 2004,
657	Rodwell et al. 1999). Modelling studies have shown that when the NAO is in its low
658	phase, i.e. negative NAO (e.g. winter 2010), there is increased heat loss that
659	intensifies convective mixing and results in enhanced nutrient upwelling into the
660	euphotic zone to support primary production (Oschlies, 2001). The NAO influence on
661	upper ocean productivity and biogeochemical fluxes is demonstrated by the inverse
662	correlation between the wintertime (NDJF) NAO index and the deep particulate
663	nitrogen flux in the OFP traps over a thirty-year period (Conte and Weber, 2014) and
664	increased primary productivity in negative wintertime NAO phases (Lomas et al.
665	2010). If convective mixing and nutrient entrainment into the euphotic zone is
666	stronger during negative NAO years, this could serve to modulate PF flux, and
667	therefore carbonate flux, on decadal timescales. When we compare PF fluxes
668	covering a range of NAO indexes, from this study using the 1500m trap to the 3200m
669	trap between 1978-84 (Deuser and Ross, 1989, Deuser, 1987), we find a weak inverse
670	correlation between total PF flux and (DJFM) NAO index in-phase (not significant),
671	but we do find a significant inverse correlation with a (DJFM) NAO with a 1-year lag

674	(p < 0.005) (Figure 11). Cianca et al. (2012) showed that their correlation between	
675	winter NAO and total Chlorophyll a at BATS improved when applying a +1 year time	
676	lag, but still remained insignificant. They attributed this to variability in the	
677	subtropical mode water, which can laterally advect nutrients on interannual timescales	
678	(Palter et al. 2005, Patara et al. 2011). We acknowledge that additional longer-term	
679	data is needed to test the mechanism behind this correlation, but our results suggest	
680	that changes in NAO status and/or mesoscale eddy frequency could significantly	
681	modulate planktonic foraminifera flux and export flux from the surface ocean on	
682	interannual timescales.	
683		
684	This study shows that the productivity of the dominant deep dwelling species G .	
685	truncatulinoides and G. hirsuta is especially responsive to interannual variability in	
686	overlying surface water conditions and especially to the transient high production/flux	
687	events that are associated with the passage of productive cyclonic eddies that coincide	
688	with their seasonal <u>spring</u> production <u>peak</u> . Our <u>data</u> show that deeper dwelling	
689	species can account for up to $\sim 90\%$ of the total PF carbonate flux, representing up to	
690	~40% of the total carbonate flux during winter-spring at the OFP site. Changes in	
691	NAO status, which modulates nutrient supply into the euphotic zone and the strength	
692	of the spring bloom, also may in turn modulate the production and flux of these	
693	heavily calcified deep-dwelling foraminifera by increasing their food supply, thereby	
694	intensifying the carbonate pump.	
695		

Kate Salmon 25/11/2014 13:07

Deleted: If convective mixing and nutrient entrainment into the euphotic zone is stronger during negative NAO years such as 2010 (e.g. Figure 2c), this could serve to modulate PF flux, and therefore carbonate flux, on decadal timescales. To test this, we .

Kate Salmon 25/11/2014 14:41 Deleted:

K

ale Saimon 9/11/2014 12.45

Deleted: compare PF fluxes in NAO negative years (e.g. 2009-2010- this study) to total PF fluxes averaged from the NAO positive/neutral years (e.g. 1982-1983- from Deuser, (1987), Deuser and Ross, 1989), and 1998-1999-this study. As a first order comparison, the average PF flux during the NAO positive/neutral years of 1982-83 and 1998-99 are ~90 000 tests m-2 yr-1 (or an average of 247 tests m-2 d-1) whereas total PF fluxes for the NAO negative year of 2009-2010 was notably higher at ~107 000 tests m² yr¹ (292 tests m² d⁻¹). The PF flux in the NAO negative year (2009-2010) is thus ~19% higher than the average across the NAO positive/neutral years (1982-83 and 1998-99). This finding provides support for our hypothesis that a negative NAO index (perhaps via amplified cyclonic eddy activity) stimulates a substantial increase in not only total PF flux, but also in mass flux, carbonate flux and organic carbon flux, which were respectively ~38%, ~39%, and ~31% higher in 2009-10 (negative NAO), compared to 1998-99 (positive NAO) (no data for 1982-83). We recognize that further study is needed to ascertain how much of this PF flux response is due to negative-NAO strengthened winter-time mixing or cyclonic eddy activity, but our results suggest that changes in NAO status and/or mesoscale eddy frequency could significantly modulate total particulate flux, planktonic foraminifera flux and export flux from the surface ocean. In particular, th

Kate Salmon 25/11/2014 14:47

Deleted: In particular, th Kate Salmon 25/11/2014 14:47

Kate Salmon 25/

Deleted: e

Kate Salmon 25/11/2014 14:48

Deleted: production of Kate Salmon 25/11/2014 14:48

Deleted: are

Kate Salmon 25/11/2014 14:49 Deleted: estimations

Kate Salmon 29/11/2014 18:5

751	7.0. Conclusions		(Kata Dalman O	
752			Deleted:	D/11/2014 18:51 Page Break
753	Our study demonstrates that the interannual variability in planktonic foraminifera flux			
754	can be linked to the MLD and the rate of deepening/shoaling of the mixed layer			
755	associated with nutrient injection into the euphotic zone. We find that higher PF			
756	fluxes coincide with deeper MLDs, especially when combined with cyclonic eddy-			
757	induced nutrient upwelling. In particular, the production of the dominant deep			
758	dwelling species G. truncatulinoides and G. hirsuta is shown to be particularly			
759	responsive to interannual variability in overlying surface water conditions and			
760	especially to the transient high production/flux events that are associated with			
761	productive cyclonic eddies. These species dominate the major late winter-early spring			
762	pulses of foraminifera and have higher sinking rates than surface dwelling species		(Kata Calman 2)	-144/2044 40:08
763	because they are up to three times denser (unpublished results). We suggest deeper-		Deleted: as	5/11/2014 19:08
764	dwelling species strengthen the carbonate pump by accelerating the transfer of		Deleted: conta	5/11/2014 14:54 in more carbonate per test
765	carbonate from surface to deep ocean and contribute up to 40% of the		Deleted:	5/11/2014 19:08
766	contemporaneous peak in total carbonate export fluxes. It follows that any increase in		Deleted: (Deus	5/11/2014 14:55 er et al. 1981). We suggest carbonate testsdata
767	fluxes of these deep-dwellers arising from climate-induced changes in winter-spring	$\langle \rangle$		2/11/2014 10:05 erve as ballasting
768	mixed layer dynamics will also increase the average sinking rate of foraminiferal		mechanisms for	carbonate as they are up to or (unpublished results) and
769	carbonate and intensify the overall carbonate pump. Our findings suggest that the		Kate Salmon 12 Deleted: e	2/11/2014 10:05
770	North Atlantic Oscillation, via its influence on mixed layer depth, nutrient upwelling,		Kate Salmon 12 Deleted: theref	2/11/2014 17:42
771	phytoplankton production and export flux may also serve to modulate the	//	Deleted: d	0/11/2014 18:30
772	foraminiferal component of the carbonate pump in the subtropical North Atlantic		Kate Salmon 20 Deleted: due to	0/11/2014 18:30
773			Kate Salmon 2: Deleted: and	5/11/2014 19:11
			Kate Salmon 2	5/11/2014 19:12

Deleted: total planktonic foraminiferal flux and the

Kate Salmon 25/11/2014 19:12 **Deleted:** on decadal timescales. Thesefindingsare PF flux and

792	Acknowledgements		
793			Kate Salmon 12/11/2014 17:59 Deleted: -
794	We would like to thank two anonymous reviewers for their time and constructive		
795	comments that helped improve the manuscript. This research was funded through the		Kate Salmon 23/11/2014 15:37
796	U.K. Ocean Acidification Research Program, by, Natural Environment Research		Deleted: We would like to thank two anonymous reviewers for their time and
797	Council grant to P. Anand and P. Sexton (grant NE/I019891/1), We acknowledge the	\mathbb{N}	constructive comments which helped improve the manuscript.
798	National Science Foundation for its support of the Oceanic Flux Program time-series	$\left \right $	Kate Salmon 20/11/2014 18:32 Deleted: made possible
799	(most recently by grant OCE-1234292) and the Bermuda Atlantic Time Series (most		Kate Salmon 23/11/2014 15:37 Deleted: Ocean Acidification Research Programme
800	recently by grant OCE-0801991). We thank Mike Lomas for providing MLD data		Kate Salmon 20/11/2014 18:33 Deleted: from
801	and Yolanda Mao for providing insights and useful discussion on the data. P.A. is		Kate Salmon 23/11/2014 15:37 Deleted: (grant NE/I019891/1)
802	also thankful to Werner Deuser for communication regarding published data.	$\left(\right) $	Kate Salmon 23/11/2014 15:38 Deleted: We thank
803			Kate Salmon 23/11/2014 15:38
804			Deleted: providing insights and useful discussion on the data
004	Υ		Kate Salmon 23/11/2014 15:38
			Deleted: also

Kate Salmon 12/11/2014 17:43

... [2]

Deleted: .

821	References
822	Anand P., Elderfield, H, Conte, M.H., 2003. Calibration of Mg/Ca thermometry in
823	planktonic foraminifera from a sediment trap time series. Paleoceanography, 18,
824	1050, doi:10.1029/2002PA000846.
825	
826	Barker, S., Elderfield, H., 2002. Foraminiferal calcification response to Glacial-
827	Interglacial changes in Atmospheric CO ₂ . Science, 297, 833-836.
828	
829	Bates N.R., Pequignet, A.C., Johnson, R.J., Gruber, N., 2002. A short-term sink for
830	atmospheric CO_2 in the subtropical mode water of the North Atlantic Ocean. Nature,
831	420, 489-493.
832	
833	Bates, N.R., Hansell, D.A., 2004. Temporal variability of excess nitrate in the
834	subtropical mode water of the North Atlantic Ocean. Marine Chemistry, 84, 225-241
835	
836	Bates, N.R., 2007. Interannual variability of the oceanic CO2 sink in the subtropical
837	gyre of the North Atlantic Ocean over the last 2 decades. Journal of Geophysical
838	Research, 112, C09013, doi:10.1029/2006JC003759
839	
840	Bates, N.R., 2012. Multi-decadal uptake of carbon dioxide into subtropical mode
841	water of the North Atlantic Ocean. Biogeosciences, 9, 2649-2659.
842	
843	Bé, A.W.H., 1960. Ecology of Recent planktonic foraminifera, Part 2- Bathymetric
844	and seasonal distributions off Bermuda. Micropaleontology 6, no. 4, 373-392, text-
845	figs, 1-19
846	
847	Beckman, A., Auras, A., Hemleben, C., 1987 Cyclonic cold-core eddy in the eastern
848	North Atlantic, 111. Zooplankton. Marine Ecology Progress Series, 39, 165-173.
849	
850	Cianca, A., Godoy, J.M., Martin, J.M., Perez-Marrero, J., Rueda, M.J., Llinás, O.,
851	Neuer, S., 2012 Interannual variability of chlorophyll and the influence of low-

852	frequency climate modes in the North Atlantic subtropical gyre, Global
853	Biogeochemical Cycles, 26, doi:10.1029/2010GB004022.
854	
855	CLIMAP Project Members, 1994, Climap 18k Database: IGBP PAGES/World Data
856	Center-A for Paleoclimatology Data Contribution Series, v. 94-001.
857	
858	Conte, M.H., Weber, J.C., Ralph, N., 1998. Episodic particle flux in the deep
859	Sargasso Sea: an organic geochemical assessment. Deep-Sea Research I 45, 1819-
860	1841.
861	
862	Conte, M.H., Ralph, N., Ross, E.H., 2001. Seasonal and interannual variability in
863	deep ocean particle fluxes at the Oceanic Flux Program (OFP)/Bermuda Atlantic
864	Time Series (BATS) site in the western Sargasso Sea near Bermuda. Deep-Sea
865	Research II, 48, 1471-1505.
866	
867	Conte, M.H., Dickey, T.D., Weber, J.C., Johnson, R.J., Knap, A.H., 2003. Transient
868	physical forcing of pulsed export of bioreactive organic material to the deep Sargasso
869	Sea. Deep-Sea Research I, 50, 1157-1187.
870	
871	Conte, M.H., Weber, J.C., 2014. Particle flux in the deep Sargasso Sea: The 35-year
872	Oceanic Flux Program time series. Oceanography, 27, 142-14.
873	
874	Deuser, W.G., 1987. Seasonal variations in isotopic composition and deep-water
875	fluxes of the tests of perennially abundant planktonic foraminifera of the Sargasso
876	Sea: Results from sediment-trap collections and their paleoceanographic significance.
877	Journal of Foraminiferal Research, 17, 14-27.
878	
879	Deuser, W.G., Ross, E.H., Anderson, R.F., 1981. Seasonality in the supply of
880	sediment to the deep Sargasso Sea and implications for the rapid transfer of matter to
881	the deep ocean, Deep-Sea Research, 28A, 495-505.

883	Deuser, W.G., Ross, E.H., 1989. Seasonally abundant planktonic foraminifera of the
884	Sargasso Sea: Succession, deep-water fluxes, isotopic composition, and
885	paleoceanographic implications, Journal of Foraminiferal Research, 19, 268-293.
886	
887	Dutkiewicz, S., Follows, M., Marshall, J., Gregg, W.W., 2001 Interannual variability
888	of phytoplankton abundances in the North Atlantic, Deep-Sea Research II 48, 2323-
889	2344.
890	
891	Eden, B.R., Steinberg, D.K., Goldthwait, S.A., McGillicuddy, Jr, D.J., 2009.
892	Zooplankton community structure in a cyclonic and mode-water eddy in the Sargasso
893	Sea. Deep-Sea Research I, 56, 1757-1776.
894	
895	Erez, J., Almogi-Labin, A., Avraham, S., 1991. On the life history of planktonic
896	foraminifera: lunar reproduction cycle in Globigerinoides sacculifer (Brady),
897	Paleoceanography, 6, 295-306
898	
899	Fairbanks, R.G., and Wiebe, P.H., 1980 Foraminifera and Chlorophyll Maximum:
900	Vertical Distribution, Seasonal Succession, and Paleoceanographic Significance,
901	Science, 209, 1524-1526
000	
902	E L. L. D.C. W. L. DH. D.C. A.W. 1090, W. Z. L.F. C.L. S. C. S.
903	Fairbanks, R.G., Wiebe, P.H., Bé, A.W., 1980. Vertical distribution and isotopic
904	
	composition of living planktonic foraminifera in the western North Atlantic. Science,
905	207, 61-63
906	207, 61-63
906 907	207, 61-63 Fang, J., Conte, M.H., Weber, J.C., 2010. Influence of physical forcing on
906 907 908	207, 61-63 Fang, J., Conte, M.H., Weber, J.C., 2010. Influence of physical forcing on seasonality of biological components and deep ocean particulate flux in the Sargaddo
906 907 908 909	207, 61-63 Fang, J., Conte, M.H., Weber, J.C., 2010. Influence of physical forcing on seasonality of biological components and deep ocean particulate flux in the Sargaddo Sea. Eos, Transactions American Geophysical Union 91(26), Ocean Sciences
906 907 908 909 910	207, 61-63 Fang, J., Conte, M.H., Weber, J.C., 2010. Influence of physical forcing on seasonality of biological components and deep ocean particulate flux in the Sargaddo
906 907 908 909 910 911	207, 61-63Fang, J., Conte, M.H., Weber, J.C., 2010. Influence of physical forcing on seasonality of biological components and deep ocean particulate flux in the Sargaddo Sea. Eos, Transactions American Geophysical Union 91(26), Ocean Sciences Meeting Supplement, Abstract BO24B-02.
906 907 908 909 910	207, 61-63 Fang, J., Conte, M.H., Weber, J.C., 2010. Influence of physical forcing on seasonality of biological components and deep ocean particulate flux in the Sargaddo Sea. Eos, Transactions American Geophysical Union 91(26), Ocean Sciences

914 Deep Sea Research, 55, 1360-1377.

915 916 917 918 919	 Hemleben, C., Spindler, M., Anderson, O.R., 1989. Modern Planktonic Foraminifera. Springer, New York, 363pp. Honjo, S., and Manganini, S.J., 1993. Annual biogenic particle fluxes to the interior 	
920 921	of the North Atlantic Ocean; studied at 34°N 21°W and 48°N 21°W. Deep Sea Research I, 40, 587-607.	
921	Kestalell 1, 40, 367-007.	
923		
924 925 926 927	King, A.L., and Howard, W.R., 2003 Planktonic foraminiferal flux seasonality in Subantarctic sediment traps: A test for paleoclimate reconstructions, Paleoceanography, 18, doi:10.1029/2002PA000839	Kate Salmon 27/11/2014 12:01 Deleted: Honjo, S., 1978. Sedimentation of materials in the Sargasso Sea at a 5,367 m deep station. Journal of Marine Research 36, 469-492.
928	King, A.L., Howard W.R., 2005 δ^{18} O seasonality of planktonic foraminifera from	
929 929 930 931	Southern Ocean sediment traps: Latitudinal gradients and implications for paleoclimate reconstructions, Marine Micropaleontology, 56, 1-24.	
932 933	Kuroyanagi, A., Kawahata, H., 2004. Vertical distribution of living planktonic	
935 934	foraminifera in the seas around Japan. Marine Micropaleontology, 53, 173-196.	
935	doi:10.1016/j.marmicro.2004.06.001	
936	doi:10.1010/j.mamiero.2001.00.001	
937	Letelier, R.M, Karl, D.M., Abbott, M.R., Flament, P., Freilich, M., Lukas, R., Strub,	
938	T., 2000. Role of late winter mesoscale events in the biogeochemical variability of	
939	the upper water column of the North Pacific Subtropical Gyre. Journal of	
940	Goephysical Research, 105, 28 723-28 740. Correction in Journal of Goephysical	
941	Research, 106, 7181-7182.	
942		
943	Lohmann, G.P., Schweitzer, P.N., 1990. <i>Globorotalia truncatulinoides'</i> Growth and	Kate Salmon 11/11/2014 16:44
944 945	chemistry as probes of the past thermocline: 1. Shell size. Paleoceanography, 5, 55- 75.	Deleted: Globoratalia
946		
947	Lomas, M.W., Lipschultz, F., Nelson, D.M., Krause, J.W., Bates N.R., 2009	

953 954	Biogeochemical responses to late winter storms in the Sargasso Sea I- Pulses of primary and new production, Deep-Sea Research I, 56, 843-860.	
955 956	Lomas, M.W., Bates, N.R., Johnson, R.J., Knap, A.H., Steinberg, D.K., Carlson, C.A.,	
950 957	2013. Two decades and counting: 24-years of sustained open ocean biogeochemical	
958	measurements in the Sargasso Sea. Deep-Sea Research II, 93, 16-32.	
959	neasarements in the Sargasso Sea. Deep-Sea Researen 11, 75, 10-52.	
960	Lutz, B.P., 2011. Shifts in North Atlantic planktic foraminifer biogeography and	Kate Salmon 27/11/2014 12:03 Deleted:
961	subtropical gyre circulation during the mid-Piacenzian warm period. Marine	Deleted.
962	Micropaleontology, 80, 125-149.	
963		
964	Machain-Castillo, M.L., Monreal-Gómez, M., Arellano-Torres, E., Merino-Ibarra, M.,	
965	González-Chávez, G., (2008) Recent planktonic foraminiferal distribution patterns	
966	and their relation to hydrographic conditions of the Gulf of Tehuantepec, Mexican	
967	Pacific, Marine Micropaleontology, 66, 103-119.	
0(0		
968		Kate Salmon 12/11/2014 17:54
969	McGillicuddy, Jr., D.J., Robinson, A.R., Siegel, D.A., Jannasch, H.W., Johnson, R.,	Kate Salmon 12/11/2014 17:54 Deleted:[3]
969 970	Dickey, T.D., McNeil, J., Michaels, A.F., Knap, A.H., 1998. Influence of mesoscale	
969 970 971		
969 970 971 972	Dickey, T.D., McNeil, J., Michaels, A.F., Knap, A.H., 1998. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394, 263-266.	
969 970 971 972 973	 Dickey, T.D., McNeil, J., Michaels, A.F., Knap, A.H., 1998. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394, 263-266. McGillicuddy, Jr, D.J., Jonhson, R., Siegel, D.A., Michaels, A.F., Bates, N.R., Knap, 	
969 970 971 972 973 974	 Dickey, T.D., McNeil, J., Michaels, A.F., Knap, A.H., 1998. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394, 263-266. McGillicuddy, Jr, D.J., Jonhson, R., Siegel, D.A., Michaels, A.F., Bates, N.R., Knap, A.H., 1999. Mesoscale variations of biogeochemical properties in the Sargasso Sea, 	
969 970 971 972 973 974 975	 Dickey, T.D., McNeil, J., Michaels, A.F., Knap, A.H., 1998. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394, 263-266. McGillicuddy, Jr, D.J., Jonhson, R., Siegel, D.A., Michaels, A.F., Bates, N.R., Knap, 	
969 970 971 972 973 974	 Dickey, T.D., McNeil, J., Michaels, A.F., Knap, A.H., 1998. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394, 263-266. McGillicuddy, Jr, D.J., Jonhson, R., Siegel, D.A., Michaels, A.F., Bates, N.R., Knap, A.H., 1999. Mesoscale variations of biogeochemical properties in the Sargasso Sea, Journal of Geophysical Research, 104, C6, 13 381-13 394. 	
969 970 971 972 973 974 975 976	 Dickey, T.D., McNeil, J., Michaels, A.F., Knap, A.H., 1998. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394, 263-266. McGillicuddy, Jr, D.J., Jonhson, R., Siegel, D.A., Michaels, A.F., Bates, N.R., Knap, A.H., 1999. Mesoscale variations of biogeochemical properties in the Sargasso Sea, 	
969 970 971 972 973 974 975 976 977	 Dickey, T.D., McNeil, J., Michaels, A.F., Knap, A.H., 1998. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394, 263-266. McGillicuddy, Jr, D.J., Jonhson, R., Siegel, D.A., Michaels, A.F., Bates, N.R., Knap, A.H., 1999. Mesoscale variations of biogeochemical properties in the Sargasso Sea, Journal of Geophysical Research, 104, C6, 13 381-13 394. McGillicuddy D.J., Anderson, L., Bates, N.R., Bibby, T., Buesseler, K.O., Carlson, 	
969 970 971 972 973 974 975 976 977 978	 Dickey, T.D., McNeil, J., Michaels, A.F., Knap, A.H., 1998. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394, 263-266. McGillicuddy, Jr, D.J., Jonhson, R., Siegel, D.A., Michaels, A.F., Bates, N.R., Knap, A.H., 1999. Mesoscale variations of biogeochemical properties in the Sargasso Sea, Journal of Geophysical Research, 104, C6, 13 381-13 394. McGillicuddy D.J., Anderson, L., Bates, N.R., Bibby, T., Buesseler, K.O., Carlson, C.S., Davis, C., Ewart, P.G., Flakowski, S.A., Goldthwait, D., Hansell, Jenkins, W.J., 	
969 970 971 972 973 974 975 976 977 978 979	 Dickey, T.D., McNeil, J., Michaels, A.F., Knap, A.H., 1998. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394, 263-266. McGillicuddy, Jr, D.J., Jonhson, R., Siegel, D.A., Michaels, A.F., Bates, N.R., Knap, A.H., 1999. Mesoscale variations of biogeochemical properties in the Sargasso Sea, Journal of Geophysical Research, 104, C6, 13 381-13 394. McGillicuddy D.J., Anderson, L., Bates, N.R., Bibby, T., Buesseler, K.O., Carlson, C.S., Davis, C., Ewart, P.G., Flakowski, S.A., Goldthwait, D., Hansell, Jenkins, W.J., Johnson, R., Kosnyrev, V.K., Ledwell, J., Li, Q., Siegel, D., Steinberg, D.K., 2007. 	
969 970 971 972 973 974 975 976 976 977 978 979 980	 Dickey, T.D., McNeil, J., Michaels, A.F., Knap, A.H., 1998. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394, 263-266. McGillicuddy, Jr, D.J., Jonhson, R., Siegel, D.A., Michaels, A.F., Bates, N.R., Knap, A.H., 1999. Mesoscale variations of biogeochemical properties in the Sargasso Sea, Journal of Geophysical Research, 104, C6, 13 381-13 394. McGillicuddy D.J., Anderson, L., Bates, N.R., Bibby, T., Buesseler, K.O., Carlson, C.S., Davis, C., Ewart, P.G., Flakowski, S.A., Goldthwait, D., Hansell, Jenkins, W.J., Johnson, R., Kosnyrev, V.K., Ledwell, J., Li, Q., Siegel, D., Steinberg, D.K., 2007. Eddy/Wind interactions stimulate extraordinary mid-ocean plankton blooms. Science, 	
969 970 971 972 973 974 975 976 977 978 979 980 981	 Dickey, T.D., McNeil, J., Michaels, A.F., Knap, A.H., 1998. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394, 263-266. McGillicuddy, Jr, D.J., Jonhson, R., Siegel, D.A., Michaels, A.F., Bates, N.R., Knap, A.H., 1999. Mesoscale variations of biogeochemical properties in the Sargasso Sea, Journal of Geophysical Research, 104, C6, 13 381-13 394. McGillicuddy D.J., Anderson, L., Bates, N.R., Bibby, T., Buesseler, K.O., Carlson, C.S., Davis, C., Ewart, P.G., Flakowski, S.A., Goldthwait, D., Hansell, Jenkins, W.J., Johnson, R., Kosnyrev, V.K., Ledwell, J., Li, Q., Siegel, D., Steinberg, D.K., 2007. Eddy/Wind interactions stimulate extraordinary mid-ocean plankton blooms. Science, 	

988	ocean response to the passage of a mesoscale eddy off Bermuda. Journal of	
989	Geophysical Research, 104, 15 537-15 548.	
990		
991	Menzel, D.W., Ryther, 1961. Annual variations in primary production of the	
992	Sargasso Sea off Bermuda. Deep-Sea Research, 7, 282-288.	
993		
994	Michaels A.F., Knap, A.H., Dow, R.L., Gundersen, K., Johnson, R.J., Sorensen, J.,	
995	Close, A., Knauer, G.A., Lohrenz, S.E., Asper, V.A., Tuel, M., Bidigare, R., 1994.	
996	Seasonal patterns of ocean biogeochemistry at the U.S. JGOFS Bermuda Atlantic	
997	Time-series Study site. Deep-Sea Research I, 41, 1013-1038.	
998		
999	Michaels, A.F., Knap, A.H., 1996. Overview of the U.S.JGOFS BATS and	
1000	Hydrostation S program. Deep-Sea Research II, 43, 157-198.	
1001		
1002	Mouriño-Carballido, B., McGillicuddy, D.J., (2006) Mesoscale variability in the	
1003	metabolic balance of the Sargasso Sea, Limnology and Oceanography, 51, 2675-2689,	
1004		Kate Salmon 12/11/2014 17:54 Deleted:
1004		
1005	Nelson, N.B., Siegel, D.A., Yoder, J.A., 2004. The spring bloom in the northwestern	
1005 1006	Nelson, N.B., Siegel, D.A., Yoder, J.A., 2004. The spring bloom in the northwestern Sargasso Sea: spatial extent and relationship with winter mixing. Deep-Sea Research	
1006	Sargasso Sea: spatial extent and relationship with winter mixing. Deep-Sea Research	
1006 1007 1008	Sargasso Sea: spatial extent and relationship with winter mixing. Deep-Sea Research	
1006 1007 1008 1009	Sargasso Sea: spatial extent and relationship with winter mixing. Deep-Sea Research II, 51, 987-1000.	
1006 1007 1008 1009 1010	Sargasso Sea: spatial extent and relationship with winter mixing. Deep-Sea Research II, 51, 987-1000. Northcote, L.C., Neil, H.L., 2005. Seasonal variations in foraminiferal flux in the	
1006 1007 1008 1009 1010 1011	 Sargasso Sea: spatial extent and relationship with winter mixing. Deep-Sea Research II, 51, 987-1000. Northcote, L.C., Neil, H.L., 2005. Seasonal variations in foraminiferal flux in the Southern Ocean, Campbell Plateau, New Zealand. Marine Micropaleontology, 56, 	
1006 1007 1008 1009 1010 1011 1012	 Sargasso Sea: spatial extent and relationship with winter mixing. Deep-Sea Research II, 51, 987-1000. Northcote, L.C., Neil, H.L., 2005. Seasonal variations in foraminiferal flux in the Southern Ocean, Campbell Plateau, New Zealand. Marine Micropaleontology, 56, 	
1006 1007 1008 1009 1010 1011 1012 1013	 Sargasso Sea: spatial extent and relationship with winter mixing. Deep-Sea Research II, 51, 987-1000. Northcote, L.C., Neil, H.L., 2005. Seasonal variations in foraminiferal flux in the Southern Ocean, Campbell Plateau, New Zealand. Marine Micropaleontology, 56, 122-137 	
1006 1007 1008 1009 1010 1011 1012 1013 1014	 Sargasso Sea: spatial extent and relationship with winter mixing. Deep-Sea Research II, 51, 987-1000. Northcote, L.C., Neil, H.L., 2005. Seasonal variations in foraminiferal flux in the Southern Ocean, Campbell Plateau, New Zealand. Marine Micropaleontology, 56, 122-137 Olaizola, M., Ziemann, D.A., Bienfang, P.K., Walsh, W.A., Conquest, L.D., 1993. 	
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015	 Sargasso Sea: spatial extent and relationship with winter mixing. Deep-Sea Research II, 51, 987-1000. Northcote, L.C., Neil, H.L., 2005. Seasonal variations in foraminiferal flux in the Southern Ocean, Campbell Plateau, New Zealand. Marine Micropaleontology, 56, 122-137 Olaizola, M., Ziemann, D.A., Bienfang, P.K., Walsh, W.A., Conquest, L.D., 1993. Eddy-induced oscillations of the pycnocline affect the floristic composition and depth 	
1006 1007	 Sargasso Sea: spatial extent and relationship with winter mixing. Deep-Sea Research II, 51, 987-1000. Northcote, L.C., Neil, H.L., 2005. Seasonal variations in foraminiferal flux in the Southern Ocean, Campbell Plateau, New Zealand. Marine Micropaleontology, 56, 122-137 Olaizola, M., Ziemann, D.A., Bienfang, P.K., Walsh, W.A., Conquest, L.D., 1993. Eddy-induced oscillations of the pycnocline affect the floristic composition and depth distribution of phytoplankton in the subtropical Pacific. Marine Biology, 116, 533- 	
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017	 Sargasso Sea: spatial extent and relationship with winter mixing. Deep-Sea Research II, 51, 987-1000. Northcote, L.C., Neil, H.L., 2005. Seasonal variations in foraminiferal flux in the Southern Ocean, Campbell Plateau, New Zealand. Marine Micropaleontology, 56, 122-137 Olaizola, M., Ziemann, D.A., Bienfang, P.K., Walsh, W.A., Conquest, L.D., 1993. Eddy-induced oscillations of the pycnocline affect the floristic composition and depth distribution of phytoplankton in the subtropical Pacific. Marine Biology, 116, 533-542. 	
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017	 Sargasso Sea: spatial extent and relationship with winter mixing. Deep-Sea Research II, 51, 987-1000. Northcote, L.C., Neil, H.L., 2005. Seasonal variations in foraminiferal flux in the Southern Ocean, Campbell Plateau, New Zealand. Marine Micropaleontology, 56, 122-137 Olaizola, M., Ziemann, D.A., Bienfang, P.K., Walsh, W.A., Conquest, L.D., 1993. Eddy-induced oscillations of the pycnocline affect the floristic composition and depth distribution of phytoplankton in the subtropical Pacific. Marine Biology, 116, 533-542. Oschlies, A., and Garçon, V., 1998. Eddy-induced enhancement of primary 	
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017	 Sargasso Sea: spatial extent and relationship with winter mixing. Deep-Sea Research II, 51, 987-1000. Northcote, L.C., Neil, H.L., 2005. Seasonal variations in foraminiferal flux in the Southern Ocean, Campbell Plateau, New Zealand. Marine Micropaleontology, 56, 122-137 Olaizola, M., Ziemann, D.A., Bienfang, P.K., Walsh, W.A., Conquest, L.D., 1993. Eddy-induced oscillations of the pycnocline affect the floristic composition and depth distribution of phytoplankton in the subtropical Pacific. Marine Biology, 116, 533-542. 	

1021		
1022	Oschlies, A., 2001. NAO-induced long-term changes in nutrient supply to the surface	
1023	waters of the North Atlantic. Geophysical Research Letters, 28, 1751-1754.	
1024		
1025	Oschlies, A., 2002. Can eddies make ocean deserts bloom? Global Biogeochemical	
1026	<u>Cycles, 16, 1106.</u>	
1027		
1028	Palter, J.B., Lozier, M.S., Barber, R.T., 2005. The effect of advection on the nutrient	
1029	reservoir in the North Atlantic subtropical gyre, Nature, 437, 687-692.	
1017		
1030		
1031	Patara, L., Visbeck, M., Masina, S., Krahmann, G., Vichi, M., 2011. Marine	
1032	biogeochemical responses to the North Atlantic Oscillation in a coupled climate	
1033	model, Journal of Geophysical Research, 116, C07023.	
1034		
1035	Pujol, C., and Vergnaud Grazzini, C., 1995. Distribution patterns of live planktic	
1036	foraminifers as related to regional hydrography and productive systems of the	
1037	Mediterranean Sea, Marine Micropaleontology, 25, 187-217	
1020		
1038 1039	Rodwell, M.J., Rowell, D.P., Folland, C.K., 1999. Oceanic forcing of the wintertime	Kate Salmon 12/11/2014 17:55
1039	North Atlantic Oscillation and European Climate. Nature, 398, 320-323.	Deleted:
1040	Norm Atlanue Osemation and European Chinate. Nature, 576, 520-525.	
1011	Sautter, L., and Thunell, R.C., 1989. Seasonal succession of planktonic foraminifera:	
1043	Results from a four-year time series sediment trap experiment in the northeast Pacific,	
1044	Journal of Foraminiferal Research, 19, 253-267.	
1045	Υ	
1046	Schiebel, R., 2002. Planktic foraminiferal sedimentation and the marine calcite	Kate Salmon 12/11/2014 17:56 Deleted:
1047	budget, Global Biogeochemical Cycles, 16, 1065, doi:10.1029/2001GB001459	
1048		
1049	Schmuker B., and Schiebel, R., 2002. Planktic foraminifers and hydrography of the	
1050	eastern and northern Caribbean Sea, Marine Micropaleontology, 46, 387-403	

1053	۲	
1054	Seki, M.P., Polovina, J.J., Brainard, R.E., Bidigare, R.R., Leonard, C.L., Foley, D.G.,	Kate Salmon 12/11/2014 17:56 Deleted:
1055	2001. Biological enhancement at cyclonic eddies tracked with GOES thermal	
1056	imagery in Hawaiian waters. Geophysical Research Letters, 28, 1583-1586.	
1057		
1058	Sexton, P.F. and Norris, R.D. (2008), Dispersal and biogeography of marine plankton:	
1059	Long-distance dispersal of the foraminifer Truncorotalia truncatulinoides, Geology,	
1060	36, 899-902.	
1061		
1062	Sexton, P.F. and Norris, R.D. (2011), High latitude regulation of low latitude	
1063	thermocline ventilation and planktic foraminifer populations across glacial-	
1064	interglacial cycles, Earth and Planetary Science Letters, 311, 69-81.	
1065		
1066	Siegel, D.A., Doney, S.C., Yoder, J.A., 2002. The North Atlantic Spring	
1067	Phytoplankton Bloom and Sverdrup's Critical Depth Hypothesis, Science, 296, 730-	
1068	<u>733.</u>	
1069		
1070	Storz, D., Schulz, H., Waniek, J.J., Schulz-Bull, D.E., Kučera, M., 2009. Seasonal	
1071	and interannual variability of the planktic foraminiferal flux in the vicinity of the	
1072	Azores Current. Deep Sea Research I, 56, 107-124.	
1073		
1074	Spero, H.J., 1998. Life history and stable isotope geochemistry of planktonic	
1075	foraminifera, In R.D. Norris and R. M. Corfield (eds.) Isotope Paleobiology and	
1076	Paleoecology; Paleontological Society Papers. Special Publication.	
1077		
1078	Sprintall, J., Tomczak, M., 1992. Evidence of the barrier layer in the surface layer of	
1079	the tropics. Journal of Geophysical Research: Oceans, 97, 7305-7316.	
1080		
1081	Steinberg, D.K., Carlson, C.A., Bates, N.R., Rodney, J.J., Michaels, A.F., Knap, A.H.,	
1082	2001. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a	
1083	decade-scale look at ocean biology and biogeochemistry. Deep-Sea Research II, 48,	
1084	1405-1447.	
1085		

1087	Sweeney E.N., McGillicuddy, Jr, D.J., Buesseler, K.O., 2003. Biogeochemical	
1088	impacts due to mesoscale eddy activity in the Sargasso Sea as measured at the	
1089	Bermuda Atlantic Time-series Study (BATS). Deep-Sea Research II, 50, 3017-3039.	
1090		
1091	Takahashi, K., Bé, A.W.H., 1984. Planktonic foraminifera: factors controlling	
1092	sinking speed, Deep-Sea Research, 31, 1477-1500.	Kate Salmon 27/11/2014 11:04
1093		Deleted:
1094	Thunell, R.C., and Reynolds, L.A., (1984) Sedimentation of planktonic foraminifera:	
1095	seasonal changes in species flux in the Panama Basin, Micropaleontology, 30, 243-	
1096	<u>262.</u>	
1097	Y	
1098	Tolderlund, D.S., Bé, A.W.H., 1971. Seasonal distribution of planktonic foraminifera	Kate Salmon 12/11/2014 17:57 Deleted:
1099	in the western North Atlantic. Micropaleontology 17, 297-329.	
1100		Kate Salmon 27/11/2014 11:04 Deleted:
1101	Townsend, D.W., Cammen, L.M., Holligan, P.M., Campbell, D.E., Pettigrew, N.R.,	
1102	1994. Causes and consequences of variability in the timing of spring phytoplankton	
1103	blooms. Deep-Sea Research I 41, 747-765.	
1104		
1105	Treusch, A.H., Demir-Hilton, E., Vergin, K.L., Worden, A.Z., Carlson, C.A., Donatz,	
1106	M.G., Burton, R.M., Giovannoni, S.J., (2012) Phytoplankton distribution patterns in	
1107	the northwestern Sargasso Sea revealed by small subunit rRNA genes from plastids,	
1108	ISME Journal, 6, 481-492	
1109	v	Kate Salmon 12/11/2014 17:57
1110	Waniek, J.J., 2003. The role of physical forcing in initiation of spring blooms in the	Deleted:
1111	northeast Atlantic. Journal of Marine Systems, 39, 57-82.	
1112		
1113	Wiebe, P.H., Joyce, T., 1992. Introduction to interdisciplinary studies of Kuroshio	
1114	and Gulf Stream rings. Deep-Sea Research Part A, Oceanographic Research Papers,	
1115	39, supplement 1, 5-6.	
1116		
1117	Žarić, S., Donner, B., Fischer, G., Mulitza, S., Wefer, G., 2005. Sensitivity of	
1118	planktic foraminifera to sea surface temperature and export production as derived	
1119	from sediment trap data. Marine Micropaleontology, 55, 75-105.	

- 1125 Zeebe, R.E., Bijma, J., Hoenisch, B., Sanyal, A., Spero, H.J., Wolf-Gladrow, D.A.,
- 1126 2008. Vital Effects and Beyond: A Modeling Perspective on Developing
- 1127 Paleoceanographic Proxy Relationships in Foraminifera. The Geological Society,
- 1128 London. Special Publications, 303, 45-58. Biogeochemical Controls on
- 1129 Palaeoceanographic Proxies. Eds.: James, R., Austin, W. E. N., Clarke, L., Rickaby, R.
 - , R. Deleted:

Kate Salm

on 27/11/2014 12:20

1130 E. M.1131

1133	Figure Captions	
1134	Figure 1. Map to show locations of the Oceanic Flux Program (OFP) mooring	
1135	(31°50'N, 64°10'W) and the Bermuda Atlantic Time Series (BATS) hydrographic	
1136	station (31°50'N, 64°10'W) and Seasonal Changes in Foraminifera Flux (SCIFF) site	
1137	and Hydrostation S in relation to Bermuda Island.	
1138		
1139	Figure 2. Temporal changes in total planktonic foraminifera, flux and mass,	Kate Salmon 11/11/2014 17:33
1140	carbonate, and organic carbon fluxes at 1500_m depth over the six year study period.	Deleted: Figure 1 Kate Salmon 21/11/2014 10:07
1141		Deleted: foraminfera Kate Salmon 21/11/2014 10:07
1142	Figure 3. Temporal changes in environmental parameters measured at the BATS site	Deleted: 1
1143	in relation to total planktic foraminiferal flux in the 1500m OFP trap (thin, black line)	Kate Salmon 11/11/2014 17:33 Deleted: Figure 2 Kate Salmon 11/11/2014 16:41
1144	a) Sea surface temperature (0-25_m), b) Sea level height anomaly; grey bars indicate	Deleted:
1145	periods when productive cyclonic eddies influenced the site, c) Mixed layer depth, d)	
1146	Chlorophyll <i>a</i> concentration (0-25_m average) e) Average organic carbon flux at 200	
1147	m	
1148		
1149	Figure 4. Correlation between total planktonic foraminifera flux in the 1500 m OFP	Kate Salmon 11/11/2014 17:34
1150	trap (thin, black line) with environmental parameters measured at the BATS site. a)	Deleted: Figure 3 Kate Salmon 21/11/2014 10:08
1151	Chlorophyll <i>a</i> concentration at 0-25_m. The correlation excludes an anomalous peak	Deleted: 1
1152	in chlorophyll <i>a</i> concentration observed in 2010. b) MLDs >80_m, excluding the	
1153	extremely deep MLD observed in 2010. c) MLDs <80 m.	
1154		
1155	Figure 5, Temporal changes in surface dwelling planktic foraminifera fluxes in the	Kate Salmon 11/11/2014 17:36
1156	1500m trap with changes in sea surface temperature (0-25 m) shown in the dashed	Deleted: 4

1165	black line for reference. The approximate depth habitat (Anand et al. 2003) is shown						
1166	on figures.						
1167							
1168	Figure 6, Temporal changes in intermediate dwelling planktonic foraminifera fluxes	Kate Salmon 11/11/2014 17:36					
1169	in the 1500_m trap with changes in sea surface temperature (0-25 m) for reference.	Deleted: 5					
1170	The approximate depth habitat (Anand et al. 2003) is shown on figures.						
1171							
1172	Figure 7, Temporal changes in deeper dwelling planktonic foraminifera fluxes in the	Kate Salmon 11/11/2014 17:36					
1173	1500 m trap with changes in sea surface temperature (0-25 m) for reference. The	Deleted: 6					
1174	approximate depth habitat (Anand et al. 2003) is shown on figures. Graphs are						
1175	ordered according to seasonal succession.						
1176							
1177	Figure 8, Seasonal succession for deeper dwelling species averaged over six spring	Kate Salmon 11/11/2014 17:36					
1178	blooms (1998, 1999, 2000, 2008, 2009, 2010) from the 1500 m trap. G.	Deleted: 7 Kate Salmon 11/11/2014 16:39					
1179	truncatulinoides, G. hirsuta, G. inflata appear on the left axis and G. crassaformis is	Deleted: , Kate Salmon 11/11/2014 16:39					
1180	on the right axis,	Formatted: Font:Not Italic					
1181		Kate Salmon 11/11/2014 16:40 Deleted: i					
1182	Figure 9, a) The relative contribution of total PF to total carbonate flux b) The	Kate Salmon 11/11/2014 16:39 Deleted: from the 1500m trap					
1183	relative contribution of deeper dwelling planktonic foraminifera (G. hirsuta, G.	Kate Salmon 11/11/2014 17:36 Deleted: 8					
1184	truncatulinoides, G. crassaformis, G. inflata) to the total planktonic foraminiferal						
1185	carbonate flux c) The relative contribution of total deeper dwellers (G. hirsuta, G.	Kate Salmon 11/11/2014 16:40 Deleted: <i>i</i>					
1186	truncatulinoides, G. crassaformis, G. inflata) to the total carbonate flux. All graphs						
1187	show four full years 1998-99, 1999-00, 2008-09 and 2009-10.	Kate Salmon 11/11/2014 16:40 Deleted: <i>i</i>					
1188							

1198	Figure 10, a) Correlation between the maximum mixed layer depth and deepening					
1199	rate of the mixed layer for years 1995-2011. Correlation between the	Ka De				
1200	deepening:sholaing rate (D_r/S_r) ratio of the mixed layer depth for all years studies					
1201	excluding 2000 and b) Integrated PF flux during the spring blooms which ranged	Ka				
1202	from Dec-May, c) maximum chlorophyll <i>a</i> concentrations in the surface ocean during	De Ka				
1203	the spring bloom for all years studied, excluding the anomalous year 2010 in	De Ka				
1204						
1205	over the spring bloom period which ranged from Dec-May, Diamonds indicate years	De Ka				
1206	with eddy influence 2009 and <u>diamond with parentheses</u> = 2010. Round points are	De Ka				
1207	years without eddy influence.	De Ka				
1208		De Ka				
1209	Figure 11. Annual integrated PF flux from this study (1500m trap, square symbols)	De				
1210	and 1979-1984 (*3200m trap, round symbols, Deuser, 1987, Deuser and Ross, 1989)					
1211	plotted against wintertime (DJFM) NAO index + 1 year lag. Annual fluxes from both					
1212	trap depths are comparable. **Annual PF flux from 1978 (diamond symbol) was not					
1213	included in the regression because it was an anomalously low flux year which could					
1214	be explained by a shallow MLD and/or possibly the presence of an anticyclonic eddy					
1215	(no data to test), which may have suppressed the spring bloom and hence PF flux as					
1216	seen during 1994 at BATS (Lomas et al. 2013). NAO data available from					
1217	http://www.cpc.ncep.noaa.gov/data/teledoc/nao.shtml					
1218						
1219						

Kate Salmon 11/11/2014 17:36 Deleted: 9

1229 Table 1. Annual fluxes for planktonic foraminifera species at 1500 m depth in 1998-1999, 1999-2000, 2008-2009 and 2009-2010 and the four-

1230 year averages. Fluxes were calculated from the sum of biweekly averages between July-June for each year and converted to tests m² yr¹.

1231 Species are listed according to their estimated depth habitats.

Species are listed accordi	sies are listed according to their estimated depth habitats.							
		Annual flux (tests m ⁻² yr ⁻¹)						Deleted: 1
C	C	1008 1000	1000 2000	2008 2000	2000 2010		3200m avg	
Species	Seasonal flux maximum	1998-1999	1999-2000	2008-2009	2009-2010	Average	$(1978-1984)^3$	_
Surface dwellers: G. ruber (pink) G. ruber (white)	July-Sept Sept-Oct	2524 16 197	1978 19 633	1576 13 917	2122 18 719	2050 17 117	1450	
G. sacculifer	Oct ¹ . March ²	256	292	1007	348	1903	425	
Surface Totals		18 977	21 903	16 500	21 189	17 346		
Intermediate dwellers: G. siphonifera O. universa G. conglobatus N. dutertrei P. obliquiloculata	* April-May ¹ , Oct-Nov ² Nov March-April ¹ , Nov-Dec ² Dec-March	6101 1429 277 1290 398	3182 694 180 185 205	2231 1056 0 471 708	2833 2250 4 839 352	3587 1357 115 696 416	300 876 762	
Intermediate Totals		9495	4446	4466	6278	6171		
Deep dwellers: G. truncatulinoides G. hirsuta G. crassaformis	Jan-Feb Feb-March Feb-March	5248 1784 26	13 796 9888 100	9517 3859 122	4031 2770 139	8148 4575 97	3420 1520 192	
G. inflata	March-April	844	995	1652	1869	1340	1270	Kate Salmon 11/11/2014 16:40
Deep Totals		7902	24 779	15 150	8809	14 160	5402	Dereted: 1
Other species	-	51 442	43 704	43 172	70 446	51 191		
Totals	-	87 816	94 831	79 289	106 722	92 165		_

Deleted: i

1232 1233

¹ Primary peak ² Secondary peak ³ Averages from Deuser and Ross, 1989 * This species has low seasonality

1233 1234 1235

1240 rate of ML deepening divided by the rate of ML shoaling (see text). The winter-spring PF flux represents the <u>PF flux integrated</u> over the whole

1241 bloom, which <u>varied interannually in length but</u> ranged from Dec-May. Shaded years indicate years when a cyclonic eddy was present during

1242 the spring bloom period.

1243 1244

Year	MLD max (m)	ML Deepening Rate (m day ⁻¹)	ML Shoaling Rate (m day ⁻¹)	D _r /S _r ratio (m)	Maximum PF flux (tests m ⁻² day ⁻¹)	Jntegrated winter-spring PF flux (tests m ⁻² day ⁻¹)	Kate Salmon 9/11/2014 12:00 Deleted: Average
1997-1998	235	0.93	1.91	0.49	641	28	-
1998-1999	222	0.78	7.78	0.10	816	41	
1999-2000	197	0.63	Data missing		761	30	
2007-2008	130	0.55	0.75	0.73	385	17	Kate Salmon 9/11/2014 12:00
2008-2009	198	0.95	2.21	0.43	946	28	Deleted: 1.71 Kate Salmon 9/11/2014 12:00
2009-2010	464	1.76	3.82	0.46	815	32	Deleted: 0.37

Kate Salmon 9/11/2

Deleted: average

1245