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Abstract. Studies of coastal seas in Europe have noted the high variability of the CO2 system.

This high variability, generated by the complex mechanisms driving the CO2 fluxes, complicates the

accurate estimation of these mechanisms. This is particularly pronounced in the Baltic Sea, where

the mechanisms driving the fluxes have not been characterized in as much detail as in the open

oceans. In addition, the joint availability of in situ measurements of CO2 and of sea-surface satellite5

data is limited in the area. In this paper, we used the SOMLO (Sasse et al., 2012) methodology,

which combines two existing methods (i.e., Self-Organizing-Maps and multiple linear regression) to

estimate the ocean surface partial pressure of CO2 (pCO2) in the Baltic Sea from the remotely sensed

Sea surface temperature, chlorophyll, colored dissolved organic matter, net primary production, and

mixed-layer Depth. The outputs of this research have a horizontal resolution of 4 km and cover10

the 1998–2011 period. These outputs give a monthly map of the Baltic Sea on a very fine spatial

resolution. The reconstructed pCO2 values over the validation dataset have a correlation of 0.93 with

the in situ measurements and a root mean square error of 38 µatm. Removing any of the satellite

parameters degraded this reconstructed CO2 flux, so we chose to supply any missing data using

statistical imputation. The pCO2 maps produced using this method also provide a confidence level15

of the reconstruction at each grid point. The results obtained are encouraging given the sparsity of

available data, and we expect to be able to produce even more accurate reconstructions in coming

years, given the predicted acquisition of new data.

1 Introduction

The ocean plays an important role in the global carbon budget. It acts as a major carbon sink for20

anthropogenic carbon dioxide (CO2) emitted to the atmosphere from fossil fuel burning, cement
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production, biomass burning, deforestation, and various land use changes. The ocean is currently

slowing the rate of climate change, having absorbed approximately 30% of human emissions of

CO2 to the atmosphere since the industrial revolution (Stocker et al., 2013). The exchange of CO2

between coastal environments and the atmosphere is a significant part of the global carbon budget25

(e.g. Borges et al., 2005; Chen and Borges, 2009; Laruelle et al., 2010). While continental shelves

represent only 7% of the oceanic surface area and less than 0.5 % of the ocean volume, the estimated

overall sink of CO2 in the continental shelf sea is –0.22 PgC yr−1 (Laruelle et al., 2010), corre-

sponding to 16% of the open oceanic sink (Takahashi et al., 2009). These estimates are subject to

great uncertainty related to sparse data coverage in time and space. Monitoring the oceanic partial30

pressure of CO2 (pCO2) at monthly and seasonal time scales is essential for estimating the regional

and global air–sea CO2 fluxes and reducing this uncertainty. For technical and budgetary reasons,

in situ measurements of marine pCO2 are sparsely distributed in time and space. However, over the

last decade, technical improvements and cooperation with the shipping industry have allowed for the

installation of several autonomous monitoring systems aboard commercial vessels routinely cross-35

ing the ocean basins. These instruments make quasi-continuous measurements, allowing regional

analysis of the highly variable spatial and temporal distributions of pCO2 (e.g. Lefèvre et al., 2004;

Lüger et al., 2004; Corbière et al., 2007; Schneider et al., 2003). The Baltic Sea, a semi-enclosed

sea in Northern Europe, is relatively well monitored and has been studied for several decades (Meier

et al., 2014). Despite the increased number of measurements made in the Baltic Sea, assessing the40

carbon fluxes in the Baltic Sea remains particularly challenging due to the nonlinearity of the emis-

sion and absorption system. This nonlinearity is complicated by a combination of varying salinity,

varying river input of DOC, and large general variability due to the strong seasonal cycle in the

region. Using new methodologies could generate additional information from the relatively lim-

ited number of existing measurement data. Neural network techniques are empirical statistical tools45

that somewhat resolve the nonlinear and often discontinuous relationships among proxy parameters

without any a priori assumptions. In the past decade, several authors have reported the application

of a neural network technique to basin-scale pCO2 sea analysis (Lefévre et al., 2005; Jamet et al.,

2007; Friedrich and Oschlies, 2009; Telszewski et al., 2009), concentrating mainly on the North

Atlantic Ocean. Most recently, Telszewski et al. (2009) successfully applied a neural network tech-50

nique based on a Self-Organizing Map (SOM) to reconstruct the seawater pCO2 distribution in the

North Atlantic (10.5◦ to 75.5◦N, 9.5◦E to 75.5◦W) for three years (i.e., 2004 to 2006) by exam-

ining the nonlinear/discontinuous relationship between pCO2 sea and the ocean parameters of sea

surface temperature (SST), mixed-layer depth (MLD), and chlorophyll a concentration (Chl). In this

paper, we applied the SOMLO methodology (self-organizing multiple linear output), which creates55

an SOM classification of the available explicative oceanic parameters in the Baltic Sea and then

calculates multiple linear regression (MLR) parameters for estimating the pCO2 from the elements

belonging to each class separately. The major benefit of this methodology is that it allows the use of
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a linear model (i.e., the MLR) despite the nonlinear relationship between pCO2 and its explicative

parameters, by using the SOM classifier. The SOM classifier can determine the region of the multi-60

dimensional data space in which to perform the linear regression. If the classification is fine enough,

each region will represent a single type of relationship between the pCO2 and the explicative data,

a type that can be reproduced by an MLR. Due to the temporal and spatial limitations of the in situ

pCO2 data, the satellite data can help estimate the air–sea CO2 fluxes over the entire Baltic Sea.

The satellite data have a higher spatial coverage of the Baltic Sea, allowing estimation of the pCO265

from in situ data using the SOMLO method. Chierici et al. (2009) demonstrate that in the North At-

lantic Ocean, SST, Chl, and MLD contributed significantly to the estimation of pCO2 from a linear

relationship. Based on this idea, we applied these parameters to the Baltic Sea, adding two other

parameters, i.e., Net Primary Production (NPP) and Colored Dissolved Organic Matter (CDOM),

that provide information about the biological activity occurring in summer. From this, we develop70

pCO2 algorithms applicable to the Baltic Sea using in situ pCO2 values; remotely sensed SST, Chl,

and CDOM; modeled MLD and NPP; and time.

The manuscript is structured in four parts. First, we present a synopsis of the problem studied,

including existing studies of pCO2 reconstruction in other maritime regions. Next we present the

available data and briefly describe the methodology used. In the third part of the article we present75

our results, namely, the topological maps obtained and the reconstructions performed with them.

We conclude the article by discussing the results obtained and future possible improvements of the

method used.

2 Materials and methods

2.1 Study area80

The Baltic Sea is a semi-enclosed sea with limited exchange with the North Atlantic through the

North Sea–Skagerrak system. Previous investigations of the Baltic Proper found large temporal and

spatial variability of pCO2. The amplitude of the annual pCO2 cycle varies significantly depending

on the region, ranging from 400 µatm in the northeastern Baltic Proper to 120 µatm in the transi-

tion areas to the North Sea (Schneider and Kaitala, 2006). The Baltic Sea receives significant river85

runoff from surrounding land (a total of approximately 15,000 m3 s−1 (Bergstrom, 1994) and net

precipitation of approximately 1500 m3 s−1 (Omstedt et al., 2004). This large freshwater addition

brings large amounts of nutrients and inorganic and organic carbon to the Baltic Sea basin (Omstedt

et al., 2004; Hjalmarsson et al., 2008). The biogeochemical processes in the Baltic Sea marine en-

vironment are controlled mainly by the biological production and decomposition of organic matter90

occurring in the context of the region’s hydrography. Physical forcing controls the water transport,

stratification, temperature, and salinity in the Baltic Sea; these factors then influence the nutrient and

carbon distribution, thereby affecting biogeochemical processes. We divide the Baltic Sea into three
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Figure 1. The dashed red lines divide the Baltic Sea into three basins: CP : Central part, BB: Gulf of Bothnia,

GF: Gulf of Finland. Monthly data are available from 1998 to 2011 in the Baltic Sea. The colorbar shows the

pCO2 values in µatm

.

basins, i.e., the central part (CP), the Gulf of Bothnia (GB), and Gulf of Finland (GF), as shown

in Figure 1. The Baltic Sea has an average depth of 55 m and a maximum depth of 460 m at the95

Landsort Deep (Wesslander, 2011).

2.2 pCO2 observations

To compile the pCO2 maps, we use measured data from three sources.
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1. The Östergarnsholm site: This site is located next to the small island of Östergarnsholm in the

central Baltic Sea and is further described by (Rutgersson et al., 2008; Norman et al., 2013a).100

The island is situated 4 km from the east coast of the larger island of Gotland. SST and pCO2

are measured semi-continuously 4 m below the sea surface using a submersible autonomous

moored instrument (SAMI) CO2 sensor moored at a buoy 1 km southeast of the tower situate

on the island. In addition, SST is also measured using a wave rider buoy (operated by the

Finnish Meteorological Institute) at 0.5 m depth situated approximately 4 km southeast of the105

tower.

2. Cargo ship: This dataset derives from continuous measurements of the surface water pCO2

made in the Baltic Sea using a fully automated measurement system deployed on a cargo

ship. The Leibniz Institute for Baltic Sea Research, Warnemünde Germany (IOW—Institut

für Ostseeforschung Warnemünde) has made continuous measurements of pCO2 at 5 m depth110

aboard the cargo vessel Finnpartner. This ship crosses between Lübeck and Helsinki at a two-

day interval, alternately crossing the eastern and western Gotland Sea (Schneider and Kaitala,

2006; Schneider et al., 2009). Data from Finnpartner were acquired between July 2003 and

December 2005.

3. Swedish Meteorological and Hydrological Institute (SMHI) database Svenskt Havsarkiv (SHARK):115

pH, (measured using the method of Grasshoff et al. (1999)) and Total Alkalinity (TA) (mea-

sured using potentiometric titration as described by Grasshoff et al. (1999)) are measured

continuously at a monthly or semi-monthly resolution in the Baltic Sea at various stations. All

measurements are made at a depth of 5 m depth. The uncertainty of the pH is ±0.03 pH units

and of the TA is ±5% (Wesslander et al., 2009). pCO2 is estimated from the pH, TA, salin-120

ity, and temperature measurements using the standard CO2SYS program (Lewis and Wallace,

1998) with the equilibrium constant from (Weiss, 1974) and (Merbach et al., 1973) as refitted

by Dickson and Millero (1987) as in Wesslander et al. (2009).

2.3 Remote sensing data

The satellite data used in this study are from various sources. We use a monthly temporal resolution125

and a spatial resolution based on the lowest spatial resolution of our datasets , i.e., based on from the

lower spatial resolution CDOM dataset.

We obtain values for five parameters from various sources:

SST Sea Surface Temperature: Several datasets are used for SST, and we combine two types of

datasets for 2007 and 2011. For 2005–2011, we use data from the Federal Maritime and Hy-130

drographic Agency (BSH), which processed data from AVHRR-NOAA, and data from the

Group for High-Resolution Sea Surface Temperature (GRHSST) dataset for the Baltic Sea,

2007–2011. The spatial resolution is 0.03 ◦ at a daily temporal resolution (http://podaac.jpl.
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nasa.gov/dataset/DMI-L4UHfnd-NSEABALTIC-DMI_OI). For 1998–2004, the data come

from a reanalysis of the NOAA/NASA Advanced Very High Resolution Radiometer (AVHRR)135

data stream conducted by the University of Miami’s Rosenstiel School of Marine and Atmo-

spheric Science (RSMAS) and the NOAA National Oceanographic Data Center (NODC). This

dataset consists of the monthly average SST (in ◦C) over the zone, with a spatial resolution of

4 km, extracted from version 5.2 of the AVHRR Pathfinder project (Casey et al., 2010)(http://

www.nodc.noaa.gov/SatelliteData/pathfinder4km/). The various SST datasets were compared140

with measured SMHI temperature data at a monthly resolution from 1998 to 2011, giving a

correlation coefficient (R) of 0.99 and a mean difference (MD) of 0.05◦C between the two

datasets. The difference observed between the measured and satellite data between 1998 and

2004 give a value (R = 0.99 and MD = 0.09◦C) near the difference between 2005 and 2011 (R

= 0.99 and MD = 0.14). The two SST datasets used between 2007 and 2011 were also com-145

pared with the SAMI sensor data at a daily resolution, giving a good correlation for the BSH

data (R = 0.95 and MD = ±0.06◦C) and the GRHSST data (R = 0.95 and MD = ±0.08◦C).

Chl Chlorophyll a: This dataset consists of monthly averages from the following sensors: Sea-

viewing Wide Field-of-view Sensor (SeaWiFS) (Sept. 1998–Dec. 2002) with 4-km spatial and

monthly temporal resolutions and Moderate Resolution Imaging Spectroradiometer (MODIS-150

Aqua) (Jul. 2002–Jun. 2011) with 4-km spatial and monthly temporal resolutions (Casey et al.,

2010). A lognormal distribution was assumed for the Chl data. Comparison with SMHI mea-

surement data and in situ data (personal communication from Dr. Tiit Kutser) give R = 0.67

and MD = 7 mg m−3. The chlorophyll levels from the satellite data seem to be overestimated

compared with the in situ data. Since we use the same dataset over the whole study period, any155

recurrent bias will not affect the reconstruction, as it is taken into account when classifying

and calculating the MLR parameters.

CDOM Colored Dissolved Organic Matter values come from MODIS-Aqua 4-km monthly average

data. The CDOM index quantifies the deviation in the relationship between the CDOM and Chl

concentrations, where 1.0 represents the mean relationship for Morel and Gentili (2009) case160

1 waters, and values above or below 1.0 indicate an excess or deficit, respectively, in CDOM

relative to the mean relationship. The algorithm and its application are fully described by

Morel and Gentili (2009). In situ CDOM data (personal communication from Dr. Tiit Kutser)

give a lower correlation coefficient and a low average difference (R = 0.48, MD = 2.3). As for

the chlorophyll, the bias is applied to all years so it does not affect the estimation of pCO2.165

NPP : Net Primary Production values come from two data sources. The first dataset comes from

the Environmental Marine Information System (EMIS): The EMIS model is depth integrated

but allows for depth-dependent variability in the diffuse attenuation coefficient, which is cal-

culated from a multiple-component semi-analytical inversion algorithm (Lee et al., 2005).
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The primary production calculation is based on the formulation obtained through dimensional170

analysis by Platt and Sathyendranath (1993). The photosynthetic parameters are assigned by

the combined use of a temperature-dependent relationship for the maximum growth rate Ep-

pley (1972) and a variable formulation to retrieve the C:Chl ratio following the empirical re-

lationship of Cloern et al. (1995). The EMIS dataset comprises monthly average values from

October 1997 to September 2008. The second dataset, for 2009–2011, uses the Vertically Gen-175

eralized Production Model (VGPM) of Behrenfeld and Boss (2006) as the standard algorithm.

VGPM is a “chlorophyll-based” model that estimates net primary production from chlorophyll

using a temperature-dependent description of chlorophyll-specific photosynthetic efficiency.

For VGPM, net primary production is a function of chlorophyll, available light, and photo-

synthetic efficiency. VGPM uses MODIS-Aqua chlorophyll and temperature data, SeaWiFS180

photosynthetically active radiation (PAR) data, and estimates of the euphotic zone depth from

a model developed by Morel and Berthon (1989) and based on chlorophyll concentrations. For

the NPP for 2009–2011, the observed maximum value was limited to 10 to be comparable to

the data for 1998–2008. Validation of NPP was difficult due to the number of data available

in the area. Comparison of the two datasets gives similar values and seasonal cycles. We com-185

pared the seasonal cycles between 1998–2008 and 2009–2011, obtaining values on the same

order of magnitude.

MLD Mixed- Layer Depth: There are also two sources for the MLD data. Monthly averages from

1998 to 2007 come from a 3D hydrodynamic model currently used at the the Joint Research

Centre/Institute for Environment and Sustainability (JRC/IES), i.e., the public-domain General190

Estuarine Transport Model (GETM; www.getm.eu), which has its roots in developments at the

JRC/IES Burchard and Bolding (2002). GETM simulates the most important hydrodynamic

and thermodynamic processes in coastal and marine waters and includes flexible vertical and

horizontal coordinate systems. Different turbulence schemes are incorporated from the gen-

eral ocean turbulence model (GOTM; www.gotm.net). For 2008–2011, we use data from the195

carbon-based production model at a monthly resolution (Behrenfeld et al., 2005). The MLD

was estimated from SMHI temperature and salinity profile measurements using the density

criterion of (Boyer Montégut et al., 2004)); the comparison between the model estimation and

estimated SMHI MLD is quite good (R = 0.63 and MD = 17 m). Between 1998 and 2007,

the correlation coefficient is higher (R = 0.8) than between 2008 and 2011 (R = 0.5). Nev-200

ertheless, the MD is lower for the second data source, i.e., 20 m versus 11 m. This can be

explained by the available data coverage: 63% of the in situ data cover the 1998–2004 period.

This difference can be due to the fact that fewer data are available in the second dataset. From

2008 to 2011, the maximal value is below 80 m between 1998 and 2007, so for the in situ data

estimation, we replace every value above 80 m with “not a number.”205
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In the Baltic Sea, there are many gaps in the satellite data; this is due to the high proportion of

coastal waters where satellite data are less reliable, and to the frequent large-scale cloud coverage.

To increase the total number of our data, we used a monthly temporal resolution and a method

to improve the spatial distribution of the data. For statistical analysis, the irregularly spaced density

measurements were first uniformly resampled. To this end, Gaussian grinding was used, as described210

by Greengard and Lee (2004); Dutt and Rokhlin (1995). The data points of the original series are

convolved using a Gaussian kernel. As a result, the data points are smeared over their neighboring

equi-spaced points, which are more densely distributed. This method produces more realistic values

than does simple interpolation, particularly when there are many data gaps (Schomberg and Timmer,

1995). There is no discontinuity between the different datasets , but NPP, CDOM, and Chl data are215

missing for January and December, so no reconstruction can be performed for these months.

2.4 Data available

The positions and values of all the in situ pCO2 data are shown in Figure 1. We use the spatial

resolution of the parameter with the lowest resolution for the final dataset chosen (i.e., CDOM).

A monthly temporal resolution is used for this study. Rutgersson et al. (2008) demonstrate that220

the agreement between SAMI sensor data and the ship data from Finnpartner (near the mooring

maximum of 23 km) is quite good. This good agreement is confirmed by the comparison between

pCO2 data from the SAMI sensor, the data surrounding the mooring (0.2◦), and the other datasets.

These analyses give a good correlation factor of 0.98. The in situ data are available mainly for the

central basin, but the number of data for the Gulf of Bothnia is very low, coming from two SMHI225

stations. The in situ pCO2 data are well distributed over the twelve months (Figure 2). January is the

month for which the number of data is lower (i.e., below 80), but the other months have 110–155

data points each. In our case, each in situ data point is characterized by SST, Chl, CDOM, NPP, and

MLD as well as information on the date the measurements were made. This temporal information

was normalized by sine and cosine, as follows:230

time(cosine) = cos(
Days ∗ 2π

365
) (1)

time(sine) = sin(
Days ∗ 2π

365
) (2)

where Days represents the Julian day.

This definition of time is used to render the values continuous over the course of the year, sidestep-235

ping the artificial numerical transition from the last day of one year to the first day of the next, to be

able to situate the process in relation to its seasonality.

The inclusion of time time(cosine) and time(sine) as a parameter is important because, in the

database, some situations have similar values for SST, Chl, CDOM, NPP, and MLD, but different

pCO2 values. This dissimilarity in the PCO2 values informs us that these situations are generated240

by different phenomena. Since these phenomena may be related to seasonal patterns, we included
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Figure 2. Histogram showing the number of observations for each month of the year, 2008–2013.

information on the time of the year, which allows us to fine tune our classification. For example, in

May we had a situation (SST = 9.3 ◦C, Chl = 0.1 mg m−3, CDOM = 4.3, NNP = 1.7 mg C m−2

d−1, and MLD = 10.8 m) whose parameters were very close to those of a situation in November

(SST = 9.1◦C, Chl = 0.1 mg m−3, CDOM = 4.3, NNP = 1.6 g C m−2 d−1, and MLD = 10.3 m);245

however, the pCO2 values differed greatly, being pCO2 = 214 and 444 µatm, respectively, during the

two situations.

A Principal Component Analysis (PCA) was conducted to highlight the importance of the param-

eters in the pCO2 variability (Figure 3). The percent of variance explained by each axis of the PCA is

shown in Table 1. The results of this PCA indicate that the percentages of variance explained by all250

axes beyond the first do not differ greatly, with the notable exception of the last two axes, indicating

that we cannot greatly reduce the dimensionality of the problem. In addition, on the first component

plane, all explicative parameters are close to the boundaries of the correlation circle, meaning that all

values are significant. The inclusion of two temporal values instead of only one, even though those

are highly correlated, was unavoidable in order to preserve continuity in the values obtained when255

changing years. These conclusions lead us to include all the explicative parameters presented when

using SOMLO to estimate the pCO2.

In total, 1445 pCO2 data are used in this study. All parameters (i.e., SST, Chl, CDOM, NPP,

and MLD) are located around each pCO2 datum. In winter (i.e., October to March), more data are

missing (Table 2, column 1), particularly for Chl, CDOM, and NPP, winter being the period when it260

is more difficult to measure or estimate these parameters. Between April and September, the number

of missing SST, Chl, CDOM, and MLD data is relatively low compared with the total number of data

(Table 2, column 2), i.e., fewer than 3% of the total. To increase the number of data available, we
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Figure 3. Representation of variables on axes 1 and 2.

Table 1. Percent of variance explained by each axis of the PCA.

Axis number 1 2 3 4 5 6 7 8

Percent of variance 42 20 14 9 8 4 2.5 0.5

completed the data by training the topological map. Further details on this are presented in section

2.5.265

2.5 Methodology

The relationship between pCO2 and the environmental parameters is highly nonlinear. We chose

to use the SOMLO methodology, which combines two statistical approaches: self-organizing maps

(SOMs) (Kohonen, 1990) and linear regression. SOMs are a subfamily of neural network algo-

rithms used to perform multidimensional classification. A defining characteristic of SOMs is that270

their classes can represent a Gaussian distribution centered around the typical profile of environ-

mental parameters, if there is high discretization of the training dataset (Dreyfus, 2005). We use this

hypothesis to classify the environmental parameter dataset, and then estimate the parameters of a

linear regression for each class. In the following section, we present a brief overview of the two

statistical algorithms and their application to our datasets.275
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Table 2. Number of missing values for each parameter for the satellite data for the October–March and

April–September periods. The numbers in parentheses indicate the total data points in each period.

Parameter October–March (685) April–September (814)

SST 28 0

Chl 202 24

CDOM 320 5

NPP 468 571

MLD 6 2

Figure 4. The various elements used in training a self-organizing map.

2.5.1 Self-organizing maps

Self-organizing topological maps (SOMs) are a clustering method based on neural networks. They

cluster a learning dataset into a reduced number of subsets, called classes, with common statistical

characteristics.

Generating a SOM requires the creation of a training database that contains homogenous vectors.280

After a training phase, we obtain a SOM. The term "map" corresponds to a 2D matrix that stores, for

each class, its referent vector, ri, which approximates the mean value of the elements belonging to

it, and its index, which positions it in the map matrix used to situate it in relation to the other classes

(Figure 4).

SOMs are also called self-organizing topological maps, “topological” indicating that the SOM285

training algorithm forces a topological ordering of the classes in the matrix, meaning that any two

neighboring classes Ci and Cj on the map matrix have referent vectors ri and rj that are close in the

Euclidean sense in the data space.
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Figure 5. Adjacent classes on the SOM lattice correspond to adjacent areas in the multidimensional data space.

Let us consider a vector x that is of the same dimensions and nature as the data used to generate

the topological map; we can find the index of the class to which it is classified by choosing: index =290

argmaxi (||x – ri||), therefore assigning it to the class whose referent is closest to it in the Euclidean

sense (Figure 5). A classified vector x will be represented by its class index, Cindex. If we are trying

to classify a vector that has some missing values, the comparison is performed between the existing

values of x and the corresponding values of each ri.

As a version of the expectation–maximization algorithm, the SOM algorithm performs an iterative295

training. During the early phases of this training, the referent vectors of each class are strongly

affected by the changes imparted on their neighbors’ referent vectors in order to capture the shape

of the data cloud. Depending on the training parameters of the SOM, in the latter phases of the

training, the effect of the neighboring vectors on the determination of the referent vector can be

considered null. In these cases, each referent vector approximates, locally, the mean value of the300

multidimensional Gaussian random distribution that generated the training data assigned to that class

(Dreyfus, 2005).

2.5.2 Multiple linear regression

Multiple linear regression (MLR) is a modeling method that expresses the value of one response

variable, V (in our study pCO2), as a linear function of other explicative variables, i.e., X = X1, X2,305
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... , Xi (in our study SST, Chl, CDOM, NPP, MLD, timesin, and timecos). An MLR is generally

performed either to interpret the relationship between the variable y and each of the other predictive

variables Xi, or to predict, from a dataset of vectors containing the values of X, the corresponding

value of y. In this paper, we used both aspects of MLR.

However, to perform MLRs in the present case, we had to take into account their limitations310

and the nature of the problem. Specifically, to perform an MLR we are obliged to assume that the

relationship between the predictor variables and the response variable is linear. However, this is not

the case in our datasets: pCO2 is not linearly related to the variables presented when considering

the entirety of the problem. However, as noted above in subsection 2.5.1, if we consider the classes

created by the SOM, they are very localized regions of the combined explicative and response data315

space that can be considered to approximate, locally, the mean value of a multidimensional Gaussian

random distribution. We therefore assume that, if performed in the reduced neighborhood of a SOM

class, the relationships between pCO2 and the explicative variables are linear.

3 Application and results

3.1 Statistical imputation320

As described in section 2.4, both the satellite and measured data available for the application present

missing values. To complete these datasets, we chose to use imputation methods similar to those

described by Schafer and Graham (2002) and Malek et al. (2008). The main idea of these methods

is to use the classifying abilities of the SOMs to regroup the data in typical situations and replace

the missing explicative data values with the corresponding values of the referent vector of the class325

to which it belongs.

We first selected the database containing SST, Chl, CDOM, NPP, MLD, timesine, and timecosine.

The vectors were sorted according to the number of values missing from each vector and noting

the locations of these missing values. We chose all complete data vectors and the first 5% of the

sorted vectors containing missing data and trained a SOM. We proceeded by replacing the missing330

values of these first 5% of vectors with the corresponding values of the referent vector of the class to

which they each belong. We then included the next 5% of vectors with missing data in a new training

dataset and created a new SOM. Based on this new SOM, we again filled the new missing values

with the corresponding values of the referent vector of the class of the new SOM to which they each

belong. In addition, we deleted the values we added to the first 5% of vectors and replaced them335

with the values of the referent vector of the class of the new SOM to which they each belong. We

then continued iterating this process, updating the previously filled missing values with the values of

their corresponding referents belonging to the most recently trained SOM, until all missing values

were filled. A schematic of the imputation method used can be seen in Figure 6.
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Figure 6. A schematic of the imputation method used.

After this imputation of the missing data through iterative training, the reconstructed data rep-340

resent the original data well. Figures 7 and 8 show data for six variables before and after the re-

construction, respectively. The main difference is observed for the values of Chl, where the peak of

over 200 individuals occurs at 0 mg m−3 because, at the initialization of the imputation process, we

decided to replace all null values. The repartition of pCO2 (Figure 8a) is very representative of the

data variability with a large range of values. Some very high values occur during local events, such345

as coastal upwelling. Most of the data range between 180 µatm (value observed in summer) and 550

µatm (observed in winter). The SST (Figure 8b) is very representative of the variability in the Baltic

Sea with a maximum occurring between July and September in all basins around 18◦C (Siegel and

Gerth, 2012). The NPP variability is fairly homogenous, except for the peak at 10 mg C m−2 d−1.

This peak occurs because the first model providing us the NPP values has a set maximum of NPP350

at 10 mg C m−2 d−1; therefore, the correction of the NPP satellite data takes this maximum into

account.

The variability of chlorophyll results in one subset of the data with a low value and another subset

with a value higher than 6 mg m−3, which can be explained by the fact that the Baltic Sea is a

narrow sea, with important coastal regions, and that two blooms take place, in spring and in summer.355

The chlorophyll value can be very high during these periods, and the reconstruction gives a mean

value for this characteristic. A peak at 10 mg m−3 is observed in the chlorophyll data, not due

to the reconstruction but to the maximum value in the satellite data file. The low MLD occurs in

summer, and in the model the minimum is 10 m deep, which appears to be around the minimum value

observed in Figure 8f. Absorption by CDOM decreases with increased distance from the riverine360
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Figure 7. a. pCO2 and satellite data, b. SST, c. Chl, d. NPP, e. CDOM, and f. MLD) available for the SOM

before reconstruction.

sources, reaching a relatively stable absorption background in the open sea. Most of our CDOM data

capture open sea conditions, so the values are quite low.

3.2 pCO2 estimation

3.2.1 Topological map

We classified the explicative variables (i.e., SST, Chl, CDOM, NPP, MLD, timesin, and timecos)365

into classes that share similar characteristics. We separated our dataset into two parts: 90% of the

completed data (1300 vectors) were used for the training phase, with the remaining 10% split into

5% (72 vectors) for testing and 5% (72 vectors) for validating the method. We iteratively tested

classifications with varying numbers of classes, and selected the parameters of our SOM based on

the performance on the test dataset.370

At the end of our optimization, we selected a SOM consisting of 77 classes. The number of

observations captured by each class ranges from 0 to 38 (Figure 9). The order of magnitude of the

number of observations is constant throughout the SOM, and we can regard the classes as having

spread in multidimensional space in order to accurately represent the data space of the explanatory

parameters. The presence of classes that did not capture any elements can be justified as preventive:375

they preserve the topological aspect of the SOM by preventing classes that are not similar enough

from becoming neighbors.

15



Figure 8. a. pCO2 and satellite data, b. SST, c. Chl, d. NPP, e. CDOM, and f. MLD) available for the SOM

after reconstruction.

To estimate the average concentration of pCO2 in each class, the measurements of pCO2 asso-

ciated with vectors consisting of SST, CDOM, NPP, MLD, and CHL components were presented

to the already trained SOM as input data (Figure 10). The average value computed for the vectors380

belonging to each class corresponds to the average value of pCO2 for that class.

In the final map, the distribution of pCO2 is strongly dependent on the SST distribution, with

low values of pCO2 correlating with high values of SST (Figure 10). This is in agreement with

the seasonal pCO2 cycle, which is characterized by a large amplitude, ranging from a high value in

winter (≈500 µatm) and a low value in summer (≈150 µatm), described, for example, by Wesslander385

(2011). According to Schneider and Kaitala (2006), the high winter value of pCO2 is a consequence

of mixing with a deeper water layer enriched in CO2, which is in agreement with the distribution

of the MLD (Figure 10,h), with the higher value in winter and autumn correlating with the high

value of pCO2. High values can also be explained by the mineralization, which exceeds production

in winter (Wesslander, 2011). Biological production starts in spring when sunlight and nutrients390

are sufficient. The chlorophyll begins to increase in March–April due to the spring phytoplankton

bloom, which reduces the pCO2 level during this period. The more intensive decrease occurs in April

and May, which is consistent with the higher value of NPP (Figure 10). Studies in the central Baltic

Sea identify two summer minima, the first in April/May and the second in July/August, resulting

from a second production period. Higher variability is observed during this period, with a standard395
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Figure 9. a. The colorbar represents the average difference in pCO2 for each neuron. b. The colorbar represents

the standard deviation (std) in pCO2 for each neuron. For a. and b., the numbers inside the neurons correspond

to the number of data.

Figure 10. Distribution of each parameter in the neural map: a. pCO2 in µatm, b. SST in ◦C, c. and e. time

cosine and sine, respectively, d. Chl in mg m−3, g. NPP in mg C m−2, and h. MLD in m.

deviation between 39 µatm and 50 µatm for different regions (Wesslander, 2011; Schneider and

Kaitala, 2006).
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3.2.2 Linear regression in the neurons

To perform an MLR, we must assume that the relationship between the predictor variables and the

response variable is linear. We could take this to be a valid hypothesis only when performing the400

MLR in the reduced neighborhood of a SOM class, where the relationship between pCO2 and the

explicative variables can be assumed to be linear.

For each class j a separate training dataset was created containing all the vectors assigned to

that class and to all its adjacent classes. Based on that dataset, we computed the linear regression

coefficient parameters for every explicative parameter and for a constant value.405

The calculated linear regression coefficient parameter values for each class are shown in Figure

11. Note that all parameters are important in specific regions of the SOM, having both positive and

negative correlations in different classes.

More importantly, the fact that each parameter has a significantly varying range of values over

the different classes demonstrates that each parameter is important in reconstructing the pCO2 in the410

Baltic Sea, even though a parameter may be highly significant in some classes and relatively stable

in other regions of the topological map.

The addition of vectors belonging to adjacent classes did not generally perturb the estimation of

the coefficient parameters because, as seen in Figure 10, the values of all parameters are generally

organized coherently on the map. The assumption that they are close in the data space is not as415

robust as it would have been had we solely considered the vectors belonging to each class but, given

the limited number of data available for modeling this highly nonlinear and complex system, we

would not have sufficient elements to correctly estimate the linear regression coefficients. Given the

projected increase in available data in coming years, further applications of this approach will limit

themselves to the elements belonging to each class.420

3.2.3 Validation of reconstruction

To validate our results, we calculated the difference and standard deviation (std) between the value of

pCO2 reconstructed in each neuron and the observation defining that neuron (Figure 9). On average,

the std is approximately 38 µatm and the difference observed is 25–30 µatm. By cross-validating a

dataset (divided by 10 sequences), we obtained the following result with a mean std of 48 µatm with425

a variation of 32–57 µatm and R equal to 0.9 with a variation of 0.86–0.96. Nevertheless some points

indicating higher values can be identified (shown in red in Figure 9). These values are explained by

the positions of these points, which are at the edges of the cloud and therefore more likely to include

outliers that disturb the estimation of the MLR coefficients. For the reconstruction of pCO2, with this

identifiable point, it is quite easy to organize a flag system. The flag can give information about the430

quality of the reconstructions based on the RMS errors of the neurons used for the reconstruction.

The difference obtained for pCO2 in each neuron ranges from 0 to 56 µatm (Table 3), but 58% of the
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Figure 11. Coefficient from linear regression for each parameter: a. SST in ◦C, b. and d. time cosine and sine,

respectively, c. Chl in mg m−3, f. NPP in mg C m−2, and g. MLD in m.

Table 3. Maximum and mean value observed in the difference between the data used for the trainee and the

value in the neurons.

Parameter Maximum Average

pCO2 (µatm ) 56,4 29.15

SST (◦C) 1.9 0.98

time(cos) 0.33 0.07

Chl (mg.m−3) 0.14 0.06

time(sin) 0.4 0.06

CDOM 5.15 0.06

NPP (mg.m−3) 1.19 0.25

MLD (m) 9.7 3.2

values observed are under 30 µatm. The difference can be quite high for a parameter such as SST,

with a maximum value of 1.9 ◦C, but most of the values are lower than 1◦C and CDOM ranges from

0 to 5.15 (Table 3). The other parameters have quite low variability, such as MLD, which ranges435

from 0 to 9.7 m. The average is two to three times lower than the maximum value observed, which

gives low value for all the satellite parameters.

The pCO2 validation dataset gives a quite good correlation (R = 0.93) with the results of the recon-

struction method (Figure 12), the root mean square (RMS) being 36.7 µatm: 12% of the validation

data have a value higher than 20 µatm and 45% have a value between 20 µatm and 30 µatm (Figure440

13). The characteristics of time, SST, MLD, CDOM, Chl, and NPP do not explain the difference

observed in the reconstruction.
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Figure 12. pCO2 reconstructed and measured for the validation dataset. The red line represents the linear

relationship.

Figure 13. Difference between pCO2 reconstructed and measured for the validation dataset. The red crosses

and black dotted lines represent differences greater than 20 µatm.

A reconstruction has been done using the satellite data from 1998 to 2011. The seasonal cycle

of pCO2 is well reproduced and in agreement with the results of other studies. The maximum is

observed in winter with a pCO2 of 437µatm on average, while the level is 274µatm in summer. These445

values are comparable to the averages estimated in the central Baltic Sea of 500 µatm in summer and

150 µatm in winter (Wesslander, 2011). The pCO2 decreases in April due to the biological activity

and increases slowly in September (Figure 14).

We also evaluate these results by comparing them with modeling results. The model output used in

the present study is from a process-oriented biogeochemical ocean model in which the Baltic Sea is450

divided into 13 natural sub-basins (e.g. Omstedt et al., 2009; Norman et al., 2013b)). The properties
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Table 4. Coefficient of correlation (R) between the modeled pCO2 and the pCO2 data estimated and the std for

the model and the data.

Basin R STD model (µatm) STD data (µatm)

Baltic Sea 0.7 48 96

Central Basin 0.7 69 92

Bothnian Basin 0.6 44 101

Gulf of Finland 0.6 122 144

of each sub-basin are horizontally averaged and vertically resolved, and the various sub-basins are

horizontally coupled to each other using strait flow models. The model is forced by meteorological

gridded data with a 3-h temporal resolution and by river runoff and net precipitation data with a

monthly resolution (Omstedt et al., 2005). To compare the output of the model with our results, we455

couple the 13 basins in optic to reduce the number to three basins, corresponding to the three basins

defined in Figure 1. The modeled and estimated pCO2 are compared for the entire Baltic Sea and for

the three basins from 1998 to 2009 (Figure 14). The seasonal cycle for the entire Baltic sea is well

reproduced with a quite good correlation (R = 0.7) between the modeled and estimated pCO2 values

(Table 4), whose standard deviations differ by 74 µatm. The modeled and estimated pCO2 values for460

the gulfs of Finland and Bothnia are not as strongly correlated (R = 0.6), while the order of magnitude

of the variability of pCO2 in the Gulf of Finland as calculated with SOMLO is closer to the model

estimate. (122 µatm for the modeled and 142 µatm for the estimated pCO2). This lower correlation

could be due to the lower number of data in this region available for these basins. The central basin

is well reproduced but the amplitude of the seasonal pCO2 cycle is lower in the simulation. In465

the southwest part of the Baltic Sea, SOMLO underestimates the pCO2 concentration by 60 µatm

compared with the model. In the eastern and western parts of the basin, SOMLO produces good

estimates of pCO2 compared with the model with an average difference of 20 µatm. In Omstedt

et al. (2009), the simulated pCO2 agrees quite well with the calculated values based on observations

in the Eastern Gotland Basin.470

A simple flag was constructed to monitor the reconstruction quality and give an idea of the confi-

dence in the estimated pCO2. The difference between the estimated and neural values is computed.

The flag equals 1 for classes in which the average difference is less than 20 µatm, equals 2 for

an average difference of 20–30 µatm, and equals 3 for higher average differences. In the example

shown here, the flag values are high (i.e., 3), so the confidence in the reconstruction is low, but some475

points have flag values of 1 or 2 (Figure15d, e, and f) so the reconstruction is more reliable. On the

geographic map (Figure15d, e, and f), the values of 4 correspond to the presence of ice, which is

estimated using the satellite data of the National Snow and Ice Data Center based on NOAA level

3 data Njoku (2007). The flag gives confidence in our reconstruction, for example, in March 2010

(Figure 15a), the southern portion of the map (i.e., the Bornholm and Arkona basins) shows lower480
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Figure 14. Comparison between modeled pCO2 (dotted lines) and pCO2 estimated using the SOM linear

method (solid lines) for a. the Baltic Sea (BS, blue), b. the Gulf of Finland (GF, grey), c. the Gulf of Bothnia

(BG, red), and d. the Central Basin (C, green).

pCO2 values than does the northern portion and than in February (not show here). In March 2010,

this region corresponds to a flag value of 2, which was attributed medium confidence. In July 2010,

the flag value is quite good and the variability of pCO2 seems to be in line with the monthly vari-

ability (Figure 15b and e). In September 2010, the value of pCO2 has a good order of magnitude

when the flag is 2 but seems slightly too high when there is a poor confidence (i.e., a flag value of 3)485

(Figure 15c and f).

In conclusion, the reconstruction of pCO2 needs to be improved to increase the confidence in the

reconstruction data, particularly in the gulfs.

4 Discussion and conclusions

In this paper, we used the SOMLO methodology to reconstruct the pCO2 from satellite data for the490

Baltic Sea. SOMLO was used to accommodate the nonlinearity of the mechanics driving the pCO2.

It uses artificial neural networks to classify data into situations, and then performs a reconstruction by

using an MLR in each class. The process involves classifying the explicative parameters (i.e., SST,

CDOM, Chl, time, NPP, and MLD) and then using the linear regression coefficients corresponding

to that class in order to reconstruct the pCO2. The satellite data used was also completed using an495

iterative process of SOM training.

We also performed a statistical analysis of the reconstructions obtained, which allowed us to add

a flag to each class, informing us of the quality of the reconstruction obtained. This could both

influence further numerical modeling of other phenomena depending on the pCO2 and allow for an

informed interpretation of the reconstructions obtained.500

The current results obtained using this method, based on 1445 vectors, gave a high correlation

coefficient of 0.93% and an RMS of 36 µatm. In addition to having a limited number of in situ pCO2
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Figure 15. a, b, and c: reconstruction of the pCO2 map and d, e, and f: the flag for each map. a.,d. March

2010,b.,e. July 2010 c.,f. September 2010. The flag values correspond to: 1 = high confidence, 2 = medium

confidence, and 3 = low confidence.

measurements, the co-localized satellite data were frequently incomplete. This led to our having to

complete the database using a novel imputation method based on SOMs.

In comparison, existing studies performed over the North Atlantic and North Pacific, based on a505

minimum of 10,000 data points (which take into account all the data from SOCAT) to a maximum

of 800,000 data points (e.g., Friedrich and Oschlies, 2009; Hales et al., 2012; Landschützer et al.,

2013). Friedrich and Oschlies (2009) obtained an RMS error (RMSE) of 19 µatm. A similar study

over the totality of the Atlantic Ocean obtained an RMSE of 17µatm for independent time series

(Landschützer et al., 2013). Hales et al. (2012) obtained an RMSE of 20µatm with a correlation510

coefficient of 0.81. The RMSE we obtained here was higher than that obtained in a previous study

of the Atlantic Ocean but, taking into account the much smaller number of data available, the results

presented are promising.

The organization of the values of various MLR coefficients over each class indicated that all the

satellite data parameters are important to reconstructing the pCO2 in the Baltic Sea, even if only in515
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certain cases. Improved satellite data availability could therefore also improve the performance of

our reconstruction.

This study could be further developed so as to reconstruct the spatial fields of pCO2. Specifically,

one could imagine a Bayesian approach that would select which class to use for the MLR by also

taking into account the potential classes attributed to the neighboring grid points of a geographic520

study area. This, however, remains dependent on the acquisition of additional in situ measurements

to allow for the robust estimation of such Bayesian probabilities.

Many programs exist for the acquisition of new data. Data from the Östergarnsholm site are still

being acquired; 2012 did not yield much data from this site, and the data from 2013 and 2014

still need to be validated. In time, the SMHI station could also supply additional data. The cargo525

ship transect data are not yet available for 2012–2014, but these measurements will continue, and

some data will soon be available. Data are also being gathered from ferries sailing the Gothen-

burg–Kemi–Oulu–Lübeck–Gothenburg route. This Gothenburg transect is weekly (see http://www.

hzg.de/imperia/md/content/ferryboxusergroup/presentations/fb-ws2011_karlson.pdf). The first tests

of these data were conducted in 2010 and 2011, so some data should soon be available. In addition,530

new measurements of pCO2 began in 2012 at the Utö Atmospheric and Marine Research Station

(see http://en.ilmatieteenlaitos.fi/GHG-measurement-sites#Uto).

Given the amount of new data soon to be available, we remain optimistic that comprehension and

statistical modeling of pCO2 in the Baltic Sea will continue to improve in coming years.
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