| 1 | Characterization of incubation experiments and development of an enrichment |
|---|-----------------------------------------------------------------------------|
| 2 | culture capable of ammonium oxidation under iron reducing conditions        |
| 3 |                                                                             |
| 4 | Shan Huang and Peter R. Jaffé *                                             |
| 5 | Department of Civil and Environmental Engineering, Princeton University,    |
| 6 | Princeton, NJ 08544. *E-mail: jaffe@princeton.edu                           |
| 7 |                                                                             |
| 8 |                                                                             |

#### 9 ABSTRACT

Incubation experiments were conducted using soil samples from a forested riparian 10 wetland where we have previously observed anaerobic ammonium oxidation coupled to 11 iron reduction. Production of both nitrite and ferrous iron were measured repeatedly 12 during incubations when the soil slurry was supplied with either ferrihydrite or goethite 13 and ammonium chloride. Significant changes in the microbial community were 14 observed after 180 days of incubation as well as in a continuous flow membrane reactor, 15 using 16S rRNA gene PCR-denaturing gradient gel electrophoresis, 454-pyrosequencing, 16 and real-time quantitative PCR analysis. We believe that one of the dominant microbial 17 species in our system (an uncultured Acidimicrobiaceae bacterium A6), belonging to the 18 Acidimicrobiaceae family, whose closest cultivated relative is Ferrimicrobium 19 acidiphilum (with 92% identity) and Acidimicrobium ferrooxidans (with 90% identity), 20 might play a key role in this anaerobic biological process that uses ferric iron as an 21

| 22 | electron acceptor while oxidizing ammonium to nitrite. After ammonium was oxidized                        |
|----|-----------------------------------------------------------------------------------------------------------|
| 23 | to nitrite, nitrogen loss proceeded via denitrification and/or anammox.                                   |
| 24 |                                                                                                           |
| 25 | Keywords: ammonium oxidation, iron reduction, Actinobacteria, nitrite, autotrophic,                       |
| 26 | Feammox, anaerobic.                                                                                       |
| 27 |                                                                                                           |
| 28 | 1. INTRODUCTION                                                                                           |
| 29 | The most common removal of nitrogen from soil environments is mineralization (for                         |
| 30 | organic nitrogen), followed by nitrification and then denitrification (Canfield <i>et al.</i> , 2010).    |
| 31 | In water-saturated sediments, such as wetland sediments and benthic sediments, there is                   |
| 32 | little oxygen for significant nitrification by aerobic ammonium ( $\mathrm{NH_4}^+$ ) oxidation bacteria/ |
| 33 | archaea (AOB/AOA). Nitrate (NO $_3$ ) is mainly delivered by groundwater discharging                      |
| 34 | into such systems or surface water infiltration, although some nitrification does occur,                  |
| 35 | such as in the vicinity of roots, where there is $O_2$ leakage. A novel anaerobic $NH_4^+$                |
| 36 | oxidation process coupled to iron reduction was first noted in a forested riparian wetland                |
| 37 | in New Jersey (Clement <i>et al.</i> , 2005). In this reaction, $NH_4^+$ is the electron donor, which     |
| 38 | is oxidized to nitrite (NO <sub>2</sub> ), and ferric iron [Fe(III)] is the electron acceptor, which is   |
| 39 | reduced to ferrous iron [Fe(II)]. The stoichiometry and change in free energy when                        |
| 40 | ferrihydrite is the Fe(III) source is:                                                                    |

41 
$$3Fe_2O_3 \cdot 0.5H_2O + 10H^+ + NH_4^+ \rightarrow 6Fe^{2+} + 8.5H_2O + NO_2^-$$

42  $(\Delta G_r \leq -145.08 kJ \ mol^{-1})$  (Equation 1, Supplementary Information 1. 1)

43

No proven pathway for the oxidation of  $NH_4^+$  to  $NO_2^-$  in anaerobic environments has 44 been described in the literature before this process was reported. Using labeled <sup>15</sup>NH<sub>4</sub><sup>+</sup> 45 in a microcosm experiment, resulted in the production of <sup>15</sup>N<sub>2</sub>, which conclusively 46 showed that ammonium-N was converted to nitrogen gas  $(N_2)$  in these sediments under 47 iron reducing conditions (Shrestha *et al.*, 2009). Either this same pathway for  $NH_4^+$ 48 oxidation, or a very similar one, was also observed in a biological reactor (Sawayama, 49 2006) and a tropical rainforest soil (Yang et al., 2012), and coined Feammox (Sawayama, 50 2006). These pathways have been reported to oxidize  $NH_4^+$  to  $NO_2^-$  (Clement *et al.*, 51 2005; Shrestha et al., 2009), to NO<sub>3</sub> (Sawayama, 2006), or directly to N<sub>2</sub> (Yang et al., 52 2012), using Fe(III) as electron acceptor. 53

Our understanding of the Fearmox process is still incomplete, particularly 54 information about the microorganism(s) responsible for it is lacking. This makes further 55 study into the mechanism of the Fearmox process difficult. Here we focus on a series 56 of incubations and establishing a Fearmox enrichment culture to identify the microbial 57 community responsible for the process described previously (Clement et al., 2005; 58 Shrestha et al., 2009). Soil samples were collected from the same location and used for 59 laboratory incubation experiments as well as to set up an enrichment system for 60 Fearmox in a continuous flow membrane reactor. Various incubation conditions 61

[Fe(III) sources, inorganic carbon content,  $NH_4^+$  concentration,  ${}^{15}NH_4^+$ , and acetylene gas (C<sub>2</sub>H<sub>2</sub>) as a selected inhibitor] were used to study the Feanmox mechanism. Molecular biology methods, such as denaturing gradient gel electrophoresis (DGGE), 454 pyrosequencing, and real-time quantitative PCR (qPCR) analysis were used to investigate the bacterial community change during incubations.

67

#### 68 2. METHODS

#### 69 2.1 Sample collection and processing

70 Soils for all the experiments described in this study were taken from a temperate forested riparian wetland at the Assunpink Wildlife Management Area, New Jersey. Ten soil 71 cores were collected from 10 cm below the surface with polyethylene column containers 72 (8 cm diameter and 30 cm long) and transported to the laboratory within 2 hours. 73 The soil pH was between 3.5 and 4.5, and no Manganese oxide was detected. The detailed 74 physicochemical characteristic of these wetland soils have been described elsewhere 75 (Clement et al., 2005). Prior to all incubation experiments, soil slurry from the field site 76 was aerated for a month to degrade much of the labile organic carbon. After a 30 days 77 of aeration, the dissolved organic carbon (DOC) content was stable at  $2.06 \pm 0.20 \text{ mg g}^{-1}$ . 78 Following the aeration treatment, the soil was divided into  $400 \times 10$  g (air-dry equivalent) 79 subsamples, and added into 50mL serum vials, with 30 mL deionized water. The soil 80 slurries were purged thoroughly with a  $CO_2:N_2$  (80:20) mixture, resulting in a final pH of 81  $\sim 4$  to 4.5. The vials were sealed tightly with rubber stoppers and were stored in an 82

anaerobic glove box for 30 days at ambient temperature to allow for stabilization before
starting the incubations.

- 85
- 86 **2.2 Batch incubation experiments**

All incubations, addition of reagents, and sampling were conducted in an anaerobic glove 87 box with a solution of resazurin as the redox indicator. Soil samples were first 88 incubated with different Fe(III) sources to determine which source would yield a more 89 active Feammox process: 6-line ferrihydrite (Fe<sub>2</sub>O<sub>3</sub>•0.5H<sub>2</sub>O) or goethite [FeO(OH)] 90 [prepared according to Cornell and Schwertmann, 2003 ] +  $NH_4^+$  addition; ferric chloride 91 +  $NH_4^+$  addition; ferric citrate +  $NH_4^+$  addition; either only ferrihydrite or  $NH_4^+$  addition; 92 and autoclaved soil with ferrihydrite +  $NH_4^+$  addition (n = 30 per treatment). pH was 93 adjusted to 4.5 in the ferrihydrite/goethite augmented samples, and to between  $3.5 \sim 4.0$ 94 in the ferric chloride/citrate augmented samples. Soil-slurry samples, which were 95 prepared to have an initial concentration of 12.0 mmol L<sup>-1</sup> Fe(III) and/or 2.00 mmol L<sup>-1</sup> 96  $NH_4^+$ , were incubated in a series of 50 ml vials with an oxygen-free headspace, created 97 by purging with a  $CO_2:N_2$  (80:20) mixture. Triplicate samples were collected 98 destructively every two days to analyze iron and nitrogen species. 99

100 The second incubation was conducted to extend the anoxic incubation with 101 ferrihydrite to 180 days, with repeated NH<sub>4</sub>Cl additions after the NH<sub>4</sub><sup>+</sup> in solution was 102 exhausted. The initial concentration of Fe(III) was 25.0 mmol L<sup>-1</sup> and 1.00 mmol L<sup>-1</sup> 103 NH<sub>4</sub><sup>+</sup> was added on days 4, 24, and 60, furthermore, 0.20 mmol L<sup>-1</sup> NaHCO<sub>3</sub> was added

on day 50 and day 90 of the incubation. On day 125, incubation vials were divided into 104 two sets to study the effect of different inorganic carbon contents on Feanmox. Either 105 1.20 mmol L<sup>-1</sup> or 0.20 mmol L<sup>-1</sup> of NaHCO<sub>3</sub> plus 2 mmol L<sup>-1</sup> of NH<sub>4</sub>Cl were added to 106 each set. NaHCO<sub>3</sub> was then added every 10 days, which increased the soil pH to  $\sim$ 5 in 107 the samples amended with 1.20 mmol L<sup>-1</sup> of NaHCO<sub>3</sub>. For this incubation, samples 108 were collected every four days. Finally, soil samples collected on day 180 of the 109 incubations were used to enrich the Fearmox bacteria in a membrane reactor. To study 110 how the organic carbon content affects the Fearmox bacteria,  $1.00 \text{ mmol } \text{L}^{-1}$  sodium 111 citrate was also supplied on day 125 to four of the 1.20 mmol L<sup>-1</sup> NaHCO<sub>3</sub> amended 112 samples. 113

In the third experiment, inorganic nitrogen species were quantified through 114 incubations in the presence of C<sub>2</sub>H<sub>2</sub>. Soil slurries were first incubated for 90 days in 115 eighty 50 mL vials, with an initial Fe(III) concentration of 25 mmol  $L^{-1}$ . One mmol  $L^{-1}$ 116 NH<sub>4</sub>Cl and 0.20 mmol  $L^{-1}$  NaHCO<sub>3</sub> was added on days 24, 60, and 90. After this 117 incubation, 5 mL of pure  $C_2H_2$  gas were added to 40 vials, which resulted in a finial  $C_2H_2$ 118 concentration of 100  $\mu$ mol L<sup>-1</sup>. Samples with and without C<sub>2</sub>H<sub>2</sub> were then incubated 119 anaerobically for 20 days. The headspace gas was sampled every 24 hours for N<sub>2</sub>O 120 analysis, and soil samples were analyzed every two days for Fe and N species. 121

122

#### 123 **2.3 Continuous flow membrane Feammox reactor**

Soil samples collected on day 180 from the incubation with ferrihydrite, NH<sub>4</sub>Cl, and

| 125 | 1.20 mmol $L^{-1}$ NaHCO <sub>3</sub> additions were inoculated into a continuous flow membrane                                                                                    |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 126 | reactor (Abbassi et al., 2014), which was operated under anaerobic conditions by                                                                                                   |
| 127 | constantly purging $N_2$ trough the reactor's headspace at a room temperature (25 $^\circ\!\mathrm{C}$ ), and                                                                      |
| 128 | with a 48 hour hydraulic retention time.                                                                                                                                           |
| 129 | The enrichment medium contained the following components per liter: 177 mg                                                                                                         |
| 130 | NH <sub>4</sub> Cl, 77.9 mg (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> , 19.8 mg NaHCO <sub>3</sub> , 71.0 mg KHCO <sub>3</sub> , 9.00 mg KH <sub>2</sub> PO4, 100            |
| 131 | mg MgSO <sub>4</sub> •7H <sub>2</sub> O,and 60.0 mg CaCl <sub>2</sub> •2H <sub>2</sub> O. After autoclaving, 1 mL trace element                                                    |
| 132 | solution (Van de Graaf <i>et al.</i> , 1996) was added to the medium. 50.0 mmol $L^{-1}$                                                                                           |
| 133 | ferrihydrite were added once every two weeks directly into the reactor. To aid in                                                                                                  |
| 134 | maintaining anaerobic conditions, $0.10 - 0.20 \text{ mmol}\text{L}^{-1}$ sodium citrate was feed to the                                                                           |
| 135 | reactor about twice per month. pH was controlled at around 4~5, and dissolve oxygen                                                                                                |
| 136 | was $< 0.10$ mg/L. Samples form the outflow were collected every two days, and sludge                                                                                              |
| 137 | samples from reactor were collected and kept at -20 °C for molecular biology analysis.                                                                                             |
| 138 | Finally, <sup>15</sup> N isotope tracer incubations were conducted using slurries collected form                                                                                   |
| 139 | the stable Feammox membrane reactor. Five treatments ( $n = 3$ per treatment) were                                                                                                 |
| 140 | conducted: (1) control with only anoxic DI water; (2) $^{15}$ NH <sub>4</sub> Cl addition; (3) $^{15}$ NH <sub>4</sub> Cl +                                                        |
| 141 | Fe(III) addition; (4) $^{15}$ NH <sub>4</sub> Cl and C <sub>2</sub> H <sub>2</sub> addition; (5) $^{15}$ NH <sub>4</sub> Cl, C <sub>2</sub> H <sub>2</sub> , and Fe(III) addition. |
| 142 | The headspace gas of each 50mL incubation vial was sampled every 24 hours for $^{15}N_2O$                                                                                          |
| 143 | analysis (Supplementary Information 1.4).                                                                                                                                          |
|     |                                                                                                                                                                                    |

**2.4 Chemical analyses** 

| 146 | For each sample collection during the incubations, a set of vials was destructively               |
|-----|---------------------------------------------------------------------------------------------------|
| 147 | sampled in a glove box under oxygen-free conditions and the pH was measured                       |
| 148 | immediately using a pH electrode. An extraction with 0.5N HCl was conducted for 24                |
| 149 | hours at room temperature to determine acid-extractable $Fe(II)$ and $NH_4^+$ concentrations      |
| 150 | in the soils. Fe(II) was analyzed using the ferrozine assay method (Stookey, 1970;                |
| 151 | Komlos et al., 2007). Extraction efficiency of Fe(II) was affected by the HCl                     |
| 152 | concentration and the extraction time. About 5-10 % more Fe(II) could be extracted with           |
| 153 | either 1N HCl extraction over 24 hours or with 0.5 N HCl over 36 hours as opposed to              |
| 154 | 0.5 N HCl over 24 hours. Furthermore, after more Fe(II) was produced in the system                |
| 155 | with increasing incubation time, the Fe(II) extraction efficiency improved. Only a 1-2%           |
| 156 | difference was observed in the Fe(II) extracted over 24 hours using 0.5N vs. 1N HCl               |
| 157 | towards the end of the incubation period. Clays, present in the soil incubations,                 |
| 158 | typically sorb Fe(II) more efficiently when the total Fe(II) is low, furthermore ferrihydrite     |
| 159 | is slowly converted to magnetite, resulting in relatively different associations to different     |
| 160 | phases of the Fe(II) over the duration of the incubation. All of which leads to                   |
| 161 | incomplete Fe(II) extractions, especially when the Fe(II) is low. Here we report Fe(II)           |
| 162 | data obtained via 0.5N HCl extractions over 24 hours to ensure that the methods and               |
| 163 | hence data are comparable to those reported by other researchers focusing on iron                 |
| 164 | reduction and iron bioavailability.                                                               |
| 165 | NH4 <sup>+</sup> was analyzed using a Dionex <sup>™</sup> Ion Chromatograph (LC3000) with a CS-16 |

166 Colum and a CS-16 guard column (flow rate =  $1.00 \text{ mL min}^{-1}$ , detection limit = 0.012

| 167 | ppm). NO <sub>3</sub> <sup>-</sup> and NO <sub>2</sub> <sup>-</sup> were extracted with DI water for 1 hour anaerobically, and |
|-----|--------------------------------------------------------------------------------------------------------------------------------|
| 168 | measured via Ion Chromatography, using an AS-22 Column along with an AG-22 guard                                               |
| 169 | column (flow rate = $1.20 \text{ mL min}^{-1}$ , detection limit = $0.016 \text{ ppm}$ ). For the total organic                |
| 170 | carbon (TOC) and total nitrogen (TN) analyses a Shimadzu TOC-5000(A) was used.                                                 |
| 171 | N <sub>2</sub> O concentrations were determined on a gas chromatograph Shimadzu 2014 equipped                                  |
| 172 | with an electron capture detector.                                                                                             |

#### 174 **2.5 DNA and RNA isolation**

DNA and RNA samples were extracted from soils collected at the wetland prior to any laboratory incubation, from the samples taken at different time points during the incubation experiments and from the reactor. DNA was extracted from 500 mg soil or sludge samples using the FastDNA<sup>®</sup> spin kit for soil (MP Biomedicals, USA) as described by the manufacturer, and RNA using the FastRNA<sup>®</sup> pro Soil Direct Kit. The concentrations were measured using a Nano-drop 2000 spectrophotometer (Thermo Scientific, USA).

182

### 183 2.6 PCR-DGGE and 454 pyrosequencing Analysis

Bacterial universal 16S rRNA gene primer sets V3-2/V3-3 (Jensen *et al.*, 1998) were used for PCR amplification (Table1). DGGE was performed with an 8% polyacrylamide gel containing a gradient from 40% to 80% denaturant using the gradient gel electrophoresis system (C.B.S. SCIENTIFIC, USA). The electrophoresis was

| 188 | carried out at 60 V for 15 hours. After that the gel was stained with 0.1 $\mu$ L mL <sup>-1</sup> SYBR |
|-----|---------------------------------------------------------------------------------------------------------|
| 189 | Green I and visualized with an UV transilluminator. All visible bands were excised                      |
| 190 | from the gel and used as templates for re-amplification, using the primer set V3-1/ V3-2                |
| 191 | (Jensen et al., 1998) and followed by cloning (Table1). PCR products were purified via                  |
| 192 | agarose gel extraction and cloned into a pGEM-T vector (Promega). A total of 10 to 30                   |
| 193 | positive recombinant clones for each band were identified by colony PCR, and were sent                  |
| 194 | for sequencing to avoid erroneous interpretations. DNA sequencing was then conducted                    |
| 195 | by Genewiz, Inc. Bacteria were classified and the phylogenetic tree of                                  |
| 196 | Acidimicrobiaceae-related sequences was constructed using the Bayesian inference                        |
| 197 | (Huelsenbeck et al., 2001) (Supplementary Information 1.2). Sequences obtained in this                  |
| 198 | study are available in the GenBank database under accession numbers KC581755 -                          |
| 199 | KC581779. To further confirm the changes in the bacterial community, 454                                |
| 200 | pyrosequencing was performed with samples collected from the incubation on days 0, 30,                  |
| 201 | 90, 160 and from the membrane reactor after 150 days of reactor operation.                              |
| 202 | Domain-specific primers Bact-338F1/909R, targeting the V3-V5 region of the 16S rDNA                     |
| 203 | of bacteria were amplified and sequenced following methods suggested by Pinto et al.                    |
| 204 | (2012) (Supplementary Information 1.2)                                                                  |

# 206 **2.7 Quantitative PCR (qPCR) assay**

qPCR experiments were carried using a StepOnePlus<sup>™</sup> Real-Time PCR System
(Life Technologies, USA), represented by 16S rRNA genes, using primer sets

| 209 | 1055f/1392r for total bacteria (Harms et al., 2003), Amx368f/Amx820r for anammox                                              |
|-----|-------------------------------------------------------------------------------------------------------------------------------|
| 210 | bacteria (Schmid et al., 2000; Schmid et al., 2003), acd320f - 432r which we developed                                        |
| 211 | for Acidobacteriaceae bacteria, and acm342f - 439r which we developed for                                                     |
| 212 | Acidimicrobiaceae bacteria (Supplementary Information 1.3) (Table1). For the                                                  |
| 213 | detection of denitrifiers, AOB and AOA, denitrifying functional genes (nirS and nirk),                                        |
| 214 | ammonia monooxygenase structural gene (amoA) were quantified with primer sets                                                 |
| 215 | NirS3F/NirS5R, NirK1F/NirK5R (Braker et al., 1998, amoA-1F/ amoA-2R(Rotthauwe et                                              |
| 216 | al., 1997) for AOB-amoA and Arch amoA-F/ amoA-R for AOA-amoA(Francis et al.,                                                  |
| 217 | 2005), respectively (Rotthauwe et al., 1997). Primer pairs CrenamoA23f /616r, was                                             |
| 218 | also used to quantify the thaumarchaeal amoA genes which represented acidophilic                                              |
| 219 | ammonia oxidizers (Tourna et al., 2008), For DNA quantification, each qPCR mixture                                            |
| 220 | (20 $\mu L)$ was composed of 10 $\mu L$ of SYBR Premix Ex Taq $^{\ensuremath{\mathbb{R}}}$ II (Takara, Japan), 0.8 $\mu L$ 10 |
| 221 | $\mu M$ of each primer, and $\sim$ 10 ng DNA template. RNA quantification was conducted                                       |
| 222 | through a real-time quantitative reverse transcription-PCR (RT-qPCR) analysis, by using                                       |
| 223 | the One Step SYBR® PrimeScript® RT-PCR Kit (Takara, Japan) according to the                                                   |
| 224 | manufacturer's recommendations. Thermal cycling conditions for total 16S rDNA, nirS                                           |
| 225 | and AOB-amoA gene numbers was initiated for 30 s at 94 °C, followed by 40 cycles of 5                                         |
| 226 | s at 94 °C, 30 s at 57 °C, and 30 s at 70 °C. 16S rDNA numbers of anammox,                                                    |
| 227 | Acidobacteriaceae and Acidimicrobiaceae bacteria were performed at 56°C, 55 °C, and                                           |
| 228 | 58 °C as annealing temperature respectively, with the same program. For AOB-amoA                                              |
| 229 | gene and thaumarchaeal <i>amoA</i> genes, annealing temperature was 53 °C and 55°C, and the                                   |

annealing time was adjusted to 45s. For RNA quantification, the cycling conditions were identical to those described for measuring gene numbers, with the exception that an

initial incubation was conducted for 5 min at 42°C to facilitate reverse transcriptase
activity. Each assay contained a standard using a serial dilution of plasmids containing
specific target genes, independent triplicate templates for each soil sample, and triplicate
no template controls (NTC).

236

230

231

#### **3. RESULTS**

#### **3.1** Change in Fe and N species under different operational conditions

After incubating the pre-treated soil slurry with the four different Fe(III) sources for 30 239 days, only samples to which either ferrihydrite or goethite had been added showed 240 measurable  $NH_4^+$  oxidation (Fig. 1 and Fig. S1). In samples incubated with ferric citrate 241 and NH<sub>4</sub>Cl, Fe(III) reduction was much faster than in those supplied with Fe(III) oxides, 242 but the  $NH_4^+$  concentration remained fairly constant (Fig. 1). No detectable Fe(II) 243 reduction or NH<sub>4</sub><sup>+</sup> oxidation was found the sterilized soils amended with ferrihydrite and 244  $NH_4Cl$ , (Fig. S2). Faster iron reduction and  $NH_4^+$  removal was observed in ferrihydrite 245 than in goethite-amended sediments (Fig. S1). 246

Since samples incubated with ferrihydrite and NH<sub>4</sub>Cl resulted in the fastest NH<sub>4</sub><sup>+</sup> oxidation, the anaerobic incubation with ferrihydrite was extended to 180 days. Ferrihydrite as the Fe(III) source results in a larger negative  $\triangle G$  value than goethite (Clement *et al.*, 2005). The NH<sub>4</sub><sup>+</sup> oxidation rate increased as NH<sub>4</sub>Cl was supplied repeatedly, especially after 125 days of incubation when the NaHCO<sub>3</sub> additions were increased from 0.20 to 1.20 mmol L<sup>-1</sup> in addition to the 2.00 mmol L<sup>-1</sup> NH<sub>4</sub><sup>+</sup> added. The increased NaHCO<sub>3</sub> dosing also increased the generation of Fe(II) (Fig. 2a,b). During the 180-day incubation, the ratio of Fe (II) produced to  $NH_4^+$  removed gradually increased until it reached 5.3:1 by day 160 after which it remained stable (Fig. S6).

256

 $NO_2^-$  appeared within a few days after the addition of  $NH_4^+$ , with a maximum 257 concentration 0.44  $\pm$  0.17 mmol L<sup>-1</sup> in the second NH<sub>4</sub><sup>+</sup> oxidation cycle. NO<sub>2</sub><sup>-</sup> did not 258 accumulate in the system and was immediately consumed after generation (Fig. S3a). 259  $NO_3$  production showed a similar pattern to that of  $NO_2$  (Fig. S3a), and TN loss similar 260 to the decrease in NH4<sup>+</sup> (Fig. S3b). During 180 days of incubation, the system 261 experienced a loss of TN of  $57.2 \pm 3.13 \text{ mg L}^{-1}$ . The DOC content fluctuated slightly in 262 the early stage of incubation, but overall, the DOC concentration was relatively stable at 263 around  $45 \sim 50 \text{ mg L}^{-1}$  (Fig. S3b). 264

A 64.5% NH<sub>4</sub><sup>+</sup> removal, between inflow and outflow was achieved in the membrane reactor after 150-days of operation.

267

#### 268 3.2 Phylogenetic analysis of the microbial community based on 16S rRNA gene

All visible bands observed in the DGGE analysis (significant bands were marked, see Fig. 3) were excised from the gel and sequenced after cloning. Clone libraries from 12 samples resulted in 721 sequences of partial 16S rRNA gene fragments, and six groups of bacteria were classified via a phylogenetic analysis (Table 1 and Table S1). During this 180-day anaerobic incubation with ferrihydrite and NH<sub>4</sub>Cl, the microbial communities shifted dramatically and the microbial diversity decreased with time (Fig. 3, lane 1-4).

| 275 | Some DGGE bands disappeared gradually with time, such as band A5 and band A7.              |
|-----|--------------------------------------------------------------------------------------------|
| 276 | Band A5, represents a dissimilatory iron-reducing bacteria, Geobacter sp., which existed   |
| 277 | in this Fe(III)-rich wetland soil and reappeared for a short time during the initial       |
| 278 | anaerobic incubation. Band A7, represents an ammonia-oxidizing bacterium,                  |
| 279 | Nitrosomonas sp., which showed a strong presence in the samples at 30 days of              |
| 280 | incubation and was attenuated after longer incubation times. In contrast, DGGE bands       |
| 281 | A6, A8 and A9 became more significant as the incubation time increased, showing that       |
| 282 | there were three groups of bacteria dominating in the system after 160 days of incubation. |
| 283 | Band A6, represents a group of bacteria belonging to the Acidimicrobiaceae family.         |
| 284 | Bacteria from the Acidobacteriaceae family are represented by band A8. Some species        |
| 285 | in this family have been described as iron reducers and obligate heterotrophs (Kishimoto   |
| 286 | et al, 1991; Rowe et al., 2007; Coupland and Johnson, 2008). DGGE band A9                  |
| 287 | represents bacteria of the Rhodocyclaceae family. This family contains mainly              |
| 288 | denitrifying bacteria, which exhibit very versatile metabolic capabilities (Smith et al,   |
| 289 | 2005; Huang et al., 2011).                                                                 |

Microbial communities also differed between samples incubated with various Fe(III) sources, and between samples with or without the addition of inorganic carbon. Samples supplied with either ferric chloride or ferric citrate as the Fe(III) source plus NH<sub>4</sub><sup>+</sup>, and samples supplied with just ferrihydrite and no NH<sub>4</sub><sup>+</sup>, had a decreased diversity in their bacterial communities (Fig. 3, lane 5-7). Samples supplied with both organic carbon (1.00 mmol L<sup>-1</sup> sodium citrate) and inorganic carbon (1.20 mmol L<sup>-1</sup> NaHCO<sub>3</sub>) had a higher bacterial diversity (DGGE Fig.3, lane 8).

Changes in the microbial community after 180 days of incubation were also 297 confirmed via 454-pyrosequencing, and the obvious growth of Actinobacteria, 298 Acidobacteria and  $\beta$ -Proteobacteria groups (which band A6, A8 and A9 belong to) was 299 consistent with the DGGE results, where the Actinobacteria cell number increased the 300 most (Fig. 4). *Planctomycetes* phylum, with which anammox bacteria are affiliated, was 301 detected in the first 90 days of incubation, but disappeared or was below detection on day 302 160. Actinobacteria were also the dominant species in the Fearmox enrichment reactor 303 based on the results of the 16S rDNA library obtained via pyrosequencing (Fig. 4). 304 The Acidimicrobiaceae bacterium, represented by band A6, which belongs to the 305 Actinobacteria phylum, was the dominant species in the incubation experiments after 180 306 days of incubation (14.8% in total 16S rRNA gene sequences) as well as in the membrane 307 reactor after 150 days of operation (40.2% in total 16S rRNA gene sequences). 308 Its similarity to other *Acidimicrobiaceae*-related sequences is shown using a phylogenetic 309 tree (Fig. 5). Unlike the bacteria represented by band A8 and A9, which were also 310 found in samples that did not show Fearmox transformations, this Acidimicrobiaceae 311 bacterium was only detected in incubations (or reactor) that were augmented 312 simultaneously with ferrihydrite, NH<sub>4</sub>Cl, and NaHCO<sub>3</sub> and have shown Feammox activity 313 (Fig. 3). 314

315

316 3.5 Changes of bacterial abundance and activity during incubations and in the

#### 317 reactor

The total bacterial abundance determined via the 16S rRNA gene copy number, 318 decreased during the 180-day incubation (Fig. 6). Both, 16S rRNA gene and rRNA 319 fragment copies of Acidimicrobiaceae bacteria (DGGE band A6), increased during the 320 incubation, particularly after 90 days. The rRNA numbers increased slowly during the 321 322 first 3 months and doubled between day 130 and day 140 of the incubation period (Fig. 6). rRNA as a biomarker for changes of protein level, even though not as specific as mRNA, 323 is a good indicator for bacterial activity (Poulsen et al., 1993; Park et al., 2010). The 324 abundance of Acidobacteriaceae bacteria (DGGE band A8), and that of denitrifiers 325 (represented by the number of *nirS* gene and *nirK* gene), increased over the 180-day 326 incubation (Fig. S4a, b, c), although less than the Acidimicrobiaceae bacteria (DGGE 327 band A6). Growth of *nirS* and *nirK* gene showed similar trends, although the number of 328 *nirK* gene was two orders lower than *nirS* (Fig. S4b, c). Increase in the denitrifier 329 activity was most likely stimulated by the  $NO_2^-$  generated via Featmox. The number of 330 the *amoA* gene, representing the abundance of ammonia-oxidizing bacteria, decreased 331 sharply with time and was hardly detected after 90 days of incubation (Fig. S4e). 332 Through quantification of thaumarchaeal *amoA* genes, none of the acidophilic ammonia 333 oxidizers was detected in our system. 334

In the Featmox reactor, the copy number of *Acidimicrobiaceae* bacterium A6,

Anammox bacteria and *nirS* gene were  $0.37 \times 10^7$ ,  $0.13 \times 10^6$ , and  $0.92 \times 10^6$  copies g<sup>-1</sup> dw,

respectively, while the amoA gene was not detected.

#### 339 **3.6** Changes of bacterial abundance and activities with NaHCO<sub>3</sub> amendment

Abundance and activity of Acidimicrobiaceae bacteria, represented by band A6, were 340 compared between samples incubated under the same conditions except the amounts of 341 NaHCO<sub>3</sub> added (0.20 mmol  $L^{-1}$  vs. 1.20 mmol  $L^{-1}$ ). From day 125 to day 180 of the 342 incubation, both 16S rRNA gene and rRNA fragment numbers of Acidimicrobiaceae 343 bacteria were higher in the soils with the higher inorganic carbon content. The 16S 344 rRNA gene copies of samples augmented with 1.20 mmol L<sup>-1</sup> NaHCO<sub>3</sub> were four times 345 higher than those in samples that had been augmented with only 0.20 mmol L<sup>-1</sup> NaHCO<sub>3</sub> 346 (Fig. 6). The rRNA copies of the Acidimicrobiaceae bacteria, showed even larger 347 differences in response to the amounts of NaHCO<sub>3</sub> added. In the samples augmented 348 with 1.20 mmol L<sup>-1</sup>NaHCO<sub>3</sub>, the rRNA copy number increased from  $0.04 \pm 0.06 \times 10^6$  to 349  $0.19 \pm 0.09 \times 10^6$  copies g<sup>-1</sup> dw over 50 days of incubation (day 130 to day 180). 350 However, in the samples to which only 0.2 mmol L<sup>-1</sup> NaHCO<sub>3</sub> were added on day 125, the 351 rRNA number gradually deceased from  $0.29 \pm 0.10 \times 10^5$  to  $0.19 \pm 0.05 \times 10^5$  copies g<sup>-1</sup> dw 352 during the same 50 days incubation (Fig. 6). 353

354

# 355 **3.7** Nitrogen species changes in samples incubated in the presence of C<sub>2</sub>H<sub>2</sub>

 $C_2H_2$  can inhibit the oxidation of  $NH_4^+$  to  $NO_2^-$  under aerobic conditions, and the reduction of N<sub>2</sub>O to N<sub>2</sub> as well as the anammox pathway under anaerobic conditions (Yoshinari *et al.*, 1977; Jensen *et al.*, 2007; Kartal *et al.*, 2011). To gain further

insights into the nitrogen removal process observed, incubations with C<sub>2</sub>H<sub>2</sub> were 359 After 20 days of incubation, less  $NH_4^+$  was oxidized in the samples conducted. 360 amended with  $C_2H_2$ , compared to those incubated without  $C_2H_2$  (Fig. S5a). NO<sub>2</sub>, which 361 is postulated to be the direct product of the NH<sub>4</sub><sup>+</sup> oxidation, accumulated slowly in the 362 samples incubated with  $C_2H_2$  (Fig. S5b). NO<sub>3</sub> reached a higher concentration in 363 samples without  $C_2H_2$  than in samples incubated with  $C_2H_2$  (Fig. S5c). N<sub>2</sub>O, a product 364 of NO<sub>2</sub><sup>-</sup> reduction, accumulated in the samples incubated with C<sub>2</sub>H<sub>2</sub>, which inhibits the 365 reduction of  $N_2O$  to  $N_2$  (Fig. S5d). Fe(II) production was not much affected by the 366 presence of  $C_2H_2$ , and after 20 days incubation was  $4.36 \pm 0.72$  and  $5.71 \pm 0.67$  mmol L<sup>-1</sup> 367 in sample incubated with and without  $C_2H_2$ , respectively. 368

In the <sup>15</sup>N isotope tracer incubations, detectable <sup>15</sup>N-N<sub>2</sub>O was only found in samples amended with both, <sup>15</sup>NH<sub>4</sub>Cl and Fe(III), with <sup>15</sup>N-N<sub>2</sub>O production rates 2.14±0.059 or 0.072±0.023  $\mu$ g g<sup>-1</sup> d<sup>-1</sup> in samples incubated with or without C<sub>2</sub>H<sub>2</sub> treatment (Table S2).

#### 373 **DISCUSSION**

DGGE band A5 represents dissimilatory iron-reducing bacteria, which appeared for a short time at the beginning of the anaerobic incubation. For longer incubation times these heterotrophic bacteria decreased rapidly (Fig. 3). Over a 25 day incubation period, more than three times the mass of Fe(II) was produced in samples amended with ferrihydrite and  $NH_4^+$  as compared to the samples amended only with ferrihydrite, indicating that most of the Fe(III) reduction came from the Featmox reaction, and not
from dissimilatory Fe(III) reduction (Fig. 1a vs. Fig S2a).

| 381 | AOB represented by DGGE band A7 (Fig. 3), as well as the amoA gene, decreased                      |
|-----|----------------------------------------------------------------------------------------------------|
| 382 | after 30 days of incubation (Fig. S4e). Also, no AOA or acidophilic ammonia oxidizers              |
| 383 | were detected although the pH condition seems suitable for them in these incubations.              |
| 384 | Oxygen deficiency was the most likely reason for the decline in AOB in this system over            |
| 385 | time (Laanbroek et al., 1994). Even though a small amount of AOB would be enough                   |
| 386 | for $NH_4^+$ oxidation, in our control samples to which no Fe(III) were added which AOB            |
| 387 | do not required, no $NH_4^+$ consumption was detected (Fig. S2). Moreover, the decrease            |
| 388 | in <i>amoA</i> gene at a time of increasing $NH_4^+$ oxidation also indicates that neither AOB nor |
| 389 | acidophilic ammonia oxidizers were the drivers of the $NH_4^+$ oxidation in the later              |
| 390 | incubation times.                                                                                  |

An uncultured Acidimicrobiaceae bacterium became the dominant species during 391 the 180-day anaerobic incubation period, increasing from 0.92% on day 0 in terms of cell 392 numbers to 14.8% on day 160. In the incubation experiments conducted (which 393 included controls with only  $NH_4^+$ , only iron, autoclaved, and various Fe(III) sources), this 394 *Acidimicrobiaceae* bacterium was only detected and growing in samples to which  $NH_4^+$ 395 was supplied as an electron donor, ferrihydrite was supplied as electron acceptor, and 396 NaHCO<sub>3</sub> was supplied as a carbon source (Fig. 1, Fig.3, Fig.S1, Fig S2). 397 The abundance and activity of this Acidimicrobiaceae bacterium increased along with the 398 Fearmox activity during the incubations. During the incubation period its rRNA 399 changed from  $(0.22 \pm 0.01) \times 10^5$  copies g<sup>-1</sup> dw to  $(0.28 \pm 0.07) \times 10^6$  copies g<sup>-1</sup> dw, 400 indicating a substantial increase in its activity (Fig. 6). In the continuous flow 401

membrane reactor, which had a high  $NH_4^+$  removal and Fe(III) reduction rate, this 402 Acidimicrobiaceae bacterium was enriched from an initial 14.8% to 40.2% after 150 days 403 operation, and no other known  $NH_4^+$  oxidizers (AOB or anammox) were detected (Fig. 4). 404 405 These results indicated that this Acidimicrobiaceae bacterium might play an important role in the Featmox reactions described in this study. According to a phylogenetic 406 analysis, this bacterium has a 92% identity with *Ferrimicrobium acidiphilum* sp. (Table 407 408 1). F. acidiphilum, which belongs to the Acidimicrobiaceae family, was first isolated from mine environments (Johnson et al., 2009), and F. acidiphilum strain T23 is the only 409 pure strain with a comprehensive characterization. Uncultured Ferrimicrobium sp. has 410 been detected in mine water, but so far not in wetland soils (Gonzalez-Toril et al., 2003; 411 Johnson et al., 2009; Bruneel et al., 2011). Ferrimicrobium sp. is an acidophilic 412 heterotrophic ferrous iron oxidizing bacterium, which can also reduce Fe(III) under 413 anoxic conditions (Johnson et al., 2009). The uncultured Acidimicrobiaceae bacterium, 414 also has a 90% identity with Acidimicrobium ferrooxidans (Table 1), a facultative 415 autotroph in the same family, which can reduce Fe(III) in anaerobic environments while 416 417 oxidizing sulfide to sulfur and exists widely in soil environments (Clark and Norris, 1996; Bond et al., 2000; Hartmann et al., 2009). 418

According to a phylogenetic comparison with similar clones from studies reported in 419 the GenBank (Fig. 5), and taking into account its special growth characteristics 420 (stimulated by inorganic carbon, oxidizing  $NH_4^+$  coupled to Fe(III) reduction), also its 421 gradual activity increase with increased Feammox activity, as well as a strong link 422 between it and a Feammox enrichment reactor, this uncultured Acidimicrobiaceae 423 bacterium A6 is probably a previously unreported species in the Acidimicrobiaceae 424 family that might be either responsible or play a key role in the Feammox process 425 described here. Acidimicrobiaceae bacterium A6 was more active and the Feammox 426 pathway was faster in samples with higher NaHCO<sub>3</sub> amendments (Fig. 2 and 6), which, in 427 addition to the fact that  $\Delta G$  in Equation 1 is negative, indicates that if this 428

429 *Acidimicrobiaceae* bacterium is actually responsible for conducting the Feammox 430 reaction as depicted in equation 1, it may be an autotroph. Growth of *nirS* gene 431 suggested that denitrification pathways were also active in the incubations described here. 432  $NO_2^-$  that was being produced during the anaerobic  $NH_4^+$  oxidation was reduced to  $N_2$  by 433 denitrifiers, and  $NO_2^-$  did not accumulate in the system.

The Fearmox reaction studied here proceeded only when iron oxides (ferrihydrite or 434 goethite) were supplied as electron acceptor, whereas samples incubated with ferric 435 chloride or ferric citrate as the Fe(III) source showed no measurable NH<sub>4</sub><sup>+</sup> oxidation (Fig. 436 437 1 and Fig. S1). In the incubations to which ferric citrate was added as the Fe(III) source, Fe(III) was reduced rapidly by dissimilatory iron reducers, using organic carbon as 438 electron donor. The DGGE results for incubations with ferric citrate (Fig. 3, lane 7) show 439 that the most dominant species was an *Actinobacterium* (Table S1), known to reduce iron 440 441 under anaerobic conditions (Lin et al., 2007; Lentini et al., 2012). Acidimicrobiaceae *bacterium* A6 was not detected in these incubations. Since acidic conditions as well as 442 minimal dissolved Fe(II) and  $NO_2^{-}$  concentrations are required to make the Feammox 443 reaction energetically favorable as shown in Equation 1, the presence of iron oxides as 444 445 the main Fe(III) source might may have helped to maintain the concentrations of Fe(II) in solution below the detection limit through the incubation since iron oxides can sorb Fe(II) 446 and/or incorporate it into their structure. 447

448 Various  $NH_4^+$  oxidation products, i.e.  $NO_3^-$ ,  $NO_2^-$  and  $N_2$ , generated through the 449 Feammox process are thermodynamically feasible, and were reported in different 450 Feammox studies (Sawayama, 2006; Shrestha *et al.*, 2009; Yang *et al.*, 2012). Because 451 there was no initial nitrate or nitrite in the system, because all experiments were 452 conducted under strict oxygen free conditions, and because of the rapid decrease of *amoA* 453 genes, neither  $NO_3^-$  reduction nor aerobic  $NH_4^+$  oxidation could be the reason for the 454 formation of  $NO_2^-$  during the incubations. In all incubations where  $NH_4^+$  was removed, the production of  $NO_2^-$  was observed.  $NO_2^-$  did not build up and, given the presence of

455

| 456 | denitrifiers, it is likely that the NO <sub>2</sub> <sup>-</sup> produced was rapidly reduced.                                                                 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 457 | When $C_2H_2$ was used to stop the reduction of $N_2O$ to $N_2$ , the total $N_2O$ (0.72 ± 0.23                                                                |
| 458 | mmol L <sup>-1</sup> ) plus NO <sub>2</sub> produced (0.13 $\pm$ 0.07 mmol L <sup>-1</sup> ) was equal to the NH <sub>4</sub> <sup>+</sup> consumed,           |
| 459 | showing that $NH_4^+$ was not oxidized directly to $N_2$ in our samples. <sup>15</sup> N-NH <sub>4</sub> <sup>+</sup>                                          |
| 460 | incubations, as an extension of $C_2H_2$ treatment, showed that <sup>15</sup> N-N <sub>2</sub> O built up when                                                 |
| 461 | <sup>15</sup> NH <sub>4</sub> Cl was added as the NH <sub>4</sub> <sup>+</sup> source (Table S2), demonstrating that NH <sub>4</sub> <sup>+</sup> was oxidized |
| 462 | during the Feammox process rather than be adsorbed or taken uptake by microorganisms                                                                           |
| 463 | in the system                                                                                                                                                  |

Although nitrification might happen in suboxic environments (oxygen  $<5\mu$ M, 464 Lam *et al.*, 2007),  $NH_4^+$  oxidation in the presence of  $C_2H_2$  has never been reported. 465  $C_2H_2$  is an inhibitor of ammonia monooxygenase (AMO), and can restrain aerobic  $NH_4^+$ 466 oxidizers from using oxygen by binding covalently to AMO (Hynes and Knowles. 1982: 467 Hyman and Wood, 1985; Gilch et al., 2009). C<sub>2</sub>H<sub>2</sub> can also inhibit the NH<sub>4</sub><sup>+</sup>-activation 468 step of anammox cells, which use  $NO_2^-$  as the oxidant (Kartal *et al.*, 2011). Therefore 469 these Fearmox bacteria might differ from common NH4<sup>+</sup> oxidizers, by using an 470 alternative NH4<sup>+</sup> oxidation pathway that is not inhibited by C2H2, and AMO might not 471 play a role in Feammox. The fact that  $NH_4^+$  oxidation was not affected by the presence 472 of acetylene is a further indication that AOB are not responsible for this process since 473 they would be affected by acetylene. Furthermore, in the isotope tracer incubations, 474 <sup>15</sup>N-N<sub>2</sub>O was below the detection limit in samples to which Fe(III) was not supplied, 475 showing again that  $NH_4^+$  oxidation proceeded only when iron was being reduced. 476

The role of anammox during the incubations was also evaluated. During the incubations the ratio of  $NH_4^+$  oxidized to Fe(III) reduced increased gradually from 1:1.9 to 1:5.3 (Fig.

479 S6), which is close to the stoichiometry of 1:6, shown in Equation 1. Although the 480 discrepancies in the Feanmox stoichiometry between iron and  $NH_4^+$  are attributed in part 481 to incompletely Fe(II) extraction, the influence of anammox activity in the earlier 482 incubations would have contributed to a lower Fe(II) produced to  $NH_4^+$  removed ratio 483 than the theoretical value of 1:6.

The Fearmox reaction became more dominant in terms of NH<sub>4</sub><sup>+</sup> oxidation after 125 days 484 of incubation due to a relative increase in the activity of the Feanmox bacteria. A 485 parallel pathway to Feammox, such as anammox, could as mentioned above, explain the 486 lower stoichiometric ratio, especially at earlier incubation times. In the samples taken 487 before the incubation,  $0.17 \pm 0.05 \times 10^6$  copies g<sup>-1</sup> dw of anammox rRNA gene were found, 488 which decreased to  $0.09 \pm 0.06 \times 10^5$  on day 130 (Fig. S4d). We postulate that anammox 489 was responsible for some initial  $NH_4^+$  and  $NO_2^-$  removal, and denitrification became 490 more dominant for NO<sub>2</sub><sup>-</sup> removal later during the incubation period (Fig. 5 and Fig. 491 S4b,d).  $NH_4^+$  removal via Anammox in the early incubations may also explain why the 492 observed NH<sub>4</sub><sup>+</sup> oxidation rates and the abundance of *Acidimicrobiaceae A6* did not change 493 proportionally over the full incubation period. 494

The results and analyses described here have shown that a Fearmox enrichment 495 reactor has the capacity of oxidize NH4<sup>+</sup> coupled to iron reduction under anaerobic 496 conditions, and that an uncultured Acidimicrobiaceae bacterium A6, which became the 497 dominant species over time might be responsible for this Feanmox reaction. Without 498 access to samples from other reported biological  $NH_4^+$  oxidation by Fe(III) reducers 499 500 (Sawayama, 2006; Yang *et al.*, 2012), it is not possible to know if the organisms for the processes reported by these investigators are the same as those identified here. 501 Conclusive linkage between Acidimicrobiaceae A6 and Feammox process requires the 502

| 503 | isolation of the strain and then conduct incubations with the pure strain. At this point,       |
|-----|-------------------------------------------------------------------------------------------------|
| 504 | the observations (i) that $NH_4^+$ removal only occurred in samples when the presence of        |
| 505 | Acidimicrobiaceae bacterium A6 was detected and when iron was being reduced, (ii) that          |
| 506 | Acidimicrobiaceae A6 numbers increased gradually after sequential $NH_4^+$ and Fe(III)          |
| 507 | additions, and (iii) the results from the enrichment culture which was operated for an          |
| 508 | extended time period while only adding $NH_4^+$ and iron oxide sources and during which         |
| 509 | <i>Acidimicrobiaceae A6</i> became the dominant bacterial species while no other known $NH_4^+$ |
| 510 | oxidizer (AOB or anammox) was detected after 150 days of operation, indicate that               |
| 511 | Acidimicrobiaceae A6 is likely to play an important role of the oxidation of $NH_4^+$ under     |
| 512 | iron reduction conditions.                                                                      |
| 513 |                                                                                                 |
| 514 | ACKNOWLEGMENTS                                                                                  |

515 This research was supported by Project X from Princeton University. We thank Prof. L.

516 Young, Prof. J. Stock, Dr. A. Mumford and S. Zhang for technical assistance.

517

## 518 **REFERENCES**

## 519 Abbassi R, Yadav AK, Huang S, Jaffé PR. 2014. Laboratory Study of Nitrification,

520 Denitrification and Anammox Processes in Membrane Bioreactors Considering

521 Periodic Aeration. J. *Environ. Management* 142: 53-59.

- 522 Bond PL, Druschel GK, Banfield JF. 2000. Comparison of Acid Mine Drainage
- 523 Microbial Communities in Physically and Geochemically Distinct Ecosystems. *Appl*

# 524 Environ Microbiol 66: 4962–4971.

| 525 | Braker G, Fesefeldt A, Witzel KP. 1998. Development of PCR primer systems for           |
|-----|-----------------------------------------------------------------------------------------|
| 526 | amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying         |
| 527 | bacteria in environmental samples. Appl Environ Microbiol 64:3769–3775.                 |
| 528 | Bruneel O, Volant A, Gallien S, Chaumande B, Casiot C, Carapito C, Bardil A, Morin G,   |
| 529 | Brown GE Jr, Personné CJ, Le Paslier D, Schaeffer C, Van Dorsselaer A, Bertin PN,       |
| 530 | Elbaz-Poulichet F, Arsène-Ploetze F. 2011. Characterization of the active bacterial     |
| 531 | community involved in natural attenuation processes in arsenic-rich creek sediments.    |
| 532 | Microb Ecol 61: 793–810.                                                                |
| 533 | Canfield DE, Glazer AN, Falkowski PG. 2010. The evolution and future of earth's         |
| 534 | nitrogen cycle. Science 330:192–196.                                                    |
| 535 | Clark DA, Norris PR. 1996. Acidimicrobium ferrooxidans gen. nov., sp. nov.:             |
| 536 | mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology           |
| 537 | 142:785–790.                                                                            |
| 538 | Clement JC, Shrestha J, Ehrenfeld JG, Jaffé PR. 2005. Ammonium oxidation coupled to     |
| 539 | dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biol  |
| 540 | Biochem 37:2323–2328.                                                                   |
| 541 | Cornell RM, Schwertmann U. 2003. The Iron Oxides: Structure, Properties, Reactions,     |
| 542 | Occurrences, and Uses. John Wiley and Sons Ltd.                                         |
| 543 | Coupland K, Johnson DB. 2008. Evidence that the potential for dissimilatory ferric iron |
| 544 | reduction is widespread among acidophilic heterotrophic bacteria. FEMS Microbiol        |

25

- Lett 279:30-35. 545
- Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB. (2005) Ubiquity and 546 diversity of ammonia-oxidizing archaea in water columns and sediments of the 547 ocean. Proc. Natl. Acad. Sci. 102:14683-14688. 548
- Gilch S, Meyer O, Schmidt I. 2009. A soluble form of ammonia monooxygenase from 549 Nitrosomonas europaea. Biol Chem 390:863-873. 550
- Gonzalez-Toril E, Llobet-Brossa EO, Casamayor R, Amann R, AmilsMicrobial R. 2003. 551
- Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ 552
- Microbiol 69: 4853-4865. 553
- Harms G, Layton AC, Dionisi HM, Gregory IR, Garrett VM, Hawkins SA, Robinson KG, 554

Sayler GS. 2003. Real-time PCR quantification of nitrifying bacteria in a municipal 555

wastewater treatment plant. Environ Sci Technol 37: 343-351 556

- Hartmann M, Lee S, Hallamand SJ, Mohn WW. 2009. Bacterial, archaeal and eukaryal 557
- community structures throughout soil horizons of harvested and naturally disturbed 558 forest stands. Environ Microbiol 11: 3045-3062.
- 559
- Huang S, Chen C, Yang X, Wu Q, Zhang R. 2011. Distribution of typical denitrifying 560
- functional genes and diversity of the *nirS*-encoding bacterial community related to 561 environmental characteristics of river sediments. Biogeosciences 8: 5251-5280. 562
- Huelsenbeck JP, Ronquist FR, Nielsen R, Bollback JP. 2001. Bayesian inference of 563
- phylogeny and its impact on evolutionary biology, Science, 294:2310–2314. 564
- Hyman MR, Wood PM. 1985. Suicidal inactivation and labeling of ammonia 565

- 566 monooxygenase by acetylene. Biochem J 227: 719–725.
- 567 Hynes RK, Knowles R. 1982. Effect of acetylene on autotrophic and heterotrophic
  568 nitrification. Can J Microbiol 28:334–340.
- Jensen MM, Thamdrup B, Dalsgaard T. 2007. Effect of specific inhibition on anammox
- and denitrification in marine sediments. Appl Environ Microbiol 73:3151–3158.
- Jensen S, Øvreås L, Daae FL, Torsvik V. 1998. Diversity in methane enrichments from
- agricultural soil revealed by DGGE separation of PCR amplified 16 s rDNA
  fragments. FEMS Microbiol Ecol 26: 17–26.
- Johnson DB, Bacelar-Nicolau P, Okibe N, Thomas A, Hallberg KB. 2009. Characteristics
- of *Ferrimicrobium acidiphilum* gen. nov., sp. nov., and *Ferrithrix thermotolerans*gen. nov., sp. nov.: heterotrophic iron-oxidizing, extremely acidophilic
  actinobacteria. Int J Syst Evol Microbiol 59:1082–1089.
- 578 Kartal B, Maalcke WJ, de Almeida NM, Cirpus I, Gloerich J, Geerts W, Op den Camp
- 579 HJM, Harhangi HR, Janssen-Megens EM, Francoijs K, Stunnenberg HG, Keltjens
- 580 JT, JettenMSM, Strous M. 2011. Molecular mechanism of anaerobic ammonium 581 oxidation. Nature 479:127–130.
- 582 Kishimoto N, Kosako Y, Tano T. 1991. Acidobacterium capsulatum gen. nov., sp. nov.:
- an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic
  mineral environment. Curr Microbiol 22: 1–7.
- 585 Komlos J, Kukkadapu RK, Zachara JM, Jaffé PR. 2007. Biostimulation of Iron
- 586 Reduction and Subsequent Oxidation of Sediment Containing Fe-silicates and

| 587 | Fe-oxides: Effect of Redox Cycling on Fe(III) Bioreduction. Water Res 41: 2996- |
|-----|---------------------------------------------------------------------------------|
| 588 | 3004.                                                                           |

- Laanbroek HJ, Bodelier PLE, Gerards S. 1994. Oxygen consumption kinetics of 589 Nitrosomonas europaea and Nitrobacter hamburgenis grown in mixed continuous 590 cultures at different oxygen concentrations. Arch Microbiol 161:156–162. 591 592 Lam P, Jensen MM, Lavik G, McGinnis DF, Müller B, Schubert CJ, Amann R, Thamdrup B, Kuypers MMM. 2007. Linking crenarchaeal and bacterial nitrification 593 to anammox in the Black Sea. Proc Natl Acad Sci USA 104:7104-7109. 594 Park H, Rosenthal A, Ramalingam K, Fillos J, Chandran K. 2010. Linking community 595 profiles, gene expression and N-removal in anammox bioreactors treating municipal 596 anaerobic digestion reject water. Environ Sci Technol 44: 6110-6116. 597 Pinto AJ, Raskin L. 2012. PCR biases distort bacterial and archaeal community structure 598
- in pyrosequencing datasets. PLoS One 7: 43093.
- Poulsen LK, Ballard G, Stahl DA. 1993. Use of rRNA fluorescence in situ hybridization
- for measuring the activity of single cells in young and established biofilms. Appl
  Environ Microbiol 59: 1354–1360.
- Rosenzweig BR, Smith JA, Baeck ML, Jaffé PR. 2011. Monitoring Nitrogen Loading
  and Retention in an Urban Stormwater Detention Pond. J Environ Qual
  40:598-609.
- 606 Rotthauwe JH, Witzel KP, Liesack W. 1997. The ammonia monooxygenase structural 607 gene amoA as a functional marker: molecular fine-scale analysis of natural

| 608 | ammonia-oxidizing populations. Appl Environ Microbiol 63: 4704-4712.                    |
|-----|-----------------------------------------------------------------------------------------|
| 609 | Rowe OF, Sánchez-España J, Hallberg KB, Johnson DB. 2007. Microbial communities         |
| 610 | and geochemical dynamics in an extremely acidic, metal-rich stream at an                |
| 611 | abandoned massive sulfide mine (Huelva, Spain) underpinned by two primary               |
| 612 | production systems. Environ Microbiol 9:1761–1771.                                      |
| 613 | Sawayama S. 2006. Possibility of anoxic ferric ammonium oxidation. J Biosci Bioeng      |
| 614 | 101:70–72.                                                                              |
| 615 | Schmid M, Twachtmann U, Klein M, Strous M, Juretschko S, Jetten M, Metzger JW,          |
| 616 | Schleifer K, Wagner M. 2000. Molecular evidence for genus level diversity of            |
| 617 | bacteria capable of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol        |
| 618 | 23:93–106.                                                                              |
| 619 | Schmid M, Walsh K, Webb R, Rijpstra WI, van de Pas-Schoonen K, Verbruggen MJ Hill       |
| 620 | T, Moffett B, Fuerst J, Schouten S, Damsté JS, Harris J, Shaw P, Jetten M, Strous M.    |
| 621 | 2003. Candidatus "Scalindua brodae," sp. nov., Candidatus "Scalindua wagneri," sp.      |
| 622 | nov., two new species of anaerobic ammonium oxidizing bacteria. Syst Appl               |
| 623 | Microbiol 26:529–538.                                                                   |
| 624 | Shrestha J, Rich J, Ehrenfeld J, Jaffé PR. 2009. Oxidation of ammonium to nitrite under |
| 625 | iron-reducing conditions in wetland soils: Laboratory, field demonstrations, and        |
| 626 | push-pull rate determination. Soil Sci 174:156–164.                                     |
| 627 | Smith RL, Buckwalter SP, Repert DA, Miller DN. 2005. Small-scale,                       |
| 628 | hydrogen-oxidizing-denitrifying bioreactor for treatment of nitrate-contaminated        |

- 629 drinking water. Water Res 39: 2014–2023.
- 630 Stookey LL. 1970. Ferrozine-a new spectrophotometric reagent for iron. Anal Chem 42:
- 631 779–781.
- Tourna, M., Freitag, T.E., Nicol, G.W., and Prosser, J.I. 2008. Growth, activity and
   temperature responses of ammonia oxidising archaea and bacteria in soil
   microcosms. *Environ Microbiol* 10: 1357–1364.
- Van de Graaf, A. A.; de Bruijn, P.; Robertson, L. A.; Jetten, M. S. M.; Kuenen, J. G.
- Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a
  fluidized bed reactor1996. *J. Microbiol.*, 142:2187–2196.
- Yang WH, Weber KA, Silver WL. 2012 Nitrogen loss from soil through anaerobic
  ammonium oxidation coupled to iron reduction. Nat Geosc 5: 538–541.
- 640 Yoshinari T, Hynes R, Knowles R. 1977. Acetylene inhibition of nitrous oxide reduction
- and measurement of denitrification and nitrogen fixation in soil. Soil Biol Biochem
- 642 <u>9: 177–183</u>.
- 643

- 645
- 646
- 647
- 648
- 649

30



Figure 1. Concentration of Fe(II) and  $NH_4^+$  in incubation with three different Fe(III) sources: ferrihydrite ( $\circ$ ), ferric chloride ( $\blacksquare$ ), and ferric citrate ( $\blacktriangle$ ). The values represent the mean and standard error (n=3).



Figure 2. Concentration of (a) Fe(II) and (b)  $NH_4^+$  during the 180 day incubation. 25 mmol L<sup>-1</sup> Fe(III) was added on day 0. 1.0 mmol L<sup>-1</sup>  $NH_4^+$  was added on days 4, 24, and 60. 0.2 mmol L<sup>-1</sup> NaHCO<sub>3</sub> was added on day 50 and day 90. 1.2 mmol L<sup>-1</sup> + 2 mmol L<sup>-1</sup> of  $NH_4CI$  were added on day 125. The values represent the mean and standard error (n=3).



Figure 3. Comparison of DGGE analysis profiles of soil communities during anaerobic incubations. Samples from 0, 30, 90 and 160 days of incubation with ferrihydrite +  $NH_4Cl + NaHCO_3$  (lane 1-4); 160 days of incubation with only ferrihydrite (lane 5); ferric chloride +  $NH_4Cl$  (lane 6); ferric citrate +  $NH_4Cl$  (lane 7); 120 days incubation with ferrihydrite +  $NH_4Cl + NaHCO_3 + organic carbon$  (band 8); ferrihydrite +  $NH_4Cl + organic carbon$  (lane 9). Samples from 6 and 120 days of incubation without any addition (lane 10 and 11) were use as controls.



Figure 4. Relative abundance of bacterial phyla for each soil samples during anaerobic incubations (days 0, 30, 90, 160) and enrichment culture from the reactor.



Figure 5. Phylogenetic tree of *Acidimicrobiaceae*-related sequences. The tree was constructed using the Bayesian inference (BI) method with 16S rRNA gene sequences from DGGE band A6 and bacteria from the *Acidimicrobiaceae* family from other studies. Sequences determined in this study are in bold. Bootstrap values were based on 1000 replicates each and are shown at the nodes with >50 % bootstrap support. The scale bar represents 10% sequence divergence.



Figure 6. Abundance of total bacteria ( $\blacklozenge$ ) during 180 days of anaerobic incubation. 16S rRNA gene ( $\blacksquare$ ) and RNA ( $\blacksquare$ ) copy numbers of *Acidimicrobiaceae* bacterium A6 in soil samples with 1.20 mmol L<sup>-1</sup> NaHCO<sub>3</sub> addition. 16S rRNA gene ( $\Box$ ) and RNA ( $\boxdot$ ) copy numbers of bacterium A6 with 0.20 mmol L<sup>-1</sup> NaHCO<sub>3</sub> addition.

| Primer       | Target gene | Sequence(5'-3')                     | Annealing temp. |
|--------------|-------------|-------------------------------------|-----------------|
| V3-1         | 16S rRNA    | CCT ACG GGA GGC AGC AG              | 56              |
| V3-2         | 16S rRNA    | ATT ACC GCG GCT GCT GG              | 56              |
| V3-3         | 16S rRNA    | ACG GGG GGC CTA CGG GAG GCA GCA G   | 56              |
| 1055f        | 16S rRNA    | ATG GCT GTC GTC AGC T               | 57              |
| 1392r        | 16S rRNA    | ACG GGG CGG TGT GTA C               | 57              |
| Amx368f      | 16S rRNA    | TTC GCA ATG CCC GAA AGG             | 56              |
| Amx820r      | 16S rRNA    | AAA ACC CCT CTA CTT AGT GCC C       | 56              |
| acd320f      | 16S rRNA    | CGG TCC AGA CTC CTA CGG GA          | 55              |
| acd432r      | 16S rRNA    | GAC AGG GTT TTA CAG TCC GAA GA      | 55              |
| acm342f      | 16S rRNA    | GCA ATG GGG GAA ACC CTG AC          | 58              |
| acm439r      | 16S rRNA    | ACC GTC AAT TTC GTC CCT GC          | 58              |
| Nirs3F       | nirS        | CCT A(C/T)T GGC CGC C(A/G)C A(A/G)T | 57              |
| NirS5R       | nirS        | GCC GCC GTC (A/G)TG (A/C/G)AG GA A  | 57              |
| NirK1F       | nirK        | GG(A/C) ATG GT(G/T) CC(C/G) TGG CA  | 56              |
| NirK5R       | nirK        | GCC TCG ATC AG(A/G) TT(A/G) TGG     | 56              |
| amoA-1F      | amoA        | GGG GTT TCT ACT GGT GGT             | 57              |
| amoA-2R      | amoA        | CCC CTC KGS AAA GCC TTC TTC         | 57              |
| Arch amoA F  | amoA        | STA ATG GTC TGG CTT AGA CG          | 53              |
| Arch amoA R  | amoA        | GCG GCC ATC CAT CTG TAT GT          | 53              |
| CrenamoA23f  | amoA        | ATG GTC TGG CTW AGA CG              | 55              |
| CrenamoA616r | amoA        | GCC ATA CAB CKR TAN GTC CA          | 55              |

# Table 1. DGGE and real time PCR primers used in this study.

| Phylogenetic group | Band    | Related sequence                            | Identity (%) |
|--------------------|---------|---------------------------------------------|--------------|
| Actinobacteria     | A6, B1, | Ferrimicrobium acidiphilum strain T23 16S   | 92           |
|                    | D6      | ribosomal RNA gene (AF251436)               |              |
|                    |         | Acidimicrobium ferrooxidans strain TH3 16S  | 90           |
|                    |         | ribosomal RNA gene (EF621760)               |              |
|                    | A6      | Uncultured Ferrimicrobium sp. clone D.an-41 | 95           |
|                    |         | 16S ribosomal RNA gene (JX505108)           |              |
| Acidobacteria      | A8, D11 | Uncultured Acidobacteria bacterium clone    | 97           |
|                    |         | 3OL11 16S ribosomal RNA gene(GQ342349)      |              |
|                    |         | Geothrix sp. culture clone AP-FeEnrich1 16S | 94           |
|                    |         | ribosomal RNA gene (JX828409)               |              |
| BetaProteobacteria | A9,B9,  | Uncultured Rhodocyclus sp. clone W4S68      | 97           |
|                    | C4, D14 | 16S ribosomal RNA gene (AY691423)           |              |
|                    | A9      | Comamonas sp. 'ARUP UnID 223' 16S           | 97           |
|                    |         | ribosomal RNA gene (JQ259419)               |              |

Table 2. Sequence analysis of bands excised from DGGE gels of soil samples with Fearmox Activity.