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We thank the referees for having provided thorough feedback and
for their suggested corrections. Below we have addressed each in-
dividual comment from both referees (referee comments are shown
in italics). We also denote all manuscript changes: line numbers
correspond to the revised marked-up manuscript included below.

Anonymous Referee #1

Bloom and Williams report that incorporating internal ‘reality constraints’
on model process relations reduces the range of permissible parameter values
in a terrestrial ecosystem model. They also report that the use of these re-
ality constraints additionally improves model performance when compared to
measured eddy-covariance flux observations out of sample.

The manuscript is very well written, and the approach intuitive and reason-
able. The results clearly demonstrate that introducing these additional reality
constraints reduces parameter uncertainty. This is a clear result and indeed
including such reality constraints in any model endeavor (be it data assimi-
lation or more traditional model assessment) should be standard practice.

My only issue with the results presented is that the model that uses reality
constraints does almost too well when compared against eddy-covariance data.
In figure 5 we see that it captures the magnitude and seasonal cycle of net
ecosystem exchange almost perfectly at two sites, compared to the model that
does not use reality constraints. Both model runs use MODIS leaf area index
and soil carbon as constraints, but not the eddy-covariance data.

The authors are therefore claiming that with only information on LAI, soil
carbon and some general bounds based on how ecosystems are typically struc-
tured, we can predict carbon cycling on seasonal and annual timescales. This
is quite remarkable given that in a previous study that also included some
measure of reality constraints, and a host of other constraints at one of the
sites used here (Howland forest; Richardson et al. 2010), the DALEC model
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had difficulty in capturing the annual total NEE (i.e. only when annual NEE
was used as a constraint, despite being optimized to daily NEE and vari-
ous other biometric constraints). It is also remarkable in that it suggests that
other typically key information such as above ground biomass, photosynthetic
potential, soil moisture status, and canopy structure differences between ev-
ergreen and deciduous sites (i.e. site specific ACM), are not essential for
predicting carbon uptake.

We are confident in the results of our experiments. We link the
improved performance particularly to the ecological and dynamic
constraints (EDCs) we have introduced our new EDC analyses,
as suggested below, help to define the contributions of individual
EDCs more clearly.

A lacking component in the manuscript is the identification of which of the
reality constraints is responsible for the improved model performance.

We agree with the reviewer’s recommendation: to identify which
ecological and dynamic constraints (EDCs) have resulted in im-
proved model performance, we have conducted an EDC sensitivity
test. We now show which EDCs (a) lead to improved parame-
ter estimates, (b) lead to reduced net ecosystem exchange (NEE)
confidence ranges and (c) lead to reduced NEE bias.

In the revised manuscript we have included the above-mentioned
sensitivity analysis (the sensitivity analysis is described in lines
320-338; the results are presented in Table 2 and described in lines
351-355, 391-396; the results are discussed in lines 419-429).

It is also not clear why the range of annual model carbon cycling not cen-
tered around equilibrium, given the wide range of parameter values used, and
information only on soil carbon and leaf area, and a forest typical structure.

For both for synthetic and AmeriFlux experiments, the posterior
probability density functions of NEE (e.g. Figures 3, 4 and 5) show
that ecosystems could be either net sources or sinks of carbon on
annual timescales. Therefore, our results demonstrate that soil car-
bon and LAI are not sufficient to resolve whether each AmeriFlux
site is a net source or sink of carbon on annual timescales.

We now explicitly state this in the discussion section of the revised
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manuscript (lines 453-456).

Introduction:

The concept of using internal model constraints, here termed ecological and
dynamic constraints, was first introduced by Richardson et al. 2010, there
termed a reality constraint. This should be acknowledged in the introduction.

In the revised manuscript we acknowledge that Richardson et al.,
(2010) introduced internal model constraints in carbon cycle model-
data fusion analyses (lines 84-86).

Page 12736, line 25: “therefore. . .”. Consider revising this sentence. It
does not logically flow from the paragraph.

We agree with the reviewer, and we have revised this sentence (line
67).

Page 12738, line 17: Please do not refer to DALEC2 as a universal ecosystem
carbon balance model. It is designed for temperate deciduous and evergreen
forests, and will not likely accurately simulate other ecosystem flux dynamics
(e.g., tundra, tropical, peatlands, savannah, etc.). Page 12738: Please state
the drivers used in the DALEC2 model.

We acknowledge the reviewer’s point, and we have re-worded the
DALEC2 description (line 112).

Page 12739, line 21: Please clarify that omega here represents a turnover
rate. What is OmegaMin?

Equation 5: Clarify what f signifies here.

In the revised manuscript, we have now added an explicit reference
to Table 1, where all DALEC2 parameters, notations and ranges
are reported (lines 137-140).

Page 12746, line 17-20: Clarify the site selection criteria here. Both Howland
and Sylvania have snow cover for far more than two months, which would
appear to invalidate the selection criteria based on hydrological concerns.

We agree with the reviewer’s remark and acknowledge our over-
sight. We now clarify that the selected sites exhibit limited water
stress and ≤ 3 months of below-freezing soil temperatures (lines
279-284).
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Page 12747, line 1-10: Please report the values of LAI and soil carbon used
for each site.

We now report the 5th and 95th percentile LAI values and the soil
carbon value used for each AmeriFlux site experiment (lines 300-
302, 308,309).

Page 12748, line 3,5: Please do not confuse error with uncertainty. Param-
eter vectors have uncertainties, not errors, unless compared against known
parameter values. This confusion is apparent throughout the manuscript.

Page 12748, line 14: ‘and hence improved estimates of s’. I would argue that
what you are really reporting are better constrained estimates of s, though the
true values of s are remain unknown.

We agree with the reviewer’s two points on error and uncertainty:
however, the synthetic datasets are derived from known parameter
values s. To better convey this point, we now explicitly state this
in the introduction to synthetic experiments (lines 235-241).

Figure 5: I would suggest plotting all three graphs on the same scale to assist
between site comparison

In the revised manuscript, we have now plotted all three graphs in
Figure 5 on the same scale.

Anonymous Referee #2

The manuscript by Bloom and Williams proposes to include known model pa-
rameter relationships in a data assimilation framework in addition to obser-
vations. They claim that in a data-poor context these additional constraints
will reduce parameter uncertainties. In general I agree with this statement.
However, in my opinion the ecological and dynamic constraints (EDCs) that
the authors introduce as a novelty are simply part of the prior information
we possess for these parameters. I would suggest that the authors highlight
this in the manuscript.

The manuscript is well written and presented, but I think some improvements
and clarifications are required (see specific comments below).

Specific comments:

In order to obtain a unique solution in an ill-posed problem additional con-
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straints are required. This is also known as regularization. Within the
Bayesian framework prior parameter information are usually included in
form of a covariance matrix, which can include correlations between parame-
ters. The authors mention in the introduction that such correlations limit the
possible parameter configuration, but in their example they simply assume no
prior knowledge other than the parameter ranges. This seems to be an odd
choice, because it means that all values within the given range are equally
likely and parameters are independent, which is clearly not the case. The
parameter space has not been restricted and it is therefore not surprising that
additional information in form of ECDs add large constraints to this problem.
I am wondering if this would also be the case if a different prior parameter
distribution (i.e. Gaussian) with a defined covariance matrix would have been
chosen in the first place. I see the ECDs complementary to the knowledge
we include in terms of prior distribution and covariance matrix and not as a
replacement.

We agree with the reviewer’s point: in contrast to a “flat” pa-
rameter prior, a parameter variance-covariance structure would
serve as an additional constraint on model parameters, and would
reduce the ill-posedness of the problem. However, given that
we have poor quantitative knowledge on the realistic values for
model parameters and their covariances, constructing a generic,
ecologically-appropriate covariance structure is exceedingly diffi-
cult. For example, most parameter inter-dependencies presented
in our manuscript are dependent on local meteorology: therefore,
a meteorology-dependent prior parameter covariance matrix would
need to be derived for each AmeriFlux site. By prescribing EDCs,
we are instead able to impose ecological knowledge in the form of
non-Gaussian state and parameter constraints. We agree with the
reviewer that EDCs and a parameter covariance matrix can both
be used to resolve ill-posed carbon cycle problems. In the revised
manuscript, we now state that prior parameter covariance struc-
tures can be used as alternative or complementary constraints to
EDCs (lines 446-449).

A number of ECDs are formulated to constrain the parameters and states
and it would be interesting to know their individual contribution, i.e. which
ECD provides the largest constraint.
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We agree with the reviewer’s recommendation. We have performed
an EDC sensitivity test, whereby we quantify the improvements in
model parameter and state estimates associated with each EDC.

In the revised manuscript we have included the above-mentioned
sensitivity analysis (the sensitivity analysis is described in lines
320-338; the results are presented in Table 2 and described in lines
351-355, 391-396; the results are discussed in lines 419-429).

Minor comments:

We have implemented all of the following suggested corrections.
In particular, the ˜ on P12745, Eq.(16), denotes the median value
of E(the ˜ was missing from E on P12745 line 18: we have now
corrected the text).

P12738,L2 + P12739,L 14: EDC has already been introduced in the abstract
and in- troduction (P12737,L18)

(correction on line 99)

P12744, L15 + L20: repetition “We create 40 synthetic experiments ...”

(corrections and re-wording on lines 236,237,241)

P12745, Eq.(16): What is ˜ been used for?

(correction on line 263)

P12759, L1: space between 8 and daily

(correction on line 609)

We have also corrected a minor oversight in the prior parameter
ranges shown in Table 1: we used 20-2000 gC m−2 for the foliar,
labile, fine root and litter carbon pools, and 20-150 day for the
leaf-fall period parameter ranges. We have corrected this in the
revised manuscript.

(correction in Table 1)
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Abstract. Many of the key processes represented in global terrestrial carbon models remain largely

unconstrained. For instance, plant allocation patterns and residence times of carbon pools are poorly

known globally, except perhaps at a few intensively studied sites. As a consequence of data scarcity,

carbon models tend to be underdetermined, and so can produce similar net fluxes with very different

parameters and internal dynamics. To address these problems, we propose a series of ecological5

and dynamic constraints (EDCs) on model parameters and initial conditions, as a means to constrain

ecosystem variable inter-dependencies in the absence of local data. The EDCs consist of a range

of conditions on (a) carbon pool turnover and allocation ratios, (b) steady state proximity, and (c)

growth and decay of model carbon pools. We use a simple ecosystem carbon model in a model-

data fusion framework to determine the added value of these constraints in a data-poor context.10

Based only on leaf area index (LAI) time series and soil carbon data, we estimate net ecosystem

exchange (NEE) for (a) 40 synthetic experiments and (b) three AMERIFLUX
::::::::
AmeriFlux

:
tower

sites. For the synthetic experiments, we show that EDCs lead to an an overall 34 % relative error

reduction in model parameters, and a 65 % reduction in the 3 yr NEE 90 % confidence range. In

the application at AMERIFLUX
:::::::::
AmeriFlux

:
sites all NEE estimates were made independently of15

NEE measurements. Compared to these observations, EDCs resulted in a 69–93 % reduction in 3 yr

cumulative NEE median biases (−0.26 to +0.08kgCm−2), in comparison to standard 3 yr median

NEE biases (−1.17 to −0.84kgCm−2). In light of these findings, we advocate the use of EDCs in

future model-data fusion analyses of the terrestrial carbon cycle.
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1 Introduction20

Terrestrial ecosystem carbon exchange is a fundamental part of the global carbon cycle link to bio-

sphere processes. Atmospheric CO2 measurements indicate the presence of a global land C sink,

i.e. uptake by the terrestrial biosphere exceeds losses. However, relative to all major terms in the

global carbon budget, the global land sink exhibits both the largest inter-annual variability and the

largest uncertainty (Le Quéré et al., 2013). The terrestrial carbon budget uncertainty stems largely25

from unknowns in the size, spatial distribution and temporal dynamics of the major terrestrial car-

bon pools. As a result, there is little agreement among modelled land sink projections for the 21 st

century (Todd-Brown et al., 2013; Friend et al., 2013), reflecting uncertainty in knowledge on the

current state of the terrestrial C cycle and its dynamics.

In recent years a growing volume of data from flux towers, satellites and plant trait databases has30

been used to constrain some of the key components of the terrestrial carbon cycle (e.g. Baldocchi

et al., 2001; Simard et al., 2011; Kattge et al., 2011). In particular, a range of ecosystem carbon

models and datasets have been brought together in model-data fusion (MDF) frameworks to pro-

duce an enhanced analysis of ecosystem carbon cycling (e.g. Williams et al., 2005; Fox et al., 2009;

Carvalhais et al., 2010; Luo et al., 2011; Ziehn et al., 2012; Smith et al., 2013). Where mutliple data35

streams are available, MDF approaches can provide an extensive insight into carbon pool dynamics,

turnover rates, and carbon allocation fractions (Richardson et al., 2010; Keenan et al., 2013). How-

ever, even at research intensive sites, MDF studies can produce a wide range of acceptable model

parameter sets, due to under-determination of the carbon budget with available data. Some of these

optimized parameter sets, even though they generate realistic fluxes over short timescales, are asso-40

ciated with major changes to larger carbon pools (soil, wood) that are nonsensical (Fox et al., 2009).

For regional and global scale model implementation, the lack of in-situ measurements amplifies this

problem, sometimes referred to as equifinality (Beven and Freer, 2001). Ultimately, we need to over-

come data limitations and under-determination by integrating models and ecosystem knowledge in

a common framework. This framework must ensure ecologically realistic outcomes, while still en-45

compassing (i.e. effectively quantifying) the uncertainty associated with parameter estimation given

observation errors (Hill et al., 2012).

Although a range of process-based models have been used to represent the dynamics of the ter-

restrial carbon cycle and land–atmosphere CO2 exchange (e.g. Sitch et al., 2008; Schwalm et al.,

2010), there are advantages in using simpler models to estimate ecosystem carbon state variables.50

Firstly, there is a trade-off between model complexity, such as the number of model parameters,

and a model’s ability to reproduce observations (e.g. Akaike, 1974): therefore a low-complexity

model is preferable when it can reproduce ecosystem observations with comparable skill. Secondly,

complex models are often computationally expensive, and this is an inhibiting factor when using iter-

ative methods (such as Monte Carlo approaches) to estimate model parameters and their uncertainty.55

Ideally, the key terms of ecosystem carbon dynamics can be constrained by combining ecosystem
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observations with a model of appropriate complexity in a computationally efficient MDF framework.

Previous MDF studies have invariably relied on net ecosystem exchange (NEE) measurements

(real and synthetic), along with other site-level observations (Williams et al., 2009). In a global con-

text, the FLUXNET flux-tower network (Baldocchi et al., 2001) consists of hundreds of flux tower60

sites where hectare-scale NEE measurements have been made over the past two decades. In addition

to NEE, complimentary site-level biometric data can help resolve model parameters and state vari-

ables in an MDF context (Richardson et al., 2010; Hill et al., 2012; Keenan et al., 2013), alleviating

the problem of under-determination. However, the terrestrial biosphere will inevitably remain poorly

sampled by FLUXNET. Alternative estimates of NEE from atmospheric CO2 measurements (e.g.65

Peters et al., 2010; Feng et al., 2011) are only produced at continental-scale resolutions. Therefore,

::::::::
Therefore,

:::::
given

:::
the

::::::
limited

::::
span

::
of

:::
the

::::::::::
FLUXNET

::::::::
flux-tower

::::::::
network, are spatially resolved global

carbon cycle analyses limited by the sparsity of eddy flux and biometric data?

NEE, the difference between photosynthesis and ecosystem respiration, is a function of the dy-

namics of all carbon pools over a range of timescales. In the absence of NEE observations, model70

NEE estimates depend on a knowledge of carbon pool sizes and model parameter values. In reality,

carbon pools and model parameters (especially those related to plant allocation fractions and pool

turnover rates) are poorly constrained, and therefore NEE estimates are subject to a comparably

large uncertainty. Nonetheless, fundamental knowledge on ecosystem behaviour can potentially be

used to overcome the lack of location specific data or parameter values. For example, while param-75

eters related to phenology, C allocation and turnover may vary across multiple orders of magnitude

(Kattge et al., 2011; Fox et al., 2009), these parameters are strongly correlated (e.g. Sloan et al.,

2013), and the range of possible parameter configurations is therefore limited. Such examples in-

clude correlations between leaf lifespan and leaf mass per area (Wright et al., 2004), leaf area index

and total foliar N (Williams and Rastetter, 1999), and between foliar and root biomass (Sloan et al.,80

2013). These correlations can confine parameter searches to a smaller hyper-volume. Equally, while

ecosystems exhibit a large range of non-steady state dynamic behaviours, strong inter-relationships

are expected between inputs, outputs, carbon pool magnitudes and turnover rates (Luo and Weng,

2011), and model
:
.
:::::::::::::::::::::::::::::
Richardson et al. (2010) introduced

:::
the

:::::::
concept

::
of

:::::
reality

:::::::::
constraints

:::
(or

:::::::
internal

:::::
model

::::::::::
constraints)

::
on

::::::
carbon

:::::
pool

::::::::
dynamics

:::::
within

::
a
::::::
carbon

:::::
cycle

:::::
MDF

:::::::
analysis:

::::
such

::::::::::
constraints85

::
on

:::
the

::::::
model

::::
state

::::
can

:::::::::
potentially

:::
be

::::
used

:::
to

:::::::
improve

::::::::
estimates

:::
of

:::::
model

::::::::::
parameters.

::::::
Here

:::
we

::::::
propose

::::
that

:
a
:::::
broad

:::::
range

::
of

::::::
model parameter combinations can be discarded when the

:::::::::
phenology,

:::::
carbon

:::::::::
allocation,

:::::::
turnover

:::::
rates

:::
and pool dynamics are considered ecologically “nonsensical”. Here

we seek to address the following question: can we improve ecosystem model parameter and NEE

estimates by incorporating ecological “common sense” into carbon cycle MDF analyses?90

In this paper we propose a series of Ecological and Dynamic Constraints (EDCs) on model pa-

rameters: these include turnover and allocation parameter inter-relations, carbon pool dynamics and

steady state proximity conditions (Sect. 2). We quantify the added value of imposing EDCs in syn-
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thetic and real data MDF contexts using a simple ecosystem carbon model, by measuring bias and

confidence interval reductions of carbon cycle analyses relative to independent data (Sect. 3). Finally95

we discuss the prospects and limitations of our approach, as well as the implications of a wider EDC

implementation in terrestrial carbon cycle MDF methods (Sect. 4).

2 Methods

Here we present a series of ecological and dynamic constraints (EDCs ) for
:::::
EDCs

:::
for

:
a daily box

budget terrestrial C cycle model, the Data Assimilation Linked Ecosystem Carbon model version100

two (DALEC2). Within an MDF context, we test the added value of implementing EDCs. Our

aims are (1) to quantify our ability to estimate DALEC2 parameters and NEE within a synthetic

framework, and (2) to validate our ability to estimate NEE at three temperate forest AmeriFlux sites.

We use simulated and real observations of (a) satellite-derived leaf area index (LAI) and (b) soil

organic carbon from the Harmonized World Soil Database (HWSD, Hiederer and Köchy, 2012) in105

our MDF analyses. The choice of these two data sets serves as an analogue for the limited ecosystem

carbon datasets available on a global scale.

2.1 DALEC2

DALEC has been extensively used in MDF frameworks (e.g. Williams et al., 2005; Quaife et al.,

2008; Richardson et al., 2010, amongst others). In particular, a range of MDF approaches were used110

in the REFLEX project, where ecosystem observations were assimilated into DALEC to produce

carbon state analyses (Fox et al., 2009). Here we use a universal
::
the

:::::::::
DALEC2 ecosystem carbon

balance model– DALEC2 –
:
, which combines components of DALEC evergreen and DALEC de-

ciduous (Williams et al., 2005; Fox et al., 2009) into a single model. Gross primary production

(GPP) in DALEC2 is determined from the aggregated canopy model (Williams et al., 1997), and115

is allocated to the biomass pools (foliar, labile, wood, and fine roots) and to autotrophic respiration

(Ra); degraded carbon from biomass pools goes to two dead organic matter pools with temperature

dependent losses (heterotrophic respiration, Rh). The net ecosystem exchange is summarised as

NEE =Ra +Rh−GPP. C flow in DALEC2 is determined as a function of 23 parameters (including

six initial carbon pool states, Table 1). We henceforth refer to the 23 parameters required to initiate120

DALEC2 as a parameter vector x. DALEC2 C pools and fluxes are iteratively calculated at a daily

time-step: the DALEC2 model equations are fully described in Appendix A. We henceforth refer

to the ensemble of all model state variables (such as daily NEE, GPP, respiration terms and carbon

pool trajectories) as DALEC2(x).
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2.2 Ecological and Dynamic Constraints125

In previous work, DALEC MDF approaches (Williams et al., 2005; Fox et al., 2009; Richardson

et al., 2010; Hill et al., 2012) did not explicitly impose any conditions on the inter-relationships

between model parameters, therefore parameter prior information had only consisted of prescribed

parameter ranges. In reality, broader ecological knowledge can be informative in terms of the inter-

relationships between parameter values. For example, long-term leaf turnover rate must be faster130

than woody biomass turnover (e.g. Norby et al., 2002): such a relationship can provide a relative

constraint on model parameter values, without imposing any further constraints to the prior parame-

ter ranges (Table 1).

Here we propose a sequence of ecological and dynamic constraints (EDCs) on DALEC2 pa-

rameters and pool dynamics. For any given DALEC2 parameter vector x, all EDCs presented135

in this section (henceforth EDC 1, EDC 2, etc.) are implemented. The probability of parameters

(henceforth PEDC(DALEC2(x))) is 1 if all EDCs are met, otherwise PEDC(DALEC2(x)) = 0.
:::
All

::::::::
DALEC2

:::::::::
parameters

:::::::::
(allocation

::::::::
fractions

:::::
fauto,

:::::::
flab,ffol, ::::

froo,
:::::
fwoo;

:::::::
turnover

::::
rate

:::::::::
parameters

:::::
θwoo,

:::
θroo,

::::
θlit,::::

θsom,
:::::
θmin,

:::
Θ;

::::::
canopy

:::::::::
parameters

:::::::::::::::::::::::::::
donset,dfall,ceff,clma,clf,cronset,crfall;::::::

carbon
:::::
pools

::
at

::::
time

::
t

::::
Ctlab,

::::::::::::::::::::
Ctfol,C

t
woo,Ctsom,Ctlit,C

t
som)

:::
are

::::::::
described

:::
in

::::
Table

::
1.
:

140

2.2.1 Turnover Constraints

We impose the following constraints on the relative sizes of turnover rates:

EDC 1: θsom < θlit, (1)

EDC 2: θsom < θmin, (2)145

EDC 3: clf > 1− (1− θwoo)365.25, (3)

EDC 4: (1− θroo)N >ΠN
i=1(1− θsome

ΘTi), (4)

where Ti are daily temperature values during an N -day time window (e.g. three years). These150

constraints ensure the turnover rate ratios are consistent with knowledge of the carbon pool relative

residence times (e.g. Gaudinski et al., 2000; Norby et al., 2002; Trumbore, 2006). In particular, we

expect a faster litter turnover in contrast to soil organic matter (SOM) turnover (EDC 1), a faster

conversion rate of litter to SOM relative to SOM turnover (EDC 2), the annual leaf loss fraction

is greater than the annual woody biomass loss fraction (EDC 3), and a faster fine root turnover in155

contrast to SOM turnover (EDC 4).

2.2.2 Root-Foliar C allocation constraints

Strong correlations are expected between foliar and fine root carbon pools (e.g. Mokany et al., 2006;

Sloan et al., 2013). We constrain the C allocation and dynamics of the root and foliar pools:

EDC 5: 0.2froo < ffol + flab < 5froo, (5)160
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EDC 6: 0.2Cfol <Croo < 5Cfol, (6)

where Cfol and Croo are the mean foliar and fine root carbon pool sizes over the model run period.

EDC 5 ensures that the GPP allocated fraction to Croo and Cfol (directly or via the labile C pool) are

within a factor of 5 of each other. EDC 6 ensures that the mean fine root and foliar pool sizes are

within a factor of 5 of each other.165

2.2.3 Carbon Pool Growth

While we expect pools to potentially grow through time, we assume no recent disturbance and

therefore limit the relative growth rate of pools. We constrain pool growth as follows:

EDC 7:
Cyear=n

pool

Cyear=1
pool

< 1 +Gmax
n− 1

10
, (7)

where Cyear=1
pool is the mean carbon pool size in year 1, and Cyear=n

pool is the mean carbon pool size170

after n− 1years. We choose a value of Gmax = 0.1, which is equivalent to a 10 % yearly growth

rate (or doubling of carbon over 10 yr) as the maximum growth rate for each pool in EDC 7. This

assumption is conservative, given data on global forest biomass growth rates (Baker et al., 2004;

Luyssaert et al., 2008).

2.2.4 Carbon pool exponential decay trajectories175

While carbon pools are expected to grow and contract through time, in the absence of major and

recent disturbance events carbon pool trajectories are expected to exhibit gradual changes on inter-

annual timescales (e.g. Bellamy et al., 2005). Under these circumstances, rapid exponential decay

in modelled DALEC2 carbon pools can only occur as a result of an ecologically inconsistent x. We

examine the system response within a three-year period by imposing a constraint on exponential180

pool trajectories (Fig. 1): we numerically fit an exponential decay curve a+bect to all carbon pools,

where t is time in days, and a, b and c are the fitted exponential decay parameters.

DALEC2 pool trajectories are rejected if the half-life of carbon pool changes is less than three

years(,
:
i.e. EDC 8: c <− 365.25×3

log(2) ); we

EDC 8: c <−365.25× 3

log(2)
::::::::::::::::::::

(8)185

:::
We fully describe the numerical derivation of c in Appendix B.

2.2.5 Steady State Proximity

For ecosystems with no recent disturbance events, we propose that each pool is within an order of

magnitude of its steady state attractor. We use mean gross primary production (Fgpp) as a proxy for
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long-term GPP to estimate the steady state attractors, C∞pool, of four carbon pools (SOM, litter, wood190

and root). The steady state attractors for Csom, Clit, Cwoo and Croo are analytically derived as follows:

C∞som =
(fwoo + (ffol + froo + flab)θmin)Fgpp

(θmin + θlit)θsomeΘT
, (9)

C∞lit =
(ffol + froo + flab)Fgpp

θliteΘT
, (10)

195

C∞woo =
fwooFgpp

θwoo
, (11)

C∞roo =
frooFgpp

θwoo
, (12)

where T is the mean annual temperature (◦C). For each pool, we impose an order-of-magnitude

constraint on the proximity of C∞pool from the initial Cpool value:200

EDCs 9–12:
C0

pool

10
<C∞pool < 10C0

pool (13)

where C0
pool is the initial Csom, Clit, Cwoo and Croo value for EDCs 9, 10, 11 and 12 respectively.

The twelve presented EDCs are what we believe to be the most ecologically suitable constraints on

DALEC2 parameters and state variables, and are based on broader ecological knowledge of carbon

dynamics. We discuss the advantages and the limitations of the proposed EDCs in Sect. 4 of this205

paper.

2.3 Model-Data Fusion

Given LAI observations, soil organic carbon estimates, prior parameter ranges (Table 1) and EDCs

(Sect. 2.2), our aim for each experiment is to estimate the likelihood
:::::::::
probability

::::::::::
distribution

:
of

parameters x. We assume no prior knowledge, other than the parameter ranges shown in Table 1: we210

therefore prescribe a uniform (i.e. non-informative)
::::
prior probability distribution onto all parameters.

Within a Bayesian framework (e.g. Hill et al., 2012; Ziehn et al., 2012), we combine the above-

mentioned information to derive the posterior probability density function of x, P (x|O), where

P (x|O)∝ P (O|x) ·Prange(x) ·PEDC(DALEC2(x)) (14)

P (O|x) is the probability of the observations given x, Prange(x) = 1 if all parameters are within215

the ranges prescribed in Table 1 (otherwise Prange(x) = 0), and PEDC(DALEC2(x)) = 1 if all EDCs

are met (otherwise PEDC(DALEC2(x)) = 0). For N observations, we derive the observation proba-

bility given x, P (O|x), as follows:

P (O|x) = e
− 1

2

N∑
n=1

(Mn−On)2/σ2
n
, (15)

where On is the nth observation, Mn is the corresponding state variable, and σ2
n is the nth error220

variance for each observation (e.g. Xu et al., 2006): here we assume no error covariance between

observation errors.

7



We employ an adaptive Metropolis Hastings Markov Chain Monte Carlo (MHMCMC) approach

to draw 5× 106 samples from P (x|O). This approach has been widely used to estimate the proba-

bility density function of ecosystem model parameters (Xu et al., 2006; Hill et al., 2012; Ziehn et al.,225

2012; Caldararu et al., 2012; Smith et al., 2013; Keenan et al., 2013, amongst others) and is ideal to

explore parameter space without a need to define normal prior distributions for each parameter (e.g.

Richardson et al., 2010). We repeat the MHMCMC algorithm four times (i.e. four chains), to ensure

convergence between P (x|O) distributions from each chain. To minimise sample correlations we

use 500 x samples from the latter half of the accepted parameter vectors. We describe the details of230

our MHMCMC approach in Appendix C.

2.4 Synthetic truth – DALEC2 analyses

To quantify our ability to estimate synthetic DALEC2 ecosystem states, we perform the MDF ap-

proach over a three year period using LAI and SOM observations created from a synthetic DALEC2

truth– our ,
::::::

based
::
on

::::::
known

:::::::::
DALEC2

::::::::::
parameters.

::::
Our

:
choice of synthetic data

::::::::
DALEC2

:::::
states235

represents globally spanning datasets of satellite LAI retrievals and soil carbon map data. We
:::::
Based

::
on

:::
40

::::::::
DALEC2

::::::::
parameter

::::::::::::
combinations,

:::
we

:
create 40 synthetic experiments

::::::
datasets

:
representing

typical temperate forest carbon dynamics, with three years of semi-continuous LAI data and one

simulated soil organic carbon estimate. We use the three-year meteorology drivers (temperate cli-

mate) from the REFLEX synthetic experiments (Fox et al., 2009).240

We create
:::::
select 40 synthetic experiments

::::::::
parameter

:::::::::::
combinations

:
by randomly sampling param-

eter vectors x within the DALEC2 parameter space (Table 1), where (i) PEDC(DALEC2(x)) = 1,

and (ii) x values are relevant to temperate forest ecosystems (see Appendix D). We remove approxi-

mately 95 % of daily LAI points to create an 8 day resolution semi-continuous LAI time-series. We

add noise to the remaining 3 yr synthetic DALEC2 LAI: each LAI value is multiplied by a random245

error factor of 2N(0,1), where N(0,1) is a random number derived from a normal distribution with

a mean of zero and a standard deviation of 1. For each synthetic soil carbon observation, we multiply

C0
som at t= 0 by a random error factor of 2N(0,1). We fully explain the derivation of the synthetic

experiment parameter vectors, (henceforth s) in Appendix D.

We perform the MHMCMC and label the posterior parameter ensemble (4×500×40x samples) as250

xsSTA (standard synthetic MDF) and xsEDC (synthetic MDF with EDCs). We assign an uncertainty

factor of 2 to all synthetic observations, hence On and Mn are log-transformed observations and

σn = log(2). For each posterior DALEC2 x, we determine the log-normalised parameter-space

error ε(x) by comparing x with its corresponding synthetic truth vector s:

ε(x) =

√
N∑
n=1

(
log(x(n))−log(s(n))

log(x(n)max)−log(x(n)min)

)2

√
N

(16)255

where x(n) and s(n) represent the nth parameters of x and s, N is the number of parameters in x,
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and x(n)min, x(n)max are the minimum and maximum parameter values (see Table 1). To assess the

parameter estimation capability for each experiment, we derive the ε (x) for each parameter vector in

(a) xsSTA (b) xsEDC and (c) for uniformly random samples where Prange(x) = 1 (henceforth xsRAN).

We refer to the ensemble of ε(x) values for xsSTA, xsEDC and xsRAN as E(xsSTA), E(xsEDC) and260

E(xsRAN). We quantify the overall EDC associated error reduction (IEDC) as follows:

IEDC =

(
Ẽ(xsRAN)− Ẽ(xsEDC)

Ẽ(xsRAN)− Ẽ(xsSTA)
− 1

)
× 100% (17)

where E
::
Ẽ represents the median of E for each posterior parameter ensemble. This allows us to

assess the relative improvement of xsEDC over xsSTA parameter estimates against the xsRAN “zero-

knowledge” case. In addition, we determine the IEDC for two parameter subgroups: (a) directly265

constrained parameters, and (b) indirectly constrained parameters. We assign clf, cronset, crfall, donset,

dfall and C0
som to parameter group A: these parameters can be directly inferred from the LAI and

soil organic carbon observations. We assign the remaining parameters to parameter group B: these

can only be inferred from the DALEC2 model structure and – potentially – EDCs. Finally we

compare NEE from DALEC2(xsEDC) and DALEC2(xsSTA) against the NEE synthetic “truths” –270

DALEC2(s).

2.5 AmeriFlux – DALEC2 analyses

For the flux-tower experiments, we constrain DALEC2 parameters using (a) MODIS derived Leaf

Area Index (LAI), and (b) total soil carbon from the harmonised world soil database (HWSD

Hiederer and Köchy, 2011). We perform daily resolution three year DALEC2 analyses for three275

forest categories: evergreen needle-leaf (ENF), deciduous broad-leaf (DBF), and mixed forest

(MF). We chose one AmeriFlux site from each forest type. To establish a suitable site for our

method we chose sites with NEE data spanning across three years between 2001 and 2010. We

narrowed our selection by choosing
:::
Our

:::::::
selected

::::
sites

:::
for

:::::
each

:::::
forest

:::::
type

:::
are

::::::::
Howland

::::::
Forest

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(US-Ho1, evergreen needleleaf forest – 45.2041◦ N, 68.7402◦W – Hollinger et al., 1999) ,

:::::::
Morgan280

::::::
Monroe

:::::
State

:::::
Forest

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(US-MMS, deciduous broadleaf forest – 39.3231◦ N, 86.4131◦W – Schmid et al., 2000) and

:::::::
Sylvania

::::::::::
Wilderness

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(US-Syv, mixed forest – 46.2420◦ N, 89.3476◦W – Desai et al., 2005) .

:::::
We

:::::
chose temperate sites with less than 2

::::
little

:::::::
expected

:::::::::::
water-stress,

:::
and

::::
with

:
a
::
≤
::
3 months of recorded

freezing temperaturesand little expected water-stress: these
::::::::::::
below-freezing

::::
soil

::::::::::::
temperatures.

:::::
These

:
criteria reflect the current capabilities of DALEC2, as hydrological processes are not285

explicitly portrayed in the model. Our selected sites for each forest type are Howland Forest

(US-Ho1, evergreen needleleaf forest – 45.2041◦ N, 68.7402◦W – Hollinger et al., 1999) , Morgan

Monroe State Forest (US-MMS, deciduous broadleaf forest – 39.3231◦ N, 86.4131◦W – Schmid et al., 2000) and

Sylvania Wilderness (US-Syv, mixed forest – 46.2420◦ N, 89.3476◦W – Desai et al., 2005) .

For each AmeriFlux site, we extract the corresponding MODIS LAI retrievals from the MOD15A2290

LAI 8 day version 005 1 km resolution product (downloaded from the Land Processes Distributed
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Active Archive Centre http://lpdaac.usgs.gov/): we only keep maximum quality flag data. Stan-

dard deviations are provided for 1 km MODIS LAI retrievals, however these (a) do not reflect the

magnitude variability in uncertainty, (b) often imply the existence of negative LAI observations

(σLAI > LAI) and (c) are occasionally missing. While various MODIS LAI evaluations have been295

performed (e.g. Sea et al., 2011; Serbin et al., 2013), large-scale spatiotemporal LAI retrieval er-

rors remain poorly quantified. For the sake of simplicity, we assign a factor of 2 uncertainty (i.e.

log(LAI)± log(2)) for each MODIS LAI observation. To minimise spatial discrepancies between

MODIS and AmeriFlux sites, each LAI observation is the arithmetic mean of all available LAI re-

trievals within a 9 pixel 3km×3km area (centred on each AmeriFlux site).
::::::
Overall,

:::
we

:::
use

:::
95,

::::
120300

:::
and

:::
119

::::
LAI

::::::
values

::
at

:::::::
US-Syv,

::::::::
US-Ho1

:::
and

:::::::::
US-MMS

::::::::
(5th–95th

::::::::
percentile

::::::
ranges

:::
for

::::
LAI

::::::
values

::
are

:::::::
0.4-5.8,

::::::
1.0-5.6

::::
and

::::::
0.4-5.5

:::::::::::
respectively).

:

For each site we extract total soil carbon density from the nearest Harmonised World Soil Database

30 arc seconds resolution total soil carbon content (approx. 1 km at equator Hiederer and Köchy,

2011): the authors have performed multiple comparisons of the global HWSD against other products,305

however no pixel-scale uncertainties are provided. We chose to assign an uncertainty factor of 2 on

each site-scale HWSD SOC estimate.
:::
The

:::::::
HWSD

::::
SOC

::::::
values

:::
are

::::::::
2.3× 104

:
gCm−2,

:::::::::
2.3× 104

gCm−2
:::
and

::::::::
5.2× 103

:
gCm−2.

:

To limit our study to the use of globally spanning datasets, we extract DALEC2 drivers from

0.125 ◦ × 0.125 ◦ ERA interim meteorology (see Appendix A for details). The DALEC2 analyses for310

each site are therefore completely independent from all site-level measurements (we note, however,

that extensive meteorological and biometric data are meticulously recorded across the AmeriFlux

site network). Therefore, we produce a fully independent ecosystem carbon cycle analysis, which

can be evaluated against measured NEE at each flux-tower site.

As done for the synthetic experiments, we perform the MHMCMC approach at each site – with315

and without EDCs – and label the posterior parameter ensembles (4 chains × 500 x samples)

as xaSTA (standard AmeriFlux MDF) and xaEDC (AmeriFlux MDF + EDCs). We compare the

DALEC2 NEE analyses, DALEC2(xaEDC) and DALEC2(xaSTA) against NEE measurements at

each AmeriFlux site.

2.6
::::
EDC

:::::::::
sensitivity

:::
test320

::
To

:::::::::
determine

:::
the

:::::::::
sensitivity

::
of

:::
our

::::::
results

::
to

::::::
EDCs

::::
1-12,

:::
we

::::::
repeat

:::::
MDF

::::::::
estimates

::
of

::::::
xsEDC::::

and

:::::
xaEDC:::

by
::::::::
imposing

:::::
only

:::
one

:::::
EDC

::
at
::

a
::::
time

::::::::::
(henceforth

::::::::
xsEDC(n) :::

and
:::::::::
xaEDC(n),:::::

where
::
n
::

is
::::

the

:::
nth

:::::
EDC).

::::
For

:::
the

:::::::
synthetic

:::::::::::
experiments,

:::
we

:::::::::
determine

:::
the

::::::
relative

::::::::::
contribution

::
of

:::
the

::::
nth

::::
EDC

:::
by

:::::::::
quantifying

:::
the

::::::
overall

:::::
EDC

:::::::::
associated

::::
error

::::::::
reduction

:::::::
(IEDC(n),::::

see
:::::::
equation

:::
17)

:::
for

::::
each

::::::::
estimate

::
of

::::::::
xsEDC(n). :::::

Given
:::
the

:::::
large

::::::::::::
computational

:::
cost

:::
of

:::::::::
estimating

:::::::
xsEDC(n):::

for
::::
each

:::::
EDC

:::
(40

::::::::
synthetic325

::::::::::
experiments

::
×

::
12

::::::
EDCs

::
×

:
4
:::::::
chains),

:::
we

::::
limit

:::
our

:::::::::
sensitivity

:::::::
analysis

::
to

:::::
IEDC ::::::::

estimates
:::::
based

::
on

::
4

:::
(out

::
of

::::
40)

:::::::
synthetic

:::::::::::
experiments.

:
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:::
We

:::::::
compare

::
3

::
yr

:::::::::
integrated

::::::::
DALEC2

::::
NEE

::::::::
estimates

::::
and

:::::::::
AmeriFlux

:::::
NEE

::::::::::::
measurements

::
at

:::
all

::::
three

::::
sites

:::::::::::
(AmeriFlux

::::
NEE

::::::::::::
measurement

::::::::
temporal

::::
gaps

:::::
have

:::::
been

::::::::::
consistently

::::::::
excluded

:::::
from

::::::::
DALEC2

:
3
::
yr

:::::
NEE

:::::::::
estimates).

:::
We

:::::::::
determine

:::
the

::::::::
DALEC2

::
3

::
yr

::::
NEE

:::
50%

:::::::::
confidence

:::::
range

:::
(50%330

:::
CR:

:::::::::
25th–75th

::::::::
percentile

:::::::
interval)

:::::::::
reduction

::
as

:::::::
follows:

(1− RNEE,EDC(n)

RNEE,STA
)× 100%

:::::::::::::::::::::

(18)

:::::
where

::::::::::
RNEE,EDC(n) :::

and
::::::::
RNEE,STA :::

are
:::
the

::
50%

::
CR

::
of

:::::::::::::::::
DALEC2(xaEDC(n)):::

and
:::::::::::::::
DALEC2(xaSTA)

::
3

::
yr

::::
NEE

:::::::::
estimates.

::::::::
Similarly,

:::
we

::::::::
calculate

:::
the

:
3
::
yr

:::::
NEE

::::
bias

::::::::
reduction

:::::::
(relative

::
to

:::::::::
AmeriFlux

:::::
NEE

::::::::::::
measurements)

::
as

:::::::
follows:

:
335

(1− |BNEE,EDC(n)|
|BNEE,STA|

)× 100%

::::::::::::::::::::::

(19)

:::::
where

:::::::::::
BNEE,EDC(n) ::::

and
:::::::::
BNEE,STA::::

are
:::::

the
:::::::

median
:::::::

biases
:::

of
::::::::::::::::::

DALEC2(xaEDC(n)):::::
and

::::::::::::::
DALEC2(xaSTA)

::
3

::
yr

::::
NEE

:::::::::
estimates.

3 Results

3.1 Synthetic Experiments340

The inclusion of EDCs resulted in substantial error reductions in posterior DALEC2 parameter and

state variable estimates. We found an overall reduction in the posterior MHMCMC EDC param-

eter vector errors E(xsEDC), relative to both the standard MHMCMC errors E(xsSTA) and the

randomly sampled parameter vector errors E(xsRAN): we found an improvement of IEDC = 34%

associated with using EDCs (Fig. 2c). For the directly constrained parameters (parameter group A)345

we found similar likelihood functions
::::::::::
distributions

:
for both E(xsSTA) and E(xsEDC) errors rela-

tive to E(xsRAN) errors (Fig. 2a), and similarly lower xsSTA and xsEDC errors values relative to

xsRAN errors (Ẽ(xsSTA) = 0.19, Ẽ(xsEDC) = 0.21, Ẽ(xsRAN) = 0.42, group A: IEDC =−6%).

For the indirectly constrained parameters (group B), we found significantly smaller xsEDC errors

relative to xsSTA and xsRAN (Ẽ(xsEDC) = 0.29, Ẽ(xsSTA) = 0.34, and Ẽ(xsRAN) = 0.38), and350

hence improved estimates of s when we implemented EDCs (group B: IEDC = 88%, Fig. 2b).
:::
We

:::::
found

:::
that

::::::
EDCs

:
5
::::
and

:
8
:::::::::
accounted

:::
for

:::
the

:::::
largest

:::::
error

::::::::
reduction

::
in

::::::::
DALEC2

:::::::::
parameter

::::::::
estimates

:::::::::::::
(IEDC(5,8) ≥ 3%,

:::::
Table

:::
2),

::::::::
followed

::
by

::::::
EDCs

::
6,

:::
10

:::
and

:::
12

:::::::::::::::::
(IEDC(6,10,12) = 2%).

:::::
EDC

::
7

:::
led

::
to

:::
an

:::::
overall

:::::::::
parameter

:::::
error

:::::::
increase

::::::::::::::::
(IEDC(7) =−13%).

::::
The

:::::::::
remaining

:::::
EDCs

:::::::::
accounted

:::
for

:::::
small

:::
or

:::::::
negative

::::
error

:::::::::
reductions.

:
355

We compared EDC total xsEDC, xsSTA and xsRAN live biomass (Croo +Cfol +Clab +Cwoo) and

dead biomass (Csom +Clit) pool biases relative to their corresponding synthetic truths (Fig. 2d–e).
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For dead biomass, both xsEDC and xsSTA perform comparably better than xsRAN (Fig. 2e), as dead

biomass is mostly accounted for by the synthetic Csom observations: the xsEDC and xsSTA median

bias factors (1.1, 0.91) are close to 1 (i.e. a bias of zero) relative to xsRAN median bias factor360

(0.04). For live biomass pools, xsEDC live biomass bias estimates are smaller than xsSTA (Fig. 2d):

the xsEDC bias distribution (median = 1.20) is closer to 1 relative to the xsSTA bias distribution

(0.48), with respect to xsRAN median bias (0.20). For total biomass estimates, we found similar bias

distributions relative to xsRAN: (xsEDC median bias factor = 1.22, xsSTA bias factor = 0.98): both

bias factors are closer to 1 relative to xsRAN (bias factor = 0.16).365

We found that incorporating EDCs resulted in a reduced mode and 90 % confidence range

(
::
90% CR: 95th–5th percentile interval) for three year NEE biases (Fig. 3). We found a 65 % re-

duction in the DALEC2(xsEDC) three year NEE bias 90 % CR (9.0 gCm−2 d−1), relative to the

DALEC2(xsSTA) three year NEE bias 90 % CR (26.9 gCm−2 d−1). The three year NEE bias

modes for DALEC2(xsEDC) and DALEC2(xsSTA) are 0.0 gCm−2 d−1 and -0.5 gCm−2 d−1 (at370

0.5 gCm−2 d−1 intervals).

3.2 AmeriFlux results

The DALEC2(xaEDC) analyses outperformed the standard DALEC2(xaSTA) analyses at the Amer-

iFlux tower sites. The inclusion of EDCs in DALEC2 analyses amounted to overall NEE bias re-

ductions at all sites (US-Syv, US-Ho1, US-MMS, we henceforth present all site results in this or-375

der). The aggregated DALEC2(xaEDC) median daily NEE biases (−0.02, 0.13,−0.03gCm−2 d−1)

are closer to the AmeriFlux measured NEE by roughly one order of magnitude in contrast to

DALEC2(xaSTA) median NEE biases (−0.52, −0.86, −1.15gCm−2 d−1). The aggregated daily

DALEC2(xaEDC) NEE 90 % confidence ranges at each site (10.9, 10.1, 8.3 gCm−2 d−1) were

all smaller (53–87 %) than the corresponding DALEC2(xaSTA) NEE bias 90 % CR (20.3, 18.3,380

9.5 gCm−2 d−1). The reductions in bias are consistent across the three year comparison period at

each site (Fig. 4).

Cumulative AmeriFlux NEE observations are compared against corresponding DALEC2(xaSTA)

and DALEC2(xaEDC) NEE estimates (Fig. 5); AmeriFlux NEE temporal gaps have been omit-

ted from both DALEC2 and AmeriFlux derived cumulative NEE time series. DALEC2(xaEDC)385

integrated NEE estimates outperformed DALEC2(xaSTA) NEE estimates at all three sites.

DALEC2(xaEDC) median NEE biases over the 3 yr period (−0.26, 0.07, 0.08 kgCm−2) are smaller

than the equivalent DALEC2(xaSTA) biases (−0.84, −1.09, −1.18 kg C m−2), with relative EDC

bias reductions of 69 %, 93 % and 93 %. The inclusion of EDCs also resulted in a reduction in

NEE confidence intervals: DALEC2(xaEDC) 50 % CR (1.17, 1.57, 1.16 kgCm−2) are 32–48 %390

smaller than the corresponding DALEC2(xaSTA) 50 % CR (2.04, 3.00, 1.70 kgCm−2).
:::::
Based

:::
on

::::::::::::::::
DALEC2(xaEDC(n))::

3
::
yr

::::
NEE

:::::::::
estimates,

:::::
EDC

::
10

:::::::
resulted

::
in
::

a
::::::
≥ 18%

::::
bias

::::::::
reduction

::::
and

:
a
::::::
≥ 5%

::
50 %

:::
CR

::::::::
reduction

::
at

::
all

:::::
three

::::
sites,

:::::::
relative

::
to

::::::::::::::
DALEC2(xaSTA)

::::::
(Table

::
2).

::::::
EDCs

:
2
:::
and

::
8
:::::::
resulted

::
in
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:
a
::::::
> 10%

::
3

::
yr

::::
NEE

:::
50 %

:::
CR

::::::::
reduction

:::
and

:::
an

:::::::
increase

::
in

:
3
:::
yr

::::
NEE

::::
bias

::
at

::
all

:::::
three

::::
sites

:::::
(NEE

::::
bias

::::::::
reduction

::::::::
≤−22%).

::::::
EDCs

:
7
::::
and

:
9
:::::::
resulted

::
in

::
a

::::::
≥ 50%

:
3
:::
yr

::::
NEE

::::
bias

::::::::
reduction

:::
and

:::
an

:::::::
increase

::
in395

:
3
::
yr

:::::
NEE

::
50 %

::
CR

::
at

:::
all

::::
three

::::
sites

:::::
(NEE

:::
50 %

:::
CR

::::::::
reduction

:::::::::
≤−15%).

:

4 Discussion

With the use of a simple model and globally available data, i.e. leaf area dynamics and soil carbon

observations, we have demonstrated that the EDC approach provides an improved ability to infer the

magnitude of carbon fluxes, live carbon pools and model parameters, in comparison to a standard400

parameter optimisation approach (STA).

For ecologically relevant synthetic truths, EDCs provide improved estimates of the DALEC2 pa-

rameters and state variables. The EDC approach resulted in (a) parameter estimation error reduc-

tions, (b) NEE bias and confidence range reductions, and (c) improved estimates of the live biomass

C pools, in contrast to the STA parameter and flux and C pool estimates. While there is little dif-405

ference between directly inferable (Group A) estimated parameter errors between the EDC and STA

approach, using EDCs led to a marked reduction in estimated parameter error for indirectly inferable

(Group B) parameters. The indirectly inferred parameters include allocation fractions, subsurface

pools and turnover rates, which are typically difficult to observe at field sites and virtually impossible

to observe remotely (i.e. at regional scales).410

By comparing DALEC2 analyses against independent AmeriFlux NEE measurements over real

ecosystems, we further validated the advantages of using EDCs. At each AmeriFlux site, we found

that EDCs led to an increased confidence and a largely reduced NEE bias; our DALEC2 model

analyses suggests that the use of EDCs regionally and globally could significantly enhance our ability

to estimate ecosystem state variables in the absence of direct observational constraints. In light of415

the large differences between earth system models (Todd-Brown et al., 2013; Friend et al., 2013),

we anticipate that EDCs may help constrain ecosystem carbon terms on global scales, where carbon

pools and their residence times are typically difficult or impossible to measure.

:::::::
Together,

::::::
EDCs

::::
1-12

::::
lead

:::
to

::::::
overall

::::::::::::
improvements

::
in

:::::::::
parameter

::::::::
estimates

::::
and

:::::::::
AmeriFlux

::::
site

::::
NEE

:::::::::
confidence

:::::::::
range/bias

::::::
(Table

:::
2):

::::::::
however,

::::
with

:::
the

:::::::::
exception

::
of

:::::
EDC

:::
10,

:::::
when

:::::
EDCs

:::::
were420

:::::
tested

::::::::::
individually,

::::
they

:::
did

::::
not

::::
lead

::
to

::::::::::::
comprehensive

:::::::::::::
improvements.

::::
For

:::::::
example,

:::::
EDC

::
8

:::::
alone

:::
(no

::::
rapid

::::::::::
exponential

::::
pool

::::::
decay)

::::::
resulted

::
in
:::::
large

:::::::::
AmeriFlux

:::
site

::::
NEE

::::::::::
confidence

::::
range

::::::::::
reductions,

::
as

::::
well

::
as

::::::::
improved

::::::::
synthetic

:::::::::
parameter

::::::::
estimates;

::::::::
however,

:::::
EDC

:
8
:::::::

resulted
:::
in

:::::
higher

::::::::::
AmeriFlux

:::
site

::::
NEE

::::::
biases.

::::::::::
Conversely,

:::::
EDC

:
9
:::::::
(steady

::::
state

::::::::
proximity

:::
of

:::
the

:::
soil

::::::
carbon

:::::
pool)

:::::::
resulted

::
in

:::
the

:::::
largest

::::::::::
AmeriFlux

:::
site

::::
bias

:::::::::
reductions,

:::::
while

:::::
NEE

:::::::::
confidence

::::
was

:::::
lower.

:::::
EDC

::
5

::::::::::
(comparable

::::
fine425

:::
root

::::
and

:::::::::
foliar/labile

::::::::::
allocation)

::
led

:::
to

:::
the

:::::
largest

:::::::::
parameter

::::::::::::
improvements;

::::::::
however,

:::
the

:::::::::
associated

::::::
changes

::
in
::::::::::
AmeriFlux

:::
site

::::
NEE

::::::::
estimates

::::
were

::::::::
relatively

:::::
small.

::::
Our

:::::::
findings

::::::::::
demonstrate

:::
that

::::::
robust

:::::::::::
improvements

:::
in

::::::
carbon

::::::
cycling

:::::::::
parameter

:::
and

:::::
state

:::::::
variable

::::::::
estimates

::::
only

::::
arise

:::::
when

::::::
EDCs

:::
are
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::::
used

::::::::::
collectively.

Here we developed a group of EDCs suitable to ecosystems with no recent major disturbance.430

However, we note that our EDCs can be adapted for a wider range of ecosystem dynamics. For

example, recently disturbed ecosystems may be (a) rapidly recovering and (b) growing towards

a steady state where carbon pools are greater than one order of magnitude from the initial carbon

pools. Therefore a subset of our EDCs (EDCs 7–12) can be adapted to better represent ecological

“common sense” in recovering ecosystems.435

Ultimately, EDCs can be adapted to best represent ecological knowledge in a variety of ecosystem

carbon model MDF applications, where the ecosystem observations are insufficient to constrain all

model state variables (e.g. Fox et al., 2009). For example, on regional and global spatial scales, there

is often no explicit knowledge on various model parameter values and their associated uncertainty.

In such cases, our EDC approach imposes inter-parameter constraints while simultaneously allowing440

a global parameter exploration across several orders of magnitude (see Table 1). Hence EDCs allow

us to incorporate ecologically consistent relationships between parameters (i.e. allocation ratios,

turnover ratios), without the need to constrain otherwise unknown parameter and state variables.

Moreover, as an alternative to imposing plant-functional-type priors, which risk being subjective and

over-rigid, ecosystem trait inter-relationships derived from plant trait data (e.g. Wright et al., 2004;445

Kattge et al., 2011) could be incorporated as additional EDCs.
:::::
Given

:
a
::::::::::
quantitative

:::::::::
knowledge

:::
of

::::::::
parameter

::::::::::::::::
inter-relationships,

::
we

::::
also

::::
note

::::
that

:
a
::::
prior

:::::::::
parameter

:::::::::::::::::
variance-covariance

:::::::
structure

::
–

::
in

:::::::
addition

::
to

:::::
EDCs

::
–
:::
can

::::
also

:::
be

::::
used

:::
as

::
an

:::::::::
alternative

::
or
::::::::::::::

complementary
::::::::
constraint

:::
on

:::
the

::::::
model

::::
state

:::
and

::::::::::
parameters. Finally, we note that our choice of EDCs is open to adaptation and adjustment:

we maintained relatively broad constraints (e.g. EDC 6 permissible root:foliar C range > one order450

of magnitude), which can likely be refined through further study.

In this study we limited our observational constraints to globally spanning MODIS LAI retrievals

and the HWSD soil map.
:::::
Given

:::::
these

::::
two

:::::::
datasets,

::::
we

::::
have

::::::::::::
demonstrated

:::
that

::::::
EDCs

::::
lead

:::
to

::::::::
improved

:::::
model

:::::::::
parameter

::::::::
estimates

::::
and

:::::::
reduced

::::
NEE

::::
bias

::::
and

:::::::::
confidence

::::::
ranges.

::::::::::::
Nonetheless,

:::::
based

::
on

:::
the

::::::::
posterior

::::
NEE

::::::::::
probability

::::::
density

::::::::
function,

:::
we

:::
are

::::::
unable

::
to

::::::::
determine

::::::::
whether

::::
sites455

::
are

:::
net

::::::
carbon

:::::
sinks

::
or

:::::::
sources

::
on

::::::
annual

:::::::::
timescales.

:
However, an increasing number of continental

and global scale biospheric datasets are becoming available: these include a global canopy height

map by Simard et al. (2011), pan-tropical biomass maps by Saatchi et al. (2011); Baccini et al. (2012)

and a pan-boreal carbon density map by Thurner et al. (2013). These products can potentially be

used in conjuncture with MODIS LAI, HWSD data and our EDC approach in a MDF framework to460

better constrain terrestrial carbon cycle dynamics.
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5 Concluding Remarks

We have addressed the under-determined nature of the carbon cycle problem by applying a group

of widely applicable ecological and dynamic constraints (EDCs) on an ecosystem carbon model

in a model-data fusion (MDF) framework. Particularly where extensive in-situ measurements are465

not available, EDCs can be used to incorporate ecological knowledge, such as parameter inter-

relationships and pool dynamics constraints, into ecosystem carbon model analyses. In a synthetic

data experiment, we found improved estimates of DALEC2 model parameters, live carbon pools and

net ecosystem exchange (NEE) when using EDCs in DALEC2 MDF analyses. By validating our

DALEC2 MDF analyses against independent AmeriFlux NEE measurements, we found that EDCs470

led to a 69–93 % reduction in three year NEE biases. We incorporated twelve EDCs in DALEC2

analyses of temperate forest ecosystem carbon cycling: these EDCs can potentially be adapted for

a range of models and biomes. Moreover, additional EDCs can be derived to incorporate parameter

inter-relationships derived from regional or global plant trait datasets into ecosystem carbon model

analyses. Here we have shown that EDCs can be used to constrain the poorly resolved components475

of the carbon cycle: we therefore advocate the use of EDCs in future MDF analyses of the terrestrial

carbon cycle.

Appendix A

DALEC2 model

The full DALEC2 model dynamics can be expressed as six equations:480

Ct+1
lab = (1−Φonset(t,donset, cronset))C

t
lab + flabF

t
gpp (A1)

Ct+1
fol = (1−Φfall(t,dfall, crfall, clspan))Ctfol + Φonset(t,donset, cronset)C

t
lab + ffolF

t
gpp (A2)

Ct+1
roo = (1− θroo)Ctroo + frooF

t
gpp (A3)485

Ct+1
woo = (1− θwoo)Ctwoo + fwooF

t
gpp (A4)

Ct+1
lit = (1− (θlit + θmin)eΘTt)Ctlit + θrooC

t
roo + Φfall(t,dfall, crfall, clspan)Ctfol (A5)

490
Ct+1

som = (1− θsome
ΘTt)Ctsom + θwooC

t
woo + (θmin)eΘTtCtlit (A6)

The 23 free parameters and carbon pool symbols are summarised in Table 1. The daily gross

primary production F tgpp, is derived from the aggregated canopy model (ACM, Williams et al.,

1997), and is a function of daily driver data M (day of year, atmospheric CO2, minimum and

maximum temperature, and global radiation), and parameters Cfol, clma and ceff (parameter ceff, the495

canopy efficiency, is a replacement for the nitrogen × nitrogen use efficiency product in ACM).
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The model is initiated with six initial carbon pool values (C0
lab, C0

fol, C
0
roo, C0

woo, C0
lit, C

0
som) and

these are iteratively updated at a daily timestep. The leaf onset (labile to foliar pool C transfer) and

leaf fall (foliar to litter pool C transfer) functions, Φonset and Φfall are defined below:

Φonset(t,donset, cronset) =

√
2√
π
·
(

6.9088

cronset

)
· e−

(
sin( t−donset−0.6245cronset

s )·
√

2s
cronset

)2

(A7)500

Φfall(t,dfall, crfall, clspan) =

√
2√
π
·
(

log(clspan)− log(clspan− 1)

crfall

)
· e−

(
sin
(
t−crfall+ψf

s

)
·
√

2s
crfall

)2

(A8)

The Φfall continuous cyclical step function derivatives were derived such that (a)
∏t=365
t=1 (1−

Φonset(t,donset, cronset)) = 1− 1
clf

(b) the maximum leaf loss rate occurs annually at t%365.25 = dfall.

(c) 68 % of leaf loss occurs within cronset days and 95 % of leaf loss within 2crfall days.505

ψf is an offset term included to ensure that the maximum leaf loss rate, .i.e. d2Cfol
dt2 = 0, occurs at

t%365.25 = dfall – it is a numerical solution to the following equation:

2
√
π · log

(
clspan

clspan− 1

)
·ψ+ e−ψ

2

= 0. (A9)

where ψ =
√

2ψf
crfall

(we note that Eq. (A9) can be solved using a Lambert W function, where ψ =

W (f(clf)) - however, Lambert W functions cannot be solved analytically). We created a look up510

function for ψ by fitting a 6th order polynomial between ψ and log(clf− 1) – the full polynomial

is included in the downloadable DALEC2 code. Φonset is a special case of the Φfall formula: it was

derived such that 99.99 % of Clab is transferred to Cfol annually at t%365.25 = donset and 68 % of

leaf onset occurs within cronset day. The Φ functions are advantageous in that (a) the daily turnover

rates result in a continuous and specified loss of carbon throughout a known time period, and (b) the515

functions are cyclical and hence do not need to be reset, “switched on” or “switched off” throughout

the model run period. We also note that while we treated donset and dfall as constant parameters, the Φ

functions can easily accommodate temporally variable definitions for leaf onset and leaf fall. Total

ecosystem respiration F trec and the net ecosystem exchange F tnee fluxes are derived at each timestep

and are shown below.520

F trec = fautoF
t
gpp + (θlitC

t
lit + θsomC

t
som)eΘTt (A10)

F tnee = F trec−F tgpp (A11)

At time t leaf area index (LAI) is defined as:

LAIt =
Ctfol

clma
(A12)525

A schematic of the of the carbon fluxes in DALEC2 is shown in Fig. 6.

For AMERIFLUX
:::::::::
AmeriFlux

:
DALEC2 analyses we used daily meteorological drivers for

DALEC2 from 0.125 ◦ × 0.125 ◦ ERA-interim re-analyses. For each site we obtained coordinates

from ameriflux.ornl.gov. We downloaded 6 h temperature and 12 h downward surface solar radia-

tion data for all site locations and years from apps.ecmwf.int/datasets. We averaged temperature and530
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radiation from the four nearest 0.125 ◦ × 0.125 ◦ ERA-interim grid-points. We obtained minimum

and maximum temperatures from the 6 h ERA-interim temperature range. For M daily radiation

values we used the sum of the two 12 h radiation re-analyses.

Appendix B

Exponential Cpool decay535

Exponentially decaying Ctpool trajecories can be approximated as Cexp = a+ bect, where a, b and

c are constants, t is time in days. To implement EDC 8, we numerically estimate parameter c: to

derive c for each carbon pool trajectory (Cpool) we derive (i) the gradient between yearly means for

years 1 and 2:

∆C0 =

[
365×2∑
t=365+1

+Ctpool−
365∑
t=1

Ctpool]

365
(B1)540

and (ii) the gradient between the yearly means with a 1 day offset:

∆C1 =

[
365×2+1∑
t=365+1+1

Ctpool−
365+1∑
t=1+1

Ctpool]

365
(B2)

Parameter c can be expressed as:

c= log(
∆C1

∆C0
) (B3)

In the case of a true exponential curve with a known value of c, the numeric derivation of c shown545

in equations B1–B3 is exact (i.e. within numerical precision of the true c). In cases where there is

no exponential decay, c is either positive or complex. While Cexp is an approximation of Ctpool, in

practice this approach is both computationally fast and effectively able to identify rapid exponential

decay (c < log(2)
365.25×3 ) trajectories.

Appendix C550

Adaptive MHMCMC algorithm

For the standard MDF parameter estimates the normalised parameter probability is:

P (x|O) = α ·P (O|x) ·Prange(x), (C1)

and for EDC MDF parameter estimates the normalised parameter probability is:

P (x|O) = α ·P (O|x) ·Prange(x) ·PEDC(DALEC2(x)), (C2)555
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where α is a scaling constant ensuring
∫

(P (x|O))dx = 1. For each chain, we search for a random

x0 starting point where Prange(x0)·PEDC(DALEC2(x0)) = 1 (for standard runs we randomly sample

x0 from Prange(x0) = 1).

Based on the Ziehn et al. (2012) algorithm, we then iterate through the following steps:

1. xi+1 = xi +d.560

2. Run DALEC2(xi+1).

3. If P (xi+1|O)
P (xi|O) > U(0,1), accept xi+1, and i= i+ 1.

where d is the stepsize. The ratio P (xi+1|O)
P (xi|O) is derived from equations C1 and C2 for standard

and EDC MHMCMC iterations, respectively (therefore knowledge of α is not required). At each

iteration, for each parameter dimension n, d(n) = s(n)N(0,1), where s is the proposal distribution565

andN(0,1) is a random number sampled from a normal distribution with mean = 0 and variance = 1.

This sequence repeated until 107 samples of x have been accepted. While any proposal distribution

s can be used, adapting the proposal distribution can reduce the number of steps required to reach

the maximum probability parameter space. For the first 5× 106 samples, we adapt the proposal

distribution s every 100 iterations by (i) scaling s to ensure an acceptance rate of 23–44 % (Ziehn570

et al., 2012), and (ii) scale individual dimensions of s to ensure that 2sn > σx(n) where σx(n) is

the nth parameter standard deviation over 100 iterations. The P (x|O) distribution is then derived

from the second 5× 106 samples.

The MHMCMC parameter sampling approach is then repeated four times (four chains): to de-

termine whether all four chains have converged to the same parameter distributions, we use the575

Gelman-Rubin convergence criterion R, where for each parameter R< 1.1 indicates an acceptable

chain convergence (Gelman and Rubin, 1992; Xu et al., 2006). If the chains have not converged for

all parameters, we sequentially test all N chain combinations (where N ≥ 2) to (a) repeat the GR

criterion, and (b) determine the combination with the maximum number of converged chains.

Appendix D580

Temperate forest synthetic truths

The 40 synthetic experiments were created by searching for parameter vectors s where

PEDC(DALEC2(s)) = 1. To create synthetic experiments parameter vectors s relevant to temper-

ate forest ecosystems - henceforth PTF(DALEC2(s)) = 1 - we imposed the following parameter and

state variable conditions:585

1. 60< donset < 150

2. 242< dfall < 332
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3. cronset > 20

4. crfall > 30

5. clf > 0.25590

6. 1< LAIt < 8

7. 3kgCm−2 <C0
woo < 30kgCm−2

8. 1kgCm−2 <C0
som < 100kgCm−2

9. F tgpp > 2gCm−2 d−1

10. 5
6 <

LAIyear=3

LAIyear=1
< 6

5595

For a given vector s, all conditions must be met when PTF(DALEC2(s)) = 1. The above-listed

conditions ensure that the selected s vectors broadly reflect canopy dynamics (1–4), carbon pool

sizes (5–6) mean photosynthetic uptake (7) and limited year-to-year canopy changes (8) associ-

ated with temperate forest ecosystems (e.g. Fox et al., 2009). We derive each parameter vector s

by selecting a random parameter vector s0 and incrementally adjusting it until PEDC(DALEC2(s))600

PTF(DALEC2(s)) = 1. To represent a range of canopy dynamics, we also imposed either (a) a de-

ciduous condition (where crfall >
10
11 ) or (b) a mixed forest or evergreen condition (where crfall <

10
11 ),

with a 50 %-50 % propability for either constraint.

We simplistically simulate the 8-daily MODIS LAI data and soil carbon map HWSD products

from DALEC2(s) LAI and Csom: we multiplied each soil organic carbon “truth” at t= 0 (C0
som) by605

2N(0,1), where N(0,1) is a random number sampled from normally distribution with mean = 0 and

variance = 1.

For LAI synthetic observations, we only kept one in eight LAI values, and created correlated

gaps in the remaining LAI data of random lengths until at least 50 % of the 8daily
:
8
:::::
daily data is

removed. Overall, between 65 and 68 LAI observations are kept for each 3 yr synthetic experiment.610

Twenty-two parameter vectors are categorised as deciduous, and eighteen as evergreen. Mean 3 yr

F tgpp ranges from 2.04–8.79 gCm−2 d−1 (median = 4.75gCm−2 d−1) and mean 3 yr F tnee ranges

from −3.71 to 2.87gCm−2 d−1 (median =−0.72gCm−2 d−1).
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Table 1. DALEC2 model parameters, descriptions, and minimum – maximum parameter values: the corre-

sponding DALEC2 equations are fully described in Appendix A.

Parameter Description Range

fauto autotrophic respiration fraction 0.3–0.7

flab fraction of GPP allocated to labile C pool 0.01–0.5

ffol fraction of GPP allocated to foliage 0.01–0.5

froo fraction of GPP allocated to fine roots 0.01–0.5

fwoo
1 fraction of GPP allocated to wood 0.01–0.5

θwoo Woody C turnover rate 2.5× 10−5–10−3 d−1

θroo Fine root C turnover rate 10−4–10−2 d−1

θlit Litter C turnover rate 10−4–10−2 d−1

θsom Soil organic C turnover rate 10−7–10−3 d−1

θmin Litter mineralisation rate 10−2–10−5 d−1

Θ temperature dependence exponent factor 0.018–0.08

donset Leaf Onset Day 1–365

dfall Leaf Fall Day 1–365

ceff Canopy Efficiency Parameter 10–100

clma Leaf Mass per area 10–400gCm−2

clf Annual Leaf Loss Fraction 1
8

–1

cronset Labile C release period 10–100 day

crfall Leaf-fall period 10
::
20–100

::
150 day

Ct
lab Labile C pool at time t 10

::
20–1000gCm−2

::::::::::
2000gCm−2

Ct
fol Foliar C pool at time t 10

::
20–1000gCm−2

::::::::::
2000gCm−2

Ct
roo Fine root C pool at time t 10

::
20–1000gCm−2

::::::::::
2000gCm−2

Ct
woo Above & Below ground woody C pool at time t 100–105 gCm−2

Ct
lit Litter C pool at time t 10

::
20–1000gCm−2

::::::::::
2000gCm−2

Ct
som Soil organic C pool at time t 100–2× 105 gCm−2

1 fwoo is equivalent to 1 – fauto – ffol – flab.

to derive posterior parameter uncertainties in terrestrial ecosystem models, Global. Biogeochem. Cy., 26,

GB3025,
:::::::::::::::::::::
doi:10.1029/2011GB004185, 2012.
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Table 2.
:::::::
Synthetic

:::::::::
experiment

:::::::
parameter

::::
error

::::::::
reduction,

:::
and

::::::::
Ameriflux

:::::::::
experiment

:
3
:::

yr
::::
NEE

::
50%

::
CR

::::
and

:::
bias

:::::::
reduction

:::
for

::::
MDF

:::::::
estimates

:::::
using

:::::::
individual

:::::
EDCs,

::::::
relative

::
to

:::
the

::::::
standard

:::::
MDF

:::::::
estimates.

::::
EDC

:::::::
Synthetic

:::::::::
experiment AmeriFlux experiments

:::::::
parameter

::::
error

:

2NEE 50% CR reduction (bias reduction)

:::::::
reduction

:::::::
(1IEDC(n)) ::::::

US-Syv
::::::
US-Ho1

: :::::::
US-MMS

:
1
: ::::

−0%
::::
27%

::::::
(−11%)

: ::::
19%

::::::
(−13%)

: :::
3%

::::::
(−11%)

:
2
: ::::

−1%
::::
39%

::::::
(−26%)

: ::::
29%

::::::
(−25%)

: :::
14%

:::::::
(−19%)

:
3
: ::

0%
: :::

13%
::::::
(−0%)

::
1%

::::
(3%)

: ::
0%

::::::
(−7%)

:
4
: ::::

−1%
::::
30%

::::::
(−14%)

: ::::
22%

::::::
(−14%)

: :::
9%

::::::
(−17%)

:
5
: ::

8%
: :::

3%
:::::
(−3%)

: :::
0%

:::::
(−4%)

: :::
1%

::::::
(−11%)

:
6
: ::

2%
: ::::

10%
::::
(3%)

::::
−2%

::::
(6%)

: ::::
−1%

:::::
(−3%)

:
7
: :::::

−13%
: :::::

−15%
:::::
(52%)

: :::::
−28%

:::::
(76%)

: ::::
−25%

::::::
(95%)

:
8
: ::

3%
: ::::

34%
::::::
(−36%)

: :::
37%

::::::
(−9%)

:::
16%

:::::::
(−66%)

:
9
: ::

1%
: :::::

−39%
:::::
(89%)

: :::::
−50%

:::::
(57%)

: :::::
−31%

::::::
(100%)

::
10

::
2%

: :::
10%

:::::
(19%)

: :::
6%

:::::
(25%)

::
5%

:::::
(18%)

::
11

::::
−1%

:::
10%

::::::
(−0%)

:::
1%

:::::
(11%)

:::
3%

::::
(1%)

::
12

::
2%

: :::
8%

:::::
(−1%)

: ::
2%

::::
(0%)

: ::
3%

::::::
(−6%)

::::
ALL

:::::
EDCs

::::
34%

:::::::::
43%(69%)

:::::::::
48%(93%)

:::::::::
32%(93%)

1The parameter error reduction metric,IEDC(n), is described in section 2.4. 2The derivations of 3 yr NEE 50% CR and

bias reductions are described in section 2.6
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Fig. 1. Exponential decay test (EDC 8) performed on nine example normalised Cpool trajectories over a 3 yr

time-span. The Cpool trajectories are normalised such that Cpool = 1 at t= 0. Examples 1–5 were accepted

(EDC 8 = 1) and examples 6–9 were rejected (EDC 8 = 0). The exponential decay fit (dashed line) is shown

for pool trajectories where EDC 8 = 0.
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Fig. 2. Aggregated parameter estimates xsSTA (standard sampling – blue) and xsEDC (EDC sampling - red)

from deciduous and evergreen synthetic LAI and soil organic carbon observations – these are compared against

observation and EDC independent parameter samples xsRAN (light grey). Panels (a–c) Normalised parameter

space error (ε) normalised likelihood
::::::::
probability

:::::
density

:
functions for (a) Group A (directly inferable) parame-

ters, (b) Group B (indirectly inferable) parameters, and (c) all DALEC2 parameters. ε values for each parameter

group were estimated
:::::
derived

:
using Eq. (15). In panels (d) and (e) the likelihood

::::::::
probability

:::::
density

::::::::
functions

of live carbon stock (foliar labile wood and roots) and dead carbon stock (litter and soil carbon) biases against

the synthetic truth parameters s are shown for xsRAN, xsSTA and xsEDC parameter estimates.
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Fig. 3. Three year mean DALEC2 net ecosystem exchange (NEE) biases (relative to synthetic truth) aggre-

gated across 40 synthetic experiments at 0.5 gCm−2 d−1 intervals. The bias likelihoods
::::::::
frequencies are shown

for DALEC2(xsSTA) (standard sampling – blue) and DALEC2(xsEDC) (EDC sampling – red) relative to the

synthetic truth DALEC2(s) (black dashed line).
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Fig. 4. DALEC2 daily NEE ensemble estimates at three AmeriFlux sites: Sylvania Wilderness (US-Syv, mixed

forest, top two rows), Howland Forest (US-Ho1, evergreen needleleaf, middle two rows), and Morgan Monroe

State Forest (US-MMS, deciduous broadleaf, bottom two rows). For each site the DALEC2(xaEDC) and the

DALEC2(xaSTA) ensemble confidence intervals are denoted as EDC and STA, respectively. The DALEC2 anal-

yses - based on MODIS LAI retrievals, HWSD soil organic carbon estimates and ERA interim meteorological

drivers - are completely independent from all AmeriFlux site measurements.
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Fig. 5. Three year mean DALEC2 cumulative NEE (kgCm−2) compared against cumulative measured NEE at

three AmeriFlux sites:Sylvania Wilderness (US-Syv, mixed forest, left), Howland Forest (US-Ho1, evergreen

neddleleaf, middle), and Morgan Monroe State Forest (US-MMS, deciduous broadleaf, right). The standard

analysis median and 50 % confidence ranges (CR) are shown in blue, and the corresponding analyses with

EDCs are shown in red. AmeriFlux NEE measurements are denoted as a black line. The DALEC2 analyses -

based on MODIS LAI retrievals, HWSD soil organic carbon estimates and ERA interim meteorological drivers

– are completely independent from all AmeriFlux site measurements.
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Fig. 6. Schematic of the carbon fluxes in DALEC2. The green arrow indicates the gross primary production

(GPP). Red arrows represent respiration fluxes: autotrophic respiration (Rauto) and heterotrophic respiration

(Rhet). Blue arrows represent C allocation to the labile (Clab), foliar (Cfol), wood (Cwoo) and fine root (Croo)

pools. Grey arrows represent the litterfall and decomposition fluxes to the litter (Clit) and soil organic matter

(Csom) pools.
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