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We thank the referees for having provided thorough feedback and
for their suggested corrections. Below we have addressed each in-
dividual comment from both referees (referee comments are shown
in italics). We also denote all manuscript changes: line numbers
correspond to the revised marked-up manuscript included below.

Anonymous Referee #1

Bloom and Williams report that incorporating internal ‘reality constraints’
on model process relations reduces the range of permissible parameter values
in a terrestrial ecosystem model. They also report that the use of these re-
ality constraints additionally improves model performance when compared to
measured eddy-covariance flurz observations out of sample.

The manuscript is very well written, and the approach intuitive and reason-
able. The results clearly demonstrate that introducing these additional reality
constraints reduces parameter uncertainty. This is a clear result and indeed
including such reality constraints in any model endeavor (be it data assimi-
lation or more traditional model assessment) should be standard practice.

My only issue with the results presented is that the model that uses reality
constraints does almost too well when compared against eddy-covariance data.
In figure 5 we see that it captures the magnitude and seasonal cycle of net
ecosystem exchange almost perfectly at two sites, compared to the model that
does not use reality constraints. Both model runs use MODIS leaf area index
and soil carbon as constraints, but not the eddy-covariance data.

The authors are therefore claiming that with only information on LAI, soil
carbon and some general bounds based on how ecosystems are typically struc-
tured, we can predict carbon cycling on seasonal and annual timescales. This
15 quite remarkable given that in a previous study that also included some
measure of reality constraints, and a host of other constraints at one of the
sites used here (Howland forest; Richardson et al. 2010), the DALEC model
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had difficulty in capturing the annual total NEE (i.e. only when annual NEE
was used as a constraint, despite being optimized to daily NEE and vari-
ous other biometric constraints). It is also remarkable in that it suggests that
other typically key information such as above ground biomass, photosynthetic
potential, soil moisture status, and canopy structure differences between ev-
ergreen and deciduous sites (i.e. site specific ACM), are not essential for
predicting carbon uptake.

We are confident in the results of our experiments. We link the
improved performance particularly to the ecological and dynamic
constraints (EDCs) we have introduced our new EDC analyses,
as suggested below, help to define the contributions of individual
EDCs more clearly.

A lacking component in the manuscript is the identification of which of the
reality constraints is responsible for the improved model performance.

We agree with the reviewer’s recommendation: to identify which
ecological and dynamic constraints (EDCs) have resulted in im-
proved model performance, we have conducted an EDC sensitivity
test. We now show which EDCs (a) lead to improved parame-
ter estimates, (b) lead to reduced net ecosystem exchange (NEE)
confidence ranges and (c) lead to reduced NEE bias.

In the revised manuscript we have included the above-mentioned
sensitivity analysis (the sensitivity analysis is described in lines
320-338; the results are presented in Table 2 and described in lines
351-355, 391-396; the results are discussed in lines 419-429).

It is also not clear why the range of annual model carbon cycling not cen-
tered around equilibrium, given the wide range of parameter values used, and
information only on soil carbon and leaf area, and a forest typical structure.

For both for synthetic and AmeriFlux experiments, the posterior
probability density functions of NEE (e.g. Figures 3, 4 and 5) show
that ecosystems could be either net sources or sinks of carbon on
annual timescales. Therefore, our results demonstrate that soil car-
bon and LAI are not sufficient to resolve whether each AmeriFlux
site is a net source or sink of carbon on annual timescales.

We now explicitly state this in the discussion section of the revised



manuscript (lines 453-456).
Introduction:

The concept of using internal model constraints, here termed ecological and
dynamic constraints, was first introduced by Richardson et al. 2010, there
termed a reality constraint. This should be acknowledged in the introduction.

In the revised manuscript we acknowledge that Richardson et al.,
(2010) introduced internal model constraints in carbon cycle model-
data fusion analyses (lines 84-86).

Page 12736, line 25: “therefore. . .”. Consider revising this sentence. It
does not logically flow from the paragraph.

We agree with the reviewer, and we have revised this sentence (line
67).

Page 12738, line 17: Please do not refer to DALEC?2 as a universal ecosystem
carbon balance model. It is designed for temperate deciduous and evergreen
forests, and will not likely accurately simulate other ecosystem flux dynamics
(e.g., tundra, tropical, peatlands, savannah, etc.). Page 12738: Please state
the drivers used in the DALEC2 model.

We acknowledge the reviewer’s point, and we have re-worded the
DALEC?2 description (line 112).

Page 12739, line 21: Please clarify that omega here represents a turnover
rate. What is OmegaMin?

Equation 5: Clarify what f signifies here.

In the revised manuscript, we have now added an explicit reference
to Table 1, where all DALEC2 parameters, notations and ranges
are reported (lines 137-140).

Page 12746, line 17-20: Clarify the site selection criteria here. Both Howland
and Sylvania have snow cover for far more than two months, which would
appear to tnvalidate the selection criteria based on hydrological concerns.

We agree with the reviewer’s remark and acknowledge our over-
sight. We now clarify that the selected sites exhibit limited water
stress and < 3 months of below-freezing soil temperatures (lines
279-284).



Page 12747, line 1-10: Please report the values of LAI and soil carbon used
for each site.

We now report the 5" and 95" percentile LAI values and the soil
carbon value used for each AmeriFlux site experiment (lines 300-
302, 308,309).

Page 1278, line 3,5: Please do not confuse error with uncertainty. Param-
eter vectors have uncertainties, not errors, unless compared against known
parameter values. This confusion is apparent throughout the manuscript.

Page 12748, line 14: ‘and hence improved estimates of s’. I would argue that
what you are really reporting are better constrained estimates of s, though the
true values of s are remain unknown.

We agree with the reviewer’s two points on error and uncertainty:
however, the synthetic datasets are derived from known parameter
values s. To better convey this point, we now explicitly state this
in the introduction to synthetic experiments (lines 235-241).

Figure 5: I would suggest plotting all three graphs on the same scale to assist
between site comparison

In the revised manuscript, we have now plotted all three graphs in
Figure 5 on the same scale.

Anonymous Referee #2

The manuscript by Bloom and Williams proposes to include known model pa-
rameter relationships in a data assimilation framework in addition to obser-
vations. They claim that in a data-poor context these additional constraints
will reduce parameter uncertainties. In general I agree with this statement.
However, in my opinion the ecological and dynamic constraints (EDCs) that
the authors introduce as a novelty are simply part of the prior information
we possess for these parameters. I would suggest that the authors highlight
this in the manuscript.

The manuscript 1s well written and presented, but I think some improvements
and clarifications are required (see specific comments below).

Specific comments:

In order to obtain a unique solution in an ill-posed problem additional con-



straints are required. This is also known as regqularization. Within the
Bayesian framework prior parameter information are usually included in
form of a covariance matriz, which can include correlations between parame-
ters. The authors mention in the introduction that such correlations limit the
possible parameter configuration, but in their example they simply assume no
prior knowledge other than the parameter ranges. This seems to be an odd
choice, because it means that all values within the given range are equally
likely and parameters are independent, which s clearly not the case. The
parameter space has not been restricted and it is therefore not surprising that
additional information in form of ECDs add large constraints to this problem.
I am wondering if this would also be the case if a different prior parameter
distribution (i.e. Gaussian) with a defined covariance matriz would have been
chosen in the first place. I see the ECDs complementary to the knowledge
we include in terms of prior distribution and covariance matriz and not as a
replacement.

We agree with the reviewer’s point: in contrast to a “flat” pa-
rameter prior, a parameter variance-covariance structure would
serve as an additional constraint on model parameters, and would
reduce the ill-posedness of the problem. However, given that
we have poor quantitative knowledge on the realistic values for
model parameters and their covariances, constructing a generic,
ecologically-appropriate covariance structure is exceedingly diffi-
cult. For example, most parameter inter-dependencies presented
in our manuscript are dependent on local meteorology: therefore,
a meteorology-dependent prior parameter covariance matrix would
need to be derived for each AmeriFlux site. By prescribing EDCs,
we are instead able to impose ecological knowledge in the form of
non-Gaussian state and parameter constraints. We agree with the
reviewer that EDCs and a parameter covariance matrix can both
be used to resolve ill-posed carbon cycle problems. In the revised
manuscript, we now state that prior parameter covariance struc-
tures can be used as alternative or complementary constraints to
EDCs (lines 446-449).

A number of ECDs are formulated to constrain the parameters and states
and it would be interesting to know their individual contribution, i.e. which
ECD provides the largest constraint.



We agree with the reviewer’s recommendation. We have performed
an EDC sensitivity test, whereby we quantify the improvements in
model parameter and state estimates associated with each EDC.

In the revised manuscript we have included the above-mentioned
sensitivity analysis (the sensitivity analysis is described in lines
320-338; the results are presented in Table 2 and described in lines
351-355, 391-396; the results are discussed in lines 419-429).

Minor comments:

We have implemented all of the following suggested corrections.
In particular, the ~ on P12745, Eq.(16), denotes the median value
of E(the ~ was missing from E on P12745 line 18: we have now
corrected the text).

P12738,L2 + P12739,L 14: EDC has already been introduced in the abstract
and in- troduction (P12737,L18)

(correction on line 99)

P127}4, L15 + L20: repetition “We create 40 synthetic experiments ...”
(corrections and re-wording on lines 236,237,241)

P12745, Eq.(16): What is ~ been used for?

(correction on line 263)

P12759, L1: space between 8 and daily

(correction on line 609)

We have also corrected a minor oversight in the prior parameter
ranges shown in Table 1: we used 20-2000 gC m~2 for the foliar,
labile, fine root and litter carbon pools, and 20-150 day for the
leaf-fall period parameter ranges. We have corrected this in the
revised manuscript.

(correction in Table 1)
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Abstract. Many of the key processes represented in global terrestrial carbon models remain largely
unconstrained. For instance, plant allocation patterns and residence times of carbon pools are poorly
known globally, except perhaps at a few intensively studied sites. As a consequence of data scarcity,
carbon models tend to be underdetermined, and so can produce similar net fluxes with very different
parameters and internal dynamics. To address these problems, we propose a series of ecological
and dynamic constraints (EDCs) on model parameters and initial conditions, as a means to constrain
ecosystem variable inter-dependencies in the absence of local data. The EDCs consist of a range
of conditions on (a) carbon pool turnover and allocation ratios, (b) steady state proximity, and (c)
growth and decay of model carbon pools. We use a simple ecosystem carbon model in a model-
data fusion framework to determine the added value of these constraints in a data-poor context.
Based only on leaf area index (LAI) time series and soil carbon data, we estimate net ecosystem
exchange (NEE) for (a) 40 synthetic experiments and (b) three AMERHFEUX-AmeriFlux tower
sites. For the synthetic experiments, we show that EDCs lead to an an overall 34 % relative error
reduction in model parameters, and a 65 % reduction in the 3 yr NEE 90 % confidence range. In
the application at AMERIFEUX-AmeriFlux sites all NEE estimates were made independently of
NEE measurements. Compared to these observations, EDCs resulted in a 69-93 % reduction in 3 yr
cumulative NEE median biases (—0.26 to +0.08kg Cm™?2), in comparison to standard 3 yr median
NEE biases (—1.17 to —0.84kg Cm~2). In light of these findings, we advocate the use of EDCs in

future model-data fusion analyses of the terrestrial carbon cycle.
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1 Introduction

Terrestrial ecosystem carbon exchange is a fundamental part of the global carbon cycle link to bio-
sphere processes. Atmospheric CO2 measurements indicate the presence of a global land C sink,
i.e. uptake by the terrestrial biosphere exceeds losses. However, relative to all major terms in the
global carbon budget, the global land sink exhibits both the largest inter-annual variability and the
largest uncertainty (Le Quéré et al., 2013). The terrestrial carbon budget uncertainty stems largely
from unknowns in the size, spatial distribution and temporal dynamics of the major terrestrial car-
bon pools. As a result, there is little agreement among modelled land sink projections for the 21 st
century (Todd-Brown et al., 2013; Friend et al., 2013), reflecting uncertainty in knowledge on the
current state of the terrestrial C cycle and its dynamics.

In recent years a growing volume of data from flux towers, satellites and plant trait databases has
been used to constrain some of the key components of the terrestrial carbon cycle (e.g. Baldocchi
et al., 2001; Simard et al., 2011; Kattge et al., 2011). In particular, a range of ecosystem carbon
models and datasets have been brought together in model-data fusion (MDF) frameworks to pro-
duce an enhanced analysis of ecosystem carbon cycling (e.g. Williams et al., 2005; Fox et al., 2009;
Carvalhais et al., 2010; Luo et al., 2011; Ziehn et al., 2012; Smith et al., 2013). Where mutliple data
streams are available, MDF approaches can provide an extensive insight into carbon pool dynamics,
turnover rates, and carbon allocation fractions (Richardson et al., 2010; Keenan et al., 2013). How-
ever, even at research intensive sites, MDF studies can produce a wide range of acceptable model
parameter sets, due to under-determination of the carbon budget with available data. Some of these
optimized parameter sets, even though they generate realistic fluxes over short timescales, are asso-
ciated with major changes to larger carbon pools (soil, wood) that are nonsensical (Fox et al., 2009).
For regional and global scale model implementation, the lack of in-situ measurements amplifies this
problem, sometimes referred to as equifinality (Beven and Freer, 2001). Ultimately, we need to over-
come data limitations and under-determination by integrating models and ecosystem knowledge in
a common framework. This framework must ensure ecologically realistic outcomes, while still en-
compassing (i.e. effectively quantifying) the uncertainty associated with parameter estimation given
observation errors (Hill et al., 2012).

Although a range of process-based models have been used to represent the dynamics of the ter-
restrial carbon cycle and land—atmosphere CO4 exchange (e.g. Sitch et al., 2008; Schwalm et al.,
2010), there are advantages in using simpler models to estimate ecosystem carbon state variables.
Firstly, there is a trade-off between model complexity, such as the number of model parameters,
and a model’s ability to reproduce observations (e.g. Akaike, 1974): therefore a low-complexity
model is preferable when it can reproduce ecosystem observations with comparable skill. Secondly,
complex models are often computationally expensive, and this is an inhibiting factor when using iter-
ative methods (such as Monte Carlo approaches) to estimate model parameters and their uncertainty.

Ideally, the key terms of ecosystem carbon dynamics can be constrained by combining ecosystem
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observations with a model of appropriate complexity in a computationally efficient MDF framework.

Previous MDF studies have invariably relied on net ecosystem exchange (NEE) measurements
(real and synthetic), along with other site-level observations (Williams et al., 2009). In a global con-
text, the FLUXNET flux-tower network (Baldocchi et al., 2001) consists of hundreds of flux tower
sites where hectare-scale NEE measurements have been made over the past two decades. In addition
to NEE, complimentary site-level biometric data can help resolve model parameters and state vari-
ables in an MDF context (Richardson et al., 2010; Hill et al., 2012; Keenan et al., 2013), alleviating
the problem of under-determination. However, the terrestrial biosphere will inevitably remain poorly
sampled by FLUXNET. Alternative estimates of NEE from atmospheric COy measurements (e.g.
Peters et al., 2010; Feng et al., 2011) are only produced at continental-scale resolutions. Therefoere;
Therefore, given the limited span of the FLUXNET flux-tower network, are spatially resolved global
carbon cycle analyses limited by the sparsity of eddy flux and biometric data?

NEE, the difference between photosynthesis and ecosystem respiration, is a function of the dy-
namics of all carbon pools over a range of timescales. In the absence of NEE observations, model
NEE estimates depend on a knowledge of carbon pool sizes and model parameter values. In reality,
carbon pools and model parameters (especially those related to plant allocation fractions and pool
turnover rates) are poorly constrained, and therefore NEE estimates are subject to a comparably
large uncertainty. Nonetheless, fundamental knowledge on ecosystem behaviour can potentially be
used to overcome the lack of location specific data or parameter values. For example, while param-
eters related to phenology, C allocation and turnover may vary across multiple orders of magnitude
(Kattge et al., 2011; Fox et al., 2009), these parameters are strongly correlated (e.g. Sloan et al.,
2013), and the range of possible parameter configurations is therefore limited. Such examples in-
clude correlations between leaf lifespan and leaf mass per area (Wright et al., 2004), leaf area index
and total foliar N (Williams and Rastetter, 1999), and between foliar and root biomass (Sloan et al.,
2013). These correlations can confine parameter searches to a smaller hyper-volume. Equally, while
ecosystems exhibit a large range of non-steady state dynamic behaviours, strong inter-relationships

are expected between inputs, outputs, carbon pool magnitudes and turnover rates (Luo and Weng,

2011);and-medel-. Richardson et al. (2010) introduced the concept of reality constraints (or internal
model constraints) on carbon pool dynamics within a carbon cycle MDF analysis: such constraints

on the model state can potentially be used to improve estimates of model parameters. Here we
ropose that a broad range of model parameter combinations can be discarded when the-phenology,

carbon allocation, turnover rates and pool dynamics are considered ecologically “nonsensical”. Here
we seek to address the following question: can we improve ecosystem model parameter and NEE
estimates by incorporating ecological “common sense” into carbon cycle MDF analyses?

In this paper we propose a series of Ecological and Dynamic Constraints (EDCs) on model pa-
rameters: these include turnover and allocation parameter inter-relations, carbon pool dynamics and

steady state proximity conditions (Sect. 2). We quantify the added value of imposing EDCs in syn-
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thetic and real data MDF contexts using a simple ecosystem carbon model, by measuring bias and
confidence interval reductions of carbon cycle analyses relative to independent data (Sect. 3). Finally
we discuss the prospects and limitations of our approach, as well as the implications of a wider EDC

implementation in terrestrial carbon cycle MDF methods (Sect. 4).

2 Methods

Here we present a series of ecological-and-dynamic-constraints(EDCsH)fer-EDCs for a daily box

budget terrestrial C cycle model, the Data Assimilation Linked Ecosystem Carbon model version
two (DALEC2). Within an MDF context, we test the added value of implementing EDCs. Our
aims are (1) to quantify our ability to estimate DALEC2 parameters and NEE within a synthetic
framework, and (2) to validate our ability to estimate NEE at three temperate forest AmeriFlux sites.
We use simulated and real observations of (a) satellite-derived leaf area index (LAI) and (b) soil
organic carbon from the Harmonized World Soil Database (HWSD, Hiederer and Kochy, 2012) in
our MDF analyses. The choice of these two data sets serves as an analogue for the limited ecosystem

carbon datasets available on a global scale.
2.1 DALEC2

DALEC has been extensively used in MDF frameworks (e.g. Williams et al., 2005; Quaife et al.,
2008; Richardson et al., 2010, amongst others). In particular, a range of MDF approaches were used
in the REFLEX project, where ecosystem observations were assimilated into DALEC to produce
carbon state analyses (Fox et al., 2009). Here we use a-universal-the DALEC2 ecosystem carbon
balance model—PDALEE2—, which combines components of DALEC evergreen and DALEC de-
ciduous (Williams et al., 2005; Fox et al., 2009) into a single model. Gross primary production
(GPP) in DALEC?2 is determined from the aggregated canopy model (Williams et al., 1997), and
is allocated to the biomass pools (foliar, labile, wood, and fine roots) and to autotrophic respiration
(Ry); degraded carbon from biomass pools goes to two dead organic matter pools with temperature
dependent losses (heterotrophic respiration, Ry). The net ecosystem exchange is summarised as
NEE = R, + R), —GPP. C flow in DALEC?2 is determined as a function of 23 parameters (including
six initial carbon pool states, Table 1). We henceforth refer to the 23 parameters required to initiate
DALEC?2 as a parameter vector . DALEC2 C pools and fluxes are iteratively calculated at a daily
time-step: the DALEC2 model equations are fully described in Appendix A. We henceforth refer
to the ensemble of all model state variables (such as daily NEE, GPP, respiration terms and carbon

pool trajectories) as DALEC2(x).
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2.2 Ecological and Dynamic Constraints

In previous work, DALEC MDF approaches (Williams et al., 2005; Fox et al., 2009; Richardson
et al., 2010; Hill et al., 2012) did not explicitly impose any conditions on the inter-relationships
between model parameters, therefore parameter prior information had only consisted of prescribed
parameter ranges. In reality, broader ecological knowledge can be informative in terms of the inter-
relationships between parameter values. For example, long-term leaf turnover rate must be faster
than woody biomass turnover (e.g. Norby et al., 2002): such a relationship can provide a relative
constraint on model parameter values, without imposing any further constraints to the prior parame-
ter ranges (Table 1).

Here we propose a sequence of ecological and dynamic constraints (EDCs) on DALEC2 pa-
rameters and pool dynamics. For any given DALEC2 parameter vector x, all EDCs presented
in this section (henceforth EDC 1, EDC 2, etc.) are implemented. The probability of parameters
(henceforth Pepc(DALEC2(x))) is 1 if all EDCs are met, otherwise Pepc(DALEC2(x)) = 0. All
DALEC2 parameters (allocation fractions Siols froos fwoos turnover rate parameters Gyoo

000, Biits Osoms Omin, ©: cano arameters dopset,@gallsCoffsClmas Cifs CronsetCrfalls_carbon pools at time ¢

2.2.1 Turnover Constraints

We impose the following constraints on the relative sizes of turnover rates:

EDC 1: Oyom < O, (D
EDC 2: Osom < Omin, (2
EDC 3: ¢ip > 1 — (1 — Oy0)36525, @)
EDC 4: (1 — 0r00)™ > IIY | (1 — Oyome®™), )

where T; are daily temperature values during an N-day time window (e.g. three years). These
constraints ensure the turnover rate ratios are consistent with knowledge of the carbon pool relative
residence times (e.g. Gaudinski et al., 2000; Norby et al., 2002; Trumbore, 2006). In particular, we
expect a faster litter turnover in contrast to soil organic matter (SOM) turnover (EDC 1), a faster
conversion rate of litter to SOM relative to SOM turnover (EDC 2), the annual leaf loss fraction
is greater than the annual woody biomass loss fraction (EDC 3), and a faster fine root turnover in
contrast to SOM turnover (EDC 4).

2.2.2 Root-Foliar C allocation constraints

Strong correlations are expected between foliar and fine root carbon pools (e.g. Mokany et al., 2006;

Sloan et al., 2013). We constrain the C allocation and dynamics of the root and foliar pools:

EDC 5: 0.2 f:00 < fiol + fiab < 5.fro0; ®)
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EDC 6: 0.2Ck| < Croo < 5Chol, ©)

where Cj, and Ci, are the mean foliar and fine root carbon pool sizes over the model run period.
EDC 5 ensures that the GPP allocated fraction to Ci,, and Cf, (directly or via the labile C pool) are
within a factor of 5 of each other. EDC 6 ensures that the mean fine root and foliar pool sizes are

within a factor of 5 of each other.
2.2.3 Carbon Pool Growth

While we expect pools to potentially grow through time, we assume no recent disturbance and

therefore limit the relative growth rate of pools. We constrain pool growth as follows:

year=n

.~ pool
EDC 7: et <1+ Gmax— 57
pool

n—1

(N

Cyear:n

- . L.
where C¥°5""" is the mean carbon pool size in year 1, and ool

ool is the mean carbon pool size

after n — 1years. We choose a value of G,x = 0.1, which is equivalent to a 10 % yearly growth
rate (or doubling of carbon over 10yr) as the maximum growth rate for each pool in EDC 7. This
assumption is conservative, given data on global forest biomass growth rates (Baker et al., 2004;

Luyssaert et al., 2008).
2.2.4 Carbon pool exponential decay trajectories

While carbon pools are expected to grow and contract through time, in the absence of major and
recent disturbance events carbon pool trajectories are expected to exhibit gradual changes on inter-
annual timescales (e.g. Bellamy et al., 2005). Under these circumstances, rapid exponential decay
in modelled DALEC?2 carbon pools can only occur as a result of an ecologically inconsistent . We
examine the system response within a three-year period by imposing a constraint on exponential
pool trajectories (Fig. 1): we numerically fit an exponential decay curve a + be! to all carbon pools,
where ¢ is time in days, and a, b and c are the fitted exponential decay parameters.

DALEC?2 pool trajectories are rejected if the half-life of carbon pool changes is less than three

years(, i.e. EDC-&:¢ 5‘12;(5‘5) e
365.25 x 3
EDC 8: ¢ < — o0 X2 ®)
log(2)

We fully describe the numerical derivation of ¢ in Appendix B.
2.2.5 Steady State Proximity

For ecosystems with no recent disturbance events, we propose that each pool is within an order of

magnitude of its steady state attractor. We use mean gross primary production (Fgp,) as a proxy for
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long-term GPP to estimate the steady state attractors, Cg(fol, of four carbon pools (SOM, litter, wood

and root). The steady state attractors for Cyop, Clit, Cwoo and Cly, are analytically derived as follows:

_ (fwoo + (ffol + froo + flab)emin)ngp

Co = — , (&)
o (emin + elit)esome(aT
0 100 al F
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where T is the mean annual temperature (°C’). For each pool, we impose an order-of-magnitude

constraint on the proximity of C75, from the initial Cpoq1 value:

pool
co
EDCs 9-12: f;f’ < Coo < 10Ch; (13)

where C’gml is the initial Cyop, Clit, Cioo and Cyo value for EDCs 9, 10, 11 and 12 respectively.
The twelve presented EDCs are what we believe to be the most ecologically suitable constraints on
DALEC?2 parameters and state variables, and are based on broader ecological knowledge of carbon

dynamics. We discuss the advantages and the limitations of the proposed EDCs in Sect. 4 of this

paper.

2.3 Model-Data Fusion

Given LAI observations, soil organic carbon estimates, prior parameter ranges (Table 1) and EDCs
(Sect. 2.2), our aim for each experiment is to estimate the likeltheed-probability distribution of
parameters . We assume no prior knowledge, other than the parameter ranges shown in Table 1: we
therefore prescribe a uniform (i.e. non-informative) prior probability distribution onto all parameters.
Within a Bayesian framework (e.g. Hill et al., 2012; Ziehn et al., 2012), we combine the above-

mentioned information to derive the posterior probability density function of &, P(x|O), where
P(x|0) o P(O|@) - Prnge(w) - Penc (DALEC2 () (14)

P(O|z) is the probability of the observations given @, Prnge() = 1 if all parameters are within
the ranges prescribed in Table 1 (otherwise Pange() = 0), and Pepc(DALEC2(x)) = 1 if all EDCs
are met (otherwise Pepc(DALEC2()) = 0). For N observations, we derive the observation proba-

bility given &, P(O|x), as follows:

(M, —0n)?/02

n

POfz) = = , (15)

Mz

where O,, is the nth observation, M, is the corresponding state variable, and 0’72L is the nth error
variance for each observation (e.g. Xu et al., 2006): here we assume no error covariance between

observation errors.



225

230

235

240

245

250

255

We employ an adaptive Metropolis Hastings Markov Chain Monte Carlo MHMCMC) approach
to draw 5 x 10° samples from P(x|O). This approach has been widely used to estimate the proba-
bility density function of ecosystem model parameters (Xu et al., 2006; Hill et al., 2012; Ziehn et al.,
2012; Caldararu et al., 2012; Smith et al., 2013; Keenan et al., 2013, amongst others) and is ideal to
explore parameter space without a need to define normal prior distributions for each parameter (e.g.
Richardson et al., 2010). We repeat the MHMCMC algorithm four times (i.e. four chains), to ensure
convergence between P(x|O) distributions from each chain. To minimise sample correlations we
use 500 x samples from the latter half of the accepted parameter vectors. We describe the details of
our MHMCMC approach in Appendix C.

2.4 Synthetic truth - DALEC2 analyses

To quantify our ability to estimate synthetic DALEC2 ecosystem states, we perform the MDF ap-
proach over a three year period using LAI and SOM observations created from a synthetic DALEC2
truth—eur—, based on known DALEC2 parameters. Our choice of synthetic data-DALEC2 states
represents globally spanning datasets of satellite LAI retrievals and soil carbon map data. We-Based
on 40 DALEC2 parameter combinations, we create 40 synthetic experiments-datasets representing
typical temperate forest carbon dynamics, with three years of semi-continuous LAI data and one
simulated soil organic carbon estimate. We use the three-year meteorology drivers (temperate cli-
mate) from the REFLEX synthetic experiments (Fox et al., 2009).

We ereate-select 40 synthetic experiments-parameter combinations by randomly sampling param-
eter vectors x within the DALEC?2 parameter space (Table 1), where (i) Pgpc(DALEC2(x)) =1,
and (ii) « values are relevant to temperate forest ecosystems (see Appendix D). We remove approxi-
mately 95 % of daily LAI points to create an 8 day resolution semi-continuous LAI time-series. We
add noise to the remaining 3 yr synthetic DALEC2 LAI: each LAI value is multiplied by a random
error factor of 2/V(®:1) where N(0,1) is a random number derived from a normal distribution with
a mean of zero and a standard deviation of 1. For each synthetic soil carbon observation, we multiply
CY  at t =0 by a random error factor of 2V(%1) We fully explain the derivation of the synthetic
experiment parameter vectors, (henceforth s) in Appendix D.

We perform the MHMCMC and label the posterior parameter ensemble (4 x 500 x40 x samples) as
xssta (standard synthetic MDF) and xsgpc (synthetic MDF with EDCs). We assign an uncertainty
factor of 2 to all synthetic observations, hence O,, and M,, are log-transformed observations and
o, =1og(2). For each posterior DALEC2 x, we determine the log-normalised parameter-space

error €(x) by comparing x with its corresponding synthetic truth vector s:

2
log(z(n))—log(s(n))
\/ Z log(xg(n)mdx) loi(x(n)mm) )

(16)

where z(n) and s(n) represent the nth parameters of « and s, N is the number of parameters in ,



and (1) min, ©(N)max are the minimum and maximum parameter values (see Table 1). To assess the
parameter estimation capability for each experiment, we derive the e (x) for each parameter vector in
(a) zssta (b) sgpc and (c) for uniformly random samples where Pmnge(a:) = 1 (henceforth £ sgaN).
260 We refer to the ensemble of e(x) values for & ssta, Sgpc and xsran as E(xssta), E(xsgpc) and

E(xsran). We quantify the overall EDC associated error reduction (/gpc) as follows:

Iepc = (?(“RAN) — Bl@seoe) _ 1) x 100% (17

E(CBSRAN) — E(SESSTA)

where EE represents the median of E for each posterior parameter ensemble. This allows us to
assess the relative improvement of sgpc over £ ssa parameter estimates against the xsgan “zero-
265 knowledge” case. In addition, we determine the Igpc for two parameter subgroups: (a) directly
constrained parameters, and (b) indirectly constrained parameters. We assign c¢if, Cronset> Crfall> @onsets

dfau and C 0

som

to parameter group A: these parameters can be directly inferred from the LAI and
soil organic carbon observations. We assign the remaining parameters to parameter group B: these
can only be inferred from the DALEC2 model structure and — potentially — EDCs. Finally we

270 compare NEE from DALEC2(xsgpc) and DALEC2(xssta) against the NEE synthetic “truths” —
DALEC2(s).

2.5 AmeriFlux - DALEC2 analyses

For the flux-tower experiments, we constrain DALEC2 parameters using (a) MODIS derived Leaf
Area Index (LAI), and (b) total soil carbon from the harmonised world soil database (HWSD
275 Hiederer and Kochy, 2011). We perform daily resolution three year DALEC2 analyses for three
forest categories: evergreen needle-leaf (ENF), deciduous broad-leaf (DBF), and mixed forest
(MF). We chose one AmeriFlux site from each forest type. To establish a suitable site for our

method we chose sites with NEE data spanning across three years between 2001 and 2010. We

narrowed-our—seleetion—by—choosing-Our selected sites for each forest type are Howland Forest
280 (US-Hol, evergreen needleleaf forest — 45.2041° N, 68.7402° W — Hollinger et al., 1999) , Morgan

Monroe State Forest (US-MMS, deciduous broadleaf forest — 39.3231° N, 86.4131° W — Schmid et al., 2000) and
Sylvania Wilderness (US-Syv, mixed forest — 46.2420° N, 89.3476° W — Desai et al., 2005) . We

chose temperate sites with tess-than-2little expected water-stress, and with a < 3 months of recorded
freezing—temperaturesand—little—expeeted—water-stress:—these—below-freezing soil temperatures.

285 These criteria reflect the current capabilities of DALEC2, as hydrological processes are not

explicitly portrayed in the model. Our—selected—sites—for—each—foresttype—areHowlandForest

290 For each AmeriFlux site, we extract the corresponding MODIS LAI retrievals from the MOD15A2
LAI 8 day version 005 1km resolution product (downloaded from the Land Processes Distributed
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Active Archive Centre http://lpdaac.usgs.gov/): we only keep maximum quality flag data. Stan-
dard deviations are provided for 1 km MODIS LAI retrievals, however these (a) do not reflect the
magnitude variability in uncertainty, (b) often imply the existence of negative LAI observations
(orLar > LAI) and (c) are occasionally missing. While various MODIS LAI evaluations have been
performed (e.g. Sea et al., 2011; Serbin et al., 2013), large-scale spatiotemporal LAI retrieval er-
rors remain poorly quantified. For the sake of simplicity, we assign a factor of 2 uncertainty (i.e.
log(LAI) £ log(2)) for each MODIS LAI observation. To minimise spatial discrepancies between
MODIS and AmeriFlux sites, each LAI observation is the arithmetic mean of all available LAI re-

trievals within a 9 pixel 3km x 3km area (centred on each AmeriFlux site). Overall, we use 95, 120

and 119 LAI values at US-Syv, US-Hol and US-MMS (5th-95th percentile ranges for LAI values
are 0.4-5.8, 1.0-5.6 and 0.4-5.5 respectively).

For each site we extract total soil carbon density from the nearest Harmonised World Soil Database
30 arc seconds resolution total soil carbon content (approx. 1km at equator Hiederer and Kochy,
2011): the authors have performed multiple comparisons of the global HWSD against other products,
however no pixel-scale uncertainties are provided. We chose to assign an uncertainty factor of 2 on
each site-scale HWSD SOC estimate. The HWSD SOC values are 2.3 x 10* gCm™2, 2.3 x 10*
gCm? and 5.2 x 10° gCm 2.

To limit our study to the use of globally spanning datasets, we extract DALEC2 drivers from
0.125° x 0.125 ° ERA interim meteorology (see Appendix A for details). The DALEC2 analyses for
each site are therefore completely independent from all site-level measurements (we note, however,
that extensive meteorological and biometric data are meticulously recorded across the AmeriFlux
site network). Therefore, we produce a fully independent ecosystem carbon cycle analysis, which
can be evaluated against measured NEE at each flux-tower site.

As done for the synthetic experiments, we perform the MHMCMC approach at each site — with
and without EDCs — and label the posterior parameter ensembles (4 chains x 500 x samples)
as xagra (standard AmeriFlux MDF) and xzagpc (AmeriFlux MDF + EDCs). We compare the
DALEC2 NEE analyses, DALEC2(xagpc) and DALEC2(xzasta) against NEE measurements at

each AmeriFlux site.

2.6 EDC sensitivity test

To determine the sensitivity of our results to EDCs 1-12, we repeat MDF estimates of zsgpc and
xa by imposing only one EDC at a time (henceforth xs and za where n is the
quantifying the overall EDC associated error reduction (/gpc), see equation 17) for each estimate

experiments X 12 EDCs x 4 chains), we limit our sensitivity anal

out of 40) synthetic experiments.

sis to 1 estimates based on 4

10
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We compare 3 yr integrated DALEC2 NEE estimates and AmeriFlux NEE measurements at all
three sites (AmeriFlux NEE measurement temporal gaps have been consistently excluded from
DALEC2 3 yr NEE estimates). We determine the DALEC2 3 yr NEE 50% confidence range (50%
CR: 25th=75th percentile interval) reduction as follows:

(1 TAEEEDC 100y (18)
where R, and R are the 50% CR of DALEC2(xza and DALEC2(xza 3

r NEE estimates. Similarly, we calculate the 3 yr NEE bias reduction (relative to AmeriFlux NEE
measurements) as follows:

B
(1—7| NEE*EDC(“)‘)xloo% (19)
| BNEE,STA |
where B and B are the median biases of DALEC2(xza and

DALEC2(xasts) 3 yr NEE estimates.

3 Results
3.1 Synthetic Experiments

The inclusion of EDCs resulted in substantial error reductions in posterior DALEC2 parameter and
state variable estimates. We found an overall reduction in the posterior MHMCMC EDC param-
eter vector errors F(xsgpc), relative to both the standard MHMCMC errors E(xssta) and the
randomly sampled parameter vector errors E(xsgan): we found an improvement of Igpc = 34%
associated with using EDCs (Fig. 2c). For the directly constrained parameters (parameter group A)
we found similar likelihood-funetions-distributions for both E(xssta) and E(xsgpc) errors rela-
tive to E(xsran) errors (Fig. 2a), and similarly lower xsgta and xsgpc errors values relative to
TSRAN EITOTS (E(a:SSTA) =0.19, E(:csEDC) =0.21, E(wsRAN) =0.42, group A: Igpc = —6%).
For the indirectly constrained parameters (group B), we found significantly smaller xsgpc errors
relative to xssta and TSrAN (E(msEDc) =0.29, E(a:SSTA) =0.34, and E(zspan) = 0.38), and

hence improved estimates of s when we implemented EDCs (group B: Igpc = 88 %, Fig. 2b). We

found that EDCs 5 and 8 accounted for the largest error reduction in DALEC2 parameter estimates
I > 3%, Table 2), followed by EDCs 6, 10 and 12 (I 012, =2%). EDC 7 led to an
overall parameter error increase (Igpcy = —13%). The remaining EDCs accounted for small or

negative error reductions.
We compared EDC total zsgpc, 8sta and xsgan live biomass (Croo + Crol + Clab + Ciwoo) and

dead biomass (Cyom + Clip) pool biases relative to their corresponding synthetic truths (Fig. 2d—e).

11
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For dead biomass, both sgpc and xssta perform comparably better than xsgan (Fig. 2e), as dead
biomass is mostly accounted for by the synthetic C,,, observations: the xsgpc and xssta median
bias factors (1.1, 0.91) are close to 1 (i.e. a bias of zero) relative to xsgany median bias factor
(0.04). For live biomass pools, xsgpc live biomass bias estimates are smaller than xsgta (Fig. 2d):
the xsgpc bias distribution (median = 1.20) is closer to 1 relative to the xssra bias distribution
(0.48), with respect to xsgan median bias (0.20). For total biomass estimates, we found similar bias
distributions relative to xsgan: (€sgpc median bias factor = 1.22, xsgta bias factor = 0.98): both
bias factors are closer to 1 relative to xsgan (bias factor = 0.16).

We found that incorporating EDCs resulted in a reduced mode and 90 % confidence range
(90% CR: 95th-5th percentile interval) for three year NEE biases (Fig. 3). We found a 65 % re-
duction in the DALEC2(xsgpc) three year NEE bias 90 % CR (9.0gCm~2d 1), relative to the
DALEC2(xssta) three year NEE bias 90% CR (26.9gCm~2d~!). The three year NEE bias
modes for DALEC2(xsgpc) and DALEC2(xssta) are 0.0gCm~2d™! and -0.5gCm~2d " (at
0.5gCm~2d ! intervals).

3.2 AmeriFlux results

The DALEC2(xagpc) analyses outperformed the standard DALEC2(xzasta) analyses at the Amer-
iFlux tower sites. The inclusion of EDCs in DALEC2 analyses amounted to overall NEE bias re-
ductions at all sites (US-Syv, US-Hol, US-MMS, we henceforth present all site results in this or-
der). The aggregated DALEC2(xagpc) median daily NEE biases (—0.02, 0.13, —0.03gCm=2d~1)
are closer to the AmeriFlux measured NEE by roughly one order of magnitude in contrast to
DALEC2(xasta) median NEE biases (—0.52, —0.86, —1.15gCm~2d~1). The aggregated daily
DALEC2(zagpc) NEE 90 % confidence ranges at each site (10.9, 10.1, 8.3gCm~2d~!) were
all smaller (53—87 %) than the corresponding DALEC2(xasta) NEE bias 90 % CR (20.3, 18.3,
9.5gCm~2d~!). The reductions in bias are consistent across the three year comparison period at
each site (Fig. 4).

Cumulative AmeriFlux NEE observations are compared against corresponding DALEC2(xagta)
and DALEC2(xagpc) NEE estimates (Fig. 5); AmeriFlux NEE temporal gaps have been omit-
ted from both DALEC2 and AmeriFlux derived cumulative NEE time series. DALEC2(xagpc)
integrated NEE estimates outperformed DALEC2(xasta) NEE estimates at all three sites.
DALEC2(zagpc) median NEE biases over the 3 yr period (—0.26, 0.07, 0.08 kg C m~?2) are smaller
than the equivalent DALEC2(zagry) biases (—0.84, —1.09, —1.18kg C m~?2), with relative EDC
bias reductions of 69 %, 93 % and 93 %. The inclusion of EDCs also resulted in a reduction in
NEE confidence intervals: DALEC2(zagpc) 50% CR (1.17, 1.57, 1.16 kgCm™2) are 32-48 %
smaller than the corresponding DALEC2(zasts) 50 % CR (2.04, 3.00, 1.70 kgCm~2). Based on

DALEC2(xza 3 yr NEE estimates, EDC 10 resulted in a > 18% bias reduction and a > 5%
50 % CR reduction at all three sites, relative to DALEC2(xagra) (Table 2). EDCs 2 and 8 resulted in

12
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a > 10% 3 yr NEE 50 % CR reduction and an increase in 3 yr NEE bias at all three sites (NEE bias
reduction < —22%). EDCs 7 and 9 resulted in a > 50% 3 yr NEE bias reduction and an increase in
3 yr NEE 50 % CR at all three sites (NEE 50 % CR reduction < —15%).

4 Discussion

With the use of a simple model and globally available data, i.e. leaf area dynamics and soil carbon
observations, we have demonstrated that the EDC approach provides an improved ability to infer the
magnitude of carbon fluxes, live carbon pools and model parameters, in comparison to a standard
parameter optimisation approach (STA).

For ecologically relevant synthetic truths, EDCs provide improved estimates of the DALEC2 pa-
rameters and state variables. The EDC approach resulted in (a) parameter estimation error reduc-
tions, (b) NEE bias and confidence range reductions, and (c) improved estimates of the live biomass
C pools, in contrast to the STA parameter and flux and C pool estimates. While there is little dif-
ference between directly inferable (Group A) estimated parameter errors between the EDC and STA
approach, using EDCs led to a marked reduction in estimated parameter error for indirectly inferable
(Group B) parameters. The indirectly inferred parameters include allocation fractions, subsurface
pools and turnover rates, which are typically difficult to observe at field sites and virtually impossible
to observe remotely (i.e. at regional scales).

By comparing DALEC2 analyses against independent AmeriFlux NEE measurements over real
ecosystems, we further validated the advantages of using EDCs. At each AmeriFlux site, we found
that EDCs led to an increased confidence and a largely reduced NEE bias; our DALEC2 model
analyses suggests that the use of EDCs regionally and globally could significantly enhance our ability
to estimate ecosystem state variables in the absence of direct observational constraints. In light of
the large differences between earth system models (Todd-Brown et al., 2013; Friend et al., 2013),
we anticipate that EDCs may help constrain ecosystem carbon terms on global scales, where carbon

pools and their residence times are typically difficult or impossible to measure.

Together, EDCs 1-12 lead to overall improvements in parameter estimates and AmeriFlux site
NEE confidence range/bias (Table 2): however, with the exception of EDC 10, when EDCs were
tested individually, they did not lead to comprehensive improvements. For example, EDC 8 alone
(no rapid exponential pool decay) resulted in large AmeriFlux site NEE confidence range reductions,
as well as improved synthetic parameter estimates; however, EDC 8 resulted in higher AmeriFlux
site NEE biases. Conversely, EDC 9 (steady state proximity of the soil carbon pool) resulted in the
largest AmeriFlux site bias reductions, while NEE confidence was lower. EDC 5 (comparable fine
root and foliar/labile allocation) led to the largest parameter improvements; however, the associated
changes in AmeriFlux site NEE estimates were relatively small, Our findings demonstrate that robust
improvements in carbon cycling parameter and state variable estimates only arise when EDCs are

13



430

435

440

445

450

455

460

used collectively.

Here we developed a group of EDCs suitable to ecosystems with no recent major disturbance.
However, we note that our EDCs can be adapted for a wider range of ecosystem dynamics. For
example, recently disturbed ecosystems may be (a) rapidly recovering and (b) growing towards
a steady state where carbon pools are greater than one order of magnitude from the initial carbon
pools. Therefore a subset of our EDCs (EDCs 7-12) can be adapted to better represent ecological
“common sense” in recovering ecosystems.

Ultimately, EDCs can be adapted to best represent ecological knowledge in a variety of ecosystem
carbon model MDF applications, where the ecosystem observations are insufficient to constrain all
model state variables (e.g. Fox et al., 2009). For example, on regional and global spatial scales, there
is often no explicit knowledge on various model parameter values and their associated uncertainty.
In such cases, our EDC approach imposes inter-parameter constraints while simultaneously allowing
a global parameter exploration across several orders of magnitude (see Table 1). Hence EDCs allow
us to incorporate ecologically consistent relationships between parameters (i.e. allocation ratios,
turnover ratios), without the need to constrain otherwise unknown parameter and state variables.
Moreover, as an alternative to imposing plant-functional-type priors, which risk being subjective and
over-rigid, ecosystem trait inter-relationships derived from plant trait data (e.g. Wright et al., 2004;

Kattge et al., 2011) could be incorporated as additional EDCs. Given a quantitative knowledge of

arameter inter-relationships, we also note that a prior parameter variance-covariance structure — in

addition to EDCs — can also be used as an alternative or complementary constraint on the model
state and parameters. Finally, we note that our choice of EDCs is open to adaptation and adjustment:

we maintained relatively broad constraints (e.g. EDC 6 permissible root:foliar C range > one order
of magnitude), which can likely be refined through further study.
In this study we limited our observational constraints to globally spanning MODIS LAI retrievals

and the HWSD soil map. Given these two datasets, we have demonstrated that EDCs lead to

improved model parameter estimates and reduced NEE bias and confidence ranges. Nonetheless
based on the posterior NEE probability density function, we are unable to determine whether sites

are net carbon sinks or sources on annual timescales. However, an increasing number of continental
and global scale biospheric datasets are becoming available: these include a global canopy height
map by Simard et al. (2011), pan-tropical biomass maps by Saatchi et al. (2011); Baccini et al. (2012)
and a pan-boreal carbon density map by Thurner et al. (2013). These products can potentially be
used in conjuncture with MODIS LAI, HWSD data and our EDC approach in a MDF framework to

better constrain terrestrial carbon cycle dynamics.
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5 Concluding Remarks

We have addressed the under-determined nature of the carbon cycle problem by applying a group
of widely applicable ecological and dynamic constraints (EDCs) on an ecosystem carbon model
in a model-data fusion (MDF) framework. Particularly where extensive in-situ measurements are
not available, EDCs can be used to incorporate ecological knowledge, such as parameter inter-
relationships and pool dynamics constraints, into ecosystem carbon model analyses. In a synthetic
data experiment, we found improved estimates of DALEC2 model parameters, live carbon pools and
net ecosystem exchange (NEE) when using EDCs in DALEC2 MDF analyses. By validating our
DALEC2 MDF analyses against independent AmeriFlux NEE measurements, we found that EDCs
led to a 69-93 % reduction in three year NEE biases. We incorporated twelve EDCs in DALEC2
analyses of temperate forest ecosystem carbon cycling: these EDCs can potentially be adapted for
a range of models and biomes. Moreover, additional EDCs can be derived to incorporate parameter
inter-relationships derived from regional or global plant trait datasets into ecosystem carbon model
analyses. Here we have shown that EDCs can be used to constrain the poorly resolved components
of the carbon cycle: we therefore advocate the use of EDCs in future MDF analyses of the terrestrial

carbon cycle.

Appendix A

DALEC2 model

The full DALEC2 model dynamics can be expressed as six equations:

Cla' = (1= Donser (, donsets Cronset)) Cliy + fiab Fpp (AD)
Cirt = (1= g (t, dgan, Crtanr, Cispan) ) Cop + Ponset (£ donsets Cronset) Clap + ol Fap (A2)
Crob" = (1= b100) Cro + frooFypp (A3)
Crto = (1= Buo0) Crioo T frsoo Fipp (A4)
O = (1 = (Brit + Omin ) 2T ) O + 0100 Ol + Pran(t, dpatt, Cutatt, Cispan ) Cioy (AS)
Ciom = (1= 0iome®T) o + oo Crgo + (Omin) e C (A6)

The 23 free parameters and carbon pool symbols are summarised in Table 1. The daily gross

. . .
primary production Fy,,

1997), and is a function of daily driver data M (day of year, atmospheric CO2, minimum and

is derived from the aggregated canopy model (ACM, Williams et al.,

maximum temperature, and global radiation), and parameters Cl,), cima and cege (parameter cegp, the

canopy efficiency, is a replacement for the nitrogen X nitrogen use efficiency product in ACM).
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The model is initiated with six initial carbon pool values (CY,, C,, C2., C? b, C2.) and

1r00° WwO00?
these are iteratively updated at a daily timestep. The leaf onset (labile to foliar pool C transfer) and

leaf fall (foliar to litter pool C transfer) functions, @5 and Py, are defined below:

V2 [6.9088\  _(sin( t=donse—0-6245croneer ). v/3s )2
(I)onset(tvdonsetacronset) =—" +€ (Mn( s ) cm"se‘) (A7)
ﬁ Cronset
2 (log(c —log(cispan — 1 _(sin (ot vEs)?
(I)fall(tadfallaCrfallyclspan) — i ( g( lspan) g( Ispan )) e (bm( S ) c,fa“) (A8)
VT Cefall
The Py, continuous cyclical step function derivatives were derived such that (a) Hii’ﬁs(l —

Donset (t5 donsets Cronset)) = 1 — %}f (b) the maximum leaf loss rate occurs annually at ¢ % 365.25 = dgy.

(c) 68 % of leaf loss occurs within c;onser days and 95 % of leaf loss within 2c.g,; days.
d’Cra _

1y is an offset term included to ensure that the maximum leaf loss rate, .i.e. 1 0, occurs at
t % 365.25 = dpy — it is a numerical solution to the following equation:
Cispan —1?
2y/m-log | —22— ) -p+e ¥ =0. (A9)
Clspan -1
Y

where 1) = ciiﬁf (we note that Eq. (A9) can be solved using a Lambert W function, where ¢ =
W(f(cr)) - however, Lambert W functions cannot be solved analytically). We created a look up
function for ¢ by fitting a 6th order polynomial between ¢ and log(c;f — 1) — the full polynomial
is included in the downloadable DALEC2 code. @ is a special case of the ®g,; formula: it was
derived such that 99.99 % of Cl,, is transferred to Cyo annually at t%365.25 = dopser and 68 % of
leaf onset occurs within c¢;onse day. The ® functions are advantageous in that (a) the daily turnover
rates result in a continuous and specified loss of carbon throughout a known time period, and (b) the
functions are cyclical and hence do not need to be reset, “switched on” or “switched off”” throughout
the model run period. We also note that while we treated donset and dg,)) as constant parameters, the ®

functions can easily accommodate temporally variable definitions for leaf onset and leaf fall. Total

and the net ecosystem exchange F’

- ¢
ecosystem respiration F, nee

e fluxes are derived at each timestep

and are shown below.

Fle = fatoFapp + (01Chiy + OsomClo )€™ (A10)
Frfee:EZC_ngp (A11)

At time ¢ leaf area index (LAI) is defined as:
Cfvl

Clma

LAL = (A12)

A schematic of the of the carbon fluxes in DALEC2 is shown in Fig. 6.

For AMERIFEUX—AmeriFlux DALEC2 analyses we used daily meteorological drivers for
DALEC2 from 0.125° x 0.125° ERA-interim re-analyses. For each site we obtained coordinates
from ameriflux.ornl.gov. We downloaded 6 h temperature and 12 h downward surface solar radia-

tion data for all site locations and years from apps.ecmwf.int/datasets. We averaged temperature and
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radiation from the four nearest 0.125° x 0.125 ° ERA-interim grid-points. We obtained minimum
and maximum temperatures from the 6 h ERA-inte