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Abstract 9 

Climate change threatens both the accretion and erosion processes that sustain coral reefs. 10 

Secondary calcification, bioerosion, and reef dissolution are integral to the structural 11 

complexity and long-term persistence of coral reefs, yet these processes have received 12 

less research attention than reef accretion by corals. In this study, we use climate 13 

scenarios from RCP 8.5 to examine the combined effects of rising ocean acidity and sea 14 

surface temperature (SST) on both secondary calcification and dissolution rates of a 15 

natural coral rubble community using a flow-through aquarium system. We found that 16 

secondary reef calcification and dissolution responded differently to the combined effect 17 

of pCO2 and temperature. Calcification had a non-linear response to the combined effect 18 

of pCO2-temperature: the highest calcification rate occurred slightly above ambient 19 

conditions and the lowest calcification rate was in the highest pCO2-temperature 20 

condition. In contrast, dissolution increased linearly with pCO2-temperature. The rubble 21 

community switched from net calcification to net dissolution at +271 µatm pCO2 and 22 

0.75° C above ambient conditions, suggesting that rubble reefs may shift from net 23 



 

2 

 

calcification to net dissolution before the end of the century. Our results indicate that (i) 24 

dissolution may be more sensitive to climate change than calcification and (ii) that 25 

calcification and dissolution have different functional responses to climate stressors; this 26 

highlights the need to study the effects of climate stressors on both calcification and 27 

dissolution to predict future changes in coral reefs.  28 

 29 

1 Introduction 30 

In 2013, atmospheric carbon dioxide (CO2(atm)) reached an unprecedented 31 

milestone of 400 ppm (Tans and Keeling, 2013), and this rising CO2(atm)  is increasing 32 

sea-surface temperature (SST) and ocean acidity (Caldeira and Wickett, 2003;Cubasch et 33 

al., 2013;Feely et al., 2004). Global SST has increased by 0.78°C since pre-industrial 34 

times (Cubasch et al., 2013), and it is predicted to increase by another 0.8-5.7°C by the 35 

end of this century (Meinshausen et al., 2011;Van Vuuren et al., 2008;Rogelj et al., 36 

2012). The Hawai`i Ocean Time-series detected a 0.075 decrease in mean annual pH at 37 

Station ALOHA over the past 20 years (Doney et al., 2009) and there have been similar 38 

trends at stations around the world including the Bermuda Atlantic Time-series and the 39 

European Station for Time-series Observations in the ocean (Solomon et al. 2007).  pH is 40 

expected to drop by an additional 0.14-0.35 pH units by the end of the 21
st
 century (Bopp 41 

et al., 2013). All marine ecosystems are at risk from rising SST and decreasing pH 42 

(Doney et al., 2009;Hoegh-Guldberg et al., 2007;Hoegh-Guldberg and Bruno, 2010), but 43 

coral reefs are particularly vulnerable to these stressors (reviewed in Hoegh-Guldberg et 44 

al., 2007).  45 
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Corals create the structurally complex calcium carbonate (CaCO3) foundation of 46 

coral reef ecosystems. This structural complexity is at risk from climate-driven shifts 47 

from high-complexity, branched coral species to mounding and encrusting growth forms 48 

(Fabricius et al., 2011) and from increases in the natural processes of reef destruction, 49 

including bioerosion and dissolution (Wisshak et al., 2012, 2013;Tribollet et al., 2006). 50 

While substantial research attention has focused on the response of reef-building corals to 51 

climate change (reviewed in Hoegh-Guldberg et al., 2007;Fabricius, 2005;Pandolfi et al., 52 

2011), secondary calcification (calcification by non-coral invertebrates and calcareous 53 

algae), bioerosion, and reef dissolution that are integral to maintaining the structural 54 

complexity and net growth of coral reefs has received less attention (Andersson and 55 

Gledhill, 2013;Andersson et al., 2011;Andersson and Mackenzie, 2012). Bioerosion and 56 

dissolution breakdown the reef framework while secondary calcification helps maintain 57 

reef stability by cementing the reef together (Adey, 1998; Camoin and Montaggioni, 58 

1994; Littler, 1973) and producing chemical cues that induce settlement of many 59 

invertebrate larvae including several species of corals (Harrington et al. 2004; Price 60 

2010). Coral reefs will only persist if constructive reef processes (growth by corals and 61 

secondary calcifiers) exceed destructive reef processes (bioerosion and dissolution). In 62 

this study, we examine the combined effects of rising ocean acidity and SST on both 63 

calcification and dissolution rates of a natural community of secondary calcifiers and 64 

bioeroders.  65 

Recent laboratory experiments have focused on the response of individual taxa of 66 

bioeroders or secondary calcifiers to climate stressors. For example, studies have 67 

specifically addressed the effects of rising ocean acidity and/or temperature on bioerosion 68 
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by a Clionid sponge (Wisshak et al., 2012, 2013;Fang et al., 2013) and a community of 69 

photosynthesizing microborers (Tribollet et al., 2009;Reyes-Nivia et al., 2013). These 70 

studies found that bioerosion increased under future climate change scenarios. Several 71 

studies have focused on tropical calcifying algae and have found decreased calcification 72 

(Semesi et al., 2009; Johnson et al., 2014; Comeau et al., 2013;Jokiel et al., 2008;Kleypas 73 

and Langdon, 2006) and increased dissolution (Diaz‐Pulido et al., 2012) with increasing 74 

ocean acidity and/or SST. However, the bioeroding community is extremely diverse and 75 

can interact with the surrounding community of secondary calcifiers: for example, 76 

crustose coralline algae (CCA) can inhibit internal bioerosion (White, 1980;Tribollet and 77 

Payri, 2001). To understand the combined response of bioeroders and secondary 78 

calcifiers, we take a community perspective and examine the synergistic effects of rising 79 

SST and ocean acidity on a natural community of secondary calcifiers and bioeroders. 80 

Using the total alkalinity anomaly technique, we test for net changes in calcification 81 

during the day and dissolution (most of which is caused by bioeroders; Andersson and 82 

Gledhill, 2013) at night. Our climate change treatments are modelled after the 83 

Representative Concentration Pathway (RCP) 8.5 climate scenario (Van Vuuren et al., 84 

2011;Meinshausen et al., 2011), one of the high emissions scenarios used in the most 85 

recent Intergovernmental Panel on Climate Change (IPCC) report  (Cubasch et al., 2013). 86 

The RCP 8.5 scenario predicts an increase in temperature of 3.8 – 5.7°C (Rogelj et al., 87 

2012) and an increase in atmospheric CO2 of 557 ppm by the year 2100 (Meinshausen et 88 

al., 2011). We use the RCP 8.5 scenario because the current CO2 concentrations are 89 

tracking just above what this scenario predicts (Sanford et al., 2014). While prior studies 90 

have focused on the contributions of individual community members to increased 91 
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temperature and CO2; here, we examine the community response to the RCP 8.5 climate 92 

scenario and measure calcification, dissolution, and net community production rates.   93 

2 Materials and Methods 94 

2.1 Collection Site 95 

All collections were made on the windward side of Moku o Lo‘e (Coconut Island) 96 

in Kāne‘ohe Bay, Hawai‘i adjacent to the Hawai‘i Institute of Marine Biology. This 97 

fringing reef is dominated by Porites compressa and Montipora capitata, with occasional 98 

colonies of Pocillopora damicornis, Fungia scutaria, and Porites lobata. Kāne‘ohe Bay 99 

is a protected, semi-enclosed embayment; the residence time can be >1 month long in the 100 

protected southern portion of the Bay (Lowe et al., 2009a;Lowe et al., 2009b) that is 101 

coupled with a high daily variance in pH (Guadayol et al., 2014). The wave action is 102 

minimal (Smith et al., 1981;Lowe et al., 2009a;Lowe et al., 2009b) and currents are 103 

relatively slow (5cm s
-1

 maximum) and wind-driven  (Lowe et al., 2009a;Lowe et al., 104 

2009b).  105 

2.2 Sample Collection 106 

We collected pieces of dead Porites compressa coral skeleton (hereafter, referred to as 107 

rubble) as representative communities of bioeroders and secondary calcifiers. Rubble was 108 

collected with a hammer and chisel from a shallow reef flat (~1m depth) in November, 109 

2012. Only pieces of rubble without any live coral were collected. The rubble community 110 

in Kāne‘ohe Bay is comprised of secondary calcifiers, including CCA from the genera 111 

Hydrolithon, Sporolithon, and Peyssonnelia and non-coral calcifying invertebrates (e.g. 112 

boring bivalves (Lithophaga fasciola and Barbatia divaricate), oysters (Crassostrea 113 
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gigas), and small crustaceans); filamentous and turf algae; and internal bioeroders, 114 

including  boring bivalves (L. fasciola and B.divaricate), sipunculids (Aspidosiphon 115 

elegans, Lithacrosiphon cristatus, Phascolosoma perlucens, and Phascolosoma 116 

stephensoni), phoronids (Phoronis ovalis), sponges (Cliona spp.) and a diverse 117 

assemblage of polychaetes (White, 1980). All rubble pieces were combined after 118 

collection and maintained in a 100L flow-through tank with ambient seawater from 119 

Kāne‘ohe Bay until random assignment to treatments.   120 

2.3. Experimental Design 121 

The Hawai‘i Institute of Marine Biology (HIMB) hosts a mesocosm facility with 122 

flow-through seawater from Kāne‘ohe Bay and controls for light, temperature, pCO2, and 123 

flow rate. The facility is comprised of 24 experimental aquaria split between four racks; 124 

each rack has a 150L header tank which feeds 6 experimental aquaria, each 50L in 125 

volume (Figure 1).   126 

Before adding rubble to the experimental aquaria, we collected day and night 127 

samples of pH, total alkalinity (TA), temperature, and salinity from all aquaria to 128 

demonstrate the consistency of water conditions across aquaria without any rubble 129 

present (Table 1).  The long-term temporal stability of the mesocosm system is reported 130 

in Putnam (2012). We then conducted “control” and “treatment” experiments to 131 

determine how RCP 8.5 predictions affect daytime calcification and nighttime dissolution 132 

rates in a natural rubble community. The first “control experiment” characterized baseline 133 

calcification and dissolution in each aquarium caused by differences in rubble 134 

communities. In the second “treatment experiment”, we manipulated pCO2 and 135 
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temperature to simulate four climate scenarios (pre-industrial, present day, 2050, and 136 

2100) and tested the response of calcification, dissolution, and net community 137 

production. Each experiment used the TA anomaly method (Smith and Key, 1975; 138 

Andersson et al., 2009).  This method calculates net calcification from changes in total 139 

alkalinity, and calculates net community production from changes in total dissolved 140 

inorganic carbon adjusted for changes in carbon due to calcificaiton. Because estimates 141 

of calcification are based on changes in total alkalinity, this method does not account for 142 

mechanical erosion (e.g., small chips of CaCO3 produced by sponge erosion). However, 143 

given the short duration of the experiment and the types of bioeroders present, we expect 144 

that chemical dissolution captured a significant proportion of the erosion in the system.  145 

Approximately 1.2L of rubble (3-4 pieces of weight 499 ± 148 g and skeletal 146 

density 1.53 ± 0.1 g cm
-3

 (mean ± SD, n=85)) were placed in each of the 24 experimental 147 

aquaria and acclimated to tank conditions in ambient seawater for three days. On the 148 

fourth day, we performed the control experiment, calculating daytime calcification and 149 

nighttime dissolution for rubble in ambient seawater conditions using the TA anomaly 150 

technique. The next day we manipulated seawater pCO2 and temperature to replicate four 151 

climate scenarios for the treatment experiment: pre-industrial (-1±0.057°C and -205±11.9 152 

µatm), present day (natural Kāne‘ohe Bay seawater 24.8±0.09 °C, 614±15.6 µatm), 2050 153 

(+1.4±0.09 °C and +255±31 µatm), and 2100 (+2.4±0.08 and +433±40 µatm). Note that 154 

all changes in temperature and pCO2 were made relative to present day Kāne‘ohe Bay 155 

seawater conditions: pCO2 in Kāne‘ohe Bay is consistently high relative to the open 156 

ocean and can range from 196-976 µatm in southern Kāne‘ohe bay depending on 157 

conditions (Drupp et al., 2013). The yearly average pCO2 at our collection site ranged 158 
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from 565-675 µatm (Silbiger et al., 2014). After an acclimation time of seven days, we 159 

sampled the treatment experiment, calculating daytime calcification and nighttime 160 

dissolution over a 24 hour period.  161 

During both experiments, TA, pH, salinity, temperature, and dissolved inorganic 162 

nutrient (DIN) samples were collected every 12 hours over a 24 hour period: just before 163 

lights-on in the morning (time 1) and just before lights-off at night (time 2) to capture 164 

light conditions, and then again before lights-on the next morning (time 3) to capture dark 165 

conditions. Flow into each aquarium was monitored and adjusted every three hours to 166 

ensure a consistent flow rate over the 24 hour experiment. We calculated net ecosystem 167 

calcification, dissolution, and net community production using a simple box model 168 

(Andersson et al., 2009) and normalized all our calculations to the surface area of the 169 

rubble in each tank. Surface area of the rubble was calculated using the wax dipping 170 

technique (Stimson and Kinzie III, 1991) at the end of the experiment.     171 

2.4 Mesocosm Set-up 172 

The mesocosm facility (Figure 1) is supplied with ambient seawater from 173 

Kāne‘ohe Bay, which is filtered through a sand filter, passed through a water chiller 174 

(Aqualogic Multi Temp MT-1 Model # 2TTB3024A1000AA), and then fed into one of 175 

the four header tanks. pCO2 was manipulated using a CO2 gas blending system (see 176 

Fangue et al., 2010; Johnson and Carpenter, 2012). Each target pCO2 concentration was 177 

created by mixing CO2-free atmospheric air with pure CO2 using mass flow controllers 178 

(C100L Sierra Instruments). Output pCO2 was analyzed using a calibrated infrared 179 

CO2 analyzer (A151, Qubit Systems). CO2 mixtures were then bubbled into one of the 180 
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four header tanks and water from each individual header tank fed into the six individual 181 

treatment aquaria (Figure 1). The pCO2 in each treatment aquarium was estimated with 182 

CO2SYS (Van Heuven et al., 2009) using pH and TA as the parameters. 183 

Temperature was manipulated in each treatment aquarium using dual-stage 184 

temperature controllers (Aqualogic TR115DN). The temperature was continuously 185 

monitored with temperature loggers (TidbiT v2 Water Temperature Data Logger, 186 

sampling every 20 min) and point measurements were taken during every sampling 187 

period with a handheld digital thermometer (Traceable Digital Thermometer, Thermo 188 

Fisher Scientific; precision = 0.001 °C). Light was controlled by positioning an 189 

oscillating pendant metal-halide light (250 W) over a set of three aquaria and was 190 

programmed to emit an equal amount of light to each tank (~500µE of light). Lights were 191 

set to a 12:12 hour photoperiod and were monitored using a LI-COR spherical quantum 192 

PAR sensor. Flow rate was maintained at 115±1 ml min
-1

, resulting in a residence time of 193 

7.3±0.07 hours per tank. Each aquarium was equipped with a submersible powerhead 194 

pump (Sedra KSP-7000 powerhead) to ensure that the tank was well-mixed. 195 

2.5 Seawater Chemistry 196 

All sample collection and storage vials were cleaned in a 10% HCl bath for 24 hours and 197 

rinsed three times with MilliQ water before use and rinsed three times with sample water 198 

during sample collection and processing.  199 

2.5.1 Total Alkalinity 200 

Duplicate TA samples were collected in 300 ml borosilicate sample containers with glass 201 

stoppers. Each sample was preserved with 100µL of 50% saturated HgCl2 and analyzed 202 
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within 3 days using open cell potentiometric titrations on a Mettler T50 autotitrator 203 

(Dickson et al., 2007). A Certified Reference Material (CRM - Reference Material for 204 

Oceanic CO2 Measurements, A. Dickson, Scripps Institution of Oceanography) was run 205 

at the beginning of each sample set. The accuracy of the titrator never deviated more than 206 

±0.8% from the standard, and TA measurements were corrected for these deviations. The 207 

precision was 3.55µEq (measured as standard deviation of the duplicate water samples). 208 

During the 24-hour control experiment the average changes in TA were 37µEq over the 209 

day and 20µEq over the night (day and night TA changes were of larger magnitude in the 210 

treatment experiments):  these are measurable changes given the precision and accuracy 211 

of the TA measurements. 212 

2.5.2 pHt (total scale) 213 

Duplicate pHt samples were collected in 20ml borosilicate glass vials, brought to a 214 

constant temperature of 25ºC in a water bath, and immediately analyzed using an m-215 

cresol dye addition spectrophotometric technique (Dickson et al., 2007). Accuracy of the 216 

pH was tested against a Tris buffer of known pHt from the Dickson Lab at Scripps 217 

Institution of Oceanography (Dickson et al., 2007). Our accuracy was better than 218 

±0.04%, and the precision was 0.004 pH units (measured as standard deviation of the 219 

duplicate water samples). In situ pH and the remaining carbonate parameters were 220 

calculated using CO2SYS (Van Heuven et al., 2009) with the following measured 221 

parameters: pHt, TA, temperature, and salinity. The K1K2 apparent equilibrium constants 222 

were from Mehrbach (1973) and refit by Dickson & Millero (1987) and HSO4
-
 223 

dissociation constants were taken from Uppström (1974) and Dickson (1990).  224 

2.5.3 Salinity 225 



 

11 

 

Duplicate salinity samples were analyzed on a Portasal 8410 portable salinometer 226 

calibrated with an OSIL IAPSO standard (accuracy = ±0.003, precision = ±0.0003). 227 

2.5.4 Nutrients 228 

Nutrient samples were collected with 60ml plastic syringes and immediately filtered 229 

through combusted 25mm glass fiber filters (GF/F 0.7µm) and transferred into 50ml 230 

plastic centrifuge tubes. Nutrient samples were frozen and later analyzed for Si(OH)4, 231 

NO3
-
, NO2

-
, NH4

+
, and PO4

3-
 on a Seal Analytical AA3 HR Nutrient Analyzer at the UH 232 

SOEST Lab for Analytical Chemistry. 233 

2.6 Measuring Net Ecosystem Calcification  234 

We assumed that the mesocosms were well mixed systems; thus, we calculated net 235 

ecosystem calcification and net communtity photosynthesis following the simple box 236 

model presented in Andersson et al. (2009).  TA was normalized to a constant salinity 237 

(35) to account for changes due to evaporation and then corrected for dissolved inorganic 238 

nitrogen and phosphate to account for their small contributions to the acid-base system 239 

(Wolf-Gladrow et al., 2007). Net ecosystem calcification, or G, was calculated using the 240 

following equation: 241 

𝐺 = [𝐹𝑇𝐴𝑖𝑛 − 𝐹𝑇𝐴𝑜𝑢𝑡 −
𝑑TA

𝑑𝑡
] /2 

 Eq. 1 

   

where FTAin is the rate of TA flowing into an aquarium ( = average TA in the header tank 242 

times the inflow rate),  FTAout is the rate of TA flowing out of an aquarium ( = average 243 

TA in the aquarium times the outflow rate), and ,  
dTA

dt
 is the change in TA in an aquarium 244 
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during the measurement period (change in TA normalized to the volume of water and the 245 

surface area of the rubble); specific calculations are given in the supplemental material. 246 

The equation is divided by two because one mole of CaCO3 is precipitated or dissolved 247 

for every two moles of TA removed or added to the water column. Here, G represents the 248 

sum of all the calcification processes minus the sum of all the dissolution processes in 249 

mmol CaCO3 m
-2

 hr
-1

; thus, all positive numbers are net calcification, and all negative 250 

numbers are negative net calcification (i.e., net dissolution). Net daytime calcification 251 

(Gday) is calculated from the first 12 hour sampling period in the light, net nightime 252 

dissolution (Gnight) is calculated from the second 12 hour sampling period in the dark, and 253 

total net calcification (Gnet) is calculated from the full 24 hour cycle (Gday + Gnight). Gday, 254 

Gnight, and Gnet are converted from hourly to daily rates and presented as mmol CaCO3 m
-

255 

2
 d

-1
. 256 

2.7 Measuring Net Community Production and Respiration 257 

Net community production (NCP) was calculated by measuring changes in DIC (Gattuso 258 

et al., 1999). DIC was normalized to a constant salinity (35) to account for any 259 

evaporation over the 24 hour period. We used a simple box model to calculate NCP: 260 

𝑁𝐶𝑃 = [𝐹DIC𝑖𝑛 − 𝐹DIC𝑜𝑢𝑡 −
𝑑DIC

𝑑𝑡
] − 𝐺 

 Eq. 2 

𝐹DIC𝑖𝑛, 𝐹DIC𝑜𝑢𝑡, and 
𝑑DIC

𝑑𝑡
 are the rates of DIC flowing into the aquaria, flowing out of the 261 

aquaria, and the change in DIC in the aquaria per unit time in mmol C m
-2

 hr
-1

, 262 

respectively.  To measure NCP, we subtract G to remove any change in carbon due to 263 

inorganic processes. NCP represents the sum of all the photynthetic processes minus the 264 
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sum of all the respiration processes, thus all positive numbers are net photosynthesis and 265 

all negative numbers are negative net photosynthesis (i.e., net respiration). Net daytime 266 

NCP (NCPday) is calculated from the first 12 hour sampling period in the light, net 267 

nightime NCP (NCPnight) is calculated from the second 12 hour sampling period in the 268 

dark, and total NCP (NCPnet) is calculated from the full 24 hour cycle (NCPday + 269 

NCPnight). All rates are presented as mmol C m
-2

 d
-1

. 270 

2.8 Statistical Analysis 271 

Each aquarium contained a slightly different rubble community because of the 272 

randomization of rubble pieces to each treatment. To ensure there were no systematic 273 

differences in rubble communities between racks (rack effects) before the experimental 274 

treatments were applied, we tested for differences in calcification and NCP between racks 275 

in the control experiment using an ANOVA (Figure A2).   276 

In the treatment experiment, we first tested for feedbacks in carbonate chemistry 277 

due to the presence of rubble: using a paired t-test, we compared the day-night difference 278 

in measured pCO2 in each aquarium with rubble, (𝑝𝐶𝑂2,𝑑𝑎𝑦
−  𝑝𝐶𝑂2,𝑛𝑖𝑔ℎ𝑡

)
𝑟𝑢𝑏𝑏𝑙𝑒

, and 279 

without rubble, (𝑝𝐶𝑂2,𝑑𝑎𝑦
−  𝑝𝐶𝑂2,𝑛𝑖𝑔ℎ𝑡

)
𝑛𝑜 𝑟𝑢𝑏𝑏𝑙𝑒

.  280 

Although we imposed four discrete temperature-pCO2 scenario treatments on 281 

each tank (Table 1), random variation between treatments and the feedback between the 282 

rubble communities and the water chemistry resulted in near-continuous variation in 283 

temperature-pCO2 treatments across aquaria (Figures 2 and A1).  To capture this 284 

continuous variation in temperature-pCO2 in the analysis, we used the measured 285 
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temperature-pCO2 seawater condition as a continuous independent variable in a 286 

regression rather than the four categorical treatment conditions in an ANOVA (an 287 

analysis of G and NCP using the ANOVA approach is included in Figures A3, A4 and 288 

Tables A1, A2). The regression approach allowed us to better capture the quantitative 289 

relationships between net calcification (G) or NCP and the temperature-pCO2 treatment.  290 

We created a single, continuous variable, Standardized Climate Change (SCC), from a 291 

linear combination of temperature and pCO2 values in each aquarium. A simple linear 292 

combination was used because pCO2 increased linearly with temperature (Figure 2), as 293 

imposed by our treatments. We first calculated the relationship between ∆Temp (Eq 3) 294 

and ∆pCO2 (Eq 4) using linear regression. The coefficients from this regression (slope:  295 

= 0.0031; y-intercept:  = - 0.078) were used to combine pCO2 and temperature onto the 296 

same scale, as a measure of Standardized Climate Change (Eq 5):  297 

∆𝑇𝑒𝑚𝑝𝑖 =  𝑇𝑒𝑚𝑝𝑡𝑟𝑡,𝑖 −  𝑇𝑒𝑚𝑝𝑐𝑜𝑛𝑡,𝑖      Eq. 3 298 

∆𝑝𝐶𝑂2𝑖
 =  𝑝𝐶𝑂2𝑡𝑟𝑡,𝑖

 −  𝑝𝐶𝑂2𝑐𝑜𝑛𝑡,
    Eq. 4 299 

𝑆𝐶𝐶𝑖 = ∆𝑇𝑒𝑚𝑝𝑖 +  𝛼 ∗ ∆𝑝𝐶𝑂2𝑖
+ 𝛽    Eq. 5 300 

This synthetic temperature-pCO2 axis, SCC, is centered on the ambient (control) 301 

conditions such that a value of 0 corresponds to present day Kāne‘ohe Bay conditions, a 302 

negative value corresponds to water that is colder and less acidic (pre-industrial) and a 303 

positive value corresponds to water that is warmer and more acidic (future conditions) 304 

compared to background seawater.  (The independent relationships between G and NCP 305 

with ∆Temp and ∆pCO2 are shown in Figures A5 and A6 and are similar to the 306 

relationship with SCC.) 307 
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With SCC as a continuous, independent variable, we used a regression to test for 308 

linear and non-linear relationships between day, night, and net calcification (Gday, Gnight, 309 

and Gnet) and NCP (NCPday, NCPnight, and NCPnet) versus SCC.  For a simple test of 310 

nonlinearity in the response of calcification to SCC, we included a quadratic term (SCC
2
) 311 

in the model. For Gday, we used weighted regression (weight function: wi=1/(1+|ri|), 312 

where wi = weight and ri = residual, Fair, 1974) to account for heteroscedasticity. All 313 

other data met assumptions for a linear regression. Lastly, we used a linear regression to 314 

test the relationship between G and NCP.  315 

3 Results 316 

3.1 Control Experiment  317 

For rubble in ambient seawater conditions, the average Gday, Gnight, and Gnet in the control 318 

experiment were 3.4±0.16 mmol m
-2

 d
-1

, -2.4±0.15 mmol m
-2

 d
-1

, and 0.96±0.20 mmol m
-

319 

2
 d

-1
, respectively. There was no significant difference in Gday (F3,23=0.68, p=0.58), Gnight 320 

(F3,23=1.52, p=0.24), or Gnet (F3,23=1.38, p=0.28) between racks in the control experiment 321 

(Figure A2). NCP rates also did not show any racks effects. Average NCP rates were 322 

23.2±1.4 mmol m
-2

 d
-1

 (F3,23=0.07, p=0.94) during the day, -20.7±1.9 mmol m
-2

 d
-1

 323 

(F3,23=1.95, p=0.15) during the night, and 2.5±2.1 mmol m
-2

 d
-1

 (F3,23=1.5, p=0.25) over 324 

the entire 24 hour period. 325 

3.2 Treatment Experiment 326 

The rubble communities significantly altered the seawater chemistry, with higher pCO2 327 

than the applied pCO2 manipulation, particularly at night (Figure A1). The mean 328 
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difference between day and night pCO2 for all treatments was 134.4 ± 39 µatm without 329 

rubble and was 438.5 ± 163.9 µatm when rubble was present (t23= -7.23, p<0.0001; 330 

Figure 2).   331 

 Standardized Climate Change was a significant predictor for Gday, Gnight, and Gnet 332 

(Table 2; Figure 3). Gday had a non-linear relationship with Standardized Climate Change 333 

(Table 2, Figure 3a), increasing to a threshold and then rapidly declining. Gnight, however, 334 

had a strong linear relationship with Standardized Climate Change (Table 2; Figure 3c), 335 

suggesting that joint increases in ocean pCO2 and temperature will increase nighttime 336 

dissolution of coral rubble. Lastly, Gnet had a strong negative relationship with 337 

Standardized Climate Change (Table 2; Figure 3e) and the rubble community switched 338 

from net calcification to net dissolution at an increase in pCO2 and temperature of 271 339 

µatm and 0.75° C, respectively.  Standardized Climate Change was also a significant 340 

predictor of NCP: Day, night, and net NCP rates all declined with standardized climate 341 

change (Table 2; Figure 3b,d,f; Figure3). 342 

Net ecosystem calcification increased with net community production (F1,46 = 343 

260, p<0.0001, R
2
=0.85; Figure 4).  In general, communities were net photosynthesizing 344 

and net calcifying during the day (Figure 4a: squares in the upper right quadrant) and 345 

were net respiring and net dissolving at night (Figure 4a: circles in the lower left 346 

quadrant). The exception was communities in the most extreme temperature-pCO2 347 

treatment: these communities were net respiring during the day while holding a positive, 348 

yet very low, calcification rate (Figure 4a: squares in the upper left quadrant).  349 

 350 
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4 Discussion 351 

4.1 Carbonate Chemistry Feedbacks 352 

The rubble communities in the aquaria significantly altered the seawater 353 

chemistry, particularly at night (t23= -7.23, p<0.0001; Figure 2, Figure A1). This day-354 

night difference in seawater chemistry increased under more extreme climate scenarios, 355 

as predicted by Jury et al. (2013). This large diel swing in pCO2 is not uncommon on 356 

shallow coral reef environments. pCO2 ranged from 480 to 975µatm over 24 hours on a 357 

shallow reef flat adjacent to our collection site (Silbiger et al. 2014) and from 450 to 742 358 

µatm on a Moloka‘i reef flat dominated by coral rubble (Yates and Halley, 2006). Here, 359 

pCO2 had an average difference of 438 µatm between day and night with a range of 412 360 

µatm in the pre-industrial treatment to 854 µatm in the most extreme temperature-pCO2 361 

treatments (Figure 2). In our study, we incorporated these feedbacks into the statistical 362 

analysis by using the actual, sampled pCO2 (and temperature) in each aquaria (Figure 3) 363 

rather than using the intended pCO2 (and temperature) treatments in an ANOVA (Tables 364 

A1, A2 and Figures A3, A4), better reflecting the pCO2 experienced by organisms in 365 

each aquarium. 366 

4.2 Calcification, Dissolution, and Net Community Production in a High 367 

CO2 and Temperature Environment 368 

Our results suggest that as pCO2 and temperature increase over time, rubble reefs 369 

may shift from net calcification to net dissolution. In our study, this tipping point 370 

occurred at a pCO2 and temperature increase of 271 µatm and 0.75° C. Further, our 371 

results showed that Gday and Gnight in a natural coral rubble community have different 372 
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functional responses to changing pCO2 and temperature (Figure 3). The ranges in Gday 373 

and Gnight in our aquaria were similar to in situ rates on Hawaiian rubble reefs. Yates &  374 

Halley (2006) saw Gday values between 3.3 to 11.7 mmol CaCO3 m
-2

 d
-1

 and Gnight values 375 

between -2.4 to -24 mmol CaCO3 m
-2

 d
-1

 on a Moloka‘i reef flat with only coral rubble 376 

(Note that Yates and Halley calculated G over a 4 hour timeframes and the data was 377 

multiplied by 3 here to show G in mmol m
-2

 d
-1

. Also note that we normalized our rates to 378 

the surface area of the rubble while Yates and Halley (2006) normalized their rates to 379 

planar surface area.). Gday and Gnight in our experiment ranged from 1.9 to 9.4 and -1.3 to 380 

-10.5 mmol CaCO3 m
-2

 d
-1

, respectively, across all treatment conditions. The higher 381 

dissolution rates in the in situ study by Yates and Halley (2006) are likely due to 382 

dissolution in the sediment, which was not present in our study. 383 

Gday had a non-linear response to Standardized Climate Change. Gday increased 384 

with temperature-pCO2 until slightly above ambient conditions, and then decreased under 385 

more extreme climate conditions (Figure 3a). This mixed response, increasing and then 386 

decreasing with Standardized Climate Change, is reflected in prior experiments. We 387 

suggest three possible mechanisms to explain why calcification increases in slightly 388 

higher temperature-pCO2 than ambient conditions. 1) Some calcifiers can maintain and 389 

even increase their calcification rates in acidic conditions (Kamenos et al., 2013;Findlay 390 

et al., 2011;Rodolfo-Metalpa et al., 2011;Martin et al., 2013) by either modifying their 391 

local pH environment (Hurd et al., 2011) or partitioning their energetic resources towards 392 

calcification (Kamenos et al., 2013). For example, in low, stable pH conditions the 393 

coralline algae, Lithothamnion glaciale, increased its calcification rate relative to a 394 

control treatment but, did not concurrently increase its rate of photosynthesis (Kamenos 395 
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et al., 2013). Kamenos et al (2013) suggest that the up-regulation of calcification may 396 

limit photosynthetic efficiency. In the present study, the increase in Gday coincided with a 397 

decrease in net photosynthesis (Figure 3a,b). Photosynthesizing calcifiers in the 398 

community may be partitioning their energetic resources more towards calcification and 399 

away from photosynthesis in order to maintain a positive calcification rate (Kamenos et 400 

al., 2013). Notably, turf algae likely have a major control over the NCP in this 401 

community which would not have any impact on calcification. 2) An alternative 402 

hypothesis is that the calcifiers may be adapted or acclimatized to high pCO2 conditions 403 

(Johnson et al., 2014) and have not yet reached their threshold because the rubble was 404 

collected from a naturally high and variable pCO2 environment (Guadayol et al., 2014; 405 

Silbiger et al. 2014). 3) In this study, the calcifiers experienced a combined increase in 406 

both pCO2 and temperature and, thus, the non-linear response in Gday may also be due a 407 

metabolic response. In a typical thermal performance curve, organisms increase their 408 

metabolism until they have reached a thermal maximum and then rapidly decline (Huey 409 

and Kingsolver, 1989; Pörtner et al., 2006), and we see this response in our results. A 410 

recent study found a similar nonlinear response to temperature and pCO2 in the coral 411 

Siderastrea sidera (Castillo et al. 2014). While they attribute the pCO2 response to 412 

photosynthesis being neutralized (we did not see this response in our non-coral 413 

community), they suggest that the thermal response is due to both changes in metabolism 414 

and thermally-driven changes in aragonite saturation state (Castillo et al. 2014).    415 

We saw a decline in both calcification and NCP in the extreme temperature-pCO2 416 

condition (Figure 3). Calcification has been shown to decline with climate stressors and 417 

the magnitude of decline differs across species (Kroeker et al., 2010;Pandolfi et al., 418 
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2011;Ries et al., 2009;Kroeker et al., 2013). The concurrent decline in NCP and 419 

calcification (Figure 3a,b & 4) suggests that non-photosynthesizing invertebrates in the 420 

community (such as bivalves) might be dominating the calcification signal in these 421 

conditions. This hypothesis would explain the pattern that we see in Figure 4, where 422 

communities in the most extreme pCO2 and temperature conditions are net respiring 423 

during the day while still maintaining a small, positive calcification rate (Figure 4a: five 424 

points in the upper left quadrant).  425 

Gnight rates are more straightforward, decreasing linearly with pCO2 and 426 

temperature (Figures 3c and 4). NCPnight rates also decreased linearly with pCO2 and 427 

temperature (Figure 3d). Similarly, Andersson et al. (2009) saw an increase in dissolution 428 

under acidic conditions in a community of corals, sand, and CCA. Previous studies on 429 

individual bioeroder taxa have also found higher rates of bioerosion or dissolution in 430 

more acidic, higher temperature conditions (Wisshak et al., 2013;Fang et al., 2013;Reyes-431 

Nivia et al., 2013;Tribollet et al., 2009;Wisshak et al., 2012). There are several 432 

mechanisms that could be mediating the increased dissolution rates in the high 433 

temperature-pCO2 treatments: 1) Higher temperatures could increase the metabolism of 434 

the bioeroder community, thus increasing borer activity (e.g., Davidson et al. 2013). 2) 435 

Because many boring organisms excrete acidic compounds to erode the skeletal structure 436 

(Hutchings 1986), reduced pH in the overlaying water column may reduce the metabolic 437 

cost to the organisms, making it easier for eroders to breakdown the CaCO3. 3) Higher 438 

dissolution rates could be mediated by an increase in the proportion of dolomite in the 439 

skeletal structure of CCA on the rubble. A recent study found a 200% increase in 440 

dolomite in CCA that were exposed to high pCO2 and temperature conditions; this 441 
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increase in dolomite resulted in increased bioerosion by endolithic algae (Diaz-Pulido et 442 

al., 2014).  However, it is unlikely that changes in the mineralogy of the CCA indirectly 443 

increased dissolution here given the short time-scale of our study.  In the present study, 444 

we used the TA anomaly method to calculate chemical dissolution as a proxy for 445 

bioerosion. Future studies should also include measures of mechanical breakdown (e.g. 446 

the production of sponge chips) in addition to chemical dissolution for a more complete 447 

picture of the impacts of climate stress on reef breakdown.  Studies, including the present 448 

one, which focused on community-level responses, have consistently found that ocean 449 

acidification will increase dissolution rates on coral reefs (Andersson and Gledhill, 2013).  450 

Standardized Climate Change explained more of the variance in dissolution than 451 

in calcification in our rubble community:  (𝑅𝐺𝑛𝑖𝑔ℎ𝑡

2 = 0.64 >  𝑅𝐺𝑑𝑎𝑦

2 = 0.33; Table 2) this 452 

result is not surprising. Bioerosion, an important driver of dissolution, may be more 453 

sensitive to changes in ocean acidity than calcification, leading to net dissolution in high 454 

CO2 waters. Many boring organisms excrete acidic compounds, which may be less 455 

metabolically costly in a low pH environment. Erez et al. (2011) hypothesize that 456 

increased dissolution, rather than decreased calcification, maybe be the reason that net 457 

coral reef calcification is sensitive to ocean acidification. The results of this study support 458 

this hypothesis. Although Gnet declines linearly with pCO2-temperature, calcification 459 

(Gday) and dissolution (Gnight) have distinct responses to Standardized Climate Change: 460 

Gday had a non-linear response while Gnight declined linearly with Standardized Climate 461 

Change. Our results highlight the need to study the effects of climate stressors on both 462 

calcification and dissolution. 463 
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Table 1: Means and standard errors of all measured parameters by rack. pCO2, HCO3
- 
,
 
CO3

2- 
, DIC, and Ωarag were all calculated from 706 

the measured TA and pH samples using CO2SYS. Each table entry is the mean of 12 water samples: one daytime sample and one 707 

nighttime sample for six aquaria within a rack. Data are all from the imposed treatment conditions with no rubble inside the aquaria.  708 

Rack Pre-industrial Present Day 2050 prediction 2100 prediction 

Temp (ºC) 23.8±0.07 24.8±0.08 26.2±0.06 27.2±0.08 

Salinity 35.65±0.01 35.71±0.02 35.62±0.02 35.71±0.02 

Total Alkalinity (µmol kg
-1

) 2137±1.7 2138±2.3 2139±2.0 2142±1.9 

pHt 8.02±0.02 7.87±0.01 7.74±0.02 7.67±0.02 

pCO2 (µatm) 409±20.0 614±15.6 868±33.0 1047±38.7 

HCO3
- 
(µmol kg

-1
) 1692±16.9 1815±7.3 1894±7.8 1939±6.6 

CO3
2- 

(µmol kg
-1

) 194.20±6.7 147.08±2.8 113.98±3.8 99.24±3.3 

DIC (µmol kg
-1

) 1898±10.9 1980±5.1 2032±5.0 2067±4.5 

Ωarag 3.06±0.1 2.32±0.04 1.80±0.06 1.57±0.05 

NO2
-
 (µmol L

-1
) 0.082 ± 0.0028     0.078 ±0.0045     0.074 ± 0.0047     0.070 ± 0.0051     

PO4
3- 

(µmol L
-1

) 0.017 ±0.014     0.0097 ±0.0081     0.033 ±0.016    0.018±0.0061     

Si(OH)4  (µmol L
-1

) 3.60 ±0.58     3.64 ±0.61    3.88 ± 0.49     3.78 ± 0.52     

NH4
+
 (µmol L

-1
) 0.45 ±0.30     0.19 ±0.067     0.23 ±0.15     0.34 ± 0.14     

NO3
-
(µmol L

-1
) 2.13±0.20 2.25±0.21 2.55±0.10 2.48±0.11 
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Table 2: Regression results for the treatment experiments: Gday, Gnight, and Gnet versus 709 

Standardized Climate Change (Figure 3a,c,e) and NCPday, NCPnight, and NCPnet versus 710 

Standardized Climate Change (Figure 3b,d,f).  Bold values indicate a statistically significant 711 

p-value at an α <0.05. 712 

 SS df F p R
2
 

Gday      

Standardized Climate Change 3.79 1 1.45 0.06  

(Standardized Climate Change)
2
 23.63 1 9.04 0.007  

Error 54.89 21   0.33 

Gnight      

Standardized Climate Change  67.80 1 39.14 <0.0001  

Error 38.11 22   0.64 

Gnet      

Standardized Climate Change 88.01 1 19.49 <0.001  

Error 99.35 22   0.47 

NCPday      

Standardized Climate Change 5687.2 1 57.36 <0.0001  

Error 
2181.4 22   0.72 

NCPnight      

Standardized Climate Change  3816.1 1 52.06 <0.0001  

Error 
1612.6 22   0.70 

 NCPnet      

Standardized Climate Change  17925 1    121.47 <0.0001  

Error 3246.4 22 
  

0.85 

 713 

  714 
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Figure legends:  715 

Figure 1: A schematic of the mesocosm system at the Hawai‘i Institute of Marine Biology. 716 

Ambient seawater is pumped into the system from a nearby fringing reef in Kāne‘ohe Bay. 717 

The seawater is filtered with a sand trap filter, passed through a water chiller and then fed into 718 

one of four header tanks. pCO2 is manipulated in each header tank by bubbling a mixture of 719 

CO2-free air and pure CO2 to the desired concentration. The water from one header tank flows 720 

into 6 aquaria (a rack). Light is controlled by rack with metal-halide lights. There are two 721 

metal-halide lights per rack with each light oscillating over a set of three aquaria. Flow and 722 

temperature are controlled in each individual aquarium with flow valves and aquarium heaters 723 

and coolers, respectively.  724 

Figure 2: pCO2 and temperature in each aquarium (a) without any rubble present and (b) with 725 

rubble present. Daily variability in pCO2 was higher when rubble was present due to 726 

feedbacks from the rubble community (note the different x-axis scales in panels a and b). 727 

Panel (c) shows the mean difference between day and night pCO2 with and without rubble 728 

present with observations paired by aquarium (error bars are standard error) (t23= -7.23, 729 

p<0.0001). 730 

Figure 3: Net ecosystem calcification ( (a) Gday, (c) Gnight, (e) and Gnet) and net community 731 

production ( (b) NCPday, (d) NCPnight, and (f) NCPnet) versus Standardized Climate Change 732 

(SCC). Each point represents net ecosystem calcification (left panel) or net community 733 

production (right panel) calculated from an individual aquarium. Standardized Climate 734 

Change was centered around background seawater conditions such that a value of 0 indicated 735 

that there was no change in pCO2 or temperature. Positive values indicate an elevated pCO2 736 

and temperature condition relative to background and negative values represent lower pCO2 737 

and temperature conditions. Gday had a non-linear relationship with Standardized Climate 738 
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Change (y = -0.27
 
x

2
 + 0.59x+5.7), while Gnight (y=-0.63x - 3.6) and Gnet (y=--0.76x + 1.1) 739 

each had a negative linear relationship with Standardized Climate Change (Table 2). NCPday  740 

(y=-7.01x +23.4), NCPnight (y=-35.76 – 4.74), and NCPnet (y=-12.07x – 10.85) all had 741 

significant negative relationships with Standardized Climate Change. Black lines are best fit 742 

lines for each model with 95% confidence intervals in gray. The x‘s on the top panel represent 743 

the imposed conditions for Pre-industrial, Present Day, 2050, and 2100.  The black horizontal 744 

line in in panels (b), (e) and (f) shows the point where G and NCP = 0. Points above the line 745 

are net calcifying (e) or net photosynethsizing (f) and points below the line are net dissolving 746 

(e) or net respiring (f) over the entire 24 hour period. 747 

Figure 4: (a) Calculated G and NCP rates for all treatment aquaria. Squares are data collected 748 

during light (day) conditions and circles represent data collected during dark (night) 749 

conditions, and the color represents Standardized Climate Change (color bar). There is a 750 

strong positive relationship between G and NCP (y = 0.14x + 1.9, p<0.0001, R
2
=0.85). 751 

Negative and positive y-values are net dissolution and net calcification, respectively; negative 752 

and positive x-values are net respiration and net photosynthesis, respectively.  (b) TA versus 753 

DIC: There is a strong positive relationship between TA and DIC (y = 0.31x + 1577.4, 754 

p<0.0001, R
2
=0.85).  Black and gray lines represent the best-fit line and 95% confidence 755 

intervals, respectively. As expected, the slope of TA versus DIC (0.31) is approximately twice 756 

that of G versus NCP (0.14).   757 
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