<u>Reviewer #1:</u> We thank you very much for your helpful review. Below are responses to your comments and specific questions.

One problem with TA anomaly when looking at bioerosion is that it measures only the "chemical dissolution". The breaking of CaCO3 structure is also important and it would have been nice to do buoyant weight measurements to quantify the overall decrease in weight of rubbles (i.e. how much is dissolved vs how much is broken in smaller pieces). This is an important point. Using the TA anomaly method, we can only address the impacts of climate stress on chemical dissolution and not the breakdown of CaCO₃ into smaller pieces (e.g., the production of sponge chips). We have added text to section 2.3 Experimental Design in the revision to clarify this limitation. Note that, because the rubble communities had both secondary calcifiers and bioeroders, the distinction between chemical and mechanical breakdown could not be distinguished using buoyant weight: the change in weight includes both the addition of $CaCO_3$ by secondary calcifiers and the breakdown of $CaCO_3$ by eroders. Additionally, it would have been challenging to obtain an accurate estimate of change in buoyant weight given the short duration of the experiment and, therefore, the small magnitude of weight changes relative to the weight of the rubble pieces (1748 g, on average). Nonetheless, we have highlighted this limitation of the TA anomaly method and noted that it is an important distinction for future studies to address.

Specific points:

P12804: What were the flow rates in the mesocosms? Flow rates were 115 ± 1 (SD) ml min⁻¹, as reported in section 2.4 – Mesocosm Set-up

P12804-I-19: Please provide _ sizes of the rubbles. How was the homogeneity of the rubbles determined? I guess dissolution of old rubbles would be different than the one of "young" rubbles?

There was approximately 1.2L of rubble in each tank, as reported in the third paragraph of section 2.3 - Experimental Design. In response to the reviewer's question, we have added some additional information describing the characteristics of the rubble (3-4 pieces of average weight $499 \pm 148 \text{ g}$, average skeletal density of $1.53 \pm 0.1 \text{ g cm}^{-3}$ (mean \pm SD, n=85)) to give the reader a better sense of the volume and homogeneity of rubble pieces. To keep rubble consistent among aquaria, we kept the volume, weight, and skeletal density of individual rubble pieces consistent and put a similar total volume of rubble in each aquarium. In addition, NEC and NCP rates were normalized to the surface area of rubble in each aquarium. We agree with the reviewer that the age of the rubble could be relevant to the dissolution rate. However, the age of the collected rubble is unknown. We accounted for this in two ways: we controlled for rubble density (expecting that rubble density may be a proxy for rubble age), and we randomized rubble pieces across treatments (so that variation in age adds noise, but not systematic bias, across treatments).

P12804-I-19: Why were the incubations not replicated? 24h incubations are easy to replicates and could have inform on temporal changes.

This manuscript reports the experiment as it was performed. Limitations of facility time and sample cost prevented us from repeating the 24-hour incubations. Despite this limitation, we believe that the results of this experiment give important insights into community calcification processes and will be of interest to Biogeosciences readers.

P12805-I-10. I guess the TA changes in the mesocosms were very limited. Were the errors associated with measurements small enough to be sure to detect a change in calcification? Maybe you should provide the range of TA changes during incubations.

We have added information on the magnitude of TA changes during the day and the night to the methods text in 2.5.1 - Total Alkalinity, the same section where the accuracy and precision of the TA measurements are reported: "The accuracy of the titrator never deviated more than $\pm 0.8\%$ from the standard, and TA measurements were corrected for these deviations. The precision was $3.55\mu\text{Eq}$ (measured as standard deviation of the duplicate water samples).During the 24-hour control experiment, the average changes in TA were $37\mu\text{Eq}$ over the day and $20\mu\text{Eq}$ over the night (day and night TA changes were of larger magnitude in the treatment experiments): these are measurable changes given the precision and accuracy of the TA measurements." In addition, the regression analysis indicates that the systematic differences due to treatment effects exceeded the variability due to error, including measurement error.

P12808-I-5: What do you mean by normalized to DIN? Do you mean that TA was corrected for the changes in NH4+ etc? Please clarify.

TA was corrected for changes in the concentration of nitrate, nitrite, ammonium, and phosphate We have changed the wording in section 2.6 Measuring Net Ecosystem Calcification and added a citation. It now says "TA was normalized to a constant salinity (35 psu) to account for changes due to evaporation and then corrected for dissolved inorganic nitrogen and phosphate to account for their small contributions to the acid-base system (Wolf-Gladrow et al., 2007)."

P12808-I-11: A change in TA in mmolCaCO3 m-2 h-1? Reformulate this sentence.

Sentence changed to read, " F_{TAin} is the rate of TA flowing into an aquarium (= average TA in the header tank times the flow rate), F_{TAout} is the rate of TA flowing out of an aquarium (= average TA in the aquarium times the flow rate), and , $\frac{dTA}{dt}$ is the change in TA in an aquarium during the measurement period (change in TA normalized to the volume of water and the surface area of the rubble). The rates are measured in mmol CaCO₃ m⁻² hr⁻¹ (specific calculations are given in the supplemental material)."

P12808-I-11: Rates are normalized in mmol CaCO3 m-2 h-1, does m-2 represents the surface of the mesocosms, surface of the rubble, etc? Clarify.

Data are normalized to the surface area of the rubble. This was stated in the original MS on page 12805 line 14 : "... and normalized all our calculations to the surface area of the rubble in each tank". For clarity, we added "change in TA normalized to the surface area of the rubble" to section 2.6 Measuring Net Ecosystem Calcification and included this detail in the description of the calculations in the appendix.

P12809-I-10: What about the exchanges with the atmosphere? Were the tanks sealed? If not, exchanges with the atmosphere could have lead to under/overestimations of photosynthesis and respiration.

The tanks were not sealed. Air-sea CO_2 flux is minimal for windspeeds less than 10 ms⁻¹ (Wanninkhof 1992). In our indoor mesocosm system, the windspeed inside the mesocosm room was near zero. Therefore, we did not account for air-sea fluxes in our analysis.

P12811-I-14: Provide details on the response of NCP.

We have added data on the response of NCP to the results section in the text and in a new table and an extended figure in the main text and in the supplement. Table 3 now includes the regression results for standardized climate change vs NCP, and Figure 3 now has an additional panel showing the relationship between Standardized Climate Change and NCP. Table A2 has the regression analysis for NCP and Figure A4 shows the means and standard error bars for NCP by treatment.

P12812-I-12: Are the normalization the same? If in the present study the rates are normalized by the actual surface of the rubbles (which needs to be clarified, see above) it might be different than the study of Yates and Halley who normalized by planar surface...

Added this sentence for clarification, "It is important to note that we normalized our rates to the surface area of the rubble while Yates and Halley (2006) normalized their rates to planar surface area." to the discussion.

P12813-I-2-14: I am really not convinced by this explanation for two reasons. – What was the importance of the CCA? Most of the photosynthesis was likely due to turf algae and not to calcify algae. - In addition the authors mention themselves later "non-photosynthesizing invertebrates in the community (such as bivalves) might be dominating the calcification signal in these conditions." In contrast I think that the second hypothesis makes much more sense and should be developed.

We expanded on this point in the discussion. We also added a thermally-induced metabolic response as a possible mechanism. This paragraph now reads as follows:

"1) Some calcifiers can maintain and even increase their calcification rates in acidic conditions (Kamenos et al., 2013;Findlay et al., 2011;Rodolfo-Metalpa et al., 2011;Martin et al., 2013) by either modifying their local pH environment (Hurd et al., 2011) or partitioning their energetic resources towards calcification (Kamenos et al., 2013). For example, in low, stable pH conditions the coralline algae, *Lithothamnion glaciale*, increased its calcification rate relative to a control treatment but, did not concurrently increase its rate of photosynthesis (Kamenos et al., 2013). Kamenos et al (2013) suggest that the up-regulation of calcification may limit photosynthetic efficiency. In the present study, the increase in G_{day} coincided with a decrease in net photosynthesis (Figure 3a,b). Photosynthesizing calcifiers in the community may be partitioning their energetic resources more towards calcification and away from photosynthesis in order to maintain a positive calcification rate (Kamenos et al., 2013). Notably, turf algae likely have a major control over the NCP in this community which would not have any impact on calcification. 2) An alternative hypothesis is that the calcifiers may be adapted or acclimatized to high pCO_2 conditions (Johnson et al., 2014) and have not yet reached their threshold because the rubble was collected from a naturally high and variable pCO₂ environment (Guadayol et al., 2014; Silbiger et al. 2014). 3) In this study, the calcifiers experienced a combined increase in both pCO₂ and temperature and, thus, the non-linear response in G_{day} may also be due a metabolic response. In a typical thermal performance curve, organisms increase their metabolism until they have reached a thermal maximum and then rapidly decline (Huev and Kingsolver, 1989; Pörtner et al., 2006), and we see this response in our results. A recent study found a similar nonlinear response to temperature and pCO_2 in the coral *Siderastrea sidera* (Castillo et al. 2014). While they attribute the pCO_2 response to photosynthesis being neutralized (we did not see this response in our non-coral community), they suggest that the thermal response is due to both changes in metabolism and thermally-driven changes in aragonite saturation state (Castillo et al. 2014)."

-P12814-I-7-15: I agree with this paragraph but it would be important to specify that this is true for an ecosystem dominated by rubbles. In an ecosystems with very high coral cover, the story would likely not be the same...

We clarified that this generalization is specific to our rubble community. This sentence now reads, "Standardized Climate Change explained more of the variance in dissolution than

in calcification in our rubble community: $(R_{G_{night}}^2 = 0.64 > R_{G_{day}}^2 = 0.33$; Table 2) this result is not surprising"

<u>Reviewer 2</u>: We thank you very much for your helpful review. Below are responses to your comments and specific questions.

General comments:

As a more general question though I wondered the following: since the organisms being studied here are described as "secondary calcifiers" how do their responses impact coral reefs directly, which I'm assuming is thought of in this context as "primary calcification"? While secondary calcification contributes significantly less to the overall growth of coral reefs than primary calcifiers (such as corals), secondary calcifiers still play several key ecological roles on coral reef ecosystems. For example, they help to cement the reef together which maintains reef stability, and they produce chemical cues that induce the settlement of many types of invertebrate larvae (including corals). I have added this information to the introduction.

Specific points:

1. (12802, 20) – Is it "increase to 557 ppm by the year 2100" (rather than "increase by 557 ppm the year 2100")?

The increase actually is "by 557", not "to". RCP 8.5 is a high-emissions scenario, but one that we are currently tracking. Meinshausen et al., 2011 states that under the RCP8.5/ECP8.5 scenario pCO_2 is predicted to be 936ppm by 2100, which is 557ppm above current levels (379ppm).

2. (12804, 9) – How long were the aquaria monitored without rubble to establish the stability conditions in Table 1? How many measurements were made to determine the mean values in this table?

The data presented in Table 1 are from one 24 hour cycle: each aquarium was measured in the light and then, again, in the dark. Each entry in the table is the average of 12 measurements: day samples and night samples for each of the six aquaria. This is now clarified in the text and the table caption. We have also changed the wording to reflect that these measurements demonstrate the consistency of the treatments within each rack between day and night, but not temporal stability, persay. The temporal stability of the mesocosm system was measured over a 26 day period and is reported in Putnam (2012). We have added this citation to the ms.

3. (12807, 2) - Is there a reference for the technique used to determine pH?

Yes, the reference is Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices for ocean CO2 measurements, 2007. This was referenced later in the paragraph, but we have added it to the end of line 3 for clarity.

4. (12808, 5) - I think there must be some words missing here in this description of how things were normalized to DIN.

This sentence now reads, "TA was normalized to a constant salinity (35 psu) to account for changes due to evaporation and then corrected for dissolved inorganic nitrogen and phosphate to account for their small contributions to the acid-base system (Wolf-Gladrow et al., 2007)."

5. (Eqn. 1) - I think a little more detail is needed for how the 3 measurements made per experiment (12805, 7-11) were specifically used in this equation (i.e., which values were used to determine the F values, and which were used for dTA/dt). The same is true for Eqn. 2 although I assume the same general approach was used in both cases.

We added some additional text to describe the equation. " F_{TAin} is the rate of TA flowing into an aquarium (= average TA in the header tank times the flow rate), F_{TAout} is the rate of TA flowing out of an aquarium (= average TA in the aquarium times the flow rate), and , $\frac{dTA}{dt}$ is the change in TA in an aquarium during the measurement period (change in TA normalized to the volume of water and the surface area of the rubble). The rates are measured in mmol CaCO₃ m⁻² hr⁻¹ (specific calculations are given in the supplemental material)."

Additionally, we added the specific calculation for F_{TAin} , F_{TAout} , and $\frac{dTA}{dt}$ to the supplemental files. These calculations follow Andersson et al. 2009, as referenced in the text.

6. (12810, 5) - I'm not sure I understand why a simple product of temperature and pCO2 was used as the independent variable (i.e., the one sentence explanation here seems inadequate to me).

We agree with the reviewer that a simple product of pCO_2 and temperature was not straightforward to interpret. We have revised the manuscript so that the Standardized Climate Change (SCC) axis is a simple linear combination of ΔpCO_2 and ΔT emperature that puts ΔpCO_2 and ΔT emperature on the same scale. The results and interpretations of our study are the same with this new axis (indeed, any of several choices of synthetic axes produced similar results). Further, we added figures to the supplement showing G and NCP versus ΔpCO_2 and versus ΔT emperature to show that the relationships between G and NCP versus ΔpCO_2 and ΔT emperature are similar to the relationships using the combined axis (Standardized Climate Change). Here is the explanation of our new version of the SCC axis in the text:

"Although we imposed four discrete temperature-pCO₂ scenario treatments on each tank (Table 1), random variation between treatments and the feedback between the rubble communities and the water chemistry resulted in near-continuous variation in temperature-pCO₂ treatments across aquaria (Figures 2 and A1). To capture this continuous variation in temperature-pCO₂ in the analysis, we used the measured temperature-pCO₂ seawater condition as a continuous independent variable in a regression rather than the four categorical treatment conditions in an ANOVA (an analysis of G and NCP using the ANOVA approach is included in Figures A3, A4 and Tables A1, A2). The regression approach allowed us to better capture the quantitative relationships between net calcification (G) or NCP and the temperature- pCO_2 treatment. We created a single, continuous variable, Standardized Climate Change (SCC), from a linear combination of temperature and pCO_2 values in each aguarium. A simple linear combination was used because pCO_2 increased linearly with temperature (Figure 2), as imposed by our treatments. We first calculated the relationship between Δ Temp (Eq 3) and Δ pCO₂ (Eq 4) using linear regression. The coefficients from this regression (slope: $\alpha = 0.0031$; y-intercept: $\beta = -$ (0.078) were used to combine pCO₂ and temperature onto the same scale, as a measure of Standardized Climate Change (Eq 5):

$$\Delta Temp_i = Temp_{trt,i} - Temp_{cont,i}$$
 Eq. 3

$$\Delta pCO_{2i} = pCO_{2trt,i} - pCO_{2cont.}$$
 Eq. 4

$$SCC_i = \Delta Temp_i + \alpha * \Delta pCO_{2i} + \beta$$
 Eq. 5

This synthetic temperature-pCO₂ axis, SCC, is centered on the ambient (control) conditions such that a value of 0 corresponds to present day Kāne'ohe Bay conditions, a negative value corresponds to water that is colder and less acidic (pre-industrial) and a positive value corresponds to water that is warmer and more acidic (future conditions) compared to background seawater. (The independent relationships between G and NCP with Δ Temp and Δ pCO₂ are shown in Figures A5 and A6 and are similar to the relationship with SCC.)'

7. It also occurred to me that if calcification rates vary differently in response to changes in temperature versus changes in pCO2, then this might explain the non linear response seen in Fig. 3A. I would think that this might be considered a bit more explicitly in the discussion starting on line 24, p. 12812.

Yes, we agree. We have added a section to the discussion about the impact of temperature on daytime calcification, specifically focusing on metabolic response.

8. (12811,15) – Which G values were used in Figs. 4 and 3A? Since Gnet = Gday + Gnight, using Gnet here (along with Gday and Gnight) would seem to be "doubledipping" with the data.

 G_{net} is the sum of G_{day} and G_{night} . We thought that it was critical to show our readership the response of net calcification over a 24 hour cycle. Figure 3e highlights the aquaria that were net calcifying or net dissolving over the entire experiment. It is difficult to elucidate this from figures 3a and c alone. We added a line at the zero point in 3e to futher highlight that there is a shift from net calcification to net dissolution over the 24 hour cycle. The data shown in Figure 4 are simply the day (squares) and night (circles) data. The figure legend reads: "Squares are data collected during the light (day) conditions and circles represent data collected during dark (night) conditions".

"Double dipping" typically refers to an iterative analysis where initial analyses or preprocessing of data guides subsequent analyses and increases the likelihood that the subsequent analyses are signficant. Here, the separate and planned analyses of day, night, and net are critical because each analysis gives distinct information to the reader about the community response to climate change when (day) photosynthesizers are active and (night) when all members of the community are respiring, and (net) whether there is net calcification or net erosion over a diel cycle. Although G_{net} is not statistically independent of G_{night} and G_{day} , it is still appropriate to analyze the sum separately from the components: for example, consider if G_{day} had a positive relationship with SCC and G_{night} had a negative relationship with SCC and, when summed, G_{net} had no significant relationship with SCC. Each of these results would tell us something different and important about the relationship between calcification and SCC (daytime calcification increases with SCC, nighttime calcification decreases with SCC, and daily net calficifation is unaffected by SCC). Although the actual results of this study are somewhat more complex, all three analyses must be presented for the reader to understand the dynamics of the system.

9. (12811, 21) – Maybe I'm getting caught up in semantics but referring to changes in carbonate system parameters due to calcificiation, dissolution, photosynthesis and respiration as "feedbacks" seems to imply a bit more complexity than is really occurring. I'm not sure I would use this word here and throughout the manuscript to describe how these biological processes affect carbonate chemistry.

We disagree. As CO_2 is added to the water it impacts the biology of the organisms, and those biological responses then also change the water chemistry. For example, increased pCO₂ decreases pH which may result in increased erosion/dissolution, or increased pCO₂ may enhance photosynthesis, which could increase erosion/dissolution by autotrophic microborers (Tribollet et al. 2009). The enhanced photosynthesis then also alters the seawater chemistry. This interaction between the biology and chemistry causes a feedback loop. The term "Feedbacks" has been used in the literature (e.g., Jury et al 2011, Anthony et al 2011) to describe the interaction between increased CO_2 from the atmosphere and biological responses (e.g. calcification, dissolution, respiration, and photosynthesis) in altering the chemistry of the seawater. In our study, we saw a positive relationship between the amount of CO_2 that we added to the mesocosms and the deviation in CO_2 from the intended concentration (Figure A1). If there were no feedbacks, then the relationship between p CO_2 with rubble and p CO_2 without rubble from each aquarium would have a slope of one with a fixed offset (change in y-intercept) due to increased respiration by the organisms. With feedbacks, we would expect that as pCO_2 increases, feedbacks would increase resulting in deviations from the 1:1 slope. During the day, we saw a slope of 1.1 while during the night, the slope was much greater than one (slope = 1.4, Figure A1b). This relationship suggests that there were feedbacks in our mesocosms. We added regression lines to Figure A1 to better illustrate these feedbacks.

10. (12811,17) - I think it would help if the data described here as "exceptions" were explicitly indicated on Figs. 4 and 3A (perhaps circled on the figure ?). This concern is also relevant to discussions on p. 12813, line 24 ['This hypothesis . . .].) We have changed the text to explicitly call out the points in the upper left quadrant with the points in the upper right and lower left quadrants of Figure 4. We have also added y = 0 lines to Figure 3 to make it easier for the reader to identify the net positive versus net negative values. We have shied away from circling these specific points on the graph so as not to distract readers from their own interpretations of patterns in the data. However, we have called out these points much more descriptively and specifically in the text to help orient the reader to the plots – thank you for highlighting the need for this direction.

11. In section 4.2, please don't switch flux units. Mixing 'per day' flux units with 'per hour' flux units makes it very difficult on the reader. If necessary, convert data from the literature to the units you wish to use in the manuscript. We switched the units to mmol $m^{-2} d^{-1}$ in the text.

12. (12813,10) – "In the present study . . .". Where is this shown? Is "net photosynthesis" actually NCP?

We added a panel with the NCP data to figure 3 and associated references, in the text; we also changed "photosynthesis" to "NCP".

13. (12813,18) - We saw a decline . . . ". Again, where is this shown? We added a citation to Figure 3 after this sentence.

14. (12814, 7) – How exactly is "strongly affected" defined here?

We changed the wording to be more precise: "Standardized Climate Change explained more of the variance in dissolution than in calcification in our rubble community: $(R_{G_{night}}^2 = 0.64 > R_{G_{dav}}^2 = 0.33$; Table 2) this result is not surprising"

15. (12814, 15) – Talking about "distinct" responses here seems a little vague.

We added ": G_{day} had a non-linear response while G_{night} declined linearly with Standardized Climate change" for clarification.

16. Figure 4 – Why is the color scale for standardized climate change multiplied by 10⁴?

This has been corrected in the revised manuscript using the new Standardized Climate Change axis.

17. Figure A3 – Is the y-intercept listed here (0.0016) correct? Also, it might be worth mentioning somewhere that you would expect the slope here to be roughly 2x that of the slope in Fig. 4 (which is what is actually seen), based on the way G and NCP are defined.

Figure A3b has now been added to the main text as Figure 4b. The y-intercept is 1557.4, and this has been changed in the text. We also note in the Figure 4b caption, "As expected, the slope of TA versus DIC (0.31) is approximately twice that of G versus NCP (0.14). "

Discussion Comment from G. Diaz Pulida

We thank you for commenting on our discussion paper and for your suggestion to add the importance of live tissue in mediating calcification and dissolution. You bring up a very interesting point, and we have expanded on it and cited your paper in the discussion.

Formatted: Numbering: Continuous

Secondary calcification and dissolution respond differently to future ocean conditions.

3

4 N. J. Silbiger¹ and M. J. Donahue¹

5 [1] {University of Hawai'i at Mānoa, Hawai'i Institute of Marine Biology, PO Box 1346,
6 Kāne'ohe, Hawai'i, 96744}

7 Correspondence to: N.J. Silbiger (silbiger@hawaii.edu)

8

9 Abstract

10 Climate change threatens both the accretion and erosion processes that sustain coral reefs. 11 Secondary calcification, bioerosion, and reef dissolution are integral to the structural 12 complexity and long-term persistence of coral reefs, yet these processes have received 13 less research attention than reef accretion by corals. In this study, we use climate scenarios from RCP8RCP 8.5 to examine the combined effects of rising ocean acidity 14 15 and SST on both secondary calcification and dissolution rates of a natural coral rubble 16 community using a flow-through aquarium system. We found that secondary reef 17 calcification and dissolution responded differently to the combined effect of pCO_2 and 18 temperature. Calcification had a non-linear response to the combined effect of pCO₂-19 temperature: the highest calcification rate occurred slightly above ambient conditions and 20 the lowest calcification rate was in the highest pCO₂-temperature condition. In contrast, 21 dissolution increased linearly with pCO₂-temperature. The rubble community switched 22 from net calcification to net dissolution at +272271 µatm pCO₂ and 0.8475° C above 23 ambient conditions, suggesting that rubble reefs may shift from net calcification to net dissolution before the end of the century. Our results indicate that (i) dissolution may be
more sensitive to climate change than calcification, and (i) that calcification and
dissolution have different functional responses to climate stressors, highlighting; this
highlights the need to study the effects of climate stressors on both calcification and
dissolution to predict future changes in coral reefs.

29

30 **1** Introduction

31 In 2013, atmospheric carbon dioxide (CO_{2(atm)}) reached an unprecedented 32 milestone of 400 ppm (Tans and Keeling, 2013), and this rising CO_{2(atm)} is increasing 33 sea-surface temperature (SST) and ocean acidity (Caldeira and Wickett, 2003;Cubasch et 34 al., 2013;Feely et al., 2004). Global SST has increased by 0.78°C since pre-industrial 35 times (Cubasch et al., 2013), and it is predicted to increase by another 0.8-5.7°C by the 36 end of this century (Meinshausen et al., 2011; Van Vuuren et al., 2008; Rogelj et al., 37 2012). The Hawai'i Ocean Time-series detected a 0.075 decrease in mean annual pH at 38 Station ALOHA over the past 20 years (Doney et al., 2009) and there have been similar 39 trends at stations around the world including the Bermuda Atlantic Time-series and the 40 European Station for Time-series Observations in the ocean (DruppSolomon et al., 2013. 41 2007). pH is expected to drop by an additional 0.14-0.35 pH units by the end of the 21^{st} 42 century (Bopp et al., 2013). All marine ecosystems are at risk from rising SST and 43 decreasing pH (Doney et al., 2009;Hoegh-Guldberg et al., 2007;Hoegh-Guldberg and 44 Bruno, 2010), but coral reefs are particularly vulnerable to these stressors (reviewed in 45 Hoegh-Guldberg et al., 2007).

46	Corals create the structurally complex calcium carbonate (CaCO ₃) foundation of
47	coral reef ecosystems. This structural complexity is at risk from climate-driven shifts
48	from high-complexity, branched coral species to mounding and encrusting growth forms
49	(Fabricius et al., 2011) and from increases in the natural processes of reef destruction,
50	including bioerosion and dissolution (Wisshak et al., 2012, 2013;Tribollet et al., 2006).
51	While substantial research attention has focused on the response of reef-building corals to
52	climate change (reviewed in Hoegh-Guldberg et al., 2007;Fabricius, 2005;Pandolfi et al.,
53	2011), secondary calcification (calcification by non-coral invertebrates and calcareous
54	algae), bioerosion, and reef dissolution that are integral to maintaining the structural
55	complexity and net growth of coral reefs has received less attention (Andersson and
56	Gledhill, 2013;Andersson et al., 2011;Andersson and Mackenzie, 2012). Bioerosion and
57	dissolution breakdown the reef framework while secondary calcification helps maintain
58	reef stability by cementing the reef together (Adey, 1998; Camoin and Montaggioni,
59	1994; Littler, 1973) and producing chemical cues that induce settlement of many
60	invertebrate larvae including several species of corals (Harrington et al. 2004; Price
61	2010). Coral reefs will only persist if constructive reef processes (growth by corals and
62	secondary calcifiers) exceed destructive reef processes (bioerosion and dissolution). In
63	this study, we examine the combined effects of rising ocean acidity and SST on both
64	calcification and dissolution rates of a natural community of secondary calcifiers and
65	bioeroders.

66 Recent laboratory experiments have focused on the response of individual taxa of 67 bioeroders or secondary calcifiers to climate stressors. For example, studies have 68 specifically addressed the effects of rising ocean acidity and/or temperature on bioerosion

69	by a Clionid sponge (Wisshak et al., 2012, 2013;Fang et al., 2013) and a community of
70	photosynthesizing microborers (Tribollet et al., 2009; Reyes-Nivia et al., 2013). These
71	studies found that bioerosion increased under future climate change scenarios. Several
72	studies have focused on tropical calcifying algae and have found decreased calcification
73	(Semesi et al., 2009; Johnson et al., 2014; Comeau et al., 2013; Jokiel et al., 2008; Kleypas
74	and Langdon, 2006) and increased dissolution (Diaz-Pulido et al., 2012) with increasing
75	ocean acidity and/or SST. However, the bioeroding community is extremely diverse and
76	can interact with the surrounding community of secondary calcifiers: for example,
77	crustose coralline algae (CCA) can inhibit internal bioerosion (White, 1980;Tribollet and
78	Payri, 2001). To understand the combined response of bioeroders and secondary
79	calcifiers, we take a community perspective. We and examine the synergistic effects of
80	rising SST and ocean acidity, modeled after the Representative Concentration Pathway
81	(RCP) 8.5 climate scenario (Van Vuuren et al., 2011;Meinshausen et al., 2011), on a
82	natural community of secondary calcifiers and bioeroders. Using the total alkalinity
83	anomaly technique, we test for net changes in calcification during the day and dissolution
84	(most of which is caused by bioeroders; (Andersson and Gledhill, 2013));) at night. RCP
85	scenariosOur climate change treatments are modelled after the Representative
86	Concentration Pathway (RCP) 8.5 climate scenario (Van Vuuren et al.,
87	2011;Meinshausen et al., 2011), one of the high emissions scenarios that were used in the
88	most recent Intergovernmental Panel on Climate Change (IPCC) report (Cubasch et al.,
89	2013). The RCP8RCP 8.5 scenario predicts that an increase in temperature will likely
90	increase byof 3.8 – 5.7°C (Rogelj et al., 2012) and an increase in atmospheric CO ₂ will
91	increase byof 557 ppm by the year 2100 (Meinshausen et al., 2011). We chose to use the

92	RCP8 <u>RCP 8</u> .5 scenario because the current CO_2 concentrations are tracking just above
93	what this scenario predicts (Sanford et al., 2014). While prior studies have focused on the
94	contributions of individual community members, to increased temperature and CO2; here,
95	we testexamine the community response to the predicted RCP8RCP 8.5 climate scenario
96	and measure both calcification and, dissolution, and net community production rates.

97 2 Materials and Methods

98 2.1 Collection Site

99 All collections were made on the windward side of Moku o Lo'e (Coconut Island) 100 in Kāne'ohe Bay, Hawai'i adjacent to the Hawai'i Institute of Marine Biology. This 101 fringing reef is dominated by Porites compressa and Montipora capitata, with occasional 102 colonies of Pocillopora damicornis, Fungia scutaria, and Porites lobata. Kāne'ohe Bay 103 is a protected, semi-enclosed embayment; the residence time can be >1 month long in the 104 protected southern portion of the Bay (Lowe et al., 2009a;Lowe et al., 2009b) that is 105 coupled with a high daily variance in pH (Guadayol et al., 2014). The wave action is 106 minimal (Smith et al., 1981;Lowe et al., 2009a;Lowe et al., 2009b) and currents are relatively slow (5cm s⁻¹ maximum) and wind-driven (Lowe et al., 2009a;Lowe et al., 107 108 2009b).

109 2.2 Sample Collection

We collected pieces of dead *Porites compressa* coral skeleton (hereafter, referred to as
rubble) as representative communities of bioeroders and secondary calcifiers. Rubble was
collected with a hammer and chisel from a shallow reef flat (~1m depth) in November,
2012. -Only pieces of rubble without any live coral were collected. The average (±SE)

skeletal density of the rubble was 1.53 ± 0.012 g cm⁻³ (n=85). The rubble community in 114 115 Kāne'ohe Bay is comprised of secondary calcifiers, including CCA from the genera 116 Hydrolithon, Sporolithon, and Peyssonnelia and non-coral calcifying invertebrates (e.g. 117 boring bivalves (Lithophaga fasciola and Barbatia divaricate), oysters (Crassostrea 118 gigas), and small crustaceans); filamentous and turf algae; and internal bioeroders, 119 including boring bivalves (L. fasciola and B.divaricate), sipunculids (Aspidosiphon 120 elegans, Lithacrosiphon cristatus, Phascolosoma perlucens, and Phascolosoma 121 stephensoni), phoronids (Phoronis ovalis), sponges (Cliona spp.) and a diverse 122 assemblage of polychaetes (White, 1980). All rubble waspieces were combined after 123 collection and maintained in a 100L flow-through tank with ambient seawater from 124 Kāne'ohe Bay until random assignment to treatments.

Formatted: Font: Not Italic

125 2.3. Experimental Design

126 The Hawai'i Institute of Marine Biology (HIMB) hosts a mesocosm facility with 127 flow-through seawater from Kāne'ohe Bay and controls for light, temperature, pCO_2 , and 128 flow rate. The facility is comprised of 24 experimental aquaria split between four racks; 129 each rack has a150La 150L header tank which feeds 6 experimental aquaria, each 50L in 130 volume (Figure 1).

Before adding rubble to the experimental aquaria, we collected <u>day and night</u> samples of pH, total alkalinity (TA), temperature, and salinity from each aquarium during light and dark conditions <u>all aquaria</u> to demonstrate the <u>stability of the system</u> consistency of water conditions across aquaria without any rubble present (Table 1). <u>The</u> long-term temporal stability of the mesocosm system is reported in Putnam (2012). We

136	then conducted "control" and "treatment" experiments to determine how RCP8RCP 8.5
137	predictions affect daytime calcification and nighttime dissolution rates in a natural rubble
138	community. The first "control experiment" characterized baseline calcification and
139	dissolution in each aquarium caused by differences in rubble communities. In the second
140	"treatment experiment", we manipulated pCO_2 and temperature to simulate four climate
141	scenarios (pre-industrial, present day, 2050, and 2100) and tested the response of
142	calcification and dissolution., dissolution, and net community production. Each
143	experiment used the TA anomaly method (Smith and Key, 1975; Andersson et al., 2009).
144	This method calculates net calcification from changes in total alkalinity, and calculates
145	net community production from changes in total dissolved inorganic carbon adjusted for
146	changes in carbon due to calcification. Because estimates of calcification are based on
147	changes in total alkalinity, this method does not account for mechanical erosion (e.g.,
148	small chips of CaCO ₃ produced by sponge erosion). However, given the short duration of
149	the experiment and the types of bioeroders present, we expect that chemical dissolution
150	captured a significant proportion of the erosion in the system.
151	Approximately 1.2L of rubble (<u>3-4-5</u> pieces of approximately equal size)weight
152	499 ± 148 g and skeletal density 1.53 ± 0.1 g cm ⁻³ (mean \pm SD, n=85)) were placed in
153	each of the 24 experimental aquaria and acclimated to tank conditions in ambient
154	seawater for three days. On the fourth day, we performed the control experiment,
155	calculating daytime calcification and nighttime dissolution for rubble in the-ambient
156	seawater <u>conditions</u> using the TA anomaly technique (Smith and Key, 1975) The next
157	day we manipulated seawater pCO ₂ and temperature to replicate four climate scenarios
158	for the treatment experiment (Table 1):: pre-industrial (-1±0.057°C and -205±11.9 µatm),

159 present day (natural Kāne'ohe Bay seawater 24.8±0.09 °C, 614±15.6 µatm), 2050 160 $(+1.4\pm0.09 \text{ °C} \text{ and } +255\pm31 \text{ } \mu \text{atm})$, and 2100 $(+2.4\pm0.08 \text{ and } +433\pm40 \text{ } \mu \text{atm})$. Note that 161 all changes in temperature and pCO₂ were made relative to present day Kāne'ohe Bay 162 seawater conditions: pCO_2 in Kāne'ohe Bay is consistently high relative to the open 163 ocean and can range from 196-976 µatm in southern Kāne'ohe bay depending on 164 conditions (Drupp et al., 2013). The yearly average pCO_2 at our collection site ranged 165 from 565-675 µatm (Silbiger et al., in review 2014). After an acclimation time of seven 166 days, we sampled the treatment experiment, calculating daytime calcification and 167 nighttime dissolution over a 24 hour period.

168 During both experiments, TA, pH, salinity, temperature, and dissolved inorganic 169 nutrient (DIN) samples were collected every 12 hours over a 24 hour period (total of 170 three times): just before lights-on in the morning (time 1) and just before lights-off at 171 night (time 2) to capture light conditions, and then again before lights-on the next 172 morning (time 3) to capture dark conditions. Flow into each aquarium was monitored and 173 adjusted every three hours to ensure a consistent flow rate over the 24 hour experiment. 174 We calculated net ecosystem calcification and, dissolution, and net community 175 production using a simple box model (Andersson et al., 2009) and normalized all our 176 calculations to the surface area of the rubble in each tank. Surface area of the rubble was 177 calculated using the wax dipping technique (Stimson and Kinzie III, 1991) at the end of 178 the experiment.

179 2.4 LaboratoryMesocosm Set-up

180	The mesocosm facility (Figure 1) is supplied with ambient seawater from
181	Kāne'ohe Bay, which is filtered through a sand filter, passed through a water chiller
182	(Aqualogic Multi Temp MT-1 Model # 2TTB3024A1000AA), and then fed into one of
183	the four header tanks. pCO_2 was manipulated using a CO_2 gas blending system (see
184	Fangue et al., 2010; Johnson and Carpenter, 2012). Each target pCO ₂ concentration was
185	created by mixing CO ₂ -free atmospheric air with pure CO ₂ using mass flow controllers
186	(C100L Sierra Instruments). Output pCO_2 was analyzed using a calibrated infrared
187	CO ₂ analyzer (A151, Qubit Systems). CO ₂ mixtures were then bubbled into one of the
188	four header tanks and water from each individual header tank fed into the six individual
189	treatment aquaria (Figure 1). The pCO_2 in each treatment aquarium was estimated with
190	CO2SYS (Van Heuven et al., 2009) using pH and TA as the parameters.

191 Temperature was manipulated in each treatment aquarium using dual-stage 192 temperature controllers (Aqualogic TR115DN). The temperature was continuously 193 monitored with temperature loggers (TidbiT v2 Water Temperature Data Logger, 194 sampling every 20 min) and point measurements were taken during every sampling 195 period with a handheld digital thermometer (Traceable Digital Thermometer, Thermo 196 Fisher Scientific; precision = 0.001 °C). Light was controlled by positioning an 197 oscillating pendant metal-halide light (250 W) over a set of three aquaria and was 198 programmed to emit an equal amount of light to each tank (~500µE of light). Lights were 199 set to a 12:12 hour photoperiod and were monitored using a LI-COR spherical quantum PAR sensor. Flow rate was maintained at 115±1 ml min⁻¹, resulting in a residence time of 200

- 201 7.3±0.07 hours per tank. Each aquarium was equipped with a submersible powerhead
- 202 pump (Sedra KSP-7000 powerhead) to ensure that the tank was well-mixed.

203 2.5 Seawater Chemistry

- All sample collection and storage vials were cleaned in a 10% HCl bath for 24 hours and
- 205 rinsed three times with MilliQ water before use and rinsed three times with sample water
- 206 during sample collection and processing.

207 2.5.1 Total Alkalinity

- 208 Duplicate TA samples were collected in 300 ml borosilicate sample containers with glass
- stoppers. Each sample was preserved with 100µL of 50% saturated HgCl₂ and analyzed
- 210 within 3 days using open cell potentiometric titrations on a Mettler T50 autotitrator
- 211 (Dickson et al., 2007). A Certified Reference Material (CRM Reference Material for
- 212 Oceanic CO₂ Measurements, A. Dickson, Scripps Institution of Oceanography) was run
- 213 at the beginning of each sample set to ensure the. The accuracy of the titrator. Our
- 214 accuracy was better never deviated more than ±0.8%,% from the standard, and ourTA
- 215 measurements were corrected for these deviations. The precision was 3.55µEq (measured
- as standard deviation of the duplicate water samples). During the 24-hour control
- 217 experiment the average changes in TA were 37µEq over the day and 20µEq over the
- 218 <u>night (day and night TA changes were of larger magnitude in the treatment experiments):</u>
- 219 these are measurable changes given the precision and accuracy of the TA measurements.

220 **2.5.2 pH_t (total scale)**

- 221 Duplicate pHt samples were collected in 20ml borosilicate glass vials, brought to a
- 222 constant temperature of 25°C in a water bath, and immediately analyzed using an m-

Formatted: Font color: Auto

223	cresol dye addition spectrophotometric technique- (Dickson et al., 2007). Accuracy of the
224	pH was tested against a Tris buffer of known pH_t from the Dickson Lab at Scripps
225	Institution of Oceanography (Dickson et al., 2007). Our accuracy was better than
226	± 0.04 %, and the precision was 0.004 pH units (measured as standard deviation of the
227	duplicate water samples). In situ pH and the remaining carbonate parameters were
228	calculated using CO2SYS (Van Heuven et al., 2009) with the following measured
229	parameters: pHt, TA, temperature, and salinity. The K1K2 apparent equilibrium constants
230	were from Mehrbach (1973) and refit by Dickson & Millero (1987) and HSO_4^{-1}
231	dissociation constants were taken from Uppström (1974) and Dickson (1990).
232	2.5.3 Salinity
232 233	2.5.3 Salinity Duplicate salinity samples were analyzed on a Portasal 8410 portable salinometer which
233	Duplicate salinity samples were analyzed on a Portasal 8410 portable salinometer which
233 234	Duplicate salinity samples were analyzed on a Portasal 8410 portable salinometer which was calibrated with an OSIL IAPSO standard (accuracy = ± 0.003 psu, precision =
233 234 235	Duplicate salinity samples were analyzed on a Portasal 8410 portable salinometer which was-calibrated with an OSIL IAPSO standard (accuracy = ± 0.003 psu, precision = ± 0.0003 psu).
233 234 235 236	Duplicate salinity samples were analyzed on a Portasal 8410 portable salinometer which was-calibrated with an OSIL IAPSO standard (accuracy = ± 0.003 psu, precision = ± 0.0003 psu). 2.5.4 Nutrients
 233 234 235 236 237 	Duplicate salinity samples were analyzed on a Portasal 8410 portable salinometer which was-calibrated with an OSIL IAPSO standard (accuracy = ± 0.003 psu, precision = ± 0.0003 psu). 2.5.4 Nutrients Nutrient samples were collected with 60ml plastic syringes and immediately filtered
233 234 235 236 237 238	Duplicate salinity samples were analyzed on a Portasal 8410 portable salinometer which was calibrated with an OSIL IAPSO standard (accuracy = ± 0.003 psu, precision = ± 0.0003 psu). 2.5.4 Nutrients Nutrient samples were collected with 60ml plastic syringes and immediately filtered through combusted 25mm glass fiber filters (GF/F 0.7µm) and transferred into 50ml
 233 234 235 236 237 238 239 	Duplicate salinity samples were analyzed on a Portasal 8410 portable salinometer which was-calibrated with an OSIL IAPSO standard (accuracy = ± 0.003 psu, precision = ± 0.0003 psu). 2.5.4 Nutrients Nutrient samples were collected with 60ml plastic syringes and immediately filtered through combusted 25mm glass fiber filters (GF/F 0.7µm) and transferred into 50ml plastic centrifuge tubes. Nutrient samples were frozen and later analyzed for Si(OH) ₄ ,

242 2.6 Measuring Net Ecosystem Calcification

We assumed that the mesocosms were well mixed systems; thus, we calculated net
ecosystem calcification and net community photosynthesis following the simple box
model presented in Andersson et al. (2009). TA was first-normalized to a constant

Formatted: Indent: First line: 0"

247 248 249

246

250 following equation:

251

$$G = \left[F_{TAin} - F_{TAout} - \frac{dTA}{dt}\right]/2$$

where
$$F_{TAin}$$
 is the rate of TA flowing into an aquarium (= average TA in the aquaria,
 F_{TABUE} header tank times the inflow rate), F_{TAout} is the rate of TA flowing out of the
aquaria, an aquarium (= average TA in the aquarium times the outflow rate), and ,
 $\frac{dTA}{dt} \frac{dTA}{dt}$ is the change in TA in the aquaria per unit time in mmol CaCO₃ m⁻² hr⁻⁴ an
aquarium during the measurement period (change in TA normalized to the volume of
water and the surface area of the rubble); specific calculations are given in the
supplemental material. The equation is divided by two because one mole of CaCO₃ is
precipitated or dissolved for every two moles of TA removed or added to the water
column. Here, G represents the sum of all the calcification processes minus the sum of all
the dissolution processes in mmol CaCO₃ m⁻² hr⁻¹; thus, all positive numbers are net
calcification, and all negative numbers are negative net calcification (i.e., net dissolution).
Net daytime calcification (G_{day}) is calculated from the first 12 hour sampling period in
the light, net nightime dissolution (G_{night}) is calculated from the full 24 hour
12

salinity (35 psu) and to [DIN] to account for changes in TA-due to evaporation and

photosynthesis/respiration, respectively.then corrected for dissolved inorganic nitrogen

and phosphate to account for their small contributions to the acid-base system (Wolf-

Gladrow et al., 2007). Net ecosystem calcification, or G, was calculated using the

Eq. 1

-

Formatted: Left

266 cycle $(G_{day} + G_{night})$. All rates are \underline{G}_{day} . \underline{G}_{night} , and \underline{G}_{net} are converted from hourly to daily 267 rates and presented as mmol CaCO₃ m⁻² d⁻¹.

268 2.7 Measuring Net Community Production and Respiration

269 Net community production (NCP) was calculated by measuring changes in DIC (Gattuso

- et al., 1999). DIC was normalized to a constant salinity (35 psu) to account for any
- evaporation over the 24 hour period. We used a simple box model to calculate NCP:

$$NCP = \left[F_{\text{DIC}in} - F_{\text{DIC}out} - \frac{d\text{DIC}}{dt}\right] - G$$
Eq. 2

 $F_{\text{DIC}in}$, $F_{\text{DIC}out}$, and $\frac{d\text{DIC}}{dt}$ are the rates of DIC flowing into the aquaria, flowing out of the 272 273 aquaria, and the change in DIC in the aquaria per unit time in mmol C m⁻² hr⁻¹, 274 respectively. To measure NCP, we subtract G to remove any change in carbon due to 275 inorganic processes. NCP represents the sum of all the photynthetic processes minus the 276 sum of all the respiration processes, thus all positive numbers are net photosynthesis and 277 all negative numbers are negative net photosynthesis (i.e., net respiration). Net daytime 278 NCP (NCP_{dav}) is calculated from the first 12 hour sampling period in the light, net 279 nightime NCP (NCP_{night}) is calculated from the second 12 hour sampling period in the dark, and total NCP (NCP_{net}) is calculated from the full 24 hour cycle (NCP_{dav}+ 280 NCP_{night}). All rates are presented as mmol C $m^{-2} d^{-1}$. 281

282 2.8 Statistical Analysis

283	Each aquarium contained a slightly different rubble community because of the
284	randomization of rubble pieces to each treatment. To ensure there were no systematic
285	differences in rubble communities between racks (rack effects) before the experimental

286	treatments were applied, we tested for differences in G_{day} , G_{night} , calcification and
287	G _{net} NCP between racks in the control experiment using an ANOVA-(Figure A2).
288	In the treatment experiment, we first tested for feedbacks in carbonate chemistry
289	due to the presence of rubble: using a paired t-test, we compared the day-night difference
290	in measured pCO ₂ in each aquarium with rubble, $(pCO_{2,day} - pCO_{2,night})_{rubble}$, and
291	without rubble, $\left(pCO_{2, day} - pCO_{2, night}\right)_{no\ rubble}$. Because of
292	Although we imposed four discrete temperature-pCO ₂ scenario treatments on
293	each tank (Table 1), random variation between treatments and the feedback between the
294	rubble communities and the water chemistry resulted in near-continuous variation in
295	pCO_2 -and-temperature- pCO_2 treatments across treatments and the significant feedbacks in
296	the water chemistry due to the presence of rubble aquaria (Figures 2 and A1), a
297	regression using the actual). To capture this continuous variation in temperature-pCO ₂ in
298	the analysis, we used the measured temperature-pCO ₂ seawater condition was more
299	informative than an ANOVA using the imposed seawater condition in testingas a
300	continuous independent variable in a regression rather than the four categorical treatment
301	conditions in an ANOVA (an analysis of G and NCP using the ANOVA approach is
302	included in Figures A3, A4 and Tables A1, A2). The regression approach allowed us to
303	better capture the quantitative relationships between net calcification (G) and treatment.
304	Therefore, we used a regression to test for linear and non-linear relationships between
305	day, night, or NCP and net calcification (G _{day} , G _{night} , and G _{net}) and our independent
306	variable: change in pCO_2 × temperature from background seawater conditions (hereafter,
307	referred to as the temperature-pCO ₂ treatment. We created a single, continuous variable,

308	Standardized Climate Change). (Results using an ANOVA design are included as	Formatted: Font color: Auto
309	supplemental materials: Figure A2, Table A1). Standardized Climate Change was	
310	ealculated as ((SCC), from a linear combination of temperature and pCO ₂ values in	
311	each Treatment Experiment pCO2, × Temperature,) (Control Experiment pCO2, ×	Formatted: Font color: Auto
312	Temperature;), where <i>i</i> represents an individual aquarium. A simple product linear	Formatted: Font color: Auto
313	<u>combination</u> was used because pCO_2 increased linearly with temperature (Figure 2). We	
314), as imposed by our treatments. We first calculated the relationship between Δ Temp (Eq	
315	<u>3) and ΔpCO_2 (Eq 4) using linear regression. The coefficients from this regression (slope:</u>	
316	$\alpha = 0.0031$; y-intercept: $\beta = -0.078$) were used to combine pCO ₂ and temperature onto	
317	the same scale, as a measure of Standardized Climate Change (Eq 5):	
318	$\Delta Temp_i = Temp_{trt,i} - Temp_{cont,i} \underline{Eq. 3}$	Formatted: Indent: First line: 0"
319	$\Delta pCO_{2i} = pCO_{2trt,i} - pCO_{2cont,-} Eq. 4$	
320	$SCC_i = \Delta Temp_i + \alpha * \Delta pCO_{2i} + \beta$ Eq. 5	
321	This synthetic temperature-pCO ₂ axis, SCC, is centered the data aroundon the ambient	
322	(control) conditions such that a value of 0 in the independent variable (Standardized	
323	Climate Change) corresponds to present day Kāne'ohe Bay conditions, a negative value	
324	corresponds to water that is colder and less acidic (pre-industrial) and a positive value	
325	corresponds to water that is warmer and more acidic (future conditions) compared to	
326	background seawater. (The independent relationships between G and NCP with $\Delta Temp$	
327	and ΔpCO_2 are shown in Figures A5 and A6 and are similar to the relationship with	
328	<u>SCC.)</u>	

329	With SCC as a continuous, independent variable, we used a regression to test for
330	linear and non-linear relationships between day, night, and net calcification (G _{day} , G _{night} ,
331	and G _{net}) and NCP (NCP _{day} , NCP _{night} , and NCP _{net}) versus SCC. For a simple test of
332	nonlinearity <u>in the response of calcification to standardized climate changeSCC</u> , we
333	included a quadratic term $\frac{((Standardized Climate Change)^2(SCC^2)}{(SCC^2)}$ in the model. For G_{day} ,
334	we used weighted regression (Fair, 1974) weight function: $w_i = 1/(1 + r_i)$, where $w_i =$
335	weight and r_i = residual;), Fair, 1974) to account for heteroscedasticity. All other data met
336	assumptions for a linear regression. Lastly, we used a linear regression to test the
337	relationship between G and NCP.
338	
339	
339	
339 340	3 Results
	3 Results 3.1 Control Experiment
340	
340 341	3.1 Control Experiment
340341342	3.1 Control Experiment For rubble in ambient seawater conditions, the average G _{day} , G _{night} , and G _{net} in the control
340341342343	3.1 Control Experiment For rubble in ambient seawater conditions, the average G_{day} , G_{night} , and G_{net} in the control experiment were $3.4\pm0.16 \text{ mmol m}^{-2} \text{ d}^{-1}$, $-2.4\pm0.15 \text{ mmol m}^{-2} \text{ d}^{-1}$, and $0.96\pm0.20 \text{ mmol m}^{-1}$
 340 341 342 343 344 	3.1 Control Experiment For rubble in ambient seawater conditions, the average G_{day} , G_{night} , and G_{net} in the control experiment were $3.4\pm0.16 \text{ mmol m}^{-2} \text{ d}^{-1}$, $-2.4\pm0.15 \text{ mmol m}^{-2} \text{ d}^{-1}$, and $0.96\pm0.20 \text{ mmol m}^{-2} \text{ d}^{-1}$, respectively. There was no significant difference in G_{day} (F _{3,23} =0.68, p=0.58), G_{night}
 340 341 342 343 344 345 	3.1 Control Experiment For rubble in ambient seawater conditions, the average G_{day} , G_{night} , and G_{net} in the control experiment were 3.4 ± 0.16 mmol m ⁻² d ⁻¹ , -2.4\pm0.15 mmol m ⁻² d ⁻¹ , and 0.96\pm0.20 mmol m ⁻² d ⁻¹ , respectively. There was no significant difference in G_{day} (F _{3,23} =0.68, p=0.58), G_{night} (F _{3,23} =1.52, p=0.24), or G_{net} (F _{3,23} =1.38, p=0.28) between racks in the control experiment
 340 341 342 343 344 345 346 	3.1 Control Experiment For rubble in ambient seawater conditions, the average G_{day} , G_{night} , and G_{net} in the control experiment were 3.4 ± 0.16 mmol m ⁻² d ⁻¹ , -2.4\pm0.15 mmol m ⁻² d ⁻¹ , and 0.96\pm0.20 mmol m ⁻² d ⁻¹ , respectively. There was no significant difference in G_{day} (F _{3,23} =0.68, p=0.58), G_{night} (F _{3,23} =1.52, p=0.24), or G_{net} (F _{3,23} =1.38, p=0.28) between racks in the control experiment (Figure A2). NCP rates also did not show any racks effects. Average NCP rates were

350 3.2 Treatment Experiment

351	The rubble communities significantly altered the seawater chemistry, with higher pCO_2
352	than the applied pCO_2 manipulation, particularly at night (Figure A1). The mean
353	difference between day and night pCO ₂ for all treatments was 134.4 ± 39 µatm without
354	rubble and was 438.5 \pm 163.9 μatm when rubble was present (t_{23}= -7.23, p<0.0001;
255	

355 Figure 2).

356 Standardized Climate Change was a significant predictor for Gday, Gnight, and Gnet 357 (Table 2; Figure 3). G_{day} had a non-linear relationship with Standardized Climate Change 358 (Table 2, Figure 3a), increasing to a threshold and then rapidly declining. Gnight, however, 359 had a strong linear relationship with Standardized Climate Change (Table 2; Figure 360 $\frac{3b3c}{2}$, suggesting that joint increases in ocean pCO₂ and temperature will increase night 361 timenighttime dissolution of coral rubble. Lastly, Gnet had a strong negative relationship 362 with Standardized Climate Change (Table 2; Figure 3e3e) and the rubble community 363 switched from net calcification to net dissolution at an increase in pCO₂ and temperature 364 of 271.6 µatm and 0.8475° C, respectively. Standardized Climate Change was also a 365 significant predictor of NCP: Day, night, and net NCP rates all declined with 366 standardized climate change (Table 2; Figure 3b,d,f; Figure3). 367 G and NCP were significantly correlated (Net ecosystem calcification increased with net community production ($F_{1,46} = 260$, p<0.0001, R²=0.85; Figure 4 and Figure 368 A3). In general, rubble that wascommunities were net photosynthesizing was also and net 369 370 calcifying and rubble that wasduring the day (Figure 4a: squares in the upper right 371 quadrant) and were net respiring was also and net dissolving- at night (Figure 4a: circles

in the lower left quadrant). The exception was rubble experiencingcommunities in the
most extreme temperature-pCO₂ treatment, which was: these communities were net
respiring during the day while still-holding a positive, yet very low, calcification rate(Figure 4a: squares in the upper left quadrant).

377 4 Discussion

378 **4.1 Carbonate Chemistry Feedbacks**

The rubble communities in the aquaria significantly altered the seawater 379 380 chemistry, particularly at night (t₂₃= -7.23, p<0.0001; Figure 2, Figure A1). This day-381 night difference in seawater chemistry increased under more extreme climate scenarios, 382 as predicted by Jury et al. (2013). This large diel swing in pCO₂ is not uncommon on 383 shallow coral reef environments. pCO_2 ranged from 480 to 975µatm over 24 hours on a 384 shallow reef flat adjacent to our collection site (Silbiger et al-*in review*), 2014) and pCO₂ 385 ranged from 450 to 742 µatm on a Moloka'i reef flat dominated by coral rubble (Yates 386 and Halley, 2006). Here, pCO₂ had an average difference of 438 µatm between day and 387 night with a range of 412 µatm in the pre-industrial treatment to 854 µatm in the most 388 extreme $\frac{PCO_2}{T}$ temperature $\frac{PCO_2}{T}$ treatments (Figure 2). In our study, we incorporated 389 these feedbacks into the statistical analysis by using the actual, sampled pCO_2 (and 390 temperature) in each aquaria (Figure 3) rather than using the intended pCO_2 (and 391 temperature) treatments in an ANOVA (Table Tables A1, Figure A2 and Figures A3, A4), 392 better reflecting the pCO_2 experienced by organisms in each aquarium.

393 394	4.2 Calcification-and, Dissolution, and Net Community Production in a High CO ₂ and Temperature Environment
395	Our results suggest that as pCO ₂ and temperature increase over time, rubble reefs
396	may shift from net calcification to net dissolution. In our study, this tipping point
397	occurred at a pCO ₂ and temperature increase of $271\frac{.6}{.6}$ µatm and $0.84\frac{75}{.5}$ ° C. Further, our
398	results showed that G_{day} and G_{night} in a natural coral rubble community have different
399	functional responses to changing pCO_2 and temperature (Figure 3). The ranges in G_{day}
400	and Gnight in our aquaria were similar to in situ rates on Hawaiian rubble reefs. Yates &
401	Halley (2006) saw G_{day} values between $\frac{0.263.3}{0.9811.7}$ mmol CaCO ₃ m ⁻² hrd ⁻¹ and
402	G_{night} values between -0.2.4 to -3.024 mmol CaCO ₃ m ⁻² hrd ⁻¹ on a Moloka'i reef flat with
403	only coral rubble- <u>(Note that Yates and Halley calculated G over a 4 hour timeframes and</u>
404	the data was multiplied by 3 here to show G in mmol $m^{-2} d^{-1}$. Also note that we
405	normalized our rates to the surface area of the rubble while Yates and Halley (2006)
406	normalized their rates to planar surface area.). G _{day} and G _{night} in our experiment ranged
407	from $\frac{0.161.9}{0.182}$ to $\frac{0.789.4}{0.789.4}$ and $\frac{01.3}{0.10}$ to $\frac{-0.87.5}{0.5}$ mmol CaCO ₃ m ⁻² hrd ⁻¹ ,
408	respectively, across all treatment conditions. The higher dissolution rates in the <i>in situ</i>
409	study by Yates and Halley (2006) are likely due to dissolution in the sediment, which was
410	not present in our study.
411	G_{day} had a non-linear response to Standardized Climate Change. G_{day} increased
412	with $\frac{pCO_2 \times temperature_pCO_2}{pCO_2}$ until slightly above ambient conditions, and then
413	decreased under more extreme climate conditions (Figure 3a). This mixed response,
414	increasing and then decreasing with Standardized Climate Change, is reflected in prior
415	experiments. We suggest twothree possible mechanisms to explain why calcification

416	increases in slightly higher $\frac{pCO_2 \times -temperature - pCO_2}{than ambient conditions. 1}$ Some			
417	calcifiers can maintain and even increase their calcification rates in acidic conditions			
418	(Kamenos et al., 2013;Findlay et al., 2011;Rodolfo-Metalpa et al., 2011;Martin et al.,			
419	2013) by either modifying their local pH environment (Hurd et al., 2011) or partitioning			
420	their energetic resources towards calcification (Kamenos et al., 2013). For example, in			
421	low, stable pH conditions the coralline algae, Lithothamnion glaciale, increased its			
422	calcification rate relative to a control treatment but, did not concurrently increase its rate			
423	of photosynthesis (Kamenos et al., 2013). Kamenos et al (2013) suggest that the up-			
424	regulation of calcification may limit photosynthetic efficiency. In the present study, the			
425	increase in G_{day} coincided with a decrease in net photosynthesis- <u>(Figure 3a,b)</u> .			
426	Photosynthesizing calcifiers in the community may be partitioning their energetic			
427	resources more towards calcification and away from photosynthesis in order to maintain a			
428	positive calcification rate (Kamenos et al., 2013). Notably, turf algae likely have a major			
429	control over the NCP in this community which would not have any impact on			
430	<u>calcification.</u> 2) An alternative hypothesis is that the calcifiers may be adapted or			
431	acclimatized to high pCO ₂ conditions (Johnson et al., 2014) and have not yet reached			
432	their threshold because the rubble was collected from a naturally high and variable pCO_2			
433	environment (Guadayol et al., 2014)-; Silbiger et al. 2014). 3) In this study, the calcifiers			
434	experienced a combined increase in both pCO_2 and temperature and, thus, the non-linear			
435	response in G _{day} may also be due a metabolic response. In a typical thermal performance			
436	curve, organisms increase their metabolism until they have reached a thermal maximum			
437	and then rapidly decline (Huey and Kingsolver, 1989; Pörtner et al., 2006), and we see			
438	this response in our results. A recent study found a similar nonlinear response to			

Formatted: Subscript

439	temperature and pCO_2 in the coral <i>Siderastrea sidera</i> (Castillo et al. 2014). While they		
440	attribute the pCO ₂ response to photosynthesis being neutralized (we did not see this		
441	response in our non-coral community), they suggest that the thermal response is due to		
442	both changes in metabolism and thermally-driven changes in aragonite saturation state		
443	<u>(Castillo et al. 2014).</u>		
444	We saw a decline in <u>both</u> calcification and photosynthesis <u>NCP</u> in the extreme		
445	$pCO_2 \times temperature - pCO_2 condition - (Figure 3). Calcification has been shown to decline$		
446	with climate stressors and the magnitude of decline differs across species (Kroeker et al.,		
447	2010;Pandolfi et al., 2011;Ries et al., 2009;Kroeker et al., 2013). The concurrent decline		
448	in photosynthesis <u>NCP</u> and calcification (Figure 3a,b & 4) suggests that non-		
449	photosynthesizing invertebrates in the community (such as bivalves) might be dominating		
450	the calcification signal in these conditions. This hypothesis would explain the pattern that		
451	we see in Figure 4, where communities in the most extreme pCO_2 and temperature		
452	conditions are net respiring during the day while still maintaining a small, positive		
453	calcification rate- (Figure 4a: five points in the upper left quadrant).		
454	G_{night} rates are more straightforward, decreasing linearly with pCO ₂ and		
455	temperature (Figures <u>3b3c</u> and 4). <u>NCP_{night} rates also decreased linearly with pCO₂ and</u>		
456	temperature (Figure 3d). Similarly, Andersson et al. (2009) saw an increase in dissolution		
457	under acidic conditions in a community of corals, sand, and CCA. Previous studies on		
458	individual bioeroder taxa have also found higher rates of bioerosion or dissolution in		
459	more acidic, higher temperature conditions (Wisshak et al., 2013;Fang et al., 2013;Reyes-		
460	Nivia et al., 2013;Tribollet et al., 2009;Wisshak et al., 2012). Studies, including the		
461	present one, that focused on community-level responses There are several mechanisms		

Formatted: Font color: Auto, Border: : (No border) Formatted: Subscript

462	that could be mediating the increased dissolution rates in the high temperature-pCO ₂			
463	treatments: 1) Higher temperatures could increase the metabolism of the bioeroder			
464	community, thus increasing borer activity (e.g., Davidson et al. 2013). 2) Because many			
465	boring organisms excrete acidic compounds to erode the skeletal structure (Hutchings			
466	1986), reduced pH in the overlaying water column may reduce the metabolic cost to the			
467	organisms, making it easier for eroders to breakdown the CaCO ₃ . 3) Higher dissolution			
468	rates could be mediated by an increase in the proportion of dolomite in the skeletal			
469	structure of CCA on the rubble. A recent study found a 200% increase in dolomite in			
470	CCA that was exposed to high pCO_2 and temperature conditions; this increase in			
471	dolomite resulted in increased bioerosion by endolithic algae (Diaz-Pulido et al., 2014).			
472	However, it is unlikely that changes in the mineralogy of the CCA indirectly increased			
473	dissolution here given the short time-scale of our study. In the present study, we used the			
474	TA anomaly method to calculate chemical dissolution as a proxy for bioerosion. Future			
475	studies should also include measures of mechanical breakdown (e.g. the production of			
476	sponge chips) in addition to chemical dissolution for a more complete picture of the			
477	impacts of climate stress on reef breakdown. Studies, including the present one, which			
478	focused on community-level responses, have consistently found that ocean acidification			
479	will increase dissolution rates on coral reefs (Andersson and Gledhill, 2013).			
480	Dissolution was more strongly affected by Standardized Climate Change			
481	explained more of the variance in dissolution than in calcification; in our rubble			
482	<u>community:</u> $(R_{G_{night}}^2 = 0.64 > R_{G_{day}}^2 = 0.33$; <u>Table 2</u>) this result is not surprising.			

483 Bioerosion, an important driver of dissolution, may be more sensitive to changes in ocean

Formatted: Border: : (No border)

484	acidity than calcification, leading to net dissolution in high CO_2 waters. Many boring				
485	organisms excrete acidic compounds, which may be less metabolically costly in a low pH				
486	environment. Erez et al. (2011) hypothesize that increased dissolution, rather than				
487	decreased calcification, maybe be the reason that net coral reef calcification is sensitive to				
488	ocean acidification. The results of this study support this hypothesis. Although G_{net}				
489	declines linearly with pCO_2 -temperature, calcification (G_{day}) and dissolution (G_{night}) have				
490	distinct responses to Standardized Climate Change-: Gday had a non-linear response while				
491	<u>G_{night} declined linearly with Standardized Climate Change.</u> Our results highlight the need				
492	to study the effects of climate stressors on both calcification and dissolution.				
493	Author contributions:				
494	Conceived and designed the experiments: NJS MJD. Performed the experiments: NJS.				
495	Analyzed the data: NJS MJD. Wrote the paper: NJS MJD.				
496	Acknowledgements				
497	Thanks to I Caldwell, R Coleman, J Faith, K Hurley, J Miyano, R Maguire, D. Schar,				
498	JIM Sziklay, and MM Walton for help in field collections and lab analyses and to R.				
499	Briggs from UH SOEST Lab for Analytical Chemistry. MJ Atkinson, R. Gates, C Jury, H				
500	Putnam, and R Toonen gave thoughtful advice throughout the project. Comments by F.				
501	Mackenzie and our two anonymous reviewers improved this manuscript. This project				
502	was supported by a NOAA Dr. Nancy Foster Scholarship to N.J.S., a PADI Foundation				
503	Grant to N.J.S., and Hawaii SeaGrant 1847 to MJD. This is HIMB contribution #xxxx,				
504	Hawai'i SeaGrant contribution #xxx, and SOEST #xxxxThis paper is funded in part by a				
505	grant /cooperative agreement from the National Oceanic and Atmospheric				
506	Administration Project R/IR-18, which is sponsored by the University of Hawaji Sea				

Formatted: Border: : (No border)

507	Grant College Program, SOEST, u	under Institutional Grant	No. NA09OAR4170060 from

- 508 NOAA Office of Sea Grant, Department of Commerce. The views expressed herein are
- 509 those of the author(s) and do not necessarily reflect the views of NOAA or any of its
- 510 subagencies. This is HIMB contribution #1607, Hawai'i SeaGrant contribution # UNIHI-
- 511 SEAGRANT-JC-12-19, and SOEST #9237.

513 References

- 514 Adey, W.H. Review—coral reefs: algal structures and mediated ecosystems in shallow
- 515 turbulent, alkaline waters. Journal of Phycology, 34, 393-406, 1998.
- 516 Andersson, A. J., Kuffner, I. B., Mackenzie, F. T., Jokiel, P. L., Rodgers, K. S., and Tan,
- 517 A.: Net Loss of CaCO₃ from a subtropical calcifying community due to seawater
- 518 acidification: mesocosm-scale experimental evidence, Biogeosciences, 6, 1811-1823,
- 519 2009.
- 520 Andersson, A. J., Mackenzie, F. T., and Gattuso, J.-P.: Effects of ocean acidification on
- 521 benthic processes, organisms, and ecosystems, in: Ocean Acidification, edited by:
- 522 Gattuso, J.-P., and Hansson, L., Oxford University Press, 122-153, 2011.
- Andersson, A. J., and Mackenzie, F. T.: Revisiting four scientific debates in ocean
 acidification research, Biogeosciences, 9, 893-905, 2012.
- 525 Andersson, A. J., and Gledhill, D.: Ocean Acidification and Coral Reefs: Effects on
- 526 Breakdown, Dissolution, and Net Ecosystem Calcification, Annual Review of Marine 527 Science, Vol 5, 5, 321-348, 2013.
- 528 Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P.,
- Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean
 ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10,
 3627-3676, 2013.
- Caldeira, K., and Wickett, M. E.: Oceanography: anthropogenic carbon and ocean pH,
 Nature, 425, 365-365, 2003.
- 534 <u>Camoin, G.F., Montaggioni, L.F., High energy coralgal-stromatolite frameworks from</u>
 535 <u>Holocene reefs (Tahiti, French Polynesia), Sedimentology, 41, 656-676, 1994.</u>
- 536 Castillo, K.D., Ries, J.B., Bruno, J.F., Westfield, I.T., The reef-building coral *Siderastrea* 537 *siderea* exhibits parabolic responses to ocean acidification and warming. Proc. R. Soc. B.,
 538 281, 20141856, 2014
- 539 Comeau, S., Edmunds, P. J., Spindel, N. B., and Carpenter, R. C.: The responses of eight
- coral reef calcifiers to increasing partial pressure of CO₂ do not exhibit a tipping point,
 Limnol. Oceanogr, 58, 388-398, 2013.
- 542 Cubasch, U., Wuebbles, D., Chen, D., Facchini, M. C., Frame, D., Mahowald, N., and
- 543 Winther, J.-G.: Climate Change 2013: The Physical Science Basis. Contribution of
- 544 Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on
- 545 Climate Change Cambridge, United Kingdom and New York, NY, USA. , 2013.
- 546 Davidson, T.M., de Rivera, C.E., Carlton, J.T., Small increases in temperature exacerbate
- the erosive effects of a non-native burrowing crustacean, Journal of Experimenal Marine
 Biology and Ecology, 446, 115-121, 2013.
- 549 Diaz-Pulido, G., Anthony, K., Kline, D. I., Dove, S., and Hoegh-Guldberg, O.:
- 550 Interactions between ocean acidification and warming on the mortality and dissolution of
- coralline alge, Journal of Phycology, 48, 32-39, 2012.

- 552 Diaz-Pulido, G., Nash, M.C., Anthony, K.R.N., Bender, D., Opdyke, B.N., Reyed-Nivia,
- 553 C., Troitzsch, U., Greenhouse conditions induce mineralogical changes and dolomite
- 554 accumulation in coralline algae on tropical reefs, Nature Communications, 5, 3310,
- 555 DOI:10.1038/ncomms4310, 2014
- 556 Dickson, A. G., and Millero, F. J.: A comparison of the equilibrium constants for the
- 557 dissociation of carbonic acid in seawater media, Deep Sea Research Part A.
- 558 Oceanographic Research Papers, 34, 1733-1743, 1987.
- 559 Dickson, A. G.: Standard potential of the reaction: AgCl (s)+ 12H₂(g)= Ag (s)+ HCl (aq),
- and and the standard acidity constant of the ion HSO_4 in synthetic sea water from 273.15
- to 318.15 K, The Journal of Chemical Thermodynamics, 22, 113-127, 1990.
- Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices for ocean CO2
 measurements, 2007.
- Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean Acidification: The
 Other CO₂ Problem, Annual Review of Marine Science, 1, 169-192, 2009.
- 566 Drupp, P. S., De Carlo, E. H., Mackenzie, F. T., Sabine, C. L., Feely, R. A., and
- 567 Shamberger, K. E.: Comparison of CO₂ dynamics and air–sea gas exchange in differing
- tropical reef environments, Aquatic Geochemistry, 19, 371-397, 2013.
- 569 Erez, J., Reynaud, S., Silverman, J., Schneider, K., and Allemand, D.: Coral calcification
- under ocean acidification and global change, in: Coral Reefs: an ecosystem in transition,
 edited by: Dubinski, Z., and Stambler, N., Springer, 2011.
- 572 Fabricius, K., Langdon, C., Uthicke, S., Humphrey, C., Noonan, S., De'ath, G., Okazaki,
- 573 R., Muehllehner, N., Glas, M., and Lough, J.: Losers and winners in coral reefs
- acclimatized to elevated carbon dioxide concentrations, Nature Climate Change, 1, 165-169, 2011.
- 576 Fabricius, K. E.: Effects of terrestrial runoff on the ecology of corals and coral reefs: 577 review and synthesis, Mar. Pollut. Bull., 50, 125-146, 2005.
- 578 Fair, R. C.: On the robust estimation of econometric models, in: Annals of Economic and 579 Social Measurement, Volume 3, number 4, NBER, 117-128, 1974.
- 580 Fang, J. K. H., Mello-Athayde, M. A., Schönberg, C. H. L., Kline, D. I., Hoegh-
- 581 Guldberg, O., and Dove, S.: Sponge biomass and bioerosion rates increase under ocean
- warming and acidification, Global Change Biology, 19, 3581-3591, 2013.
- 583 Fangue, N. A., O'Donnell, M. J., Sewell, M. A., Matson, P. G., MacPherson, A. C., and
- 584 Hofmann, G. E.: A laboratory-based, experimental system for the study of ocean
- 585 acidification effects on marine invertebrate larvae, Limnology and Oceanography:
- 586 Methods, 8, 441-452, 2010.
- 587 Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., and Millero,
- 588 F. J.: Impact of anthropogenic CO_2 on the CaCO₃ system in the oceans, Science, 305,
- 589 362-366, 2004.

- 590 Findlay, H. S., Wood, H. L., Kendall, M. A., Spicer, J. I., Twitchett, R. J., and
- 591 Widdicombe, S.: Comparing the impact of high CO₂ on calcium carbonate structures in
- different marine organisms, Marine Biology Research, 7, 565-575, 2011.
- 593 Gattuso, J.-P., Frankignoulle, M., and Smith, S. V.: Measurement of community
- metabolism and significance in the coral reef CO₂ source-sink debate, Proceedings of the
 National Academy of Sciences, 96, 13017-13022, 1999.
- 535 National Academy of Sciences, 90, 15017-15022, 1999.
- 596 Guadayol, Ò., Silbiger, N. J., Donahue, M. J., and Thomas, F. I. M.: Patterns in Temporal
- Variability of Temperature, Oxygen and pH along an Environmental Gradient in a Coral
 Reef, PloS one, 9, e85213, DOI:10..1371/journal.pone.0085213, 2014.
- 599 Harrington, L., Fabricius, K., De'ath, G., Negri, A., Recognition and selection of
- settlement substrata determine post-settlement survival in corals. Ecology, 84-3428-3437,
 2004.
- 602 Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez,
- 603 E., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., Eakin, C. M.,
- Iglesias-Prieto, R., Muthiga, N., Bradbury, R. H., Dubi, A., and Hatziolos, M. E.: Coral
- reefs under rapid climate change and ocean acidification, Science, 318, 1737-1742, 2007.
- Huey, R.B., Kingsolver, J.G. Evolution of thermal sensitivity of ecotherm performance.
 Trends Ecol. Evol., 4,131-135, 1989
- 608 Hutchings, P.A., Biological destruction of coral reefs, Coral Reefs, 4, 239-252, 1986.
- Hoegh-Guldberg, O., and Bruno, J. F.: The impact of climate change on the world's
 marine ecosystems, Science, 328, 1523-1528, 2010.
- 611 Hurd, C. L., Cornwall, C. E., Currie, K., Hepburn, C. D., McGraw, C. M., Hunter, K. A.,
- 612 and Boyd, P. W.: Metabolically induced pH fluctuations by some coastal calcifiers
- 613 exceed projected 22nd century ocean acidification: a mechanism for differential
- susceptibility?, Global Change Biology, 17, 3254-3262, 2011.
- 615 Johnson, M. D., and Carpenter, R. C.: Ocean acidification and warming decrease
- 616 calcification in the crustose coralline alga *Hydrolithon onkodes* and increase
- 617 susceptibility to grazing, J. Exp. Mar. Biol. Ecol., 434, 94-101, 2012.
- Johnson, M. D., Moriarty, V. W., and Carpenter, R. C.: Acclimatization of the Crustose
- 619 Coralline Alga *Porolithon onkodes* to Variable pCO₂, PLOS ONE, 9, e87678, DOI:
- 620 10.1371/journal.pone.0087678, 2014.
- 621 Jokiel, P. L., Rodgers, K. S., Kuffner, I. B., Andersson, A. J., Cox, E. F., and Mackenzie,
- F. T.: Ocean acidification and calcifying reef organisms: a mesocosm investigation, Coral
 Reefs, 27, 473-483, 2008.
- 624 Jury, C. P., Thomas, F. I. M., Atkinson, M. J., and Toonen, R. J.: Buffer Capacity,
- Ecosystem Feedbacks, and Seawater Chemistry under Global Change, Water, 5, 1303-1325, 2013.
- 627 Kamenos, N. A., Burdett, H. L., Aloisio, E., Findlay, H. S., Martin, S., Longbone, C.,
- 628 Dunn, J., Widdicombe, S., and Calosi, P.: Coralline algal structure is more sensitive to

Formatted: Subscript

Formatted: Subscript

- rate, rather than the magnitude, of ocean acidification, Global Change Biology, 19, 3621-3628, 2013.
- 631 Kleypas, J., and Langdon, C.: Coral reefs and changing seawater chemistry, in: Coral
- 632 Reefs and Climate Change: Science and Management., edited by: Phinney, J., Skirving,
- 633 W., Kleypas, J., and Hoegh-Guldberg, O., American Geophysical Union, Washington
- 634 D.C., pp. 73-110, 2006.
- 635 Kroeker, K. J., Kordas, R. L., Crim, R. N., and Singh, G. G.: Meta-analysis reveals
- 636 negative yet variable effects of ocean acidification on marine organisms, Ecology Letters,
 637 13, 1419-1434, 2010.
- 638 Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., Duarte,
- 639 C. M., and Gattuso, J. P.: Impacts of ocean acidification on marine organisms:
- quantifying sensitivities and interaction with warming, Global Change Biology, 19, 1884-1896, 2013.
- 642 Littler, M.M.m The population and community structure of Hawaiian fringing-reef
- 643 crustose corallinaceae (Rhodophyta, Cryptonemiales), Journal of Experimental Marine
 644 Biology and Ecology, 11, 103-120, 1973.
- Lowe, R. J., Falter, J. L., Monismith, S. G., and Atkinson, M. J.: A numerical study of
- circulation in a coastal reef-lagoon system, Journal of Geophysical Research-Oceans,
 114, C06022, 2009a.
- Lowe, R. J., Falter, J. L., Monismith, S. G., and Atkinson, M. J.: Wave-driven circulation
 of a coastal reef-lagoon system, J. Phys. Oceanogr., 39, 873-893, 2009b.
- 650 Martin, S., Cohu, S., Vignot, C., Zimmerman, G., and Gattuso, J. P.: One-year
- 651 experiment on the physiological response of the Mediterranean crustose coralline alga,
- *Lithophyllum cabiochae*, to elevated pCO₂ and temperature, Ecology and evolution, DOI:
- 653 10.1029/2008JC005081, 2013.
- Mehrbach, C.: Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897-907, 1973.
- 656 Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J.
- 657 F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., and Riahi, K.: The RCP greenhouse
- gas concentrations and their extensions from 1765 to 2300, Climatic Change, 109, 213-241, 2011.
- Pandolfi, J. M., Connolly, S. R., Marshall, D. J., and Cohen, A. L.: Projecting coral reef
 futures under global warming and ocean acidification, Science, 333, 418-422, 2011.
- Price, N., Habitat selection, facilitation, and biotic settlement cues affect distribution and
 performance of coral recruits in French Polynesia, Oecologia, 163, 747-758, 2010.
- 664 Pörtner, H.O., Bennet, A.F., Bozinovic, F., Clarke, A., Lardies, M.A., Lucassen, M.,
- Pelster, B., Schiemer, F., Stillman, J.H., Trade-offs in therman adaptation: the need for
 molecular ecological integration, Phys. Biochem. Zool., 79, 295-313, 2006.
- 667 Putnam, H.M. Resilience and acclimitization potential of reef corals under predicted
- 668 climate change stressors, PhD, Zoology, University of Hawaii at Manoa, Honolulu, 2012

- 669 Reyes-Nivia, C., Diaz-Pulido, G., Kline, D., Guldberg, O.-H., and Dove, S.: Ocean
- acidification and warming scenarios increase microbioerosion of coral skeletons, Global
- 671 Change Biology, 19, 1919-1929, 2013.
- Ries, J. B., Cohen, A. L., and McCorkle, D. C.: Marine calcifiers exhibit mixed responses
 to CO₂-induced ocean acidification, Geology, 37, 1131-1134, 2009.
- 674 Rodolfo-Metalpa, R., Houlbrèque, F., Tambutté, É., Boisson, F., Baggini, C., Patti, F. P.,
- 574 Industry J. P. P. Coral and mollusc resistance to ocean
- acidification adversely affected by warming, Nature Climate Change, 1, 308-312, 2011.
- 677 Rogelj, J., Meinshausen, M., and Knutti, R.: Global warming under old and new
- scenarios using IPCC climate sensitivity range estimates, Nature Climate Change, 2, 248253, 2012.
- Sanford, T., Frumhoff, P. C., Luers, A., and Gulledge, J.: The climate policy narrative for
 a dangerously warming world, Nature Climate Change, 4, 164-166, 2014.
- 682 Semesi, I. S., Kangwe, J., and Björk, M.: Alterations in seawater pH and CO₂ affect
- 683 calcification and photosynthesis in the tropical coralline alga, *Hydrolithon*
- sp.(Rhodophyta), Estuarine, Coastal and Shelf Science, 84, 337-341, 2009.
- 685 Silbiger, N., Guadayol, Ò., Thomas, F. I., and Donahue, M.: Reefs shift from net
- accretion to net erosion along a natural environmental gradient, Marine Ecology Progress
 Series, 515, 33-44, 2014.
- Smith, S. V., and Key, G. S.: Carbon dioxide and metabolism in marine environments,
 Limnol. Oceanogr, 20, 493-495, 1975.
- Smith, S. V., Kimmerer, W. J., Laws, E. A., Brock, R. E., and Walsh, T. W.: Kaneohe
 Bay sewage diversion experiment- perspectives on ecosystem responses to nutritional
- 692 perturbation, Pacific Science, 35, 279-402, 1981.
- 693 Solomon, S., Qin. D., Manning. M. Chen. Z., Marquis, M., et al. Climate Change 2007:
- 694 The physical Science Basis: Contributions of Working Group I to the Fourth Assessment
- Report of the Intergovernmental Panel on Climate Change., New York, Cambridge Univ.
 Press, 2007.
- 697 Stimson, J., and Kinzie III, R. A.: The temporal pattern and rate of release of
- 698 zooxanthellae from the reef coral *Pocillopora damicornis* (Linnaeus) under nitrogen-
- enrichment and control conditions, Journal of Experimental Marine Biology and Ecology,153, 63-74, 1991.
- 701 Tans, P., and Keeling, R.: NOAA/ESRL, www.esrl.noaa.gov/gmd/ccgg/trends/, 2013.
- Tribollet, A., and Payri, C.: Bioerosion of the coralline alga *Hydrolithon onkodes* by
- 703 microborers in the coral reefs of Moorea, French Polynesia, Oceanologica Acta, 24, 329-
- 704 342, 2001.
- 705 Tribollet, A., Atkinson, M. J., and Langdon, C.: Effects of elevated pCO₍₂₎ on epilithic
- and endolithic metabolism of reef carbonates, Global Change Biology, 12, 2200-2208,
- 707 2006.

- Formatted: Subscript
- Tribollet, A., Godinot, C., Atkinson, M., and Langdon, C.: Effects of elevated pCO₍₂₎ on
- dissolution of coral carbonates by microbial euendoliths, Global Biogeochemical Cycles,
 23, GB3008, 2009.
- 711 Uppström, L. R.: The boron/chlorinity ratio of deep-sea water from the Pacific Ocean,
- 712 Deep Sea Research and Oceanographic Abstracts, 1974, 161-162.
- Van Heuven, S., Pierrot, D., Lewis, E., and Wallace, D. W. R.: MATLAB Program
 developed for CO2 system calculations, Rep. ORNL/CDIAC-105b, 2009.
- 715 Van Vuuren, D. P., Meinshausen, M., Plattner, G. K., Joos, F., Strassmann, K. M., Smith,
- 716 S. J., Wigley, T. M. L., Raper, S. C. B., Riahi, K., and De La Chesnaye, F.: Temperature
- 717 increase of 21st century mitigation scenarios, Proceedings of the National Academy of
- 718 Sciences, 105, 15258-15262, 2008.
- 719 Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K.,
- Hurtt, G. C., Kram, T., Krey, V., and Lamarque, J.-F.: The representative concentration pathways: an overview, Climatic Change, 109, 5-31, 2011.
- 722 White, J.: Distribution, recruitment and development of the borer community in dead
- coral on shallow Hawaiian reefs, Ph.D., Zoology, University of Hawaii at Manoa,
- 724 Honolulu, 1980.
- Wisshak, M., Schönberg, C. H. L., Form, A., and Freiwald, A.: Ocean acidification
 accelerates reef bioerosion, Plos One, 7, e45124-e45124, 2012.
- 727 Wisshak, M., Schönberg, C. H. L., Form, A., and Freiwald, A.: Effects of ocean
- acidification and global warming on reef bioerosion—lessons from a clionaid sponge,
 Aquatic Biology, 19, 111-127, 2013.
- 730 Wolf-Gladrow, D.A., Zeebe, R.E., Klass, C., Körtzinger, A., Dickson, A.G.,: Total
- 731 Alkalinity: The explicit conservative expression and its application to biogeochemical
- 732 processes, Marine Chemistry, 106, 287-300, 2007.
- 733 Yates, K. K., and Halley, R. B.: CO₃²⁻ concentration and pCO₂ thresholds for calcification
- and dissolution on the Molokai reef flat, Hawaii, Biogeosciences, 3, 357-369, 2006.
- 735

Table 1: Means and standard errors of all measured parameters by rack. pCO_2 , HCO_3^{-1} , CO_3^{-2-1} , DIC, and Ω_{arag} were all calculated from

737 the measured TA and pH samples using CO2SYS. Each table entry is the mean of 12 water samples: one daytime sample and one

738 <u>nighttime sample for six aquaria within a rack.</u> Data are all from the imposed treatment conditions with no rubble inside the aquaria.

Rack	Pre-industrial	Present Day	2050 prediction	2100 prediction
Temp (°C)	23.8±0.07	24.8±0.08	26.2±0.06	27.2±0.08
Salinity(psu)	35.65±0.01	35.71±0.02	35.62±0.02	35.71±0.02
Total Alkalinity (µmol kg ⁻¹)	2137±1.7	2138±2.3	2139±2.0	2142±1.9
pH _t	8.02±0.02	7.87 ± 0.01	7.74 ± 0.02	7.67 ± 0.02
pCO ₂ (µatm)	409±20.0	614±15.6	868±33.0	1047±38.7
HCO ₃ (µmol kg ⁻¹)	1692±16.9	1815±7.3	1894 ± 7.8	1939±6.6
CO ₃ ²⁻ (µmol kg ⁻¹)	194.20±6.7	147.08±2.8	113.98±3.8	99.24±3.3
DIC (µmol kg ⁻¹)	1898±10.9	1980±5.1	2032±5.0	2067±4.5
$\Omega_{ m arag}$	3.06±0.1	2.32±0.04	1.80 ± 0.06	1.57 ± 0.05
NO ₂ ⁻ (µmol L ⁻¹)	0.082 ± 0.0028	0.078 ± 0.0045	0.074 ± 0.0047	0.070 ± 0.0051
PO4 ³⁻ (µmol L ⁻¹)	0.017 ± 0.014	0.0097 ± 0.0081	0.033 ± 0.016	0.018±0.0061
Si(OH) ₄ (µmol L ⁻¹)	3.60 ±0.58	3.64 ±0.61	3.88 ± 0.49	3.78 ± 0.52
NH4 ⁺ (μmol L ⁻¹)	0.45 ±0.30	0.19 ± 0.067	0.23 ±0.15	0.34 ± 0.14
NO ₃ ⁻ (μmol L ⁻¹)	2.13±0.20	2.25±0.21	2.55±0.10	2.48±0.11

739 Table 2: Regression results for the treatment experiments: G_{day} , G_{night} , and G_{net} versus

740 Standardized Climate Change (Figure 3).3a,c,e) and NCP_{day}, NCP_{night}, and NCP_{net} versus

741 <u>Standardized Climate Change (Figure 3b,d,f).</u> Bold values indicate a statistically significant

742 p-value at an $\alpha < 0.05$.

	SS	df	F	р	R ²
G _{day}					
Standardized Climate Change	<u>5.82</u> 3.79	1	1. 97<u>45</u>	0. 17<u>06</u>	•
(Standardized Climate Change) ²	18.67<u>23.</u>	1	6.33	0. <mark>02</mark>	-
Error	61.86	21	2.95		0. 29
Gnight					
Standardized Climate Change	73.60<u>67.</u>	1	50.09<u>39.1</u>	<0.0001	4
Error	32.32	22			0. 70
Gnet					
Standardized Climate Change	89.79<u>88.</u>	1	20.25<u>19.4</u>	<0.001	-
Error	97.57 99.35	22	0.002		0.4 8 47
<u>NCP_{day}</u>					
Standardized Climate Change	<u>5687.2</u>	<u>1</u>	<u>57.36</u>	<u><0.0001</u>	
Error	<u>2181.4</u>	<u>22</u>			<u>0.72</u>
<u>NCP_{night}</u>					
Standardized Climate Change	<u>3816.1</u>	<u>1</u>	<u>52.06</u>	<u><0.0001</u>	
Error	<u>1612.6</u>	<u>22</u>			<u>0.70</u>
<u>NCP_{net}</u>					
Standardized Climate Change	<u>17925</u>	<u>1</u>	121.47	<u><0.0001</u>	
Error	<u>3246.4</u>	<u>22</u>			<u>0.85</u>

Formatted: Left Formatted: Left Formatted: Left Formatted Table Formatted: Left Formatted: Left Formatted: No Spacing, Line spacing: single Formatted: Left Formatted: Left, Line spacing: 1.5 lines Formatted: Justified Formatted: Left Formatted: Left Formatted: Justified Formatted: Left Formatted: No Spacing, Line spacing: sing Formatted: Justified Formatted: Left Formatted: Justified Formatted: Justified Formatted: Left Formatted: Left Formatted: No Spacing, Line spacing: sing Formatted: Left Formatted: Left

743

744

32

Formatted: Numbering: Continuous

745 Figure legends:

746 Figure 1: A schematic of the mesocosm system at the Hawai'i Institute of Marine Biology. 747 Ambient seawater is pumped into the system from a nearby fringing reef in Kāne'ohe Bay. 748 The seawater is filtered with a sand trap filter, passed through a water chiller and then fed into 749 one of four header tanks. pCO₂ is manipulated in each header tank by bubbling a mixture of 750 CO_2 -free air and pure CO_2 to the desired concentration. The water from one header tank flows 751 into 6 aquaria (a rack). Light is controlled by rack with metal-halide lights. There are two 752 metal-halide lights per rack with each light oscillating over a set of three aquaria. Flow and 753 temperature are controlled in each individual aquarium with flow valves and aquarium heaters 754 and coolers, respectively.

Figure 2: pCO_2 and temperature in each aquarium (a) without any rubble present and (b) with rubble present. Daily variability in pCO_2 was higher when rubble was present due to feedbacks from the rubble community (Notenote the different x-axis scales in panels a and b). Panel (c) shows the mean difference between day and night pCO_2 with and without rubble present with observations paired by aquarium (error bars are standard error) (t_{23} = -7.23, p<0.0001).

761 Figure 3: Net ecosystem calcification: (a) G_{day}, (bc) G_{night}, (ee) and G_{net}) and net community production ((b) NCP_{day}, (d) NCP_{night}, and (f) NCP_{net}) versus Standardized Climate Change-762 763 (SCC). Each point represents net ecosystem calcification (left panel) or net community 764 production (right panel) calculated from an individual aquarium. Standardized Climate 765 Change was centered around background seawater conditions such that a value of 0 indicated 766 that there was no change in pCO_2 or temperature. Positive values indicate an elevated pCO_2 767 and temperature condition relative to background and negative values represent lower pCO₂ 768 and temperature conditions. G_{dav} had a non-linear relationship with Standardized Climate

769	Change $(y = -\frac{1.6 \times 10^8 0.27}{x^2} x^2 + \frac{1.4 \times 10^4 x 0.59 x}{x^2} + 5.57)$, while $G_{\text{night}} (y = -\frac{1.0.63 x}{x^2} - \frac{3 \times 10^4 x}{x^2} + \frac{1.4 \times 10^4 x}{x^2} + 1.4 \times 10^$
770	$3.4.6$) and G_{net} (y=- <u>-0.76x</u> + 1.7×10 ⁻⁴ x + 1.4) each had a negative linear relationship with
771	Standardized Climate Change (Table 2). NCP _{day} (y=-7.01x +23.4), NCP _{night} (y=-35.76 – 4.74),
772	and NCP _{net} (y=-12.07x - 10.85) all had significant negative relationships with Standardized
773	Climate Change. Black lines are best fit lines for each model with 95% confidence intervals in
774	gray. Greek letters on the top panel represent the imposed conditions for pre-industrial (α),
775	Present Day (β), 2050 (γ), and 2100(δ). <u>The black horizontal line in panels (b), (e) and (f)</u>
776	shows the point where G and NCP = 0. Points above the line are net calcifying (e) or net
777	photosynethsizing (f) and points below the line are net dissolving (e) or net respiring (f) over
778	the entire 24 hour period.
779	Figure 4: (a) Calculated G and NCP rates for all treatment aquaria. The color represents
780	Standardized Climate Change. Squares are data collected during the light (day) conditions and
781	circles represent data collected during dark (night) conditions. All negative numbers are either
782	net dissolution or net respiration while positive numbers are net calcification or net
783	photosynthesis., and the color represents Standardized Climate Change (color bar). There is a
784	strong positive relationship between G and NCP ($y = 0.14x + 1.9$, p<0.0001, R ² =0.85).
785	Negative and positive y-values are net dissolution and net calcification, respectively; negative
786	and positive x-values are net respiration and net photosynthesis, respectively. (b) TA versus
787	DIC: There is a strong positive relationship between TA and DIC ($y = 0.31x + 1577.4$,
788	$p < 0.0001$, $R^2 = 0.85$). Black and gray lines represent the best-fit line and 95% confidence
789	intervals, respectively. Supplementary Figure A3 is a similar plot with specific aquaria
790	labeled. As expected, the slope of TA versus DIC (0.31) is approximately twice that of G
791	<u>versus NCP (0.14).</u>

- 793 Appendix A:
- 794 Supplemental Material:
- 795 **Tables A1**-A2
- 796 **Figures A1-A46**
- 797 Table A1: Analysis of treatment experiment uning ANOVA table (Figure A4)variance for
- 798 G_{day}, G_{night}, and G_{net} versus Standardized Climate Change. Bold values indicate a statistically

799 significant p value at an $\alpha < 0.05$. across the four climate scenario treatments (Figure A3).

800

	SS	df	MS	F	p Formatted Table
G _{day}					
Treatment Groups	28.83	3	9.81	3.65	0.030 Formatted Table
Error	52.61	20	2.63		
Total	81.45	23			
G _{night}					
Groups	60.39	3	20.13	8.84	<0.0001 Formatted Table
Error	45.53	20	2.28		
Total	105.92	23			
G _{net}					
Groups	104.31	3	34.77	8.37	<0.0001 Formatted Table
Error	83.05	20	4.15		
Total	197.36	23			

36

801

Table A2: Analysis of variance for NCP_{day}, NCP_{night}, and NCP_{net} versus climate scenario

treatments (Figure A4).Climate Change.

	<u>SS</u>	<u>df</u>	<u>MS</u>	<u>F</u>		p
<u>NCP_{day}</u>						
<u>Treatment</u>	<u>6265.3</u>	<u>3</u>	<u>3</u>	<u>2088.4</u>	<u>26.0</u>	<u><0.0001</u>
Error	<u>1603.2</u>	2	<u>20</u>	<u>80.2</u>		
Total	<u>7868.6</u>	<u>5</u>	<u>23</u>			
<u>NCP_{night}</u>						
<u>Treatment</u>	<u>4145.2</u>	2	<u>3</u>	<u>1381.7</u>	<u>21.5</u>	<u><0.0001</u>
Error	<u>1283.4</u>	Ŀ	<u>20</u>	<u>64.2</u>		
<u>Total</u>	<u>5428.6</u>	<u>5</u>	<u>23</u>			
<u>NCP_{net}</u>						
<u>Treatment</u>	<u>1936.8</u>	<u>3</u>	<u>3</u>	<u>6456.0</u>	<u>71.6</u>	<u><0.0001</u>
Error	<u>1803.4</u>	Ŀ	<u>20</u>	<u>90.17</u>		
Total	<u>2117.1</u>	_	<u>23</u>			

Figure A1: Feedbacks in seawater chemistry caused by the presence of rubble during the (a)
day and <u>(b)</u> night. X-axis is pCO_2 in seawater without any rubble and y-axis is pCO_2 in
seawater with rubble present. Color represents temperature. The top panel is data collected
during the day and the bottom panel is data collected at night. The black dashed line is a 1:1
line, and the blue line is a regression line. The pCO_2 conditions drift farther away from the
manipulated conditions during the night. The slopes from each regression analysis were both
greater than one (Day: $y = 1.12x + 19.83$, Night: $y = 1.43x + 44.54$) meaning that the

815 biological feedbacks were greater at more extreme treatments and greater during the night
816 than the day.

Figure A2: Boxplots for G_{day} (Aa), G_{night} (Bb), and G_{net} (C) for the control experiment, separated by rack. We used an ANOVA to test for differences across racks and found no significant difference in G_{day} (F_{3,23}=0.68, p=0.58), G_{night} (F_{3,23}=1.52, p=0.24), or G_{net} (F_{3,23}=1.38, p=0.28).

- 821 **Figure A3:** Panel A is G versus NCP rates numbered by tank. Data and best fit line are the 822 same as Figure 4. Panel B is salinity normalized TA on the y axis and salinity normalized 823 DIC on the x axis in μ mol kg⁻¹. There is a strong positive relationship between TA and DIC (y 824 = 0.31x + 0.0016, p<0.0001, R²=0.85).
- Figure A4:-Means and standard error bars for (a) G_{day} , (b) G_{night} , and (c) G_{net} in mmol m⁻² d⁻¹. X axis represents in the four climate scenario treatments.treatment categories. There were significant differences acrossbetween treatments for G_{day} (p=0.03), G_{night} (p<0.0001), and G_{net} (p<0.0001) (Table A1).

829

830

831

832

Figure A4: Means and standard error bars for (a) NCP_{day}, (b) NCP_{night}, and (c) NCP_{net} in
mmol m⁻² d⁻¹ across .the four climate scenario treatments. There were significant differences
across treatments for NCP_{day} (p<0.0001), NCP_{night} (p<0.0001), and NCP_{net} (p<0.0001) (Table
A2).

837	Figure A5: Net ecosystem calcification (G_{day} , G_{night} , and G_{net}) versus Δ Temperature (left
838	panel) and ΔpCO_2 (right panel). Lines are best fit lines. G_{day} has a significant non-linear
839	relationship ΔpCO_2 (p=0.04) and ΔT emperature (p=0.01). G_{night} , (ΔT emp: p<0.001, ΔpCO_2 :
840	p<0.001) and G_{net} (Δ Temp: p<0.001, Δ pCO ₂ : p<0.001) both have significant linear
841	relationships with ΔpCO_2 and $\Delta Temperature$.
842	Figure A6: Net community production (NCP _{day} , NCP _{night} , and NCP _{net}) versus Δ Temperature
843	(left panel) and ΔpCO_2 (right panel). Lines are best fit lines. NCP _{day} ($\Delta Temp$: p<0.001,
844	ΔpCO_2 : p<0.001), NCP _{night} , ($\Delta Temp$: p<0.001, ΔpCO_2 : p<0.001) and NCP _{net} ($\Delta Temp$:
845	p<0.001, ΔpCO_2 : p<0.001) all have significant linear relationships with ΔpCO_2 and
846	<u>ΔTemperature.</u>
847	G and NCP calculations: Below are the specific calculations for G and NCP for Equations 1
848	and 2 in the text (in mmol C m ⁻² hr ⁻¹). For comparisons with existing literature,. G and NCP
849	were both multiplied by 12 hr/day to get mmol $m^{-2} d^{-1}$.
850	Equation 1 (equations modified from Andersson et al. 2009):
851	
852	$G = \left[F_{TAin} - F_{TAout} - \frac{dTA}{dt}\right]/2 $ (A1)
853	F_{TAin} is the rate of TA flowing into the aquaria in mmol CaCO ₃ m ⁻² hr ⁻¹ :
854	
855	$\underline{F_{TAin}} = ((TA_{H,t2} + TA_{H,t1})\frac{1}{2} * FlowRate_{aq})/1000 $ (A2)
856	F_{TAout} is the rate of TA flowing out of the aquaria in mmol CaCO ₃ m ⁻² hr ⁻¹ :
857	
858	$\underline{F_{TAout}} = ((TA_{aq,t2} + TA_{aq,t1})\frac{1}{2} * FlowRate_{aq})/1000 $ (A3)
859	$\frac{dTA}{dt}$ is the change in TA in each aquaria in mmol CaCO ₃ m ⁻² hr ⁻¹ :

860		
861	$\underline{\frac{d\text{TA}}{dt}} = \frac{\frac{TA_{aq,t2} - TA_{aq,t1}}{\Delta t * SA} * Vol * \rho}{1000} $ (A4)	
862	Each equation is divided by 1000 to convert from µmol of CaCO ₃ to mmol of CaCO ₃	
863	Parameters:	
864	$\underline{TA}_{H,t1} = Total alkalinity in the header tank at the first sampling time point (\mu Eq kg^{-1}).$	
865	$\underline{TA}_{H,t2} = Total alkalinity in the header tank at the second sampling time point (\mu Eq kg^{-1}).$	
866	<u>TA_{aq,11} = Total alkalinity in the aquarium at the first sampling time point (μEq kg⁻¹).</u>	
867	<u>TA_{aq,t2} = Total alkalinity in the aquarium at the second sampling time point (μEq kg⁻¹).</u>	
868	Δt = time between first and second sampling time point (h)	
869	$\underline{SA} = surface area of the rubble in the aquarium (m-2)$	
870	<u>Vol= volume of water in the aquarium (L)</u>	
871	$\rho = \text{density of seawater (kg L-1)}$	
872	<u>FlowRate_{aq} = Flow rate of the water coming into the aquarium in kg m⁻² h⁻¹ (equal to flow rate</u>	
873	of the water leaving the aquarium)	
874		
875	<u>NCP is net community production rate in mmol C m⁻² d⁻¹ :</u>	
876	$\underline{\qquad NCP = \left[F_{\text{DIC}in} - F_{\text{DIC}out} - \frac{d\text{DIC}}{dt}\right] - G\underline{\qquad}(A5)$	
877	$F_{\text{DIC}in}$, $F_{\text{DIC}out}$, $\frac{d\text{DIC}}{dt}$ are calculated in the same way as F_{TAin} , F_{TAout} , and $\frac{d\text{TA}}{dt}$ in Equations	
878	A2-A4), replacing Total Alkalinity with Dissolved Inorganic Carbon.	Formatted: Subscript