

1 **A 22,570-yr record of vegetational and climatic change from**
2 **Wenhai Lake in the Hengduan Mountains biodiversity**
3 **hotspot, Yunnan, Southwest China**

4
5 **Y. F. Yao^{1,3*}, X. Y. Song², A. H. Wortley³, S. Blackmore³, and C. S. Li^{1*}**
6

7 ¹ State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese
8 Academy of Sciences, Xiangshan, 100093 Beijing, PR China

9 ² Shanxi Agricultural University, Taigu 030801, Shanxi, PR China

10 ³ Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh EH3 5LR, Scotland, UK

11 * Correspondence to: Y. F. Yao (yaoyf@ibcas.ac.cn), C. S. Li (lics@ibcas.ac.cn)

12 **Abstract**

13 The Hengduan Mountains, with their strong altitudinal vegetation zonation, form a
14 biodiversity hotspot which offers the potential for comparison between sites in order to
15 understand how this zonation arose and how it has responded to climate change and human
16 impacts through time. This paper presents a 22,570-yr pollen record of vegetational and
17 climatic change based on a core 320 cm in depth collected from Wenhai Lake on the Jade
18 Dragon Snow Mountain, one of the highest peaks in the Hengduan Mountains region of
19 Yunnan, Southwest China. From 22,570 to 21,140 cal. yr BP, the vegetation was dominated
20 by broad-leaved forest (comprising mainly *Quercus*, *Betula* and *Castanopsis*), accompanied
21 by needle-leaved forest (mainly *Pinus* and *Abies*), indicating a rather cold and dry climate
22 relative to the present followed by cold and wet conditions. In the period between 21,140 and
23 19,350 cal. yr BP, the vegetation was still dominated by broad-leaved forest and
24 needle-leaved forest as before but with a notable increase in *Betula* pollen and a sharp
25 decrease in *Quercus* pollen, implying a relatively cold and dry climate with several
26 fluctuations in humidity. The period 19,350 to 17,930 cal. yr BP was a transition stage from
27 broad-leaved forest to needle-leaved forest, with a dramatic decrease in *Quercus* pollen and a
28 maximum reading for *Abies* pollen, reflecting the coldest and driest climate since 22,570 cal.

30 yr BP. The expansion in needle-leaved forest dominated by *Pinus* and *Abies* (22,570–17,930
31 cal. yr BP) along with an increase of *Betula* might correspond to the Last Glacial Maximum
32 (LGM, the start of the LGM perhaps occurred prior to the basal age of the core). Between
33 17,930 and 9,250 cal. yr BP, needle-leaved forest declined and broad-leaved forest began to
34 increase at first, suggesting increases in temperature and humidity, while towards the end of
35 the period, needle-leaved forest expanded and broad-leaved forest shrank, indicating a colder
36 and drier climate, possibly corresponding to the Younger Dryas. From 9,250 cal. yr BP to the
37 present, the vegetation has been dominated by needle-leaved forest (comprising mainly *Pinus*,
38 *Abies* and *Tsuga*), interspersed with broad-leaved *Quercus* and *Betula*, reflecting a significant
39 decline in humidity from the early to late Holocene. During this period, human activity likely
40 increased in this region, with impacts on the vegetation such as a distinct decrease in *Pinus*
41 and *Quercus* pollen and an increase in Polygonaceae pollen in the upper 30 cm of the core.
42 The marked decline in *Quercus* pollen compared with the early stage of this period, in
43 particular, in the Wenhai core can be correlated with that observed in the Haligu core
44 (situated about 2 km away) between 2,400 cal. yr BP and the present.

45

46 1 Introduction

47 The Hengduan Mountains are located in the north of the Mountains of Southwest China
48 biodiversity hotspot, the most biologically diverse temperate ecosystem in the world
49 (Conservation International, 2008), sandwiched between the Honghe Basin to the east and the
50 Qinghai-Xizang Plateau to the west. They comprise five main ridge systems characterized by
51 vertical vegetation zonation and separated by four deep drainage systems, created during the
52 Himalayan orogeny beginning in the Tertiary Period and continuing into the Quaternary
53 (Myers et al., 2000; Ying, 2001). The floristic diversity of the region is particularly high: the
54 Hengduan Mountains are situated in Yunnan Province which, despite covering just 4% of
55 China's land area, contains c. 15,000 species of higher plants, almost 50% of the country's
56 total.

57 The marked altitudinal zonation of vegetation in the Hengduan Mountains offers the
58 potential to compare between sites in order to build up an understanding of how this zonation

59 arose and how it responds, through time, to climate change and human impacts. The Jade
60 Dragon Snow Mountain (rising to 5,596 m a. s. l.) is one of the highest peaks in the
61 Hengduan Mountains region, and is particularly appropriate for the study of past and present
62 diversity using palynological data because it supports a number of natural wetlands and lakes
63 containing abundant, well-preserved palynomorphs, at a range of altitudes. Thus, sampling of
64 core sediments from different sites has the potential to generate pollen data relative to both
65 time and altitude (at a given locality), which will ultimately enable us to estimate changes in
66 both floristic composition and diversity over time and their response to climatic change.

67 During the past decade, pollen analysis has been employed extensively for understanding
68 Quaternary vegetation and climate history in China (e.g., Xu et al., 2002; Xiao et al., 2004;
69 Zhao et al., 2007; Li et al., 2011; An et al., 2013; Cao et al., 2013; Jiang et al., 2013).
70 However, few such studies have been conducted in the Hengduan Mountains (Jiang et al.,
71 1998; Shen et al., 2006; Jones et al., 2012; Song et al., 2012; Cook et al., 2013; Xiao et al.,
72 2014). Previously, we have investigated changing climate and vegetation over the past 9,300
73 years based on pollen analyses of a core 400 cm in depth from a wetland site at Haligu (3,277
74 m) on the Jade Dragon Snow Mountain (Song et al., 2012). This paper presents a 22,570-yr
75 record of vegetational and climatic change from Wenhai Lake, also on the Jade Dragon Snow
76 Mountain. We aim to use pollen data to develop insights into changing floristic diversity and
77 to draw inferences about past climate and anthropogenic influences in the region during the
78 Late Quaternary.

79

80 **2 Study area**

81 Wenhai Lake (26°58'59" N, 100°09'54" E), an enclosed ice-scour lake at an altitude of 3,080
82 m, is located at the southern end of the Jade Dragon Snow Mountain in Yulong County of
83 Lijiang City, northwestern Yunnan, Southwest China (Fig. 1). It forms part of Lashihai
84 Swamp Natural Reserve and is approximately 23 km northwest of Lijiang City. The lake has
85 a surface area of about 0.16 km², with a maximum water depth of c. 4 m. It is hydrologically
86 recharged by rainfall and glacial melt-water from the surrounded mountains, without river
87 water inputting into the lake. It is a seasonal lake, receiving abundant rainfall in rainy season

88 (May to October) and less rainfall in dry season (November to April). The outflow is dammed,
89 with a dam constructed in 2012. Therefore, the source of lake sediment is relatively simple
90 and stable. This area is a key region linking the Qinghai-Xizang Plateau with the Yungui
91 Plateau, and also is a boundary region between the Hengduan Mountains area of northwestern
92 Yunnan and the plateau area of eastern Yunnan. More than a thousand years ago, Wenhai was
93 an important stop on the ancient “Tea-Horse Road,” a route for trading tea and horses
94 between inland agricultural and remote nomadic regions (Luo, 2003). Yulong County is
95 home to several ethnic minority peoples, with the Naxi being most numerous.

96 The study area is strongly influenced by the southwest monsoon coming from the Indian
97 Ocean. Thus the summers are warm and humid and the winters cool and dry. The mean
98 annual temperature (MAT) and mean annual precipitation (MAP) measured at Lijiang
99 (situated below the study site at about 2,200 m), are 12.8°C and 935 mm, respectively. About
100 90% of the annual precipitation falls in summer, between June and October. The warmest
101 month is July, with a mean temperature of 17.9°C, and the coldest month is January, with a
102 mean temperature of 5.9°C (Feng et al., 2006).

103 The regional vegetation and climate of the Jade Dragon Snow Mountain area are strongly
104 related to elevation gradients. At increasing elevations on the mountain slopes, MAT shows a
105 decreasing trend, while MAP displays a reverse trend. For example, MAT and MAP are
106 12.6°C and 772 mm, respectively, at 2,393 m, MAT decreases to 5.4 °C and MAP increases
107 to 1,600 mm at 3,200 m, MAT further decreases to $-3.3\text{--}4.7^{\circ}\text{C}$ and MAP increases to more
108 than 2,400 mm at the snow line (4,800 m; He et al., 2000a, 2000b). Four main vegetation
109 zones can be recognized: Zone 1, semi-humid evergreen broad-leaved forest–pine forest
110 (about 2,400–3,000 m); Zone 2, needle- and broad-leaved mixed forest- sclerophyllous
111 evergreen broad-leaved forest (about 3,000–3,300 m); Zone 3, cold-temperate needle-leaved
112 forest (about 3,300–4,200 m); and Zone 4, alpine heath scrub and meadow (above 4,200 m;
113 Wu et al., 2006). From our personal observations, the present vegetation around the Wenhai
114 Lake catchment is dominated by oaks (*Quercus pannosa* Hand.-Mazz) and pines, primarily
115 *Pinus yunnanensis*, with *P. armandii* Franch at slightly lower elevations and smaller numbers
116 of *Tsuga dumosa* (D.Don) Eichler and *P. densata* Mast. are also present. Here, the most

117 abundant shrubs are ericaceous, including rhododendron species, especially *Rhododendron*
118 *mucronatum* (Blume) G. Don, *R. racemosum* Franch., *R. yunnanense* Franch. and *R. delavayi*
119 Franch., together with *Vaccinium bracteatum* Thunb. and *Pieris formosa* (Wallich) D. Don.
120 Herbaceous taxa are diverse with some of the most speciose genera being *Anemone*, *Gentiana*,
121 *Primula* and *Roscoea*. This area is now heavily influenced by human activities, such as
122 felling of timber and grazing, so some patches are barren of vegetation.

123

124 **3 Materials and methods**

125 **3.1 Coring and sampling**

126 A sediment core 320 cm in depth was obtained from Wenhai Lake in January 2005 using a
127 Russian corer, which consists of a 40 cm long steel chamber (diameter 10 cm) and 1 m long
128 steel rods. Coring was done in 40 cm overlapping steps (0–40 cm, 40–80 cm, 80–120 cm,
129 etc.). To avoid contamination, the chamber was cleaned carefully before starting each new
130 round of coring. The core was labelled in the field, wrapped in plastic foil and placed in
131 halved PVC tubes. A detailed lithological description of the core is presented in Fig. 2.

132

133 **3.2 Radiocarbon dating**

134 Two samples from the core, at 155 cm and 320 cm in depth, were taken for Accelerator Mass
135 Spectrometry (AMS) radiocarbon dating, which was performed at the Scottish Universities
136 Environmental Research Centre (SERC) in Glasgow, Scotland, UK. The ^{14}C ages are
137 quoted in conventional years BP (before 1950 AD). Bulk samples from the core were used
138 because fragments of plant material suitable for analysis were not present. Age calibration
139 was set up using the calibration curve from Reimer et al. (2004) by means of the calibration
140 program OxCal v3.10 (Bronk, 2005). Date ranges are cited in calibrated years AD/BC at 95%
141 probability, with end points rounded to the nearest 10 years (Mook, 1986; Foster et al., 2008).

142

143 **3.3 Pollen analysis**

144 Six surface soil samples near the core were collected for comparison with the preserved
145 pollen assemblage. Thirty-two samples were taken from the core itself, at 10 cm intervals, for

146 pollen analysis. Thirty grams of each sample were processed by the method of heavy liquid
147 separation (Moore et al., 1991; Li and Du, 1999) followed by acetolysis (Erdtman, 1960).
148 Pollen grains and spores were identified using modern pollen slides, palynological literature
149 and monographs (IBCAS, 1976; IBSCIBCAS, 1982; Wang et al., 1995). All samples yielded
150 abundant, well-preserved palynomorphs. Pollen samples were examined using a Leica DM
151 2500 light microscope at a magnification of 400 \times and at least 300 pollen grains and spores
152 were counted in each sample. Pollen grains and spores were divided into four categories:
153 trees and shrubs, herbs, pteridophytes and aquatic taxa. Pollen data were expressed as
154 percentages and graphed using Tilia.Graph, and pollen zones were determined with CONISS
155 in the Tilia program (Grimm, 1997).

156

157 **4 Results**

158 **4.1 Chronology**

159 Two AMS radiocarbon dates, $14,075 \pm 40$ yr BP (17,150–16,350 cal. yr BP) at depth of 155
160 cm and $19,075 \pm 50$ yr BP (22,760–22,380 cal. yr BP) at depth of 320 cm, give a relatively
161 reliable basis for deciphering the vegetation and climate history in and surrounding Wenhai
162 Lake. The lithology of the entire core is mainly characterized by clay with the exception of
163 peat deposit at depth of 45–55 cm. Given continuity and stability of sedimentation during the
164 past 22,570 yr, an age-depth curve in cal. yr B.P., reflecting the sedimentation pattern, can be
165 constructed for the core (See the supplementary material). Although the age-depth model is
166 obtained based on two dates, it roughly shows the sedimentation rates are c. 0.1 mm/yr and
167 0.28 mm/yr for the depths of 0–155 cm and 155–320 cm, respectively. Ages of other depths
168 are deduced by assuming that the sedimentation rate is constant for the lower and upper
169 sections of the core, i.e., 9,250 cal. yr BP at 80 cm depth, 17,930 cal. yr BP at 190 cm, 19,350
170 cal. yr BP at 230 cm, and 21,140 cal. yr BP at 280 cm, which are determined as the timing of
171 the changes of the pollen zones.

172

173 **4.2 Pollen analysis**

174 **4.2.1 Surface samples**

175 Fifty palynomorphs were identified from the six surface soil samples collected in close
176 proximity to the core, including 29 families and seven genera of angiosperms, three genera of
177 gymnosperms, nine families and one genus of pteridophytes, and one genus of alga (See the
178 supplementary material). The pollen assemblage is dominated by trees and shrubs, at
179 percentages ranging from 79.5% to 97.0% of the total pollen and spores. *Pinus* pollen
180 (62.3–87.1%) dominates in all six surface samples, followed by *Abies* (3.3–10.7%), *Quercus*
181 (0–5.5%) and *Ericaceae* (0–4.1%). Herb pollen is present at low percentages (1.8–4.1%), and
182 comprises *Artemisia*, other Compositae, Caryophyllaceae, Chenopodiaceae, Convolvulaceae,
183 Cruciferae, Cyperaceae, Gramineae, Labiatae, Liliaceae and Polygonaceae. Pteridophyte
184 spores account for 0.3–15.3%, including Athyriaceae, Cyatheaceae, Gymnogrammaceae,
185 Hymenophyllaceae, Loxogrammaceae, Lygodiaceae, Plagiogyriaceae, Polypodiaceae, *Pteris*
186 and Sinopteridaceae. Aquatic plants are recorded at low percentages (0–3%), comprising
187 *Myriophyllum* and *Zygnuma*. This pollen assemblage is consistent with the local vegetation of
188 the lake basin and the surrounding mountains, reflecting a needle-leaved forest dominated by
189 *Pinus* and accompanied by some broad-leaved components, e.g. *Quercus* and *Ericaceae*.

190

191 **4.2.2 Pollen diagram zonation and description**

192 Pollen analysis of the core samples shows a high degree of taxonomic diversity. The
193 palynoflora comprises 83 palynomorphs, which can be identified to 45 families and 13 genera
194 of angiosperms, one family and seven genera of gymnosperms, 12 families and three genera
195 of pteridophytes and two genera of algae (See the supplementary material). Some of the
196 selected palynomorphs extracted from the core are illustrated in the supplementary material.

197 A greater diversity of palynomorphs was recovered from the core samples than from the
198 surface samples. However, many of the taxa found in the core but missing from surface
199 samples are not present in the upper part of the core and are no longer present in the
200 immediate area so do not contribute to the local pollen rain. Examples include *Cedrus*,
201 *Dacrydium* and *Taxodium* amongst the gymnosperms and the angiosperm taxa *Actinidiaceae*,

202 Anacardiaceae, *Carpinus*, Clethraceae, Flacourtiaceae, Icacinaceae, Juglandaceae,
203 *Liquidambar*, Myrsinaceae, Palmae and *Tilia*. Some of these taxa have a subtropical
204 distribution and their closest occurrence to the study site is at much lower elevation near the
205 Jinsha River or considerably further south in Yunnan. Other taxa such as Araceae, Araliaceae,
206 Campanulaceae, Caprifoliaceae, Caryophyllaceae and Umbellifereae are present in the
207 immediate area but are entomophilous plants with relatively lower pollen production which
208 might be expected to be under-represented in the local pollen rain.

209 A cluster analysis performed using *Tilia* (with CONISS) divided the pollen diagram into
210 five distinct zones (Fig. 2). Brief descriptions of each zone are as follows.

211

212 **Pollen zone 1 (320–280 cm: 22,570–21,140 cal. yr BP):**

213 This zone is characterized by a dominance of tree and shrub pollen (72.9–81.3%), followed
214 by herbs (6.3–20%), ferns (4.2–12.5%) and aquatics (0–4.2%). Among the trees and shrubs,
215 the percentage of broad-leaved elements (42.2–70.8%) is higher than that of conifers
216 (10.4–33.9%). The trees and shrubs are dominated by the broad-leaved taxa *Quercus*
217 (20–62.5%, including *Quercus* sp. 1 and sp. 2), *Betula* (1.8–7.6%), *Castanopsis* (0–6.7%) and
218 the coniferous taxa *Pinus* (6.3–24.4%) and *Abies* (4.2–10.1%). Pollen grains of other
219 coniferous plants such as *Picea* and *Tsuga*, and broad-leaved plants such as *Corylus*, *Ulmus*
220 and Ericaceae are also present in minute quantities. Herbs are represented by *Artemisia*
221 (0–11.5%), coupled with Chenopodiaceae (0–4.4%), Compositae (0–4.4%), Labiatae
222 (0–4.2%), and Polygonaceae (0–3.7%). Fern taxa include Athyriaceae (3.7–6.7%),
223 Polypodiaceae (0–4.6%), Gymnogrammaceae (0–4.2%) and *Pteris* (0–2.1%). Two taxa of
224 aquatic plants, *Myriophyllum* and *Pediastrum*, are recorded, at 0–3.1% and 0–1.0%,
225 respectively.

226 The pollen assemblages of pollen zone 1 and the surface samples are both dominated by
227 tree and shrub pollen, represented by 72.9–81.3% and 79.5–97%, respectively. *Quercus*
228 pollen (20–62.5%) dominates the trees and shrubs of pollen zone 1, followed by *Pinus*, *Abies*,
229 *Betula* and *Castanopsis*. In contrast, *Pinus* pollen (62.3–87.1%) dominates the trees and

230 shrubs of the surface samples, followed by *Abies*, *Quercus* and Ericaceae. The percentage of
231 herb pollen is comparatively high in pollen zone 1 (6.3–20%) compared to the surface
232 samples (1.8–4.1%). Similar percentages of pteridophyte spores (pollen zone 1: 4.2–12.5%,
233 surface samples: 0.3–15.3%) and aquatics (pollen zone 1: 0–4.2%, surface samples: 0–3%)
234 are recorded in pollen zone 1 and the surface samples.

235

236 **Pollen zone 2 (280–230 cm: 21,140–19,350 cal. yr BP):**

237 In this zone, two distinct characteristics are observed: firstly a sharp increase in the aquatic
238 pollen percentage, reaching a maximum (16.7%) for the entire profile at a depth of 270 cm,
239 which is attributed to the prevalence of *Myriophyllum* and *Pediastrum*. Secondly, trees and
240 shrubs continue to dominate in this zone. The percentage of trees and shrubs ranges from
241 52.3% to 79.6%. As in pollen zone 1, broad-leaved trees (34.4–65.2%) still occupy a higher
242 percentage than conifers (8.6–45.2%). Among the conifers, it should be noted that *Pinus*
243 pollen reaches its lowest value (2.1%) for the whole profile at a depth of 230 cm.
244 Broad-leaved trees, i.e. *Quercus* (4.1–56.5%), *Betula* (3.4–13.7%), *Castanopsis* (0–8.5%) and
245 *Corylus* (0–6.3%), together with herbaceous taxa, i.e. *Artemisia* (0–12.8%) and Polygonaceae
246 (2.2–6.9%), continue to play an important role in this zone. In addition, some new
247 broad-leaved elements, *Alnus*, *Carpinus*, Actinidaceae, *Ilex*, Leguminosae, *Tilia*, Cruciferae
248 and Plantaginaceae, are found sporadically for the first time. The percentage of fern spores
249 (1.3–13.8%) remains at almost the same level as in pollen zone 1. Athyriaceae spores show a
250 slight increase (up to 10.9%), but Gymnogrammaceae (0–0.4%), Polypodiaceae (0–1.1%)
251 and *Pteris* (0–1.1%) display minor decreases.

252 Tree and shrub pollen dominates the pollen assemblages of both pollen zone 2 and the
253 surface samples, but its percentage in pollen zone 2 (52.3–79.6%) is lower than in the surface
254 samples (79.5–97%). *Quercus* pollen dominates the trees and shrubs of pollen zone 2
255 (4.1–56.5%), compared to the dominance of *Pinus* pollen (62.3–87.1%) in the surface
256 samples. The percentages of herb pollen (pollen zone 2: 2.2–21.2%, surface samples:
257 1.8–4.1%) and aquatics (pollen zone 2: 4.1–16.7%, surface samples: 0–3%) are
258 comparatively high in pollen zone 2 compared to the surface samples. Pteridophyte spores

259 account for 1.3–13.8% and 0.3–15.3%, respectively, in pollen zone 2 and the surface samples.

260

261 **Pollen zone 3 (230–190 cm: 19,350–17,930 cal. yr BP):**

262 In this zone, tree and shrub pollen maintains a dominant status (79.7–92.2%), followed by
263 herbs (5.2–13.7%), ferns (0.7–7.1%) and aquatics (0–5.8%). The percentage of trees and
264 shrubs reaches its highest value (92.2%) of the profile, at a depth of 200 cm. The conifers
265 (28.4–66.8%) show a higher percentage than broad-leaved trees (19–51.4%). *Pinus*
266 (19.2–50.0%) and *Abies* (9.0–43.4%) pollen shows a sharp increase, and *Abies* pollen in
267 particular maintains a peak value (43.4%) throughout the profile. The broad-leaved trees
268 *Quercus* (9.5–31.1%) and *Betula* (1.3–9.6%), and herbaceous *Artemisia* (0–11.2%), also play
269 an important role. The ferns are dominated by Athyriaceae, ranging from 0.2% to 7.1%. Six
270 other types of ferns, i.e. Polypodiaceae, Selaginellaceae, Sinopteridaceae, Hymenophyllaceae,
271 *Pteris* and Lygodiaceae, occur at low percentages, less than 2%. The prevalence of
272 *Myriophyllum* (0–2.8%) and *Pediastrum* (0–5.8%) declines sharply and one new aquatic
273 taxon, Potamogetonaceae, appears in this zone at a low percentage (0–0.1%).

274 The percentage of tree and shrub pollen in pollen zone 3 (79.7–92.2%) is more similar
275 than the previous zones to that of the surface samples (79.5–97%). As in the surface samples,
276 *Pinus* pollen dominates in pollen zone 3, followed by *Abies* and *Quercus*. The percentages of
277 herb pollen (pollen zone 3: 5.2–13.7%, surface samples: 1.8–4.1%) and aquatics (pollen zone
278 3: 0–5.8%, surface samples: 0–3%) in pollen zone 3 are higher than in the surface samples.
279 However, a comparatively lower percentage of pteridophyte spores is recorded in pollen zone
280 3 (0.7–7.1%) than in the surface samples (0.3–15.3%).

281

282 **Pollen zone 4 (190–80 cm: 17,930– 9,250 cal. yr BP):**

283 Tree and shrub pollen dominates in this zone (75.8–90.4%). Herbs rank second (7.5–18.4%),
284 followed by ferns (0–12.1%) and aquatics (0–4%). Coniferous *Pinus* (12.6–46.9%) and *Abies*
285 (1.8–30.3%), and broad-leaved *Quercus* (9.1–37.8%) and *Betula* (0–13.5%) are the dominant
286 elements of trees and shrubs. Additionally, three other coniferous taxa, *Picea*, *Tsuga* and

287 Taxodiaceae, and 28 broad-leaved tree species including *Corylus*, *Castanopsis*, *Liquidambar*
288 and *Myrsinaceae* are recorded at low percentages. Herbs are represented by *Artemisia*
289 (0–9.9%), *Labiatae* (0–6.1%) and *Polygonaceae* (0.4–4.7%), accompanied by
290 *Chenopodiaceae*, *Cyperaceae*, *Plantaginaceae* and *Gramineae* in minute quantities. Nine types
291 of ferns are found in this zone, among which *Athyriaceae* and *Polypodiaceae* possess
292 relatively high percentages of 0–12.1% and 0–2.2%, respectively. Three aquatic plants occur:
293 *Myriophyllum* (0–3.7%), *Pediastrum* (0–0.6%), and *Zygnema* (0–0.2%).

294 Tree and shrub pollen maintains a dominant status in pollen zone 4 (75.8–90.4%) and in
295 the surface samples (79.5–97%). *Pinus* pollen dominates the pollen assemblage of pollen
296 zone 4 (12.6–46.9%), but its percentage is much lower than in the surface samples
297 (62.3–87.1%). The percentages of *Quercus* (pollen zone 4: 9.1–37.8%, surface samples:
298 0–5.5%) and *Abies* pollen (pollen zone 4: 1.8–30.3%, surface samples: 3.3–10.7%) in pollen
299 zone 4 are generally higher than in the surface samples. A comparatively higher percentage of
300 herb pollen is documented in pollen zone 4 (7.5–18.4%) relative to the surface samples
301 (1.8–4.1%). Pteridophyte spores (pollen zone 4: 0–12%, surface samples: 0.3–15.3%) and
302 aquatics (pollen zone 4: 0–4%, surface samples: 0–3%) occur in similar percentages in pollen
303 zone 4 and the surface samples.

304

305 **Pollen zone 5 (80–0 cm: 9,250 cal. yr BP – present):**

306 This zone is dominated by tree and shrub pollen (47–84.2%), followed by herbs (4.9–37.4%),
307 ferns (7.8–24.8%) and aquatics (0–3%). The pollen percentage of conifers (31.3–79.9%) is
308 higher than that of broad-leaved trees (4.3–37.6%). From the beginning to the end of this
309 zone, *Pinus* (14–56.8%) shows a decrease then increases sharply, while *Quercus* (1–29.1%)
310 and *Betula* (0–7.4%) show a decreasing trend, and *Abies* (7.4–27.2%) an increasing one.
311 *Tsuga* (1.1–7.5%) reaches its highest percentage in this zone. Pollen of other trees and shrubs
312 such as *Picea*, *Alnus*, *Corylus*, *Carpinus*, *Ericaceae*, *Anacardiaceae*, *Dipsacaceae*,
313 *Flacourtiaceae* and *Meliaceae* are found in some samples, at percentages of less than 1%.
314 Herbs are characterized by a distinct decrease in *Artemisia* (0–3.4%) and an increase in
315 *Polygonaceae* (2–20.8%) and *Labiatae* (0.7–15.4%). Among the fern spores, *Polypodiaceae*

316 (4.5–17.9%) shows a remarkable increase and Athyriaceae (0–6.3%) a notable decrease. The
317 percentage of aquatics changes little compared to pollen zone 4, but *Myriophyllum* disappears
318 in this zone. Thus only two types are recorded, *Pediastrum* (0–0.6%) and *Zygnema* (0–3%).

319 Tree and shrub pollen dominates the pollen assemblages of both pollen zone 5 and the
320 surface samples, represented by 47–84.2% and 79.5–97%, respectively, among which *Pinus*,
321 *Abies*, and *Quercus* are the dominant taxa. The percentages of herb pollen (pollen zone 5:
322 4.9–37.4%, surface samples: 1.8–4.1%) and pteridophyte spores (pollen zone 5: 7.8–24.8%,
323 surface samples: 0.3–15.3%) are generally greater in pollen zone 5 than in the surface
324 samples. Aquatics occur at the same percentage (0–3%) in pollen zone 5 and the surface
325 samples.

326

327 **5 Discussion and conclusions**

328 **5.1 Climatic implications of the principal palynomorphs from Wenhai Lake**

329 The palynoflora found in the Wenhai core includes a large number of potential climate
330 indicators. For example, *Pinus* is currently distributed below 3,200 m elevation in Southwest
331 China and is commonly found in slightly warm and moderately dry habitats. *Pinus*
332 *yunnanensis* Franch., *P. densata* Mast. and *P. armandi* Franch. are the dominant species on
333 the mountains of northwestern Yunnan (KIBCAS, 1986). *Tsuga* is a cold-tolerant and
334 hygrophilous conifer, requiring a MAT of 8.4 to 10.5°C and a MAP of about 1,000 mm for
335 favorable growth in Yunnan (WGYV, 1987). One species, *Tsuga dumosa* (D. Don) Eichler,
336 and one variety, *T. chinensis* (Franch.) E. Pritz. var. *forrestii* (Downie) Silba are recorded in
337 northwestern Yunnan (KIBCAS, 1986; Wang et al., 2007). *Abies* is strongly associated with
338 cold and dry habitats with a MAT of 2–8°C and MAP ca. 600 mm in the mountains of
339 Southwest China (CCCV, 1980; Jarvis, 1993). Five species, viz. *Abies delavayi* Franch, *A.*
340 *forrestii* C. Rogers, *A. georgei* Orr, *A. nukiangensis* W. C. Cheng & L. K. Fu, *A. ferreana*
341 Bordères & Gaussen, and two varieties, *A. ernestii* Rehd. var. *salouenensis* (Borderes et
342 Gaussen) W. C. Cheng et L. K. Fu, and *A. georgei* Orr var. *smithii* (Viguie et Gaussen) W. C.
343 Cheng et L. K. Fu, occur in northwestern Yunnan (KIBCAS, 1986). *Betula* is viewed as a
344 cold- and drought-tolerant element. Eleven species and two varieties occur in Yunnan, among

345 which five species and two varieties grow in Lijiang, including *B. calcicola* (W. W. Smith)
346 *Hu*, *B. delavayi* Franch, *B. platyphylla* Suk., *B. utilis* D. Don, *B. potaninii* Batal, *B. utilis* D.
347 Don var. *sinensis* (Franch.) H. Winkl, and *B. delavayi* Franch var. *polyneura* Hu ex. P. C. Li
348 (KIBCAS, 1991). *Alnus* usually grows on riverbanks or at village margins, in moist temperate
349 habitats. One species, *A. nepalensis* D. Don is found in northwestern Yunnan (KIBCAS,
350 1991). Evergreen sclerophyllous *Quercus* displays considerable ecological adaptability, and
351 can grow in either dry or humid environments. This genus is widely distributed in the fog
352 zone (with higher humidity, at about 3,100 m) on the Jade Dragon Snow Mountain, where it
353 forms a montane needle- and broad-leaved mixed forest along with *Tsuga* and *Picea* (WGYV,
354 1987). From our personal observations, some small *Quercus* trees are present up to about
355 3,800 m. *Artemisia* is mainly distributed in temperate areas of mid to high latitudes of the
356 Northern Hemisphere, usually in arid or semi-arid environments (Valles and McArthur,
357 2001). The genus *Artemisia* is considered an indicator of steppe climate (Erdtman, 1952) and
358 moderate precipitation (El-Moslimany, 1990). There are 54 species and eight varieties
359 growing in Yunnan (KIBCAS, 2003a). Cyperaceae is a cosmopolitan family with ca. 5,000
360 species and 104 genera. Many species of this family commonly grow in wetlands and
361 surrounding areas, adapted to open and sunny conditions. About 26 genera and 272 species
362 occur in Yunnan. The high frequency of Cyperaceae pollen may indicate humid conditions
363 (KIBCAS, 2003b; Sun et al. 2003).

364

365 **5.2 Vegetation and climate history at Wenhai**

366 Based on the climatic preferences of the major taxa recovered from the Wenhai core, the
367 palynological record reveals a detailed history of shifting vegetation and climate change in
368 this region during the past 22,570 yrs (Fig. 3). From 22,570 to 21,140 cal. yr BP (Pollen zone
369 1), the vegetation surrounding the lake catchment was dominated by broad-leaved forest
370 (composed mainly of *Quercus*, *Betula* and *Castanopsis*), accompanied by needle-leaved
371 forest (mainly *Pinus* and *Abies*). The herbaceous plants *Artemisia*, *Labiatae*, *Compositae* and
372 *Polygonaceae*, and ferns *Athyriaceae*, *Polypodiaceae*, *Gymnogrammaceae* and *Pteris*, grew
373 around the lake or under coniferous or broad-leaved trees. This pollen assemblage indicates a
374 rather cold and dry climate relative to the present followed by cold and wet conditions.

375 Between 21,140 and 19,350 cal. yr BP (Pollen zone 2), the vegetation was dominated by
376 broad-leaved forest and needle-leaved forest as before, with a notable increase in *Betula*
377 pollen and a sharp decrease in *Quercus* pollen, reflecting a relatively cold and dry climate
378 with several fluctuations in humidity during this period. From 19,350 to 17,930 cal. yr BP
379 (Pollen zone 3), the coniferous trees *Pinus* and *Abies* showed a distinct increase, with *Abies*
380 especially reaching its maximum proportion during this period. In contrast, broad-leaved
381 *Quercus* displayed a remarkable decrease compared to the previous stage. This pollen
382 assemblage suggests a transition from broad-leaved forest to needle-leaved forest, pointing to
383 the coldest and driest climate conditions since 22,570 cal. yr BP. In the period from 22,570 to
384 17,930 cal. yr BP, needle-leaved forest dominated by *Pinus* and *Abies* gradually expanded
385 and reached a maximum extent, and at the same time, the extent of *Betula* increased. This
386 period might correspond to the cold Last Glacial Maximum (LGM). However, the exact start
387 and end dates of the LGM in Southwest China has been the subject of much debate. For
388 example, Chen et al. (2014) reported that the LGM occurred between 29,200 and 17,600 cal.
389 yr BP, based on the expansion and maximum extent of cold-temperature coniferous forest
390 (mainly *Abies/Picea*) in the Xingyun Lake catchment of central Yunnan. Long et al. (1991)
391 identified that the LGM occurred from 30,000 to 15,000 yr BP, with coverage of conifer and
392 broad-leaved mixed forest in the Qiliu Lake catchment of central Yunnan. Jiang et al. (2001)
393 concluded that the LGM occurred from 33,000 to 16,000 yr BP, with vegetation comprising
394 montane mixed coniferous and broad-leaved forest and sclerophyllous evergreen oaks in the
395 Heqing Basin of northwestern Yunnan. Thus, previous palynological records from Yunnan
396 tend to provide broader estimates for the LGM. In the present paper, because the basal age of
397 the Wenhai core reaches only to 22,570 cal. yr BP, we cannot deduce the date of the start of
398 the LGM, which perhaps occurred prior to the inferred basal age, as evidenced by the
399 relatively low pollen sum compared with pollen zones 4 and 5. Between 17,930 and 9,250 cal.
400 yr BP (Pollen zone 4), coniferous forest and broad-leaved forest began to decline and increase,
401 respectively, until 140 cm depth of the core, reflecting increases in temperature and humidity
402 relative to pollen zone 3. From 140 cm to 110 cm, coniferous forest expanded, but
403 broad-leaved forest gradually shrank, which indicates colder and drier climate conditions,
404 likely corresponding to the Younger Dryas cold event (YD). The YD is also recorded by other

405 studies in Yunnan. For example, Shen et al. (2006) pointed to the relatively cold period of
406 12,950 to 11,750 cal. yr BP as the YD, based on the dominance of *Betula* and deciduous oaks
407 in the Erhai Lake catchment. Xiao et al. (2014) identified a relatively cold phase between
408 12,230 and 11,510 cal. yr BP, based on the dominance of open alpine meadow around Tiancai
409 Lake. From 9,250 cal. yr BP to the present day (Pollen zone 5), *Pinus* underwent a process of
410 decrease at the depth of 50–80 cm (from 38.1% to 14%), increase from 30 to 50 cm (from 14%
411 to 56.8%, this shows a trend consistent with the Haligu core between 4,000–2,400 cal. yr BP),
412 and decrease again at 0–30 cm (from 56.8% to 14.5%), while *Tsuga* displays an opposite
413 trend. *Abies* shows a distinct increase during this period. *Quercus* increased at the beginning
414 of the stage, then decreased after that. This pollen assemblage indicates that needle-leaved
415 forest (comprising mainly *Pinus*, *Abies* and *Tsuga*) dominated the areas surrounding Wenhai
416 Lake during the Holocene, interspersed with broad-leaved elements (mainly *Quercus* and
417 *Betula*), reflecting a significant decline in humidity from the early to late Holocene, which
418 might be related to a strong Asian summer monsoon over Southwest China during the early
419 Holocene and a reduced monsoon intensity in the mid-late Holocene (Dykoski et al., 2005;
420 Kramer et al., 2010).

421

422 **5.3 Palynological signals of human activity detected in the Wenhai core**

423 Based on pollen and other evidence, human influences on postglacial vegetation have been
424 inferred in Europe and North America (e.g., Brugam, 1978; H irons and Edwards, 1986; Smith
425 and Cloutman, 1988; Russell et al., 1993; Parker et al., 2002), as well in China (e.g., An et al.,
426 2002; He et al., 2002; Xu et al., 2002; Song et al., 2012). The present authors have previously
427 published another palynological investigation within the Hengduan Mountains (Song et al.,
428 2012). The altitude of the previous study site, Haligu, is 3,277 m, where there is no current
429 human settlement. The present study area, about 2 km far from Haligu, is close to a Naxi
430 ethnic minority settlement at Wenhai village. Moreover, Wenhai was an important stop on the
431 ancient “Tea-Horse Road” (Luo, 2003), making it likely that a wide variety of cultivated
432 plants were introduced into the agricultural system around the lake, as evidenced by an
433 ethnobotanical survey of traditional edible plants (including 45 cultivated plants) used by Naxi

434 people in Wenhai village (Zhang et al., 2013).

435 In the Wenhai core, several observations may be interpreted in terms of increasing
436 anthropogenic impact in the region. First, *Pinus* and *Quercus* pollen decreased distinctly at
437 the depth of 0–30 cm, which is probably linked with the fact that local people felled the trees
438 for house construction or fuel wood. We detected that *Quercus* pollen decreased steadily in
439 the Haligu core during the period from 2,400 cal. yr BP to the present day and observed
440 heavy present-day coppicing of *Quercus* for firewood, resulting in much reduced pollen
441 production. The comparison of both cores may substantiate the existing human impacts in the
442 region. Second, the occurrence of abundant Labiatae pollen also indicates increasing human
443 activity. From our personal observation, the Naxi people in Wenhai village currently cultivate
444 several Labiatae species, including *Perilla frutescens* (L.) Britton and *Mentha* spp. as edible
445 herbs and for medical utilization. Third, the increase in Polygonaceae pollen (likely to be
446 *Fagopyrum*) could be an important indicator of human activity in the region, as the Naxi
447 people continue to plant buckwheat as an important crop today. Although we have no
448 absolute way to confirm these signals correlated with increased human settlement in the
449 region, we believe a further ongoing study of two soil pit profiles with high resolution of
450 dating and sampling from the village of Wenhai will give us even more information about
451 human activity on the Jade Dragon Snow Mountain.

452

453 **Acknowledgements**

454 The authors thank Prof. Nai-Qiu Du from the Institute of Botany, Chinese Academy of
455 Sciences, and Dr. Shao-Hua Yang from the Institute of Alpine Plants in Yunnan Academy of
456 Agricultural Sciences, for their help with this study. This study was supported by the China
457 National Key Basic Research Program (No. 2014CB954201), National Natural Science
458 Foundation of China (No. 41271222), and a visiting scholarship funded by the China
459 Scholarship Council (No. 201204910043).

460

461 **References**

462 An, C. B., Chen, F. H., and Feng, Z. D.: Study on the relationship between the vegetation
463 change and the human activities in the Gangsu-Qinghai region during the period from
464 mid- to late-Holocene, *Arid Land Geogr.*, 25(2), 160–164, 2002 (in Chinese with
465 English abstract).

466 An, C. B., Tao, S.C., Zhao, J. J. , Chen, F. H., Lv, Y. B., Dong, W. M., Li, H., Zhao, Y.T., Jin,
467 M., and Wang, Z. L.: Late Quaternary (30.7–9.0 cal ka BP) vegetation history in Central
468 Asia inferred from pollen records of Lake Balikun, northwest China, *J. Paleolimnol.*,
469 49(2), 145–154, 2013.

470 Bronk, R.: OxCal Program v3.10, University of Oxford Radiocarbon Accelerator Unit, 2005.

471 Brugam, R. B.: Pollen indicators of land-use change in southern Connecticut, *Quat. Res.*,
472 9(3), 349–362, 1978.

473 Cao, X., Ni, J., Herzschuh, U., Wang, Y., and Zhao, Y.: A late Quaternary pollen dataset from
474 eastern continental Asia for vegetation and climate reconstructions: Set up and
475 evaluation, *Rev. Palaeobot. Palyno.*, 194, 21–37, 2013.

476 CCCV (Compilation Committee of Chinese Vegetation): *Vegetation of China*, Science Press,
477 Beijing, 1980 (in Chinese).

478 Chen, X. M., Chen, F. H., Zhou, A. F., Huang, X. Z., Tang, L. Y., Wu, D., Zhang, X. J., and
479 Yu, J. Q. Vegetation history, climatic changes and Indian summer monsoon evolution
480 during the Last Glaciation (36,400–13,400 cal yr BP) documented by sediments from
481 Xinyun Lake, Yunnan, China, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 410, 179–189,
482 2014.

483 Conservation International: Biodiversity Hotspots, Retrieved 9 September 2008, From
484 <http://www.biodiversityhotspots.org/>, 2008.

485 Cook, C. G., Jones, R. T., and Turney, C. M.: Catchment instability and Asian summer
486 monsoon variability during the early Holocene in southwestern China, *Boreas*, 42,
487 224–235, 2013.

488 Dykoski, C. A., Edwards, R. L., Cheng, H., Yuan, D. X., Cai, Y. J., Zhang, M. L., Lin, Y. S.,
489 Qing, J. M., An, Z. S., and Revenaugh, J.: A high-resolution, absolute-dated Holocene
490 and deglacial Asian monsoon record from Dongge Cave, *Earth Planet. Sci. Lett.*, 233,
491 71–86, 2005.

492 El-Moslimany, A. P.: Ecological significance of common non-arboreal pollen: examples from
493 dry lands of the Middle East, *Rev. Palaeobot. Palyno.* 64, 343–350, 1990.

494 Erdtman, G.: *Pollen morphology and plant taxonomy (Angiosperms. an introduction to*
495 *palynology-I)*, Almqvist and Wiksell, Stockhome, 1952.

496 Erdtman, G.: The acetolysis method, revised description, *Svensk Botanisk*
497 *Tidskrift* 54, 561–564, 1960.

498 Feng, J. M., Wang, X.P., Xu, C.D., Yang, Y.H., and Fang, J.Y.: Altitudinal patterns of plant
499 species diversity and community structure on Yulong Mountains, Yunnan, China, *J. Mt.*
500 *Sci.*, 24 (1), 110–116, 2006 (in Chinese with English abstract).

501 Foster, G. C., Chiverrell, R. C., Harvey, A. M., Dearing, J. A., and Dunsford, H.: Catchment
502 hydro-geomorphological responses to environmental change in the Southern Uplands of
503 Scotland, *Holocene*, 18, 935–950, 2008.

504 Grimm, E.: *TILIA* version 1.11, Illinois State Museum, Springfield, USA, 1997.

505 He, X. B., Tang, K. L., Tian, J. L., and Matthews, J. A.: Paleopedological investigation of
506 three agricultural loess soils on the Loess Plateau of China, *Soil Sci.*, 167, 478–491,
507 2002.

508 He, Y. Q., Yao, T. D., Yang, M. X., and Shen, Y. P.: Contemporary significance of snow and
509 ice indicated by the record in a shallow ice core from a temperate glacier in southwestern
510 monsoon region, *J. Glaciology Geocryology*, 22(3), 235–242, 2000a (in Chinese with
511 English abstract).

512 He, Y. Q., Yao, T. D., Yang, M. X., and Sun, W. Z.: The new results of $\delta^{18}\text{O}$ studies on the
513 system of precipitation, snow, ice and glacial runoff at the glacier Baishui No. 1 region in
514 Mt. Yulong, China, *J. Glaciology Geocryology*, 22(4), 391–393, 2000b (in Chinese with
515 English abstract).

516 H irons, K. R., and Edwards, K. J.: Events at and around the first and second *Ulmus* declines:
517 Palaeoecological investigations in Co. Tyrone, Northern Ireland, *New Phytol.*, 104,
518 131–153, 1986.

519 IBCAS (Institute of Botany, Chinese Academy of Sciences): *Spore pteridophytorum*
520 *sinicorum*, Science Press, Beijing, 1976 (in Chinese).

521 IBSCIBCAS (Institute of Botany and South China Institute of Botany, Chinese Academy of

522 Sciences): *Angiosperm pollen flora of tropic and subtropic China*, Science Press,
523 Beijing, 1982 (in Chinese).

524 Jarvis, D. I.: Pollen evidence of changing Holocene monsoon climate in Sichuan Province,
525 China, *Quat. Res.*, 39, 325–337, 1993.

526 Jiang, Q. F., Ji, J. F., Shen, J., Ryo, M., Tong, G. B., Qian, P., Ren, X. M., and Yan, D. Z.:
527 Holocene vegetational and climatic variation in westerly-dominated areas of Central
528 Asia inferred from the Sayram Lake in northern Xinjiang, China, *Sci. China Ser. D*,
529 56(3), 339–353, 2013.

530 Jiang, X. Z., Wang, S. M., and Yang, X. D.: Paleoclimatic and environmental changes over
531 the last 30,000 years in Heqing Basin, Yunnan Province, *J. Lake Sci.*, 10(2), 10–16,
532 1998 (in Chinese with English abstract).

533 Jiang, X. Z., Yang, X. D., Wang, S. M., and Tong, G. B.: The Last Glacier Maximum pollen
534 record in the lake sediments from ancient Heqing Lake and its significance for
535 palaeomonsoon, *Acta Micropalaeontol. Sin.*, 18(3), 263–267, 2001 (in Chinese with
536 English abstract).

537 Jones, R. T., Cook, C. G., Zhang, E. L., Langdon, P. G., Jordan, J., and Turney, C.: Holocene
538 environmental change at Lake Shudu, Yunnan Province, southwestern China,
539 *Hydrobiologia*, 693, 223–235, 2012.

540 KIBCAS (Kunming Institute of Botany, Chinese Academy of Sciences): *Flora Yunnanica*
541 (Tomus 4), Science Press, Beijing, 1986 (in Chinese).

542 KIBCAS (Kunming Institute of Botany, Chinese Academy of Sciences): *Flora Yunnanica*
543 (Tomus 5), Science Press, Beijing, 1991 (in Chinese).

544 KIBCAS (Kunming Institute of Botany, Chinese Academy of Sciences): *Flora Yunnanica*
545 (Tomus 13). Science Press, Beijing, 2003a (in Chinese).

546 KIBCAS (Kunming Institute of Botany, Chinese Academy of Sciences): *Flora Yunnanica*
547 (Tomus 15). Science Press, Beijing, 2003b (in Chinese).

548 Kramer, A., Herzschuh, U., Mischke, S., and Zhang, C. J.: Holocene treeline shifts and
549 monsoon variability in the Hengduan Mountains (southeastern Tibetan Plateau),
550 implications from palynological investigations, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*,
551 286, 23–41, 2010.

552 Li, X. Q., Zhao, K. L., Dodson, J., and Zhou, X. Y.: Moisture dynamics in central Asia for the
553 last 15 kyr: new evidence from Yili Valley, Xinjiang, NW China, *Quat. Sci. Rev.*, 30,
554 3457–3466, 2011.

555 Li, X. Q., and Du, N. Q.: The acid-alkali-free analysis of Quaternary pollen, *Acta Bot. Sin.*,
556 41(7), 782–784, 1999 (in Chinese with English abstract).

557 Long, R. H., Li, B. F., Brenner, M., and Song, X. L.: A study of late Pleistocene to Holocene
558 vegetation in Qilu Lake of central Yunnan, *Geol. Yunnan* 10(1), 105–118, 1991 (in
559 Chinese with English abstract).

560 Luo, S. W.: The historical route of the ancient “Tea-Horse Road” and the current value of its
561 tourism development, *J. Chongqing Norm. Uni. (Nat. Sci. Ed.)*, 20(3), 54–57, 2003 (in
562 Chinese with English abstract).

563 Mook, W. G.: Recommendations/resolutions adopted by the Twelfth International
564 Radiocarbon Conference, *Radiocarbon*, 28, 799, 1986.

565 Moore, P. D., Webb, J. A., and Collinson, M. E.: Pollen analysis, 2nd edn, Blackwell
566 Scientific Publications, London, 1991.

567 Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., and Kent, J.:
568 Biodiversity hotspots for conservation priorities, *Nature*, 403, 853–858, 2000.

569 Parker, A. G., Goudie, A. S., Anderson, D. E., Robinson, M., and Bonsall, C.: A review of the
570 mid-Holocene elm decline in the British Isles, *Prog. Phys. Geog.*, 26(1), 1–45, 2002.

571 Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Bertrand, C. J. H.,
572 Blackwell, P. G., Buck, C. E., Burr, G. S., Cutler, K. B., Damon, P. E., Edwards, R. L.,
573 Fairbanks, R. G., Friedrich, M., Guilderson, T. P., Hogg, A. G., Hughen, K. A., Kromer,
574 McCormac, G., Manning, S., Ramsey, C. B., Reimer, R. W., Remmele, S., Southon,
575 J. R., Stuiver, M., Talamo, S., Taylor, F. W., van der Plicht, J., and Weyhenmeyer, C. E.:
576 IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP, *Radiocarbon*, 46,
577 1029–1058, 2004.

578 Russell, E. W. B., Davis, R. B., Anderson, R. S., Rhodes, T. E., and Anderson, D. S.: Recent
579 centuries of vegetational change in the glaciated north-eastern United States, *J. Ecol.*,
580 81(4), 647–664, 1993.

581 Shen, J., Jones, R. T., Yang, X. D., Dearing, J. A., and Wang, S. M.: The Holocene vegetation

582 history of Lake Erhai, Yunnan Province southwestern China: the role of climate and
583 human forcings, *Holocene*, 16(2), 265–276, 2006.

584 Smith, A. G., and Cloutman, E. W.: Reconstruction of Holocene vegetation history in three
585 dimensions at Waun-Fignen-Felen, an upland site in South Wales, *Philos. Trans. R. Soc.*
586 *London, Ser. B Biol. Sci.*, 322, 159–219, 1988.

587 Song, X. Y., Yao, Y. F., Wortley, A. H., Paudyal, K. N., Yang, S. H., Li, C. S., and Blackmore,
588 S.: Holocene vegetation and climate history at Haligu on the Jade Dragon snow
589 mountain, Yunan, SW China, *Climatic Change*, 113, 841–866, 2012.

590 Sun, X. J., Luo, Y. L., Huang, F., Tian, J., and Wang, P. X.: Deep-sea pollen from the South
591 China Sea: Pleistocene indicators of east Asian monsoon, *Mar. Geol.*, 201, 97–118,
592 2003.

593 Valles, J., and McArthur, E. D.: *Artemisia* systematics and phylogeny- cytogenetic and
594 molecular in sights. In: McArthur, E. D., and Fairbanks, D. J. (eds.), *Shrubland*
595 *ecosystem genetics and biodiversity: proceedings. June 13–15, 2000*, US Department of
596 Agriculture Forest Service, Rocky Mountain Research Station, Provo, UT Ogden, USA,
597 pp. 67–74, 2001.

598 Wang, F. X., Chien, N.F., Zhang, Y. L., and Yang, H. Q.: *Pollen flora of China*, Science Press,
599 Beijing, 1995 (in Chinese).

600 Wang, H., Zhang, C. Q., Li, D. Z., Xue, R. G., and Yang, Q. E.: *Checklist of seed plants of*
601 *Lijiang Alpine Botanic Garden*, Yunnan Science and Technology Press, Kunming, 2007
602 (in Chinese).

603 WGYV (Writing Group of Yunnan Vegetation): *Vegetation of Yunnan*, Science Press, Beijing,
604 1987 (in Chinese).

605 Wu, Z. K., Zhang, C. Q., Huang, Y., Zhang, J. L., and Sun, B. L.: Analysis on the formation
606 of plant species diversity in the Yulong Mountains, upper reaches of Yangtze River,
607 *Resour. Environ. in the Yangtze Basin*, 15(1), 48–53, 2006 (in Chinese with English
608 abstract).

609 Xiao, J. L., Xu, Q. H., Nakamura, T., Yang, X. L., Liang, W. D., and Inouchi, Y.: Holocene
610 vegetation variation in the Daihai Lake region of north-central China: a direct indication
611 of the Asian monsoon climatic history, *Quat. Sci. Rev.*, 23, 1669–1679, 2004.

612 Xiao, X. Y., Haberle, S. G., Shen, J., Yang, X. D., Han, Y., Zhang, E. L., and Wang, S. M.:
613 Latest Pleistocene and Holocene vegetation and climate history inferred from an alpine
614 lacustrine record, northwestern Yunnan Province, southwestern China, *Quat. Sci. Rev.*,
615 86, 35–48, 2014.

616 Xu, Q. H., Kong, Z. C., Yang, X. L., Liang, W. D., and Sun, L. M.: Vegetation changes and
617 human influences on Qian'an Basin since the middle Holocene, *J. Integr. Plant Biol.*,
618 44(5), 611–616, 2002.

619 Ying, J. S.: Species diversity and distribution pattern of seed plants in China, *Biodivers. Sci.*,
620 9(4), 393–398, 2001.

621 Zhang, L. L., Zhang, Y., Wang, L., and Wang, Y. H.: An ethnobotanical study of traditional
622 edible plants used by Naxi people in northwest Yunnan, China –a case study in Wenhai
623 village, *Plant Divers. Resour.*, 35(4), 479–486, 2013.

624 Zhao, Y., Yu, Z. C., Chen, F. H., Ito, E., and Zhao, C.: Holocene vegetation and climate
625 history at Hurleg Lake in the Qaidam Basin, northwest China, *Rev. Palaeobot. Palyno.*,
626 145, 275–288, 2007.

627

628 **Figure legends**

629 **Figure 1.** a. The location of Wenhai Lake in northwestern Yunnan, China, b. The position of
630 core and surface soil samples, c. The location of Wenhai Lake in the Hengduan
631 Mountains, d. The location of Wenhai Lake on the Jade Dragon Snow Mountain, e.
632 An enlarged photograph of Wenhai Lake (c, d and e are cited from Google Earth)

633 **Figure 2.** Pollen percentage diagram from Wenhai Lake, northwestern Yunnan, China

634 **Figure 3.** Schematic diagrams showing vegetation succession over the past 22,570 yrs at
635 Wenhai

Figure 2

Figure 3