

The response to the Referee #1:

(1) Comments from Referee #1

In general, the review of the article is positive, but major improvements are necessary before the manuscript can be considered for publication: Line 017: Why to mention: "This paper is one of the studies: : : ." This paper and the results must be able to stand alone, it sounds like an excuse! Line 031: I'm a bit astonished that from 9,250 cal. Yr BP to present no major changes were highlighted although Fig. 2 documents noteworthy changes. Line 042: lie seems a not-quite correct term Line 073-076: The statement could be proven within the entire manuscript! Clear evidences are missing. Line 103: "densata Mast." are "also present" Line 153: Results – this is the weakest part of the manuscript in terms of interpretation!! Line 157: there is no "chronological control against which to decipher the vegetation and climate history". There is only a listing what might have happened within the different Pollen Zones, but an interpretation and/or a comparison to recent conditions is missing!!! Line 278: The discussion and the conclusions have to be improved deeply. The visual differences between Zone 1 and Zone 3 are not so clear, but the "interpretation" of the climate conditions are quite different. Zone 2, in between, shows completely different climatic and vegetative conditions, but there is no interpretation or any comparison to other published studies. According to this, chapter 5 (from Line 278 onwards) has to be improved tremendously. The results and this paper must be able to stand alone in contrast to the authors predication that they "published the first of a series of studies: : : ." Major revisions of the manuscript are necessary.

(2) Author's response

Line 017: We agree with Referee #1 that this paper and the results can stand alone.

Line 031: Fig. 2 documents noteworthy changes and major changes from 9,250 cal yr BP to the present should be highlighted.

Line 042: We agree that "lie" is not a suitable term.

Line 073-076: One aim of this paper is to develop insights into the changing floristic diversity and to draw inferences about past climate and anthropogenic influences based on palynological investigation. The other aim is to compare study sites at different altitudes in the region. We agree that clear evidences are missing in this regard.

Line 103: We also think the sentence "*P. densata* Mast. also present" is incorrect.

Lines 153, 157, 278: We agree with Referee #1 that the results, discussion and conclusions need to be improved in terms of interpretation.

(3) Author's changes in manuscript

Line 017: The sentence "is one of the studies covering a range of altitudes within this hotspot" has been removed (**Line 17 in the revised Ms**).

Line 031: From 9,250 cal. yr BP to the present, the vegetation has been dominated by needle-leaved forest (comprising mainly *Pinus*, *Abies* and *Tsuga*), interspersed with broad-leaved *Quercus* and *Betula*, reflecting a significant decline of humidity from the early to late Holocene (**Lines 50-53 in the revised Ms**).

Line 042: The term "lie" has been changed to "are located" (**Line 61 in the revised Ms**).

Line 073-076: We aim to use pollen data to develop insights into the changing floristic diversity and to draw inferences about past climate and anthropogenic influences in the region during the Late Quaternary (**Lines 110-112 in the revised Ms**).

Line 103: *P. densata* Mast. are also present (**Line 158 in the revised Ms**).

Lines 153, 157, 278: In the results section, we have deleted "chronological control against which to decipher the vegetation and climate history" (**Line 241 in the revised Ms**) and made a comparison of pollen assemblage between each pollen zone and the surface samples (representing recent condition) (**Lines 338-346, 364-371, 386-392, 406-415, 431-437 in the revised Ms.**) In the discussion and conclusion section, we have made a detailed comparison with previous studies, particularly in terms of the Last Glacial Maximum and the Younger Dryas (**Lines 477-645 in the revised Ms**).

The response to the Referee #2:

(1) Comments from Referee #2

General Comments

The authors present results of a pollen core dating back to at least 20,000bp. I would congratulate the authors for their growing body of work in the region. The data they collect will surely be an important contribution to scientific discussion in the region. However, a major goal of the manuscript is to make inferences on past climate, based on their palynological findings. Regrettably, I found this aspect of the paper questionable, and generally poorly argued. The authors climate inferences are restricted to "cold", "warm", "humid", and "dry", terms which are so open to personal interpretation that they are more likely to serve as a source of confusion than clarity. There seems to be no attempt to place these relative terms in context. For example, climatic inferences are not discussed in relation to well known climatic phenomena, such as the LGM, or even modern climate. Furthermore, climate inferences are based on few indicator taxa with questionable indicator value. The authors also do not adequately describe how modern vegetation and climate varies along mountain slopes, making at least this reader suspect the adequacy of the authors' ecological understanding of vegetation change along elevation gradients, and thus the ability to make climate inferences based on the vertical migrations of taxa on mountain slopes as determined by the pollen record. In general, while I deeply encourage the author's to get this information published, I cannot say that in its current form, the manuscript possesses the quantitative rigor that readers of BG might have come to expect.

Specific Comments

Line 21-26 - Climate at ~22,000 BP is initially inferred to be cool, presumably based on the dominance of broad-leaved taxa, and dry, based on the presence of Artemisia. At ~20,000 BP, again based on the dominance of similar broad-leaved taxa, climate is inferred to be warm, and, (presumably) based on the presence of aquatic taxa, humid. I found the apparent capacity for broad-leaved taxa to indicate both cool and warm climates confusing and unrealistic.

line 27 - Again, while the dominance of broad-leaved taxa is initially associated with cold conditions (line 21-23), in this line the dominance of broad-leaved taxa is associated to warm climate. In the methods section (line 110), broad-leaved taxa are described to "cloak" mountain sides at higher elevations, suggesting that dominance of broad-leaved taxa indicates cooler temperature. Thus, the author's climate inference does not seem to be consistent with their own descriptions of vegetation zonation along the elevation gradient. It also seems opposite to the expectation that conifers dominate at higher altitudes than broad-leaved trees. I'm a bit confused.

line 32 - The term "coupled" suggests that broad-leaved and needle-leaved taxa coexist together rather than alternate in dominance with changing climate conditions, which seems to be the idea the authors are trying to indicate.

line 35 - The strength of conviction the authors relate here concerning indications of human disturbance does not match the rather tentative mood in the discussion.

line 38 - Based on the figure provided, I cannot visualize the marked decline in *Quercus* pollen in the first 30cm of the core. Rather, I see a trending decline in *Quercus* that began much earlier (around 60cm, or arguably around 230cm when *Pinus* becomes dominant). One interesting aspect of the first 30cm I do see is that the nearly perfect negative correlation between *Pinus* and *Quercus* seems to break down. The dramatic decrease in *Pinus* beginning around 20cm is not matched by an expected (based on the rest of the profile) increase in *Quercus*. At any rate, I think that if the authors wish to base arguments of human impact on the vegetation then these specific aspect of the profile should be made more visually apparent to the readers so that we are able assess the statements independently.

line 52-53 - My initial reading of this sentence had me wondering why comparison between sites was predicated on altitudinal zonation of vegetation, as any two sites could be compared in theory. Maybe changing the word "and" ("compare between sites and build up....") to "in order to" or something equivalent might help.

line 97 - One of main objectives of the paper is make past climate inferences. The ability to make inferences on past climates from the vertical migration of taxa along mountain slopes, as evident from the palynological record, is ultimately based on our knowledge of how the present vegetation is distributed along the elevation gradient.

That said, I think the authors must do a better job of describing how present day vegetation changes with vertical ascent on these mountains. First, besides one citation at the beginning of the paragraph I notice that there are virtually no citations, especially to the botanical literature where vegetation zonation is likely to be well described. Second, the authors only describe the gradient from 3,100, where the study site is located, to 4000 masl. Considering that vertical migration can be up or down, a characterization of the type of forests below the site location seems critical. Third, based on the portion of the elevation gradient that has been described by the authors, it is very difficult for the reader to understand the main trends that are evident. For example, the distinction between broad-leaved and needle-leaved compositions seems to be critical to the climate inferences the authors make at later points, suggesting that broad-leaved and needle leaved forests dominate at different elevations, and by extension, different climates. However, this is not evident in their descriptions. For example, begining line 97, "The study area is located within a vegetation "sub-domain" characterized by *Pinus yunnanensis* Franch. forest and *Picea-Abies* forest typical of northwestern-central Yunnan (WGYV, 1987). The local vegetation displays a distinct vertical zonation. On the mountains surrounding Wenhai Lake (3,100–3,500 m), the vegetation is dominated by oaks (*Quercus pannosa* Hand.-Mazz) and pines."

Then...at line 109

"At higher elevations, between 3,500 and 3,800 m, the Jade Dragon Snow Mountain is cloaked in evergreen broad-leaved forest consisting of *Quercus pannosa* and *Cyclobalanopsis glauca* (Thunb.) Oerst, together with coniferous trees such as *Abies delavayi* Franch., *Picea likiangensis* (Franch.) E. Pritz and *Larix potanini* Batalin." Resuming, the authors have described a situation where at low and high elevations forests are dominated by oaks (broad-leaves) and conifers (needle leaves). The major distinction between broad and needle leaves does not seem to capture any vertical zonation of vegetation communities along the elevation gradient, at least as the authors have described it. This is important because the broad/needle distinction later serves as one the main arguments for inferring climate change.

And lastly, based on my reading of the authors description, I'm led to believe that dominance of broad-leaved taxa indicates higher elevations and, by inference, colder climates. This is opposite to my own expectations of needle-leaved taxa dominating at higher elevations.

line - 148 - 151 - Were the groupings determined by the tilia software based on the groupings of taxa, or the

taxa themselves?

line 168 - 172 - The grouping described here is later used as a basis to make climate inferences, thus it stands to reason that the groups should be based on their climatic tolerance. While in most circumstances I would generally agree that a distinction between broad and needle-leaved taxa is ecologically important, the authors have failed completely to articulate this (see previous commentary).

Also, it is not clear what the author's inclusion criteria for the "broad-leaved" category was. For example, the inclusion, of herbaceous taxa such as Cyperaceae seems without foundation. It is also not clear whether the "broad-leaved" category was restricted to *Quercus*, *Alnus*, *Artemisia*, *Cyperaceae*, *Ericaceae* and *Polygonaceae*, or also included other angiosperms (*Meliaceae*, *Flacourtsia*, *Rosaceae*, *Rutaceae*, *Salix*, etc).

Also, it is not clear what the author's inclusion criteria for the aquatic category was.

Mainly, I ask why not all aquatics are included, such as *pediastrum*?

Also, it seems that grouping should be exclusive, in the sense that one taxa should not appear in different groups that are used to infer climate. *Cyperaceae*, for example, is grouped into the broad-leaved group, as well as the hygrophilous group.

line 188-190 - "A greater diversity of palynomorphs was recovered from the core samples than from the surface samples, which might suggest that surface samples fail to capture the local vegetation completely." This seems a bit of a strange thing to say for two reasons. First, the core reflects 20,000 years of historical plant migrations up and down the slope as well as from other regions, while surface samples reflect only the most modern vegetation community. It seems intuitive that species should accumulate in the pollen record with time, thus the author's conclusion that it is due to the possibility that surface samples don't capture local vegetation pattern seems baseless. Second, palynological inference is ultimately based on the ability of surface samples, which are later fossilized under anoxic conditions, to capture trends in local vegetation pattern. If the authors contest that palynological samples adequately reflect local vegetation then they seem to have eroded the logical basis for their study.

line 195 - The presence of *Palmae* is interesting as it is a clear warm climate indicator. I didn't see it in the figure of pollen profile. Why not?

line 280-288 - The discussion opens with a paragraph where the authors outline what they believe to be indicator taxa for temperature and moisture. Generally, I found the section to be unconvincing. I am wary of any climate inferences based on the author's data for the following reasons.

1) Temperature and moisture co-vary in complex ways along the elevation gradient. The authors provide no description of how climate variables vary on the modern elevation gradient, thus it is impossible for the reader to understand how it has changed relative to modern conditions. How does precipitation vary along the elevation gradient in the authors's region? What are conditions in the lowlands? The relative terms such as warm, cold, humid, and dry, that the authors used to describe the climate are generally not useful. They are open to so much personal interpretation that these terms are more likely to confuse, rather than contribute to further scientific inquiry.

2) On a physiological level, all land plants are faced with the competing demands of taking up CO₂ from the atmosphere while limiting water loss, thus, the assumption that plant species move vertically to remain within either their temperature or moisture tolerance independently does not account for these coupled environmental constraints on growth and survival (Crimmins et al 2011). Because ambient temperature and moisture availability both influence plant water-energy balance, distributional shifts of plant species apparent from the pollen record may not be adequately explained by considering changes in past temperature or moisture in isolation. By extension, the idea that vertical migration of few taxa could indicate change in either one or the other climate variable seems naive based on our understanding of modern plant physiology. Climate

inferences should generally be based on many indicator species, not one or two.

3) The indicator taxa probably do not account for the entire extent of climate change experienced at the site. For example, two conifers, *Abies* and *Picea*, and *Betula* are considered to be indicators of cold climates, while *Pinus* is considered to indicate warm climate. The degree of temperature variation examined by considering only these taxa is relatively small compared to the taxa that are present in the core, such as *Palmae*, *Meliaceae*, *Flacourtiaceae*, etc, etc. Furthermore, *Abies* (author's indicator of cold) and *Pinus* (author's indicator of warm) visually tend to show positive correlation throughout the core (see *Tilia* figure), suggesting an overlapping response to environmental changes and thus are not likely to be able to distinguish between colder and warmer climates.

4) It is not clear whether the authors use the term hygrophilous to indicate plants that grow in and around the damp substrates surrounding the lake, or to indicate plants that are ecologically restricted to climates with high precipitation and/or low precipitation seasonality. Thus, it is unclear whether the authors view these taxa as indicators of the conditions of the immediate lake environment or regional precipitation. It is confusing because the authors have focused, until now, on regional climate inferences. The distinction is important because changes in abundance of aquatics and semi-aquatic taxa (hygrophilous) are likely to reflect changing local site conditions, rather than changes in regional climate (Bush 2004 provide a good discussion on this). For example, most of the taxa that the authors have chosen are predominantly comprised of species of fast growing low shrubs or small emergent herbs that occur in high light environments, such as forest edges surrounding lakes, rather than the forest understories. Thus, their increase and decline probably reflects shifting local processes in the lake rather than large scale change in precipitation. These taxa could only be used as indicators of regional precipitation if a positive correlation between their abundance and regional precipitation is expected. However, I don't see this as a likely scenario, as shifting abundances of these moisture indicators might even produce patterns opposite to what one might expect. For example, if decreasing precipitation lowers average lake levels it can increase suitable colonization sites for emergent hygrophilous taxa, whereas deeper lake levels that flood these colonization sites in response to high precipitation may decrease suitable habitat. In these examples, the amount of pollen of hygrophilous taxa is negatively correlated to regional precipitation. Patterns of hygrophilous taxa will depend as much on local topography of the lake bottoms and the nature of water inputs and outputs from the lake as regional climate. The point, is that once the ecology of hygrophilous taxa is taken into consideration, it is arguable that they are not likely to be good indicators of regional moisture.

5) The authors provide minimal support from the literature or distributional data that support the relevance of their chosen indicator taxa to climate inference. Many taxa, such as *Cyperaceae*, *Polygonaceae*, and *Poaceae* are extremely diverse taxa and show high degrees of ecological differentiation. *Artemisia*, a taxa the authors suggest is an indicator for dry environments, for example, has been shown to have wide ecological amplitudes in nearby regions that limit its use for climate inference (Subally & Quezal 2002).

Based on these observations, I am wary of the climate inferences the authors provide.

line 292 - 295 - I fail to understand how, based on fossil pollen, the authors know that certain taxa occurred around the vicinity of the lake and other taxa occurred at higher elevations. While pollen can certainly be transported downslope, it seems impossible to establish which pollen grains were produced at higher elevations and which were produced in situ, as least with the level of confidence that the authors suggest.

line 296 - While I would generally agree that the herbs are probably growing in forest edge conditions around the lake, the authors contention that *Artemisa*, previously indicated as a taxa indicating dry environments, should prefer the wet conditions around the lake seems inconsistent.

There seems to be some inconsistency in the environmental conditions that taxa indicate. Two other examples

became apparent to me as well. 1) Cyperaceae is considered a broad-leave taxa, which the authors use to make inferences concerning temperature, as well as an indicator of moist conditions. 2) Polygonaceae is an indicator of moist conditions as well as human disturbance. Once again, the ecological diversity of these taxa likely make their utility in making good climate inference very difficult.

line 299 - 300 - Cold and dry relative to what? How does this compare with other pollen studies and known climatic events (i.e. LGM). The authors do not provide a point of reference. The authors to not provide comparisons with other studies. The statement is thus not interpretable. Furthermore, it is not clear on what basis the authors have make their determination. What exactly makes the authors think this time period was cold and dry?

line 301 - 307 - Again, warm and humid relative to what. This statement is not interpretable. Furthermore, it is not clear on what basis the authors have determined the climate to be warm and humid. I assume it is based on the increase in pollen of herbaceous and shrubby taxa that the authors have suggested as hygrophilous. See previous discussion on the ecology of these taxa.

line 308 - 315 - On line 292 a dominance of broad-leaved taxa was associated with cold and dry conditions. Here, the decrease of broad-leaved taxa is associated with cold and dry conditions. I am thoroughly perplexed.

line 331 - Again, cold humid and warm humid relative what? What indicates cold? What indicates warm?

(2) Author's response

General Comments

We accept the suggestions of Referee #2 and have made necessary corrections in the revised Ms. The major aim of the manuscript is to make inferences on past climate based on principal palynomorphs from Wenhai Lake. Some indicator taxa may be questionable in indicator value like what Referee #2 said, but they have special ecological preferences in Southwest China. We have clarified in this regard and have given a detailed and clear statement on their climatic implications in the revised Ms. The climatic inferences have also been discussed in relation to the LGM and YD in the discussion section. Furthermore, we have adequately described how modern vegetation and climate varies along elevation gradients in the Jade Dragon Snow Mountain region.

Specific Comments

Lines 21-26, 27: We agree with Referee #2 that it is impossible for broad-leaved taxa to indicate both cool and warm climates. It is really a bit confusing.

Line 32: The term "coupled" suggests that broad-leaved and needle-leaved taxa coexist together.

Line 35: We agree with Referee #2 that the strength of conviction concerning indications of human disturbance does not match the rather tentative mood in the discussion.

Line 38: The marked decline in *Quercus* pollen in the first 30 cm of the core is compared with the early stage (around 60 cm).

Line 52-53: We agree with Referee #2 that the word "in order to" is more suitable than "and".

Line 97: We agree with Referee # 2 that it is necessary to describe how the present day vegetation changes along the elevation gradients.

Lines 148-151: The groupings were determined by the tilia software based on the groupings of taxa.

Lines 168-172: The palynomorphs recovered from the surface samples should be summed into trees and shrubs, herbs, pteridophytes, and aquatics, so that they are in agreement with the categories of palynomorphs from the Wenhai core samples. The trees and shrubs include conifers and broad-leaved taxa (trees, shrubs). The aquatics comprise algae and *Myriophyllum*.

Lines 188-190: We agree with Referee #2 that the palynological inference is based on the ability of surface samples.

Line 195: Selected taxa with abundance of more than 1% in at least one sample were shown in Figure 2.

However, Palmae pollen occurs in only three samples (with abundance of less than 1%), so we didn't show it in the figure of pollen profile.

Lines 280-288: We agree with Referee #2 that this section is unconvincing, because some taxa may be questionable in indicator value. More detailed information about the indicator taxa is necessary.

Lines 292 - 295: We agree with Referee #2 that it seems impossible to establish which pollen grains were produced at higher elevations and which were produced in situ.

Line 296: It is true that the herbs are usually growing in forest edge conditions around the lake. *Artemisia* is a taxon growing in temperate areas of mid to high latitudes of the Northern Hemisphere, in particular in arid or semi-arid environments (Valles and McArthur, 2001). The genus *Artemisia* is considered an indicator of steppe climate (Erdtman, 1952) and moderate precipitation (El-Moslimany, 1990). *Cyperaceae* is a cosmopolitan family, with many species commonly growing in wetlands and surrounding areas, adapted to an open and sunny condition. The high frequency of *Cyperaceae* pollen may indicate humid conditions (KIBCAS, 2003b; Sun et al. 2003). Most species of *Polygonaceae* family are in relation to moist conditions, but the occurrence of some species such as *Rumex* and *Fagopyrum* can be used as the indicator of human activity.

Lines 299 - 300: The suggestions of Referee #2 are very good. We will provide comparisons with other studies and known climatic events. The genus *Quercus* is widely distributed in the fog zone (with higher humidity, at about 3,100 m) on the Jade Dragon Snow Mountain where it forms a montane needle- and broad-leaved mixed forest along with *Tsuga* and *Picea*. *Betula* is viewed as a cold- and drought-tolerant element. Based on the dominance of *Quercus* and *Betula* pollen, we may infer the climate condition was cold and dry followed by cold and wet conditions.

Lines 301 - 307: Generally speaking, we can't infer a warm and humid climate condition during this period, but we can infer a relatively cold and dry climate with several fluctuations in humidity, based on a notable increase in *Betula* pollen and a dramatic decrease in *Quercus* pollen.

Lines 308 - 315: The increase in *Quercus* pollen indicates a cold and wet condition, so the remarkable decrease in *Quercus* pollen together with *Abies* reaching its maximum extent during this period may reflect the climate changed to colder and drier compared to the last stage.

Line 331: The statement of cold humid and warm humid possibly is not suitable. A significant decline in humidity from the early stage (early Holocene) to late stage (late Holocene) can be inferred based on the increase in *Quercus* pollen at the beginning and the decline after that.

(3) Author's changes in manuscript

General Comments

According to the suggestions of Referee #2, we have made a detailed statement on the climatic implications of major palynomorphs recovered from Wenhai Lake (**Lines 440-475 in the revised Ms**). The climatic inferences have been discussed in relation to the LGM and YD (**Lines 477-645 in the revised Ms**). How the modern vegetation and climate varies along elevation gradients in the Jade Dragon Snow Mountain region has been adequately described (**Lines 145-155 in the revised Ms**).

Specific Comments

Lines 21-26, 27: Broad-leaved *Quercus* indicates cold and wet climate in the Jade Dragon Snow Mountain

region. Broad-leaved *Betula* reflects cold and dry condition. We have made the necessary corrections (**Lines 22-29 in the revised Ms.**).

Line 32: We prefer to use the term "interspersed" instead of "coupled" (**Line 52 in the revised Ms.**).

Line 35: We have changed to "During this period, human activity likely increased in this region, with impacts on the vegetation such as a distinct decrease in *Pinus* and *Quercus* pollen and an increase in *Polygonaceae* pollen in the upper 30 cm of the core" (**Lines 53-55 in the revised Ms.**).

Line 38: The marked decline in *Quercus* pollen in the first 30 cm of the core is compared with the early stage (around 60 cm) (**Line 56 in the revised Ms.**).

Line 52-53: We have changed the word "and" to "in order to" (**Line 72 in the revised Ms.**).

Line 97: The section of how the present day vegetation changes along the elevation gradients is described in **lines 145-155 in the revised Ms.**

Lines 168-172: The palynomorphs recovered from the surface samples were summed into trees and shrubs, herbs, pteridophytes, and aquatics (**Lines 250-298 in the revised Ms.**).

Lines 188-190: We have deleted "which might suggest that surface samples fail to capture the local vegetation completely" (**Line 307 in the revised Ms.**).

Line 195: Here we use a new figure 2 instead of the old one. In the new figure, all the palynomorphs were shown (**Figure 2 in the revised Ms.**).

Lines 280-288: The section of "Climatic implications of the principal palynomorphs from Wenhai Lake" was added to show the detailed information about the indicator taxa (**Lines 440-475 in the revised Ms.**).

Lines 292 - 295: We have changed to "the vegetation surrounding the lake catchment was dominated by broad-leaved forest (composed mainly of *Quercus*, *Betula* and *Castanopsis*) and needle-leaved forest (mainly *Pinus* and *Abies*)." (**Lines 481-483 in the revised Ms.**).

Line 296: The herbaceous plants *Artemisia*, *Labiatae*, *Compositae* and *Polygonaceae*, and ferns *Athyriaceae*, *Polypodiaceae*, *Gymnogrammaceae* and *Pteris*, grew around the lake or under coniferous or broad-leaved trees (**Lines 483-485 in the revised Ms.**).

Lines 299 - 300, 301 - 307, 308 - 315, 331: The necessary corrections can be seen in the section "5.2 Vegetation and climate history at Wenhai" (**Lines 477-645 in the revised Ms.**).

1 **A 22,570-yr record of vegetational and climatic change from**
2 **Wenhai Lake in the Hengduan Mountains biodiversity**
3 **hotspot, Yunnan, Southwest China**

4
5 **Y. F. Yao^{1,3*}, X. Y. Song², A. H. Wortley³, S. Blackmore³, and C. S. Li^{1*}**

6
7 ¹ State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese
8 Academy of Sciences, Xiangshan, 100093 Beijing, PR China

9 ² Shanxi Agricultural University, Taigu 030801, Shanxi, PR China

10 ³ Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh EH3 5LR, Scotland, UK

11 * Correspondence to: Y. F. Yao (yaoyf@ibcas.ac.cn), C. S. Li (lics@ibcas.ac.cn)

12 **Abstract**

13 The Hengduan Mountains, with their strong altitudinal vegetation zonation, form a
14 biodiversity hotspot which offers the potential for comparison between sites in order to
15 understand how this zonation arose and how it has responded to climate change and human
16 impacts through time. This paper presents a 22,570-yr pollen record of vegetational and
17 climatic change based on a core 320 cm in depth collected from Wenhai Lake on the Jade
18 Dragon Snow Mountain, one of the highest peaks in the Hengduan Mountains region of
19 Yunnan, Southwest China. From 22,570 to 21,140 cal. yr BP, the vegetation was dominated
20 by broad-leaved forest (comprising mainly *Quercus*, *Betula* and *Castanopsis*). accompanied
21 by needle-leaved forest (mainly *Pinus* and *Abies*), indicating a rather cold and dry climate
22 relative to the present followed by cold and wet conditions. In the period between 21,140 and
23 19,350 cal. yr BP, the vegetation was still dominated by broad-leaved forest and
24 needle-leaved forest as before but with a notable increase in *Betula* pollen and a sharp
25 decrease in *Quercus* pollen, implying a relatively cold and dry climate with several
26 fluctuations in humidity. The period 19,350 to 17,930 cal. yr BP was a transition stage from
27 broad-leaved forest to needle-leaved forest, with a dramatic decrease in *Quercus* pollen and a
28 maximum reading for *Abies* pollen, reflecting the coldest and driest climate since 22,570 cal.

删除的内容: is one of the studies
covering a range of altitudes within
this hotspot, and

删除的内容: , accompanied by
coniferous

删除的内容: and the
drought-tolerant herb *Artemisia*

删除的内容: a cool and dry climate

删除的内容: pollen of aquatic plants

删除的内容: a relatively warm and
moderately humid climate.

删除的内容: a warm-humid climate at
the beginning and a cold-dry one at the
end.

44 yr BP. The expansion in needle-leaved forest dominated by *Pinus* and *Abies* (22,570—17,930
45 cal. yr BP) along with an increase of *Betula* might correspond to the Last Glacial Maximum
46 (LGM, the start of the LGM perhaps occurred prior to the basal age of the core). Between
47 17,930 and 9,250 cal. yr BP, needle-leaved forest declined and broad-leaved forest began to
48 increase at first, suggesting increases in temperature and humidity, while towards the end of
49 the period, needle-leaved forest expanded and broad-leaved forest shrank, indicating a colder
50 and drier climate, possibly corresponding to the Younger Dryas. From 9,250 cal. yr BP to the
51 present, the vegetation has been dominated by needle-leaved forest (comprising mainly *Pinus*,
52 *Abies* and *Tsuga*), interspersed with broad-leaved *Quercus* and *Betula*, reflecting a significant

53 decline in humidity from the early to late Holocene. During this period, human activity likely

54 increased in this region, with impacts on the vegetation such as a distinct decrease in *Pinus*
55 and *Quercus* pollen and an increase in Polygonaceae pollen in the upper 30 cm of the core.

56 The marked decline in *Quercus* pollen compared with the early stage of this period, in
57 particular, in the Wenhai core can be correlated with that observed in the Haligu core
58 (situated about 2 km away) between 2,400 cal. yr BP and the present.

59

删除的内容: Between 17,930 and 9,250 cal. yr BP, needle-leaved forest and broad-leaved forest alternated in dominance in the early stages, with the former taking the predominant position by the end of the period, suggesting a climate fluctuating between warm-humid and cold-dry.

删除的内容: and

删除的内容: coupled

删除的内容: forest (mainly

删除的内容:)

删除的内容: a

删除的内容: transition in climatic conditions from warm-humid to cold-humid

删除的内容: which may be evidenced by the

60 1 Introduction

61 The Hengduan Mountains are located in the north of the Mountains of Southwest China
62 biodiversity hotspot, the most biologically diverse temperate ecosystem in the world
63 (Conservation International, 2008), sandwiched between the Honghe Basin to the east and the
64 Qinghai-Xizang Plateau to the west. They comprise five main ridge systems characterized by
65 vertical vegetation zonation and separated by four deep drainage systems, created during the
66 Himalayan orogeny beginning in the Tertiary Period and continuing into the Quaternary
67 (Myers et al., 2000; Ying, 2001). The floristic diversity of the region is particularly high: the
68 Hengduan Mountains are situated in Yunnan Province which, despite covering just 4% of
69 China's land area, contains c. 15,000 species of higher plants, almost 50% of the country's
70 total.

删除的内容: lie

71 The marked altitudinal zonation of vegetation in the Hengduan Mountains offers the
72 potential to compare between sites in order to build up an understanding of how this zonation

删除的内容: and

93 arose and how it responds, through time, to climate change and human impacts. The Jade
94 Dragon Snow Mountain (rising to 5,596 m a. s. l.) is one of the highest peaks in the
95 Hengduan Mountains region, and is particularly appropriate for the study of past and present
96 diversity using palynological data because it supports a number of natural wetlands and lakes
97 containing abundant, well-preserved palynomorphs, at a range of altitudes. Thus, sampling of
98 core sediments from different sites has the potential to generate pollen data relative to both
99 time and altitude (at a given locality), which will ultimately enable us to estimate changes in
100 both floristic composition and diversity over time and their response to climatic change.

101 During the past decade, pollen analysis has been employed extensively for understanding
102 Quaternary vegetation and climate history in China (e.g., Xu et al., 2002; Xiao et al., 2004;
103 Zhao et al., 2007; Li et al., 2011; An et al., 2013; Cao et al., 2013; Jiang et al., 2013).
104 However, few such studies have been conducted in the Hengduan Mountains (Jiang et al.,
105 1998; Shen et al., 2006; Jones et al., 2012; Song et al., 2012; Cook et al., 2013; Xiao et al.,
106 2014). Previously, we have investigated changing climate and vegetation over the past 9,300
107 years based on pollen analyses of a core 400 cm in depth from a wetland site at Haligu (3,277
108 m) on the Jade Dragon Snow Mountain (Song et al., 2012). This paper presents a 22,570-yr
109 record of vegetational and climatic change from Wenhai Lake (3,080 m), also on the Jade
110 Dragon Snow Mountain. We aim to use pollen data to develop insights into changing floristic
111 diversity and to draw inferences about past climate and anthropogenic influences in the
112 region during the Late Quaternary.

113

114 2 Study area

115 Wenhai Lake (26°58'59" N, 100°09'54" E) is located at the southern end of the Jade Dragon
116 Snow Mountain in Yulong County of Lijiang City, northwestern Yunnan, Southwest China
117 (Fig. 1). It forms part of Lashihai Swamp Natural Reserve and is about 23 km northwest of
118 Lijiang City. This area is a key region linking the Qinghai-Xizang Plateau with the Yungui
119 Plateau, and also is a boundary region between the Hengduan Mountains area of northwestern
120 Yunnan and the plateau area of eastern Yunnan. More than a thousand years ago, Wenhai was
121 an important stop on the ancient “Tea-Horse Road,” a route for trading tea and horses

删除的内容: in this series of studies,

删除的内容: in the series

删除的内容: the

删除的内容: of the region

删除的内容: This data will also be used to draw inferences about past climate and anthropogenic influences, and to compare study sites at different altitudes in the region to provide a better understanding of changes in the distinctly vertical vegetation zones that characterize the region. .

134 between inland agricultural and remote nomadic regions (Luo, 2003). Yulong County is
135 home to several ethnic minority peoples, with the Naxi being most numerous. Wenhai Lake is
136 an open lake surrounded by high mountains, covering an area of about 0.16 km². It is a
137 seasonal lake fed mainly by rainfall and glacial melt-water from the nearby mountains.

138 The study area is strongly influenced by the southwest monsoon coming from the Indian
139 Ocean. Thus the summers are warm and humid and the winters cool and dry. The mean
140 annual temperature (MAT) and mean annual precipitation (MAP) measured at Lijiang
141 (situated below the study site at about 2,200 m), are 12.8°C and 935 mm, respectively. About
142 90% of the annual precipitation falls in summer, between June and October. The warmest
143 month is July, with a mean temperature of 17.9°C, and the coldest month is January, with a
144 mean temperature of 5.9°C (Feng et al., 2006).

145 The regional vegetation and climate of the Jade Dragon Snow Mountain area are strongly
146 related to elevation gradients. At increasing elevations on the mountain slopes, MAT shows a
147 decreasing trend, while MAP displays a reverse trend. For example, MAT and MAP are
148 12.6°C and 772 mm, respectively, at 2,393 m, MAT decreases to 5.4 °C and MAP increases
149 to 1,600 mm at 3,200 m, MAT further decreases to -3.3~ -4.7°C and MAP increases to more
150 than 2,400 mm at the snow line (4,800 m; He et al., 2000a, 2000b). Four main vegetation
151 zones can be recognized: Zone 1, semi-humid evergreen broad-leaved forest-pine forest
152 (about 2,400–3,000 m); Zone 2, needle- and broad-leaved mixed forest- sclerophyllous
153 evergreen broad-leaved forest (about 3,000–3,300 m); Zone 3, cold-temperate needle-leaved
154 forest (about 3,300–4,200 m); and Zone 4, alpine heath scrub and meadow (above 4,200 m;
155 Wu et al., 2006). From our personal observations, the present vegetation around the Wenhai
156 Lake catchment is dominated by oaks (*Quercus pannosa* Hand.-Mazz) and pines, primarily
157 *Pinus yunnanensis*, with *P. armandii* Franch at slightly lower elevations and smaller numbers
158 of *Tsuga dumosa* (D.Don) Eichler and *P. densata* Mast. are also present. Here, the most
159 abundant shrubs are ericaceous, including rhododendron species, especially *Rhododendron*
160 *mucronatum* (Blume) G. Don, *R. racemosum* Franch., *R. yunnanense* Franch. and *R. delavayi*
161 Franch., together with *Vaccinium bracteatum* Thunb. and *Pieris formosa* (Wallich) D.Don.
162 Herbaceous taxa are diverse with some of the most speciose genera being *Anemone*, *Gentiana*,

删除的内容: The study area is located within

删除的内容: a vegetation
“sub-domain” characterized by *Pinus yunnanensis* Franch. forest and
Picea-Abies forest typical of
northwestern-central Yunnan (WGYV, 1987). The local vegetation displays a
distinct vertical zonation. On the
mountains surrounding Wenhai Lake
(3,100–3,500 m), the vegetation is
dominated by

175 *Primula* and *Roscoea*. This area is now heavily influenced by human activities, such as
176 felling of timber and grazing, so some patches are barren of vegetation.
177

删除的内容: zone

178 **3 Materials and methods**

179 **3.1 Coring and sampling**

180 A sediment core 320 cm in depth was obtained from Wenhai Lake in January 2005 using a
181 Russian corer, which consists of a 40 cm long steel chamber (diameter 10 cm) and 1 m long
182 steel rods. Coring was done in 40 cm overlapping steps (0–40 cm, 40–80 cm, 80–120 cm,
183 etc.). To avoid contamination, the chamber was cleaned carefully before starting each new
184 round of coring. The core was labelled in the field, wrapped in plastic foil and placed in
185 halved PVC tubes. A detailed lithological description of the core is presented in Fig. 2.
186

删除的内容: At higher elevations, between 3,500 and 3,800 m, the Jade Dragon Snow Mountain is cloaked in evergreen broad-leaved forest consisting of *Quercus pannosa* and *Cyclobalanopsis glauca* (Thunb.) Oerst, together with coniferous trees such as *Abies delavayi* Franch., *Picea likiangensis* (Franch.) E. Pritz and *Larix potanini* Batalin. The forests are interspersed with meadows which are grazed by livestock. From 3,800 to 4,200 m, the vegetation is dominated by subalpine bush and meadow composed, among others, of *Rhododendron* spp., *Juniperus* spp., *Berberis* spp. and scattered *Sorbus* spp. Dwarf shrubs are present at this altitude, including *Caragana tibetica* (Maxim. ex C.K. Schenid.) Kom. and *Chesnya nubigena* (D.Don) Ali. Above 4,200 m the vegetation is restricted mainly to herbaceous taxa including *Draba* spp., *Saxifraga* spp. and *Saussurea* spp. .

187 **3.2 Radiocarbon dating**

188 Two samples from the core, at 155 cm and 320 cm in depth, were taken for Accelerator Mass
189 Spectrometry (AMS) radiocarbon dating, which was performed at the Scottish Universities
190 Environmental Research Centre (SUERC) in Glasgow, Scotland, UK. The ^{14}C ages are
191 quoted in conventional years BP (before 1950 AD). Bulk samples from the core were used
192 because fragments of plant material suitable for analysis were not present. Age calibration
193 was set up using the calibration curve from Reimer et al. (2004) by means of the calibration
194 program OxCal v3.10 (Bronk, 2005). Date ranges are cited in calibrated years AD/BC at 95%
195 probability, with end points rounded to the nearest 10 years (Mook, 1986; Foster et al., 2008).
196

197 **3.3 Pollen analysis**

198 Six surface soil samples near the core were collected for comparison with the preserved
199 pollen assemblage. Thirty-two samples were taken from the core itself, at 10 cm intervals, for
200 pollen analysis. Thirty grams of each sample were processed by the method of heavy liquid
201 separation (Moore et al., 1991; Li and Du, 1999) followed by acetolysis (Erdtman, 1960).
202 Pollen grains and spores were identified using modern pollen slides, palynological literature
203 and monographs (IBCAS, 1976; IBSCIBCAS, 1982; Wang et al., 1995). All samples yielded

230 abundant, well-preserved palynomorphs. Pollen samples were examined using a Leica DM
231 2500 light microscope at a magnification of $400 \times$ and at least 300 pollen grains and spores
232 were counted in each sample. Pollen grains and spores were divided into four categories:
233 trees and shrubs, herbs, pteridophytes and aquatic taxa. Pollen data were expressed as
234 percentages and graphed using Tilia.Graph, and pollen zones were determined with CONISS
235 in the Tilia program (Grimm, 1997).

236

237 **4 Results**

238 **4.1 Chronology**

239 Two AMS radiocarbon dates, $14,075 \pm 40$ yr BP (17,150–16,350 cal. yr BP) at depth of 155
240 cm and $19,075 \pm 50$ yr BP (22,760–22,380 cal. yr BP) at depth of 320 cm, give a relatively
241 reliable basis for deciphering the vegetation and climate history in and surrounding Wenhai
242 Lake. The sedimentation rates are c. 0.1 mm/yr and 0.28 mm/yr for the depths of 0–155 cm
243 and 155–320 cm, respectively. Ages of other depths are interpolated by assuming that the
244 sedimentation rate is constant between the two dated samples, i.e., 9,250 cal. yr BP at 80 cm
245 depth, 17,930 cal. yr BP at 190 cm, 19,350 cal. yr BP at 230 cm, and 21,140 cal. yr BP at 280
246 cm.

247

248 **4.2 Pollen analysis**

249 **4.2.1 Surface samples**

250 Fifty palynomorphs were identified from the six surface soil samples collected in close
251 proximity to the core, including 29 families and seven genera of angiosperms, three genera of
252 gymnosperms, nine families and one genus of pteridophytes, and one genus of alga (See the
253 supplementary material). The pollen assemblage is dominated by trees and shrubs, at
254 percentages ranging from 79.5% to 97.0% of the total pollen and spores. *Pinus* pollen
255 (6.2–87.1%) dominates in all six surface samples, followed by *Abies* (3.3–10.7%), *Quercus*
256 (0–5.5%) and *Ericaceae* (0–4.1%). Herb pollen is present at low percentages (1.8–4.1%), and
257 comprises *Artemisia*, other *Compositae*, *Caryophyllaceae*, *Chenopodiaceae*, *Convolvulaceae*,

删除的内容: establishing a chronological control against which to

删除的内容: .

删除的内容: The palynomorphs were summed into four groups: conifers, broad-leaved plants, ferns and aquatics. Coniferous trees include *Pinus*, *Abies* and *Tsuga*. The broad-leaved taxa comprise angiosperm trees, shrubs and herbs, including *Quercus*, *Alnus*, *Artemisia*, *Cyperaceae*, *Ericaceae* and *Polygonaceae*. The ferns include *Polypodiaceae*, *Athyriaceae* and *Pteris*. The aquatic plants are *Myriophyllum* and *Zygnuma*.

删除的内容: coniferous taxa

删除的内容: 66.8

删除的内容: 3.5

删除的内容: , followed by broad-leaved elements (5.3–16.8%), ferns (0.9–15.3%) and aquatics (0–3.0%)

删除的内容: 3

删除的内容: 8.5

删除的内容: accompanied by

删除的内容: 1.1

删除的内容: *Polypodiaceae* (0–10.6%),

删除的内容: 1.2

删除的内容: 6

删除的内容: ,

删除的内容: *Athyriaceae* (0.2–2.8%), *Polygonaceae* (0.2–2.4%), *Cyperaceae* (0–1.1%), and *Gramineae* (0–0.3%).

292 Cruciferae, Cyperaceae, Gramineae, Labiatae, Liliaceae and Polygonaceae. Pteridophyte
293 spores account for 0.3–15.3%, including Athyriaceae, Cyatheaceae, Gymnogrammaceae,
294 Hymenophyllaceae, Loxogrammaceae, Lygodiaceae, Plagiogyriaceae, Polypodiaceae, Pteris
295 and Sinopteridaceae. Aquatic plants are recorded at low percentages (0–3%), comprising
296 *Myriophyllum* and *Zygnuma*. This pollen assemblage is consistent with the local vegetation of
297 the lake basin and the surrounding mountains, reflecting a needle-leaved forest dominated by
298 *Pinus* and accompanied by some broad-leaved components, e.g. *Quercus* and Ericaceae.
299

300 **4.2.2 Pollen diagram zonation and description**

301 Pollen analysis of the core samples shows a high degree of taxonomic diversity. The
302 palynoflora comprises 83 palynomorphs, which can be identified to 45 families and 13 genera
303 of angiosperms, one family and seven genera of gymnosperms, 12 families and three genera
304 of pteridophytes and two genera of algae (See the supplementary material). Some of the
305 selected palynomorphs extracted from the core are illustrated in the supplementary material.

306 A greater diversity of palynomorphs was recovered from the core samples than from the
307 surface samples. However, many of the taxa found in the core but missing from surface
308 samples are not present in the upper part of the core and are no longer present in the
309 immediate area so do not contribute to the local pollen rain. Examples include *Cedrus*,
310 *Dacrydium* and *Taxodium* amongst the gymnosperms and the angiosperm taxa *Actinidiaceae*,
311 *Anardiaceae*, *Carpinus*, *Clethraceae*, *Flacourtiaceae*, *Icacinaceae*, *Juglandaceae*,
312 *Liquidambar*, *Myrsinaceae*, *Palmae* and *Tilia*. Some of these taxa have a subtropical
313 distribution and their closest occurrence to the study site is at much lower elevation near the
314 Jinsha River or considerably further south in Yunnan. Other taxa such as *Araceae*, *Araliaceae*,
315 *Campanulaceae*, *Caprifoliaceae*, *Caryophyllaceae* and *Umbelliferae* are present in the
316 immediate area but are entomophilous plants with relatively lower pollen production which
317 might be expected to be under-represented in the local pollen rain.

318 A cluster analysis performed using *Tilia* (with CONISS) divided the pollen diagram into
319 five distinct zones (Fig. 2). Brief descriptions of each zone are as follows.

刪除的內容: , which might suggest
that surface samples fail to capture the
local vegetation completely

324 **Pollen zone 1 (320–280 cm: 22,570–21,140 cal. yr BP):**

325 This zone is characterized by a dominance of tree and shrub pollen (72.9–81.3%), followed
326 by herbs (6.3–20%), ferns (4.2–12.5%) and aquatics (0–4.2%). Among the trees and shrubs,
327 the percentage of broad-leaved elements (42.2–70.8%) is higher than that of conifers
328 (10.4–33.9%). The trees and shrubs are dominated by the broad-leaved taxa *Quercus*
329 (20–62.5%, including *Quercus* sp. 1 and sp. 2), *Betula* (1.8–7.6%), *Castanopsis* (0–6.7%) and
330 the coniferous taxa *Pinus* (6.3–24.4%) and *Abies* (4.2–10.1%). Pollen grains of other
331 coniferous plants such as *Picea* and *Tsuga*, and broad-leaved plants such as *Corylus*, *Ulmus*
332 and Ericaceae are also present in minute quantities. Herbs are represented by *Artemisia*
333 (0–11.5%), coupled with Chenopodiaceae (0–4.4%), Compositae (0–4.4%), Labiatae
334 (0–4.2%), and Polygonaceae (0–3.7%). Fern taxa include Athyriaceae (3.7–6.7%),
335 Polypodiaceae (0–4.6%), Gymnogrammaceae (0–4.2%) and *Pteris* (0–2.1%). Two taxa of
336 aquatic plants, *Myriophyllum* and *Pediastrum*, are recorded, at 0–3.1% and 0–1.0%,
337 respectively.

338 The pollen assemblages of pollen zone 1 and the surface samples are both dominated by
339 tree and shrub pollen, represented by 72.9–81.3% and 79.5–97%, respectively. *Quercus*
340 pollen (20–62.5%) dominates the trees and shrubs of pollen zone 1, followed by *Pinus*, *Abies*,
341 *Betula* and *Castanopsis*. In contrast, *Pinus* pollen (62.3–87.1%) dominates the trees and
342 shrubs of the surface samples, followed by *Abies*, *Quercus* and Ericaceae. The percentage of
343 herb pollen is comparatively high in pollen zone 1 (6.3–20%) compared to the surface
344 samples (1.8–4.1%). Similar percentages of pteridophyte spores (pollen zone 1: 4.2–12.5%,
345 surface samples: 0.3–15.3%) and aquatics (pollen zone 1: 0–4.2%, surface samples: 0–3%)
346 are recorded in pollen zone 1 and the surface samples.

347

348 **Pollen zone 2 (280–230 cm: 21,140–19,350 cal. yr BP):**

349 In this zone, two distinct characteristics are observed: firstly a sharp increase in the aquatic
350 pollen percentage, reaching a maximum (16.7%) for the entire profile at a depth of 270 cm,
351 which is attributed to the prevalence of *Myriophyllum* and *Pediastrum*. Secondly, trees and

352 shrubs continue to dominate in this zone. The percentage of trees and shrubs ranges from
353 52.3% to 79.6%. As in pollen zone 1, broad-leaved trees (34.4–65.2%) still occupy a higher
354 percentage than conifers (8.6–45.2%). Among the conifers, it should be noted that *Pinus*
355 pollen reaches its lowest value (2.1%) for the whole profile at a depth of 230 cm.
356 Broad-leaved trees, i.e. *Quercus* (4.1–56.5%), *Betula* (3.4–13.7%), *Castanopsis* (0–8.5%) and
357 *Corylus* (0–6.3%), together with herbaceous taxa, i.e. *Artemisia* (0–12.8%) and *Polygonaceae*
358 (2.2–6.9%), continue to play an important role in this zone. In addition, some new
359 broad-leaved elements, *Alnus*, *Carpinus*, *Actinidiaceae*, *Ilex*, *Leguminosae*, *Tilia*, *Cruciferae*
360 and *Plantaginaceae*, are found sporadically for the first time. The percentage of fern spores
361 (1.3–13.8%) remains at almost the same level as in pollen zone 1. *Athyriaceae* spores show a
362 slight increase (up to 10.9%), but *Gymnogrammaceae* (0–0.4%), *Polypodiaceae* (0–1.1%)
363 and *Pteris* (0–1.1%) display minor decreases.

364 Tree and shrub pollen dominates the pollen assemblages of both pollen zone 2 and the
365 surface samples, but its percentage in pollen zone 2 (52.3–79.6%) is lower than in the surface
366 samples (79.5–97%). *Quercus* pollen dominates the trees and shrubs of pollen zone 2
367 (4.1–56.5%), compared to the dominance of *Pinus* pollen (62.3–87.1%) in the surface
368 samples. The percentages of herb pollen (pollen zone 2: 2.2–21.2%, surface samples:
369 1.8–4.1%) and aquatics (pollen zone 2: 4.1–16.7%, surface samples: 0–3%) are
370 comparatively high in pollen zone 2 compared to the surface samples. Pteridophyte spores
371 account for 1.3–13.8% and 0.3–15.3%, respectively, in pollen zone 2 and the surface samples.

372

373 **Pollen zone 3 (230–190 cm: 19,350–17,930 cal. yr BP):**

374 In this zone, tree and shrub pollen maintains a dominant status (79.7–92.2%), followed by
375 herbs (5.2–13.7%), ferns (0.7–7.1%) and aquatics (0–5.8%). The percentage of trees and
376 shrubs reaches its highest value (92.2%) of the profile, at a depth of 200 cm. The conifers
377 (28.4–66.8%) show a higher percentage than broad-leaved trees (19–51.4%). *Pinus*
378 (19.2–50.0%) and *Abies* (9.0–43.4%) pollen shows a sharp increase, and *Abies* pollen in
379 particular maintains a peak value (43.4%) throughout the profile. The broad-leaved trees
380 *Quercus* (9.5–31.1%) and *Betula* (1.3–9.6%), and herbaceous *Artemisia* (0–11.2%), also play

381 an important role. The ferns are dominated by Athyriaceae, ranging from 0.2% to 7.1%. Six
382 other types of ferns, i.e. Polypodiaceae, Selaginellaceae, Sinopteridaceae, Hymenophyllaceae,
383 *Pteris* and Lygodiaceae, occur at low percentages, less than 2%. The prevalence of
384 *Myriophyllum* (0–2.8%) and *Pediastrum* (0–5.8%) declines sharply and one new aquatic
385 taxon, Potamogetonaceae, appears in this zone at a low percentage (0–0.1%).

386 The percentage of tree and shrub pollen in pollen zone 3 (79.7–92.2%) is more similar
387 than the previous zones to that of the surface samples (79.5–97%). As in the surface samples,
388 *Pinus* pollen dominates in pollen zone 3, followed by *Abies* and *Quercus*. The percentages of
389 herb pollen (pollen zone 3: 5.2–13.7%, surface samples: 1.8–4.1%) and aquatics (pollen zone
390 3: 0–5.8%, surface samples: 0–3%) in pollen zone 3 are higher than in the surface samples.
391 However, a comparatively lower percentage of pteridophyte spores is recorded in pollen zone
392 3 (0.7–7.1%) than in the surface samples (0.3–15.3%).

393

394 **Pollen zone 4 (190–80 cm: 17,930– 9,250 cal. yr BP):**

395 Tree and shrub pollen dominates in this zone (75.8–90.4%). Herbs rank second (7.5–18.4%),
396 followed by ferns (0–12.1%) and aquatics (0–4%). Coniferous *Pinus* (12.6–46.9%) and *Abies*
397 (1.8–30.3%), and broad-leaved *Quercus* (9.1–37.8%) and *Betula* (0–13.5%) are the dominant
398 elements of trees and shrubs. Additionally, three other coniferous taxa, *Picea*, *Tsuga* and
399 Taxodiaceae, and 28 broad-leaved tree species including *Corylus*, *Castanopsis*, *Liquidambar*
400 and *Myrsinaceae* are recorded at low percentages. Herbs are represented by *Artemisia*
401 (0–9.9%), *Labiatae* (0–6.1%) and *Polygonaceae* (0.4–4.7%), accompanied by
402 *Chenopodiaceae*, *Cyperaceae*, *Plantaginaceae* and *Gramineae* in minute quantities. Nine types
403 of ferns are found in this zone, among which Athyriaceae and Polypodiaceae possess
404 relatively high percentages of 0–12.1% and 0–2.2%, respectively. Three aquatic plants occur:
405 *Myriophyllum* (0–3.7%), *Pediastrum* (0–0.6%), and *Zygnuma* (0–0.2%).

406 Tree and shrub pollen maintains a dominant status in pollen zone 4 (75.8–90.4%) and in
407 the surface samples (79.5–97%). *Pinus* pollen dominates the pollen assemblage of pollen
408 zone 4 (12.6–46.9%), but its percentage is much lower than in the surface samples

409 (62.3–87.1%). The percentages of *Quercus* (pollen zone 4: 9.1–37.8%, surface samples:
410 0–5.5%) and *Abies* pollen (pollen zone 4: 1.8–30.3%, surface samples: 3.3–10.7%) in pollen
411 zone 4 are generally higher than in the surface samples. A comparatively higher percentage of
412 herb pollen is documented in pollen zone 4 (7.5–18.4%) relative to the surface samples
413 (1.8–4.1%). Pteridophyte spores (pollen zone 4: 0–12%, surface samples: 0.3–15.3%) and
414 aquatics (pollen zone 4: 0–4%, surface samples: 0–3%) occur in similar percentages in pollen
415 zone 4 and the surface samples.

416

417 **Pollen zone 5 (80–0 cm: 9,250 cal. yr BP – present):**

418 This zone is dominated by tree and shrub pollen (47–84.2%), followed by herbs (4.9–37.4%),
419 ferns (7.8–24.8%) and aquatics (0–3%). The pollen percentage of conifers (31.3–79.9%) is
420 higher than that of broad-leaved trees (4.3–37.6%). From the beginning to the end of this
421 zone, *Pinus* (14–56.8%) shows a decrease then increases sharply, while *Quercus* (1–29.1%)
422 and *Betula* (0–7.4%) show a decreasing trend, and *Abies* (7.4–27.2%) an increasing one.
423 *Tsuga* (1.1–7.5%) reaches its highest percentage in this zone. Pollen of other trees and shrubs
424 such as *Picea*, *Alnus*, *Corylus*, *Carpinus*, Ericaceae, Anacardiaceae, Dipsacaceae,
425 Flacourtiaceae and Meliaceae are found in some samples, at percentages of less than 1%.
426 Herbs are characterized by a distinct decrease in *Artemisia* (0–3.4%) and an increase in
427 Polygonaceae (2–20.8%) and Labiatae (0.7–15.4%). Among the fern spores, Polypodiaceae
428 (4.5–17.9%) shows a remarkable increase and Athyriaceae (0–6.3%) a notable decrease. The
429 percentage of aquatics changes little compared to pollen zone 4, but *Myriophyllum* disappears
430 in this zone. Thus only two types are recorded, *Pediastrum* (0–0.6%) and *Zygnema* (0–3%).

431 Tree and shrub pollen dominates the pollen assemblages of both pollen zone 5 and the
432 surface samples, represented by 47–84.2% and 79.5–97%, respectively, among which *Pinus*,
433 *Abies*, and *Quercus* are the dominant taxa. The percentages of herb pollen (pollen zone 5:
434 4.9–37.4%, surface samples: 1.8–4.1%) and pteridophyte spores (pollen zone 5: 7.8–24.8%,
435 surface samples: 0.3–15.3%) are generally greater in pollen zone 5 than in the surface
436 samples. Aquatics occur at the same percentage (0–3%) in pollen zone 5 and the surface
437 samples.

439 **5 Discussion and conclusions**440 **5.1 Climatic implications of the principal palynomorphs from Wenhai Lake**

441 The palynoflora found in the Wenhai core includes a large number of potential climate
 442 indicators. For example, *Pinus* is currently distributed below 3,200 m elevation in Southwest
 443 China and is commonly found in slightly warm and moderately dry habitats. *Pinus*
 444 *yunnanensis* Franch., *P. densata* Mast. and *P. armandi* Franch. are the dominant species on
 445 the mountains of northwestern Yunnan (KIBCAS, 1986). *Tsuga* is a cold-tolerant and
 446 hygrophilous conifer, requiring a MAT of 8.4 to 10.5°C and a MAP of about 1,000 mm for
 447 favorable growth in Yunnan (WGYV, 1987). One species, *Tsuga dumosa* (D. Don) Eichler,
 448 and one variety, *T. chinensis* (Franch.) E. Pritz. var. *forrestii* (Downie) Silba are recorded in
 449 northwestern Yunnan (KIBCAS, 1986; Wang et al., 2007). *Abies* is strongly associated with
 450 cold and dry habitats with a MAT of 2–8°C and MAP ca. 600 mm in the mountains of
 451 Southwest China (CCCV, 1980; Jarvis, 1993). Five species, viz. *Abies delavayi* Franch., *A.*
 452 *forrestii* C. Rogers, *A. georgei* Orr, *A. nukiangensis* W. C. Cheng & L. K. Fu, *A. ferreana*
 453 *Bordères* & Gaussen, and two varieties, *A. ernestii* Rehd. var. *salouenensis* (Borderes et
 454 Gaussen) W. C. Cheng et L. K. Fu, and *A. georgei* Orr var. *smithii* (Viguie et Gaussen) W. C.
 455 Cheng et L. K. Fu, occur in northwestern Yunnan (KIBCAS, 1986). *Betula* is viewed as a
 456 cold- and drought-tolerant element. Eleven species and two varieties occur in Yunnan, among
 457 which five species and two varieties grow in Lijiang, including *B. calcicola* (W. W. Smith)
 458 *Hu*, *B. delavayi* Franch., *B. platyphylla* Suk., *B. utilis* D. Don, *B. potaninii* Batal., *B. utilis* D.
 459 Don var. *sinensis* (Franch.) H. Winkl., and *B. delavayi* Franch. var. *polyneura* Hu ex. P. C. Li
 460 (KIBCAS, 1991). *Alnus* usually grows on riverbanks or at village margins, in moist temperate
 461 habitats. One species, *A. nepalensis* D. Don is found in northwestern Yunnan (KIBCAS,
 462 1991). Evergreen sclerophyllous *Quercus* displays considerable ecological adaptability, and
 463 can grow in either dry or humid environments. This genus is widely distributed in the fog
 464 zone (with higher humidity, at about 3,100 m) on the Jade Dragon Snow Mountain, where it
 465 forms a montane needle- and broad-leaved mixed forest along with *Tsuga* and *Picea* (WGYV,
 466 1987). From our personal observations, some small *Quercus* trees are present up to about
 467 3,800 m. *Artemisia* is mainly distributed in temperate areas of mid to high latitudes of the

468 Northern Hemisphere, usually in arid or semi-arid environments (Valles and McArthur,
469 2001). The genus *Artemisia* is considered an indicator of steppe climate (Erdtman, 1952) and
470 moderate precipitation (El-Moslimany, 1990). There are 54 species and eight varieties
471 growing in Yunnan (KIBCAS, 2003a). Cyperaceae is a cosmopolitan family with ca. 5,000
472 species and 104 genera. Many species of this family commonly grow in wetlands and
473 surrounding areas, adapted to open and sunny conditions. About 26 genera and 272 species
474 occur in Yunnan. The high frequency of Cyperaceae pollen may indicate humid conditions
475 (KIBCAS, 2003b; Sun et al. 2003).

删除的内容: Polygonaceae is found in a wide range of habitats from the Arctic to the tropics, from montane to lowland regions, and from arid to aquatic situations (Schuster et al. 2013). In subtropical region of Southwest China, most members in Polygonaceae grow in the grassland and wetland on the slope and valley, indicating a warm and humid condition (Zhou et al. 2003).

477 5.2 Vegetation and climate history at Wenhai

478 Based on the climatic preferences of the major taxa recovered from the Wenhai core, the
479 palynological record reveals a detailed history of shifting vegetation and climate change in
480 this region during the past 22,570 yrs (Fig. 3). From 22,570 to 21,140 cal. yr BP (Pollen zone
481 1), the vegetation surrounding the lake catchment was dominated by broad-leaved forest
482 (composed mainly of *Quercus*, *Betula* and *Castanopsis*), accompanied by needle-leaved
483 forest (mainly *Pinus* and *Abies*). The herbaceous plants *Artemisia*, Labiate, Compositae and
484 Polygonaceae, and ferns Athyriaceae, Polypodiaceae, Gymnogrammaceae and *Pteris*, grew
485 around the lake or under coniferous or broad-leaved trees. This pollen assemblage indicates a
486 rather cold and dry climate relative to the present followed by cold and wet conditions.
487 Between 21,140 and 19,350 cal. yr BP (Pollen zone 2), the vegetation was dominated by
488 broad-leaved forest and needle-leaved forest as before, with a notable increase in *Betula*
489 pollen and a sharp decrease in *Quercus* pollen, reflecting a relatively cold and dry climate
490 with several fluctuations in humidity during this period. From 19,350 to 17,930 cal. yr BP
491 (Pollen zone 3), the coniferous trees *Pinus* and *Abies* showed a distinct increase, with *Abies*
492 especially reaching its maximum proportion during this period. In contrast, broad-leaved
493 *Quercus* displayed a remarkable decrease compared to the previous stage. This pollen
494 assemblage suggests a transition from broad-leaved forest to needle-leaved forest, pointing to
495 the coldest and driest climate conditions since 22,570 cal. yr BP. In the period from 22,570 to
496 17,930 cal. yr BP, needle-leaved forest dominated by *Pinus* and *Abies* gradually expanded
497 and reached a maximum extent, and at the same time, the extent of *Betula* increased. This

删除的内容: 22,570-yr v

删除的内容: This present study provides a preliminary investigation into the vegetation and climate history

... [1]

删除的内容: on the lower mountain

... [2]

删除的内容: was distributed on the

... [3]

删除的内容: *Picea* and *Ephedra*

... [4]

删除的内容: Aquatic *Myriophyllum*

... [5]

删除的内容: dry

... [6]

删除的内容: climate

... [7]

删除的内容: during this period

... [8]

删除的内容: ...

... [9]

删除的内容: was marked by

... [10]

删除的内容: increase

... [11]

删除的内容: aquatic

... [12]

删除的内容: continuing dominance of

... [13]

删除的内容: last

... [14]

删除的内容: *Tsuga*, *Alnus*,

... [15]

删除的内容: reflects

... [16]

删除的内容: transition from

... [17]

删除的内容: to

... [18]

删除的内容: . The climate of the

... [19]

删除的内容: y

... [20]

删除的内容: at the end

... [21]

590 period might correspond to the cold Last Glacial Maximum (LGM). However, the exact start
591 and end dates of the LGM in Southwest China has been the subject of much debate. For
592 example, Chen et al. (2014) reported that the LGM occurred between 29,200 and 17,600 cal.
593 yr BP, based on the expansion and maximum extent of cold-temperature coniferous forest
594 (mainly *Abies/Picea*) in the Xingyun Lake catchment of central Yunnan. Long et al. (1991)
595 identified that the LGM occurred from 30,000 to 15,000 yr BP, with coverage of conifer and
596 broad-leaved mixed forest in the Qilu Lake catchment of central Yunnan. Jiang et al. (2001)
597 concluded that the LGM occurred from 33,000 to 16,000 yr BP, with vegetation comprising
598 montane mixed coniferous and broad-leaved forest and sclerophyllous evergreen oaks in the
599 Heqing Basin of northwestern Yunnan. Thus, previous palynological records from Yunnan
600 tend to provide broader estimates for the LGM. In the present paper, because the basal age of
601 the Wenhai core reaches only to 22,570 cal. yr BP, we cannot deduce the date of the start of
602 the LGM, which perhaps occurred prior to the inferred basal age, as evidenced by the
603 relatively low pollen sum compared with pollen zones 4 and 5. Between 17,930 and 9,250 cal.
604 yr BP (Pollen zone 4), coniferous forest and broad-leaved forest began to decline and increase,
605 respectively, until 140 cm depth of the core, reflecting increases in temperature and humidity
606 relative to pollen zone 3. From 140 cm to 110 cm, coniferous forest expanded, but
607 broad-leaved forest gradually shrank, which indicates colder and drier climate conditions,
608 likely corresponding to the Younger Dryas cold event (YD). The YD is also recorded by other
609 studies in Yunnan. For example, Shen et al. (2006) pointed to the relatively cold period of
610 12,950 to 11,750 cal. yr BP as the YD, based on the dominance of *Betula* and deciduous oaks
611 in the Erhai Lake catchment. Xiao et al. (2014) identified a relatively cold phase between
612 12,230 and 11,510 cal. yr BP, based on the dominance of open alpine meadow around Tiancai
613 Lake. From 9,250 cal. yr BP to the present day (Pollen zone 5), *Pinus* underwent a process of
614 decrease at the depth of 50–80 cm (from 38.1% to 14%), increase from 30 to 50 cm (from 14%
615 to 56.8%, this shows a trend consistent with the Haligu core between 4,000–2,400 cal. yr BP),
616 and decrease again at 0–30 cm (from 56.8% to 14.5%), while *Tsuga* displays an opposite
617 trend. *Abies* shows a distinct increase during this period. *Quercus* increased at the beginning
618 of the stage, then decreased after that. This pollen assemblage indicates that needle-leaved
619 forest (comprising mainly *Pinus*, *Abies* and *Tsuga*) dominated the areas surrounding Wenhai

删除的内容: and broad-leaved trees dominated alternately to begin with, but coniferous trees become predominant by the end. This implies that the climate fluctuated between warm-humid and cold-dry, as evidenced by decreases and increases in conifers and *Quercus*, as well as the discontinuous occurrence of *Tsuga*, *Liquidambar*, *Polygonaceae*, *Cyperaceae*, *Myriophyllum*, *Pediastrum* and pteridophytes. .

删除的内容: The drought-tolerant herb *Artemisia* had a very low percentage. The hygrophilous herb *Polygonaceae* and fern *Polypodiaceae* experienced an increase, decrease and increase.

删除的内容: the vegetation was dominated by

删除的内容: and

641 Lake during the Holocene, interspersed, with broad-leaved elements (mainly *Quercus* and
642 *Betula*), reflecting a significant decline in humidity from the early to late Holocene, which
643 might be related to a strong Asian summer monsoon over Southwest China during the early
644 Holocene and a reduced monsoon intensity in the mid-late Holocene (Dykoski et al., 2005;
645 Kramer et al., 2010).

删除的内容: coupled

删除的内容: forest (

删除的内容: a transitional climate condition from warm-humid to cold-humid.

647 5.3 Palynological signals of human activity detected in the Wenhai core

删除的内容: 2

648 Based on pollen and other evidence, human influences on postglacial vegetation have been
649 inferred in Europe and North America (e.g., Brugam, 1978; H irons and Edwards, 1986; Smith
650 and Cloutman, 1988; Russell et al., 1993; Parker et al., 2002), as well in China (e.g., An et al.,
651 2002; He et al., 2002; Xu et al., 2002; Song et al., 2012). The present authors have previously
652 published another palynological investigation within the Hengduan Mountains (Song et al.,
653 2012). The altitude of the previous study site, Haligu, is 3,277 m, where there is no current
654 human settlement. The present study area (3,080 m), about 2 km far from Haligu, is close to a
655 Naxi ethnic minority settlement at Wenhai village. Moreover, Wenhai was an important stop
656 on the ancient “Tea-Horse Road” (Luo, 2003), making it likely that a wide variety of
657 cultivated plants were introduced into the agricultural system around the lake, as evidenced
658 by an ethnobotanical survey of traditional edible plants (including 45 cultivated plants) used
659 by Naxi people in Wenhai village (Zhang et al., 2013).

删除的内容: the

删除的内容: first of a series of studies covering a range of altitudes

660 In the Wenhai core, several observations may be interpreted in terms of increasing
661 anthropogenic impact in the region. First, *Pinus* and *Quercus* pollen decreased distinctly at
662 the depth of 0–30 cm, which is probably linked with the fact that local people felled the trees
663 for house construction or fuel wood. We detected that *Quercus* pollen decreased steadily in
664 the Haligu core during the period from 2,400 cal. yr BP to the present day and observed
665 heavy present-day coppicing of *Quercus* for firewood, resulting in much reduced pollen
666 production. The comparison of both cores may substantiate the existing human impacts in the
667 region. Second, the occurrence of abundant Labiatae pollen also indicates increasing human
668 activity. From our personal observation, the Naxi people in Wenhai village currently cultivate
669 several Labiatae species, including *Perilla frutescens* (L.) Britton and *Mentha* spp. as edible

679 herbs and for medical utilization. Third, the increase in Polygonaceae pollen (likely to be
680 *Fagopyrum*) could be an important indicator of human activity in the region, as the Naxi
681 people continue to plant buckwheat as an important crop today. Although we have no
682 absolute way to confirm these signals correlated with increased human settlement in the
683 region, we believe a further ongoing study of two soil pit profiles with high resolution of
684 dating and sampling from the village of Wenhai will give us even more information about
685 human activity on the Jade Dragon Snow Mountain.

686

687 **Acknowledgements**

688 The authors thank Prof. Nai-Qiu Du from the Institute of Botany, Chinese Academy of
689 Sciences, and Dr. Shao-Hua Yang from the Institute of Alpine Plants in Yunnan Academy of
690 Agricultural Sciences, for their help with this study. This study was supported by the China
691 National Key Basic Research Program (No. 2014CB954201), National Natural Science
692 Foundation of China (No. 41271222), and a visiting scholarship funded by the China
693 Scholarship Council (No. 201204910043).

694

695 **References**

696 An, C. B., Chen, F. H., and Feng, Z. D.: Study on the relationship between the vegetation
697 change and the human activities in the Gansu-Qinghai region during the period from
698 mid- to late-Holocene, *Arid Land Geogr.*, 25(2), 160–164, 2002 (in Chinese with
699 English abstract).

700 An, C. B., Tao, S.C., Zhao, J. J. , Chen, F. H., Lv, Y. B., Dong, W. M., Li, H., Zhao, Y.T., Jin,
701 M., and Wang, Z. L.: Late Quaternary (30.7–9.0 cal ka BP) vegetation history in Central
702 Asia inferred from pollen records of Lake Balikun, northwest China, *J. Paleolimnol.*,
703 49(2), 145–154, 2013.

704 Bronk, R.: OxCal Program v3.10, University of Oxford Radiocarbon Accelerator Unit, 2005.

705 Brugam, R. B.: Pollen indicators of land-use change in southern Connecticut, *Quat. Res.*,
706 9(3), 349–362, 1978.

707 Cao, X., Ni, J., Herzschuh, U., Wang, Y., and Zhao, Y.: A late Quaternary pollen dataset from
708 eastern continental Asia for vegetation and climate reconstructions: Set up and
709 evaluation, *Rev. Palaeobot. Palyno.*, 194, 21–37, 2013.

710 [CCCV \(Compilation Committee of Chinese Vegetation\): Vegetation of China, Science Press,](#)
711 [Beijing, 1980 \(in Chinese\).](#)

712 [Chen, X. M., Chen, F. H., Zhou, A. F., Huang, X. Z., Tang, L. Y., Wu, D., Zhang, X. J., and](#)
713 [Yu, J. Q. Vegetation history, climatic changes and Indian summer monsoon evolution](#)
714 [during the Last Glaciation \(36,400–13,400 cal yr BP\) documented by sediments from](#)
715 [Xinyun Lake, Yunnan, China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 410, 179–189,](#)
716 [2014.](#)

717 Conservation International: Biodiversity Hotspots, Retrieved 9 September 2008, From
718 <http://www.biodiversityhotspots.org/>, 2008.

719 Cook, C. G., Jones, R. T., and Turney, C. M.: Catchment instability and Asian summer
720 monsoon variability during the early Holocene in southwestern China, *Boreas*, 42,
721 224–235, 2013.

722 [Dykoski, C. A., Edwards, R. L., Cheng, H., Yuan, D. X., Cai, Y. J., Zhang, M. L., Lin, Y. S.,](#)
723 [Qing, J. M., An, Z. S., and Revenaugh, J.: A high-resolution, absolute-dated Holocene](#)
724 [and deglacial Asian monsoon record from Dongge Cave, Earth Planet. Sci. Lett., 233,](#)
725 [71–86, 2005.](#)

726 [El-Moslimany, A. P.: Ecological significance of common non-arboreal pollen: examples from](#)
727 [dry lands of the Middle East, Rev. Palaeobot. Palyno. 64, 343–350, 1990.](#)

728 [Erdtman, G.: Pollen morphology and plant taxonomy \(Angiosperms. an introduction to](#)
729 [palynology-I\), Almqvist and Wiksell, Stockholm, 1952.](#)

730 Erdtman, G.: The acetolysis method, revised description, *Svensk Botanisk*
731 *Tidskrift* 54, 561–564, 1960.

732 Feng, J. M., Wang, X.P., Xu, C.D., Yang, Y.H., and Fang, J.Y.: Altitudinal patterns of plant
733 species diversity and community structure on Yulong Mountains, Yunnan, China, *J. Mt.*
734 *Sci.*, 24 (1), 110–116, 2006 (in Chinese with English abstract).

735 Foster, G. C., Chiverrell, R. C., Harvey, A. M., Dearing, J. A., and Dunsford, H.: Catchment
736 hydro-geomorphological responses to environmental change in the Southern Uplands of

737 Scotland, Holocene, 18, 935–950, 2008.

738 Grimm, E.: TILIA version 1.11, Illinois State Museum, Springfield, USA, 1997.

739 He, X. B., Tang, K. L., Tian, J. L., and Matthews, J. A.: Paleopedological investigation of
740 three agricultural loess soils on the Loess Plateau of China, Soil Sci., 167, 478–491,
741 2002.

742 He, Y. Q., Yao, T. D., Yang, M. X., and Shen, Y. P.: Contemporary significance of snow and
743 ice indicated by the record in a shallow ice core from a temperate glacier in southwestern
744 monsoon region, J. Glaciology Geocryology, 22(3), 235–242, 2000a (in Chinese with
745 English abstract).

746 He, Y. Q., Yao, T. D., Yang, M. X., and Sun, W. Z.: The new results of $\delta^{18}\text{O}$ studies on the
747 system of precipitation, snow, ice and glacial runoff at the glacier Baishui No. 1 region in
748 Mt. Yulong, China, J. Glaciology Geocryology, 22(4), 391–393, 2000b (in Chinese with
749 English abstract).

750 Hirons, K. R., and Edwards, K. J.: Events at and around the first and second *Ulmus* declines:
751 Palaeoecological investigations in Co. Tyrone, Northern Ireland, New Phytol., 104,
752 131–153, 1986.

753 IBCAS (Institute of Botany, Chinese Academy of Sciences): Spore pteridophytorum
754 sinicorum, Science Press, Beijing, 1976 (in Chinese).

755 IBSCIBCAS (Institute of Botany and South China Institute of Botany, Chinese Academy of
756 Sciences): Angiosperm pollen flora of tropic and subtropic China, Science Press,
757 Beijing, 1982 (in Chinese).

758 Jarvis, D. I.: Pollen evidence of changing Holocene monsoon climate in Sichuan Province,
759 China, Quat. Res., 39, 325–337, 1993.

760 Jiang, Q. F., Ji, J. F., Shen, J., Ryo, M., Tong, G. B., Qian, P., Ren, X. M., and Yan, D. Z.:
761 Holocene vegetational and climatic variation in westerly-dominated areas of Central
762 Asia inferred from the Sayram Lake in northern Xinjiang, China, Sci. China Ser. D,
763 56(3), 339–353, 2013.

764 Jiang, X. Z., Wang, S. M., and Yang, X. D.: Paleoclimatic and environmental changes over
765 the last 30,000 years in Heqing Basin, Yunnan Province, J. Lake Sci., 10(2), 10–16,
766 1998 (in Chinese with English abstract).

767 [Jiang, X. Z., Yang, X. D., Wang, S. M., and Tong, G. B.: The Last Glacier Maximum pollen](#)
768 [record in the lake sediments from ancient Heqing Lake and its significance for](#)
769 [palaeomonsoon, Acta Micropalaeontol. Sin., 18\(3\), 263–267, 2001 \(in Chinese with](#)
770 [English abstract\).](#)

771 Jones, R. T., Cook, C. G., Zhang, E. L., Langdon, P. G., Jordan, J., and Turney, C.: Holocene
772 environmental change at Lake Shudu, Yunnan Province, southwestern China,
773 Hydrobiologia, 693, 223–235, 2012.

774 [KIBCAS \(Kunming Institute of Botany, Chinese Academy of Sciences\): Flora Yunnanica](#)
775 [\(Tomus 4\), Science Press, Beijing, 1986 \(in Chinese\).](#)

776 [KIBCAS \(Kunming Institute of Botany, Chinese Academy of Sciences\): Flora Yunnanica](#)
777 [\(Tomus 5\), Science Press, Beijing, 1991 \(in Chinese\).](#)

778 [KIBCAS \(Kunming Institute of Botany, Chinese Academy of Sciences\): Flora Yunnanica](#)
779 [\(Tomus 13\), Science Press, Beijing, 2003a \(in Chinese\).](#)

780 [KIBCAS \(Kunming Institute of Botany, Chinese Academy of Sciences\): Flora Yunnanica](#)
781 [\(Tomus 15\), Science Press, Beijing, 2003b \(in Chinese\).](#)

782 [Kramer, A., Herzschuh, U., Mischke, S., and Zhang, C. J.: Holocene treeline shifts and](#)
783 [monsoon variability in the Hengduan Mountains \(southeastern Tibetan Plateau\),](#)
784 [implications from palynological investigations, Palaeogeogr. Palaeoclimatol. Palaeoecol.,](#)
785 [286, 23–41, 2010.](#)

786 Li, X. Q., Zhao, K. L., Dodson, J., and Zhou, X. Y.: Moisture dynamics in central Asia for the
787 last 15 kyr: new evidence from Yili Valley, Xinjiang, NW China, Quat. Sci. Rev., 30,
788 3457–3466, 2011.

789 Li, X. Q., and Du, N. Q.: The acid-alkali-free analysis of Quaternary pollen, Acta Bot. Sin.,
790 41(7), 782–784, 1999 (in Chinese with English abstract).

791 [Long, R. H., Li, B. F., Brenner, M., and Song, X. L.: A study of late Pleistocene to Holocene](#)
792 [vegetation in Qilu Lake of central Yunnan, Geol. Yunnan 10\(1\), 105–118, 1991 \(in](#)
793 [Chinese with English abstract\).](#)

794 Luo, S. W.: The historical route of the ancient “Tea-Horse Road” and the current value of its
795 tourism development, J. Chongqing Norm. Uni. (Nat. Sci. Ed.), 20(3), 54–57, 2003 (in
796 Chinese with English abstract).

797 Mook, W. G.: Recommendations/resolutions adopted by the Twelfth International
798 Radiocarbon Conference, *Radiocarbon*, 28, 799, 1986.

799 Moore, P. D., Webb, J. A., and Collinson, M. E.: Pollen analysis, 2nd edn, Blackwell
800 Scientific Publications, London, 1991.

801 Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., and Kent, J.:
802 Biodiversity hotspots for conservation priorities, *Nature*, 403, 853–858, 2000.

803 Parker, A. G., Goudie, A. S., Anderson, D. E., Robinson, M., and Bonsall, C.: A review of the
804 mid-Holocene elm decline in the British Isles, *Prog. Phys. Geog.*, 26(1), 1–45, 2002.

805 Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Bertrand, C. J. H.,
806 Blackwell, P. G., Buck, C. E., Burr, G. S., Cutler, K. B., Damon, P. E., Edwards, R. L.,
807 Fairbanks, R. G., Friedrich, M., Guilderson, T. P., Hogg, A. G., Hughen, K. A., Kromer,
808 B., McCormac, G., Manning, S., Ramsey, C. B., Reimer, R. W., Remmele, S., Sounthor,
809 J. R., Stuiver, M., Talamo, S., Taylor, F. W., van der Plicht, J., and Weyhenmeyer, C. E.:
810 IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP, *Radiocarbon*, 46,
811 1029–1058, 2004.

812 Russell, E. W. B., Davis, R. B., Anderson, R. S., Rhodes, T. E., and Anderson, D. S.: Recent
813 centuries of vegetational change in the glaciated north-eastern United States, *J. Ecol.*,
814 81(4), 647–664, 1993.

815 Shen, J., Jones, R. T., Yang, X. D., Dearing, J. A., and Wang, S. M.: The Holocene vegetation
816 history of Lake Erhai, Yunnan Province southwestern China: the role of climate and
817 human forcings, *Holocene*, 16(2), 265–276, 2006.

818 Smith, A. G., and Cloutman, E. W.: Reconstruction of Holocene vegetation history in three
819 dimensions at Waun-Fignen-Felen, an upland site in South Wales, *Philos. Trans. R. Soc.*
820 London, Ser. B Biol. Sci.

821 Song, X. Y., Yao, Y. F., Wortley, A. H., Paudiyal, K. N., Yang, S. H., Li, C. S., and Blackmore,
822 S.: Holocene vegetation and climate history at Haligu on the Jade Dragon snow
823 mountain, Yunnan, SW China, *Climatic Change*, 113, 841–866, 2012.

824 Sun, X. J., Luo, Y. L., Huang, F., Tian, J., and Wang, P. X.: Deep-sea pollen from the South
825 China Sea: Pleistocene indicators of east Asian monsoon, *Mar. Geol.*, 201, 97–118,
826 2003.

827 Valles, J., and McArthur, E. D.: *Artemisia* systematics and phylogeny- cytogenetic and
828 molecular in sights. In: McArthur, E. D., and Fairbanks, D. J. (eds.), Shrubland
829 ecosystem genetics and biodiversity: proceedings. June 13–15, 2000, US Department of
830 Agriculture Forest Service, Rocky Mountain Research Station, Provo, UT Ogden, USA,
831 pp. 67–74, 2001.

832 Wang, F. X., Chien, N.F., Zhang, Y. L., and Yang, H. Q.: Pollen flora of China, Science Press,
833 Beijing, 1995 (in Chinese).

834 Wang, H., Zhang, C. Q., Li, D. Z., Xue, R. G., and Yang, Q. E.: Checklist of seed plants of
835 Lijiang Alpine Botanic Garden, Yunnan Science and Technology Press, Kunming, 2007
836 (in Chinese).

837 WGYV (Writing Group of Yunnan Vegetation): Vegetation of Yunnan, Science Press, Beijing,
838 1987 (in Chinese).

839 Wu, Z. K., Zhang, C. Q., Huang, Y., Zhang, J. L., and Sun, B. L.: Analysis on the formation
840 of plant species diversity in the Yulong Mountains, upper reaches of Yangtze River,
841 Resour. Environ. in the Yangtze Basin, 15(1), 48–53, 2006 (in Chinese with English
842 abstract).

843 Xiao, J. L., Xu, Q. H., Nakamura, T., Yang, X. L., Liang, W. D., and Inouchi, Y.: Holocene
844 vegetation variation in the Daihai Lake region of north-central China: a direct indication
845 of the Asian monsoon climatic history, Quat. Sci. Rev., 23, 1669–1679, 2004.

846 Xiao, X. Y., Haberle, S. G., Shen, J., Yang, X. D., Han, Y., Zhang, E. L., and Wang, S. M.:
847 Latest Pleistocene and Holocene vegetation and climate history inferred from an alpine
848 lacustrine record, northwestern Yunnan Province, southwestern China, Quat. Sci. Rev.,
849 86, 35–48, 2014.

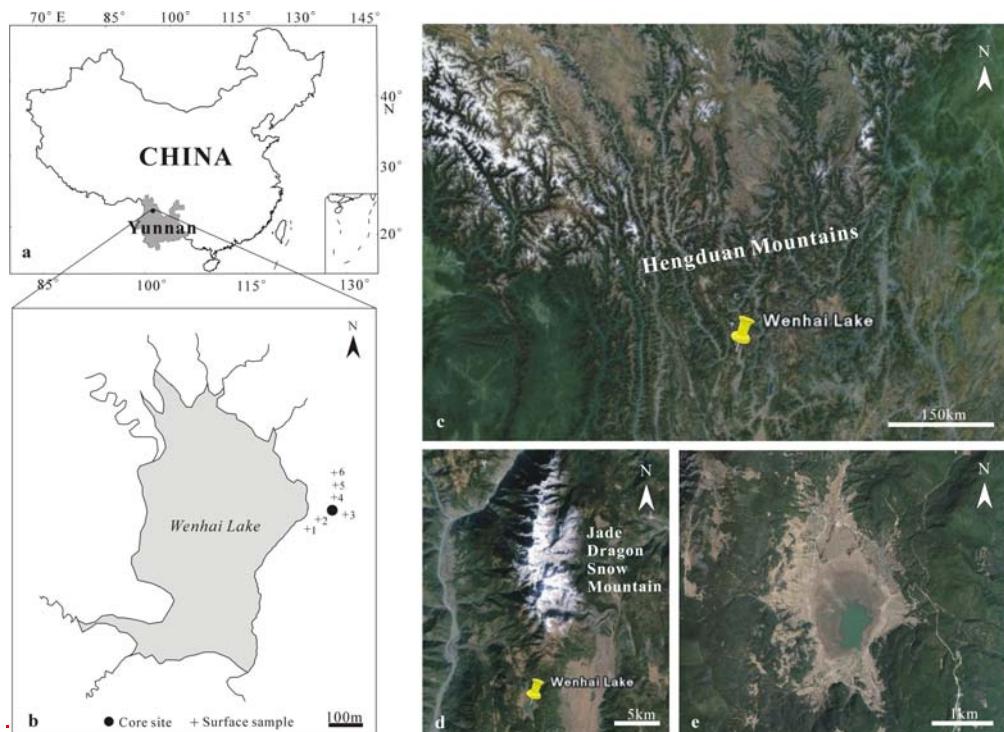
850 Xu, Q. H., Kong, Z. C., Yang, X. L., Liang, W. D., and Sun, L. M.: Vegetation changes and
851 human influences on Qian'an Basin since the middle Holocene, J. Integr. Plant Biol.,
852 44(5), 611–616, 2002.

853 Ying, J. S.: Species diversity and distribution pattern of seed plants in China, Biodivers. Sci.,
854 9(4), 393–398, 2001.

855 Zhang, L. L., Zhang, Y., Wang, L., and Wang, Y. H.: An ethnobotanical study of traditional
856 edible plants used by Naxi people in northwest Yunnan, China –a case study in Wenhai

857 village, *Plant Divers. Resour.*, 35(4), 479–486, 2013.
858 Zhao, Y., Yu, Z. C., Chen, F. H., Ito, E., and Zhao, C.: Holocene vegetation and climate
859 history at Hurleg Lake in the Qaidam Basin, northwest China, *Rev. Palaeobot. Palyno.*,
860 145, 275–288, 2007.

861


862 **Figure legends**

863 **Figure 1.** a. The location of Wenhai Lake in northwestern Yunnan, China, b. The position of
864 core and surface soil samples, c. The location of Wenhai Lake in the Hengduan
865 Mountains, d. The location of Wenhai Lake on the Jade Dragon Snow Mountain, e.
866 An enlarged photograph of Wenhai Lake (c, d and e are cited from Google Earth)

867 **Figure 2.** Pollen percentage diagram from Wenhai Lake, northwestern Yunnan, China

868 **Figure 3.** Inferred vegetation succession over the past 22,570 yrs at Wenhai

刪除的內容: of selected taxa

Figure 1

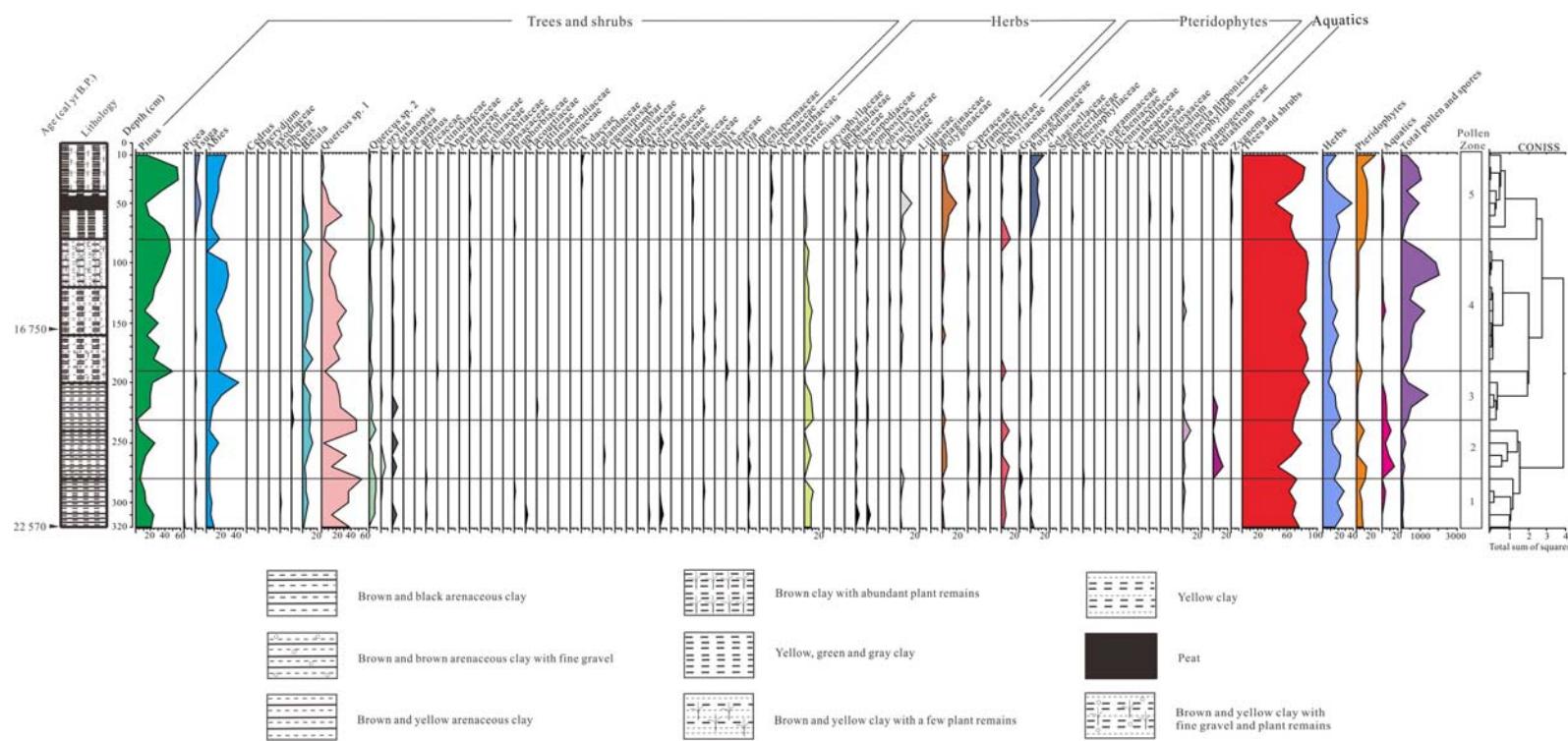
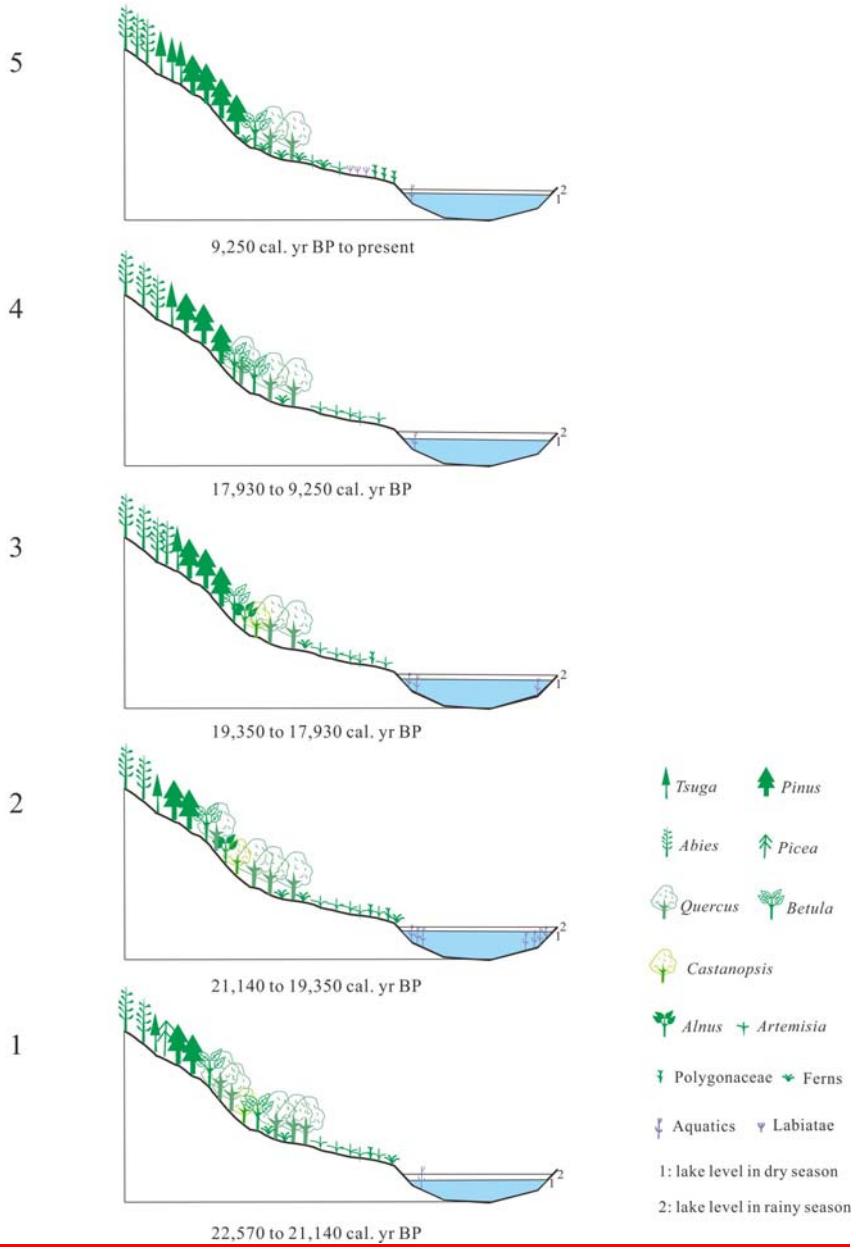



Figure 2

Stage

Vegetation succession

Figure 3

页 13: [1] 删除的内容

Lenovo User

2014-11-12 9:02:00

This present study provides a preliminary investigation into the vegetation and climate history at Wenhai Lake. The palynoflora found in the Wenhai core includes a large number of potential climate indicators. For instance, *Abies*, *Picea* and *Betula* are typically regarded as cold-tolerant taxa. *Pinus* usually grows in slightly warmer and moderately dry habitats. *Tsuga*, *Alnus*, *Polygonaceae*, *Poaceae* and *Cyperaceae* are considered to be hygrophilous plants. The occurrence of *Ephedra*, *Artemisia* and *Chenopodiaceae* normally indicates a dry environment. Evergreen sclerophyllous *Quercus* displays considerable ecological adaptability, and can adapt to dry or humid habitats (WGYV, 1987; Jarvis, 1993; Sun et al., 2003; Jiang et al., 2013).

页 13: [2] 删除的内容

Lenovo User

2014-12-3 14:55:00

on the lower mountains surrounding the lake, with a few *Corylus*, *Ulmus* and *Ericaceae* trees also dispersed in the forest. N

页 13: [3] 删除的内容

Lenovo User

2014-12-3 14:56:00

was distributed on the upper mountains.

页 13: [4] 删除的内容

Lenovo User

2014-12-3 14:56:00

Picea and *Ephedra* were also found in minute quantities.

页 13: [5] 删除的内容

Lenovo User

2014-12-4 8:48:00

Aquatic *Myriophyllum* and *Pediastrum* grew in the water at low concentrations.

页 13: [6] 删除的内容

Lenovo User

2014-12-3 15:05:00

The period b

页 13: [7] 删除的内容

Lenovo User

2014-12-3 15:26:00

continuing dominance of broad-leaved trees in the pollen sum of trees and shrubs. In

showed a slight increase. This pollen assemblage suggests that the vegetation was dominated by broad-leaved forest as before, accompanied by needle-leaved forest, indicating a relatively warm and moderately humid climate condition with several climatic fluctuations during the period.

页 13: [8] 删除的内容

Lenovo User

2014-12-3 15:27:00

Tsuga, *Alnus*, *Polygonaceae*, *Athyriaceae*, *Myriophyllum* and *Pediastrum* were still visible, but their percentages gradually declined.

页 13: [9] 删除的内容

Lenovo User

2014-12-3 15:32:00

. The climate of the period was warm and humid at the beginning, but shifted to