Title: Nitrous oxide emission and nitrogen use efficiency in response to nitrophosphate, N-(n-butyl) thiophosphoric triamide and dicyandiamide of a wheat cultivated soil under sub-humid monsoon conditions

Authors: W. X. Ding¹, Z. M. Chen¹, H. Y. Yu¹, J. F. Luo², G. Y. Yoo³, J. Xiang¹, H. J. Zhang¹ and J. J. Yuan¹

Affiliations:

¹ State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China

² Land and Environment, AgResearch, Hamilton 3240, New Zealand

³College of Engineering, Kyung Hee University, Yongin–si 446–701, Republic of Korea

Suggested running head: Inhibitors and nitrophosphate effects on N2O emissions

Article type: Original full paper

Correspondence to: W. Ding (wxding@issas.ac.cn)

1	Nitrous oxide emission and nitrogen use efficiency in response to nitrophosphate,
2	N-(n-butyl) thiophosphoric triamide and dicyandiamide of a wheat cultivated
3	soil under sub-humid monsoon conditions
4	W. X. Ding ¹ , Z. M. Chen ¹ , H. Y. Yu ¹ , J. F. Luo ² , G. Y. Yoo ³ , J. Xiang ¹ , H. J. Zhang ¹
5	and J. J. Yuan ¹
6	¹ State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science,
7	Chinese Academy of Sciences, Nanjing 210008, China
8	² Land and Environment, AgResearch, Hamilton 3240, New Zealand
9	³ College of Engineering, Kyung Hee University, Yongin–si 446–701, Republic of
10	Korea

12 Abstract

A field experiment was designed to study the effects of nitrogen (N) source and 13 urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) or nitrification inhibitor 14 dicyandiamide (DCD) on nitrous oxide (N₂O) emission and N use efficiency (NUE) 15 16 in a sandy loam soil. Six treatments including no N fertilizer (control), N fertilizer urea alone (U), urea plus NBPT (NBPT), (4) urea plus DCD (DCD), urea plus NBPT 17 and DCD (NBPT + DCD), and nitrate-based fertilizer nitrophosphate (NP) were 18 19 designed and implemented separately during the wheat growth period. Seasonal cumulative N₂O emissions with urea alone amounted to 0.49 ± 0.12 kg N₂O-N ha⁻¹ 20 and were significantly (P < 0.05) reduced to 0.28 ± 0.03 , 0.31 ± 0.01 and 0.26 ± 0.01 21 kg N₂O-N ha⁻¹ by application of DCD, NBPT and NBPT + DCD, respectively. 22

23	Cumulative N ₂ O emissions from NP were 0.28 ± 0.01 kg N ₂ O-N ha ⁻¹ . A single N ₂ O
24	flux peak was identified following basal fertilization, and DCD and/or NBPT
25	inhibition effects mainly occurred during the peak emission period. The NP
26	application significantly ($P < 0.05$) increased wheat yield by 12.3 % and NUE from
27	28.8 % (urea alone) to 35.9 %, while urease and/or nitrification inhibitors showed a
28	slight increase effect. Our results clearly indicated that the application of urea as basal
29	fertilizer, but not as supplemental fertilizer, together with DCD and NBPT is an
30	effective practice to reduce N_2O emissions. The application of NP instead of urea
31	would be an optimum agricultural strategy for reducing N_2O emissions and increasing
32	crop yield and NUE for wheat cultivation in soils of the North China Plain.

33 Key words: Ammonium-based fertilizer; Inhibitors; Nitrate-based fertilizer; Nitrogen
34 use efficiency; Nitrous oxide; Wheat yield

35

36 **1 Introduction**

Nitrous oxide (N₂O) is a potent and long-lived atmospheric greenhouse gas, with an 37 annual increasing rate of 0.26 % over the past decades and a contribution of 7 % to 38 the annual increase in radiative forcing (IPCC, 2007). Agricultural soils are identified 39 as the major source of atmospheric N₂O, contributing 4.1 Tg N yr⁻¹ (IPCC, 2013) to 40 the global atmospheric N₂O budget of ~ 14 Tg N yr⁻¹ (Fowler et al., 2009). Field 41 management practices along with soil and climatic factors are recognized as being 42 determinants of N₂O emissions from agricultural soils (Stehfest and Bouwman, 2006; 43 Gagnon et al., 2011). Among management practices, the large inputs of industrially 44

fixed N in agriculture are a major perturbation to terrestrial N cycling and a major contribution to accelerating N₂O emissions (Galloway et al., 2008). During the period 1990–2005, agricultural N₂O emissions were globally estimated to have increased by 17 % (USEPA, 2006), and are projected to increase by 35–60 % by 2030 due to the continuous increase of global N fertilizer consumption and animal manure production (FAO, 2003).

China is a major agricultural producer (West et al., 2014) and the amount of 51 applied N fertilizer has increased from 7.07 to 26.21 Tg N yr⁻¹ over the period from 52 1977 to 2005 (Ju et al., 2009). The North China Plain, primarily containing low 53 organic carbon (C) calcareous soils (6.40 vs. 9.60 g C kg⁻¹ for national upland soils) 54 (Xie et al., 2007), is an intensive agricultural region. It covers $\sim 300\ 000\ \text{km}^2$ and 55 56 produces up to one-fourth of the total annual grain yield in China (Liu et al., 2001). A winter wheat and summer maize rotation is a commonly used cropping system, and 57 the annual application rates of synthetic N fertilizers have amounted to 600 kg N ha⁻¹ 58 59 or more (Zhao et al., 2006; Ju et al., 2009). However, a low proportion of fertilizer N is taken up by crops (< 30 %) and it is estimated that up to 41 % of N applied during 60 the growth season is subject to losses via leaching, nitrification, denitrification and 61 ammonia volatilization (Cai et al., 2002). At present, up to 33 % of fertilizer N was 62 over-applied to the fields in China, resulting in China's contribution to 28 % of the 63 global annual N₂O emissions from croplands (West et al., 2014). Hence, it is urgent to 64 develop optimum methods for enhancing the recycling of N in the agricultural 65 ecosystem and reducing the fertilizer N-induced N₂O emissions. 66

67	In the past decade, a number of field measurements of N ₂ O emissions have been
68	conducted in the North China Plain (Meng et al., 2005; Ding et al., 2007; Ju et al.,
69	2011). A 3 year field measurement showed that the direct N_2O emission factors of
70	synthetic N applied to the wheat-maize cropping systems was 0.82% (Cai et al., 2013),
71	which was higher than the 0.6% reported from fertilizer N-treated upland soils in
72	China (Xing, 1998). Nitrification is found to be the main process for the N_2O
73	emission because low availability of easily degradable organic C limits denitrification
74	in this region (Ding et al., 2007; Ju et al., 2011). Nitrification inhibitors such as DCD
75	help to retard the oxidation of NH_4^+ to NO_3^- by inhibiting the activities of
76	Nitrosomonas bacteria in soil (Prasad and Power, 1995), resulting in the reduction of
77	N ₂ O emissions directly by decreasing nitrification or indirectly by reducing the
78	availability of NO_3^- for denitrification and leaching. As a consequence, DCD can
79	increase NUE by increasing plant growth and N uptake (Asing et al., 2008). Similarly,
80	a urease inhibitor like NBPT can slow the conversion of urea to $\mathrm{NH_4}^+$, thereby
81	reducing N losses by NH ₃ volatilization (Manunza et al., 1999; Zaman et al., 2009)
82	and potentially reducing nitrification and subsequent denitrification rates. As such the
83	use of NBPT with urea-based fertilizers may be a potential management strategy to
84	mitigate N ₂ O emissions (Menéndez et al., 2009). A combined application of
85	nitrification inhibitor and urease inhibitor with urea can maintain N as NH_4^+ for a
86	longer time with more chance of the fertilizer-derived N being taken up by the crops
87	or immobilized by the organic or mineral component of the soil, thereby reducing the
88	gaseous loss (Xu et al., 2002). Though application of inhibitors to reduce N_2O

emissions has attracted more attention recently and has already been investigated in
many areas (Menéndez et al., 2009; Zaman et al., 2009), their effect on N₂O emissions
in the North China Plain has not been fully investigated.

Soil N₂O emissions are also influenced by the source of fertilizer N. Gagnon et al. 92 93 (2011) found that N₂O emissions from urea ammonium nitrate were drastically greater 94 than those from anhydrous ammonia during the maize growth season in a poorly drained clay soil of Canada. In contrast, Venterea et al. (2005, 2010) reported N₂O 95 emissions from soils amended with anhydrous NH₃ to be 2- to 4-fold greater than that 96 97 from soils receiving urea ammonium nitrate in a silt loam of the United States. Based on the analysis of published data in the literature, Stehfest and Bouwman (2006) 98 concluded that the N₂O emissions from nitrate-based fertilizers were on average lower 99 100 than those from ammonium-based fertilizers. During the winter wheat growth season 101 in the North China Plain, limited precipitation occurs. Therefore, it is likely that applying nitrate-based fertilizer instead of urea will not accelerate the leaching of 102 NO₃⁻ but reduce N₂O emissions and increase NUE. 103

In this study, we hypothesize that application of urease inhibitor and/or nitrification inhibitor with urea will lower N₂O emission and increase wheat yield by suppressing the nitrification rate and increasing NUE in the North China Plain. We also hypothesize that use of a nitrate-based fertilizer nitrophosphate by replacing urea will have similar effects. The objectives of this study were: (1) to evaluate the influence of application of urea with NBPT, DCD and NBPT + DCD on N₂O emissions and (2) to investigate whether the use of nitrophosphate instead of urea reduces N₂O emissions from an intensively cultivated calcareous soil during the wheatgrowth season.

113

114 2 Materials and methods

115 **2.1 Experimental site and soil characteristics**

116 The field experiment was conducted at the Fengqiu State Key Agro-ecological Experimental Station, Chinese Academy of Sciences, Henan Province, China 117 (35°00'N, 114°24'E), a typical region of the North China Plain. The region has a 118 119 sub-humid temperate continental monsoon climate with dry cold winters and wet hot summers. A winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) 120 rotation is selected as an intensively managed double-cropping system. The 30 year 121 mean annual temperature was 13.9 °C, with a range varying from -1.0 °C in January 122 to 27.2 °C in July. The mean annual precipitation is 615 mm, two thirds of which falls 123 between June and September. The soil is derived from alluvial sediments of the 124 Yellow River and is classified as aquic inceptisol (Soil Survey Staff, 1994). The 125 physicochemical properties of the soil are summarized in Table 1. 126

127

128 **2.2 Treatment and crop management**

The field experiment was carried out during the winter wheat growth season and included six fertilization treatments: (1) no N fertilizer (control), (2) N fertilizer urea alone (U), (3) urea plus N-(n-butyl) thiophosphoric triamide (NBPT), (4) urea plus dicyandiamide (DCD), (5) urea plus NBPT and DCD (NBPT + DCD), and (6)

nitrate-based fertilizer nitrophosphate (NP). The plots were arranged in a randomized 133 complete block with three replicates and the plot size was 5 m \times 5 m. Urea and 134 nitrophosphate (Jinkai chemical, Kaifeng, China), totaling 200 kg N ha⁻¹, were added 135 in two applications: 120 kg N ha⁻¹ as basal fertilizer and 80 kg N ha⁻¹ as supplemental 136 fertilizer. Calcium superphosphate was applied as basal fertilizer at a rate of 125 kg 137 P_2O_5 ha⁻¹ for all treatments. For the NP treatment, calcium superphosphate was added 138 as the basal fertilizer to ensure the same application rate of phosphate between the 139 treatments. The NBPT (Hengshuo Chemical, Wuhan, China) and DCD (Sunnyfield 140 Chemicals, Ningxia, China) were applied at a rate of 0.2 % and 10 % of the applied N 141 142 (w/w), respectively. Inhibitor(s) and urea were thoroughly mixed. All basal fertilizers were evenly spread onto the soil surface by hand and immediately incorporated into 143 144 the surface soil (0-20 cm) by plowing before sowing on 15 October 2009. The supplemental urea and inhibitor(s) or nitrophosphate were surface applied by hand, 145 then integrated into the plowed layer with irrigation water (40 mm) on 6 March 2010. 146 The mature wheat was harvested on 10 June 2010. 147

148

149 2.3 N₂O flux measurement

In situ soil-surface fluxes of N₂O were measured using the static chamber-gas chromatograph (GC) method. Flux measurements were taken over the period from 16 October 2009 to 8 June 2010 (235 days) during the wheat growth season. Immediately after sowing, a PVC chamber base (30 cm \times 30 cm \times 10 cm) was inserted into the soil about 5 cm deep between wheat rows in the center of each plot. The PVC chamber 155 $(30 \text{ cm} \times 30 \text{ cm} \times 15 \text{ cm})$ was tightly fitted to the top of the base by inserting the flange of the chamber into the water trough at the upper end of the chamber base. The 156 chamber was equipped with two ports: a small, silicon-sealed vent for sampling and a 157 second port for measuring chamber temperature. Gas samples were initially taken 158 twice a week and later reduced weekly then fortnightly over the winter. Sampling was 159 160 done in the morning between 09:00 LT and 12:00 LT in order to minimize diurnal 161 variation in flux patterns. Each time, four samples of the chamber air were manually pulled into 50 mL syringes at 0, 10, 20 and 30 min after closure, injected into 20 mL 162 pre-evacuated vials fitted with butyl rubber stoppers and taken to our laboratory for 163 analysis. The air temperature inside the chamber was simultaneously measured with a 164 mercury thermometer. 165

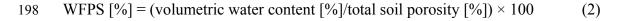
166 N₂O concentrations were analyzed on a gas chromatograph (Agilent 7890, Santa Clara, CA, USA) equipped with an electron capture detector. The interfering oxygen 167 contained in the injected gas sample (1.0 mL) was separated by a pre-column (1 m) in 168 combination with an analytical column (3 m). Both columns, packed with Porapak Q 169 (80/100 mesh), were attached directly to the 6-port valve to control the backflush. The 170 temperatures of column oven, injector and detector were 40 °C, 100 °C and 300 °C, 171 respectively. The flow rate of carrier gas (95 % Argon + 5 % CH₄) was 40 mL min⁻¹. 172 The standard N₂O gas was provided by the National Institute for Agro-Environmental 173 Sciences, Japan. The N₂O fluxes were calculated using the following equation: 174

175
$$F = \rho \times (P/760) \times (V/A) \times (\Delta C/\Delta t) \times [273/(273+T)]$$
 (1)

176 where F is the N₂O flux (μ g N₂O-N m⁻² h⁻¹), ρ is the density of N₂O at 0 °C and 760

mm Hg (kg m⁻³), *V* is the chamber volume (m³), *A* is the area from which N₂O was emitted into the chamber (m²), $\Delta C/\Delta t$ is the rate of N₂O accumulation in the chamber (ppbv N₂O-N h⁻¹), *T* is the chamber air temperature in Celsius, and *P* is the air pressure of the experimental site (mm Hg). The altitude of the experimental site for this study is very close to sea level, so *P*/760 \approx 1. Few sample sets were discarded when they yielded a linear regression value of *R*² greater than 0.90.

183


184 2.4 Grain yield and aboveground N uptake

After crops reached physiological maturity (10 June 2011), grain and straw were manually harvested from each plot. Grain and straw were air-dried, then further dried for 3 days at 65 °C and weighed to obtain dry matter yields. Subsamples were ground with a ball mill and analyzed for N concentration with an elemental N analyzer (VarioMax, Elementar, Hanau, Germany). Total N content in aboveground biomass was calculated from the sum of N masses harvested in grain and straw from each plot.

191

192 **2.5 Auxiliary variables**

Soil temperatures were measured, simultaneously with gas sampling, at vertical
depths of 5, 10 and 15 cm with a digital thermometer (Model 2455, Yokogawa, Japan).
Soil moisture was measured at 5 cm depth at three different positions in the vicinity of
each chamber using time domain reflectometry probes and was expressed as
water-filled pore space (WFPS) by the equation:

where total soil porosity = 1 - (soil bulk density/2.65), with 2.65 [g cm⁻³] being the assumed particle density of the soil. The precipitation and air temperature were monitored at a neighboring meteorological station 100 m away from the experimental field.

203 During the growth season, six soil samples were taken from the 0-20 cm soil layer at different positions in each plot just after flux measurement using a 5 cm 204 205 diameter stainless steel soil sampler and then all samples from each plot were thoroughly mixed to form a composite. After visible roots and litter materials were 206 207 removed, soil samples were passed through a 2 mm sieve and then extracted with 2 M KCl (soil/KCl suspension of 30:100 ratio) for 1 h on a rotary shaker. The extracted 208 solutions were filtered and stored in a deep freezer (-18 °C) until analysis. The 209 NH_4^+ -N and NO_3^- -N concentrations were measured using a colorimetric method on a 210 Skalar segmented flow analyzer (SAN⁺⁺, the Netherlands). 211

212

213 **2.6 Data analysis and statistics**

Average fluxes and standard errors of the N_2O fluxes were calculated from triplicate plots. Seasonal cumulative N_2O emissions were calculated using the following equation:

217 Cumulative N₂O emission =
$$\sum_{i=1}^{n} (F_i + F_{i+1})/2 \times (t_{i+1} - t_i) \times 24$$
 (3)

where *F* is the N₂O flux (μ g N₂O-N m⁻² h⁻¹), *i* is the *i*th measurement, the term of ($t_{i+1} - t_i$) is the number of days between two measurements, and *n* is the total number of the measurements. The N₂O direct emission factor (%) of fertilizer N applied to the soil with background adjustment was calculated as follows:

222 Emission factor =
$$((N_2O-N_{fertilizer} - N_2O-N_{control})/N_{fertilizer}) \times 100$$
 (4)

where N₂O-N_{fertilizer} and N₂O-N_{control} are the cumulative N₂O emissions (kg N₂O-N 223 ha⁻¹) in the N-fertilized treatment and the control treatment, respectively, and N_{fertilizer} 224 is the amount of fertilizer N applied (kg N ha⁻¹). Yield-scaled N₂O emissions were 225 226 calculated by dividing cumulative N₂O emission by grain yield for each plot. NUE was calculated by dividing differences of the N amount in the aboveground biomass 227 between N-fertilized plots and control plots within the same block by the N 228 application rate (200 kg N ha⁻¹). Soil inorganic N intensities were calculated 229 separately for NH_4^+ (NH₄I), NO_3^- (NO₃I) and the sum of NO_3^- + NH_4^+ (IONI) as the 230 summation of daily NH_4^+ -N, NO_3^- -N or $(NO_3^- + NH_4^+)$ -N concentrations in the 0–20 231 232 cm layer over the same period as for cumulative N₂O emissions using linear interpolation between sampling dates, and presented in units of g d kg^{-1} , the index 233 being what is commonly reported (Zebarth et al., 2008; Engel et al., 2010). 234

All data were statistically analyzed using the SPSS software package for 235 Windows (Version 13.0, SPSS inc, Chicago, IL, USA). The effects of fertilization 236 management on N₂O emissions, emission factor, and grain yields were evaluated 237 using one-way ANOVA, followed by the least significant difference (LSD) test at P <238 All dependent variables were evaluated for normality using the 239 0.05. Kolmogorov-Smirnov test and were log-transformed to normalize the distributions if 240 necessary prior to statistical analysis. Correlation and nonlinear regression analyses 241 were used to test relationships between N₂O fluxes and other factors. 242

244 **3 Results**

245 **3.1 Wheat yield and nitrogen use efficiency**

Grain yield in the urea alone treatment was 4652 kg ha^{-1} and this was increased by 1.3 246 %, 1.8 % or 1.8 % when NBPT, DCD or both were added with urea fertilizer (Table 247 248 2). Compared with the urea alone, the increase in the grain yield in the NP treatment was 12.3 % (Table 2). The N process inhibitors, NBPT, DCD or the combination of 249 both, slightly increased the amount of N uptake by wheat plants. However, this 250 increase was not statistically significant (P > 0.05). A significant increase in the 251 plant N uptake was observed in the NP treatment compared with urea only treatment 252 (P < 0.05). The NUE was calculated at 28.8 % for the urea alone treatment and this 253 254 was slightly increased to 29.2–31.2 % when urea was applied with NBPT, DCD or the combination of NBPT and DCD. However, the NUE was increased to 35.9% for the 255 NP treatment, which was significantly higher than that for all the urea treatments (P <256 0.05). 257

258

259 **3.2 Soil temperature and moisture**

Temporal variations of air temperature, precipitation, and soil WFPS and soil temperature at 5 cm depth over the experimental period are presented in Fig. 1. The cumulative rainfall over the wheat growth season was 97.6 mm which was lower than the long-term average. Soil moisture levels were highly variable, with WFPS values varying from 10.7 % to 80.4 %. Periods with high soil moisture (> 75 % WFPS) were

- observed following heavy rainfall or irrigation events. Soil temperature at 5 cm depth
 was below zero in early January and increased to 23 °C in early June.
- 267

268 **3.3** N₂O emissions

269 Variations of the N₂O fluxes over the wheat growth season are illustrated in Fig. 2. 270 N₂O fluxes from all fertilizer-incorporated treatments showed almost the same pattern with peak N₂O fluxes being observed soon after application of basal fertilizers. The 271 fluxes from all N fertilizer treatments were generally low on most of the other 272 sampling dates and these fluxes were not significantly different from those from the 273 control. On several occasions in the winter the fluxes were negative. No significant 274 increases in the N₂O fluxes were found following the supplemental fertilization 275 276 coupled with irrigation. N₂O fluxes did not increase after heavy rainfall events either.

The peak N₂O flux was 120.4 μ g N₂O-N m⁻² h⁻¹ in the urea alone treatment. 277 Compared with the urea only, application of NBPT, DCD or the combination of both 278 reduced the peak fluxes by 41.1 %, 75.0 % and 61.2 %, respectively. Application of 279 NP reduced peak fluxes by 69.1 % compared with application of urea alone. Analysis 280 showed that the natural logarithms of the N₂O fluxes were weakly, but not 281 significantly, correlated with soil WFPS in all treatments except the DCD treatment, 282 but significantly (P < 0.05) correlated with soil temperature in all treatments except 283 the NBPT + DCD treatment (Table 3). 284

Cumulative N₂O emissions from the different treatments are listed in Table 4.
Total N₂O emissions from the control, urea alone, urea + NBPT, urea + DCD, urea +

NBPT + DCD and NP treatments were 0.16 ± 0.02 , 0.49 ± 0.12 , 0.31 ± 0.01 , $0.28 \pm$ 287 0.01, 0.26 ± 0.01 and 0.28 ± 0.03 kg N₂O-N ha⁻¹, respectively, over the wheat growth 288 season. The highest total N₂O emission was found from the plot which only received 289 urea. These emissions mainly occurred during the 18 day peak emission period 290 291 following basal fertilizer application from 16 October to 3 November. Application of 292 NBPT, DCD or the combination of both significantly reduced the seasonal N₂O emissions from urea by 36.7 %, 42.9 % or 46.9 %, respectively (P < 0.05). Compared 293 with the emissions from the urea alone treatment, significantly lower N₂O emissions 294 were also observed from the NP treatment (P < 0.05) (42.9 % less than those from the 295 urea alone treatment). The direct N₂O emission factor for urea application alone was 296 0.17 %, and the addition of NBPT, DCD or the combination of both reduced the 297 emission factor for urea to 0.05-0.08 %. These reductions were statistically 298 significant (P < 0.05). The direct N₂O emission factor for NP was 0.06 %, which was 299 also significantly lower than that for urea application alone (P < 0.05). 300

The grain yield-scaled N₂O emission from the NP treatment was significantly lower than that from the urea alone treatment (P < 0.05), but not different from those from the NBPT, DCD or NBPT + DCD treatments during the wheat growth season (Table 4).

305

306 3.4 Soil NH₄⁺ and NO₃⁻ concentrations

Soil NH_4^+ and NO_3^- concentrations drastically increased after application of basal N fertilizers compared with the control. The levels of NO_3^- in the NBPT and NBPT +

DCD treatments were relatively low for one week after basal fertilizer application 309 compared with those in the other treatments. However, the levels of NO3⁻ in the 310 NBPT and NBPT + DCD treatments gradually increased, this was probably due to 311 degradation of NBPT and its subsequent loss of effectiveness. Following application 312 313 of supplemental fertilizer urea, no apparent increase in soil NO₃⁻ levels was observed, and NO₃⁻ concentration kept at a relatively constant level. In contrast, soil NO₃⁻ 314 concentration following application of supplemental fertilizer NP showed a rapidly 315 decreasing trend. In all urea-added treatments, soil NO3⁻ concentration sharply 316 decreased to less than 10 mg N kg^{-1} from 15 April onwards. 317

Soil NH_4^+ concentration increased from 2 to 10 mg N kg⁻¹ after application of basal fertilizer; however it sharply decreased soon afterwards. Application of DCD or NBPT + DCD sustained soil NH_4^+ concentrations at higher levels compared with urea application alone. In the NP treatment, soil NH_4^+ concentrations were always at low levels. The natural logarithms of the N₂O fluxes were more correlated with NH_4^+ concentrations than with NO_3^- concentrations in the soil, despite the fact that a significant relationship was only observed in the urea alone treatment.

Mean soil NH₄I levels in the NP treatment were the lowest among all N-added treatments and tended to be higher in the DCD and NBPT + DCD treatments compared with urea alone (Table 5). Mean soil NO₃I levels showed a similar trend among the treatments and were ranked in the order of NBPT, NBPT + DCD > DCD > urea alone, NP > control. Mean soil IONI levels were also similar among the treatments and were ranked as NBPT + DCD > NBPT, DCD > urea alone, NP >

331 control.

332

333 4 Discussion

4.1 Nitrous oxide emissions as affected by nitrogen sources

335 Compared with the urea alone, application of NP significantly reduced N₂O emissions 336 by 42.9 % during the wheat growth season (Table 4), and increased wheat yield by 12.3 % and NUE by 24.7 % (Table 2). Ju et al. (2011) obtained a similar result in the 337 North China Plain, finding that emissions of N₂O derived from Ca(NO₃)₂ were lower 338 than those from $NH_4(SO_4)_2$ during the maize growth season (0.38–0.81 vs. 1.31–3.52 339 kg N₂O-N ha⁻¹). A lower N₂O emission for urea ammonium nitrate than for 340 anhydrous ammonia was also reported in a silt loam of the United States (Venterea et 341 342 al., 2005). In contrast, Gagnon et al. (2011) measured a significantly higher N₂O emission following application of urea ammonium nitrate or calcium ammonium 343 nitrate compared with anhydrous ammonia in a poorly drained clay soil of Canada. In 344 a German grassland ecosystem, Müller and Sherlock (2004) found that the emissions 345 for ammonium-based fertilizer were lower than those for nitrate-based fertilizer. 346 These researchers suggested that higher emissions from nitrate-based fertilizers were 347 because of the propensity of the fine-textured clay soil to become anaerobic following 348 rainfall and a strong fixation of NH_4^+ in clay lattices reducing NH_4^+ available for N₂O 349 production (Chantigny et al., 2004). In this study, mean soil NO₃⁻ intensities (NO₃I) 350 were not significantly different between the NP and urea alone treatments (Table 5), 351 and mean NO_3^{-} concentrations (Fig. 3) were higher than the suggested threshold value 352

for denitrification of 5 mg N kg⁻¹ (Dobbie and Smith, 2003) during the growth season except for the period from 24 April to 10 June. These results imply that soil $NO_3^$ concentration was not the only limiting factor affecting denitrification and N₂O emission in the test soil.

357 The notable difference in the seasonal N₂O emissions between the NP and urea alone treatments occurred mainly during the 18 day peak emission period following 358 the basal fertilizer application and concurrent irrigation from 16 October to 3 359 November. It has been reported that application of ammonium-based fertilizers 360 emitted more N₂O than nitrate-based fertilizers under aerobic soil conditions, while 361 application of nitrate-based fertilizers induced a greater increase in N₂O production 362 when soil conditions were anoxic (Pathak and Nedwell, 2001; Tenuta and Beauchamp, 363 364 2003). For cultivated soils, the primary mechanism of N₂O production is generally believed to be the nitrification process when soil WFPS levels are between 30 % and 365 70 % and the denitrification process when soil WFPS levels were between 70 % and 366 90 % (Granli and Bøckman, 1994). Some other studies also suggest that 367 denitrification could in general produce more N₂O compared with nitrification (eg. 368 Dobbie et al., 1999). According to the studies of Ding et al. (2007) and Wan et al. 369 (2009), N₂O in sandy loam soils of the North China Plain was primarily produced by 370 nitrification unless soil WFPS reached 75 % or more. Pihlatie et al. (2004) reported 371 that even at 100 % WFPS in a loamy sand soil with 24 g organic C kg⁻¹, nitrification 372 was still the dominant N₂O production process. In this study, the highest soil WFPS 373 measured during the peak emission period was ~65 %; thus we suggest that low soil 374

moisture limited denitrification and N_2O production from the nitrate-based fertilizer in the test soil.

377 In the North China Plain, the addition of starch to soil treated with nitrate-based fertilizers in the field stimulated N₂O production through denitrification, but wheat 378 straw amendment did not do so (Wan et al., 2009; Ju et al., 2011). Previous studies 379 380 demonstrated that denitrification was not only controlled by soil moisture and nitrate, 381 but also by organic C supply, and increasing organic C availability could reduce the minimum soil moisture threshold for denitrification (van Groenigen et al., 2004; 382 Chantigny et al., 2013). Yu et al. (2012) found that the mass proportion of 383 macroaggregates in a NPK-treated soil with 6.0 g organic C kg⁻¹ only accounted for 384 8.8 %, while this proportion amounted to 30.8 % in an 18 year compost-added soil 385 with 10.0 g organic C kg⁻¹ in the North China Plain. This change significantly 386 increased the proportion of pores with a neck diameter $< 4 \mu m$ by reducing the 387 proportion of pores with a neck diameter of 15-60 µm, which in turn lowered the 388 effective diffusion coefficient of oxygen in the soils and the ratio of monounsaturated 389 to branched phospholipid fatty acids (PLFAs) i.e. aerobic to anaerobic 390 microorganisms (Zhang et al., 2014a). According to results found by Myrold and 391 Tiedje (1984), only large aggregates have anaerobic microsites. Thus, it is likely that 392 the relatively low organic C concentration in the test soil retards macroaggregation 393 and slows formation of anaerobic microsites, which in turn results in rise of the 394 minimum moisture threshold required for denitrification. Consequently, the 395 denitrification process is of much less importance than nitrification for N2O 396

397 production and emissions in soils of the North China Plain.

In a German silt loam soil, similar to that tested in this study, Rover et al. (1998) 398 reported that winter was a key period for N₂O emissions from arable crops in the 399 temperate climate zone, contributing ~ 70 % of the annual N₂O losses during the 400 thawing from December to February. Wolf et al. (2010) also verified that N₂O pulses 401 402 due to spring thaw dominated total annual N2O emission in a steppe grassland of 403 Inner Mongolia, China. At our site, spring thawing of the soil at the fertilized plots only caused minor N₂O emission pulses, which were considerably lower than those 404 405 reported earlier for other arable soils (Syväsalo et al., 2004; Teepe et al., 2000). It is suggested that reduced oxygen supply through alteration of pore structure during 406 thawing, and high soil water contents in the winter, would promote microbial 407 408 denitrification (Edwards and Killham, 1986; Mørkved et al., 2006). Our present study, together with previous measurements (Ding et al., 2007; Ju et al., 2010; Cui et al., 409 2012; Cai et al., 2013), showed that the highest soil WFPS was no more than 70 % 410 during the spring thawing period, a value that was lower than the threshold value of 411 412 80 % for thawing N₂O pulses in a silt loam found by Rover et al. (1998). The cumulative rainfall during the winter period from December 2009 to February 2010 413 414 was only 4.4 mm and no apparent snow cover was observed at our study site. So the warm temperate monsoon zone, with cold and dry winter in the North China Plain, 415 which is distinctly different from other climatic zones such as western Europe 416 (Dobbie and Smith 2003) and Inner Mongolia of China (Wolf et al., 2010), would not 417 induce thawing N₂O pulses from arable soils, as found in our study. However, Zhang 418

419 et al. (2014b) found that the North China Plain is a large agricultural N₂O source in China, contributing 36.3 % of the total annual N₂O emission from the China's 420 croplands. To make a global comparison, we compiled the literature data of N₂O 421 emissions from the temperate uplands under inorganic N fertilizer application in some 422 countries of Asia, Europe and North America with similar latitudes to the studied 423 region (Table 6). The emission factors of N applied in the North China Plain are 424 425 generally lower than in the other countries, indicating a lower capacity of N applied being converted into N₂O in the test soil. This is probably because N₂O is 426 predominantly produced from nitrification and denitrification is organic C-limited as 427 428 discussed above. In contrast, the total N2O emissions from the studied region are obviously higher due to the greater N fertilizer loading (Ju et al., 2009), suggesting 429 430 that agricultural practices for reducing N₂O emission are urgently required. Our results confirm that N fertilizer sources influence soil N₂O emissions, but that this 431 effect probably depends on soil properties and especially climate conditions. Our 432 study also suggests that, compared with urea or ammonium-based fertilizer, applying 433 nitrate-based fertilizer is an effective management strategy to mitigate N₂O emissions 434 435 and to increase NUE and wheat yield in the North China Plain.

436

437 **4.2** Nitrous oxide emissions as affected by inhibitors

The application of basal fertilizer urea followed by flooding irrigation resulted in N₂O emission pulses for 18 days. This finding is in agreement with those of other studies for arable fields (Bouwman et al., 2002; Ding et al., 2007; Cui et al., 2012). The presence of inhibitors NBPT and/or DCD significantly lowered N₂O peak fluxes, and

cumulative N₂O emissions during the 18 day peak emission period were reduced by 442 50.0 % by NBPT, 78.6 % by DCD and 67.9 % by NBPT + DCD, compared with 443 application of urea alone. Our results indicate that the addition of DCD alone or in 444 combination with NBTP effectively reduced N₂O emissions from application of urea. 445 In other sites of the North China Plain, Liu et al. (2013) also reported that nitrification 446 447 inhibitors DCD and DMPP (3,4-dimethylpyrazole phosphate) could reduce N₂O emissions from application of N fertilizers by 30 % and 21 %, respectively, during the 448 wheat growth season. Ju et al. (2011) observed no apparent differences in cumulative 449 N₂O emissions between zero N control and urea with DMPP during the maize growth 450 season, suggesting strong nitrification inhibition effectiveness of DMPP. 451

N₂O emission is directly related to the amount of mineral N available in the soil 452 and application of inhibitors with urea can effectively regulate the NO_3^- and NH_4^+ 453 concentrations (Li et al., 2009; Zaman et al., 2009). Recently, Maharjan and Venterea 454 (2013) demonstrated that N₂O emissions were more correlated with soil NO₂⁻ 455 intensity rather than NO_3^- or NH_4^+ intensity, and that inhibitors controlled N₂O 456 production by adjusting soil NO_2^- intensity. In this study, soil NH_4^+ concentration 457 slightly increased in the presence of DCD and, in contrast, relatively low NH₄⁺ 458 concentration was found after NBPT application following application of basal 459 fertilizer. NBPT delays urea hydrolysis, thereby lowering soil pH elevation and $\mathrm{NH_4^+}$ 460 production, which can in turn reduce NH₃ toxicity effects on nitrite-oxidizing bacteria 461 (NOB). DCD slows oxidation of NH_4^+ to NO_2^- mainly by inhibiting activities of 462 ammonia-oxidizing bacteria (AOB), which allows NOB to use NO2⁻ at the rate closely 463

464 matched to its production rate (Zaman et al., 2008; Maharjan and Venterea, 2013). 465 Both NBPT and DCD could additively attenuate formation of N₂O from urea in the 466 soil. Thus, the reduction of N₂O emissions by inhibitors is probably due to both low 467 oxidation rate of NH_4^+ and low NO_2^- concentration, thereby reducing N₂O "leaking" 468 as a by-product of nitrification (Firestone and Davidson, 1989).

469 Following supplemental fertilization with or without inhibitors, no distinct N₂O flux peaks were found in our study. This may be attributable to no significant increase 470 of soil NH_4^+ and NO_3^- concentrations after urea top-dressing. Cui et al. (2012) 471 ascribed low increases in mineral N concentrations to large losses of urea-derived 472 ammonia via volatilization. However, a field measurement at our study site showed 473 that < 1 % of the N applied was lost via volatilization following urea top-dressing in 474 475 March (Ni et al., 2009); so a large amount of NH₃ loss would not occur at our site. Milchunas et al. (1988) suggested that urea hydrolysis is primarily affected by soil 476 moisture. An incubation at 13 °C demonstrated that lowering soil moisture level from 477 60 % to below 40 % water holding capacity produced a longer lag before ammonia 478 479 evolution and considerably retarded urea hydrolysis (Foster et al., 1980). The range of soil WFPS between 40 and 60 % during the period following urea top-dressing with 480 subsequent irrigation suggested that soil moisture could partly have affected N₂O 481 production. Suter et al. (2011) observed that lowering incubation temperature from 25 482 °C to 5 °C greatly retarded the hydrolysis of urea when WFPS was below 60%, 483 especially for an alkaline soil with low urease activity. In contrast, the temperature 484 decrease increased the inhibitory effectiveness of NBPT on urea hydrolysis. In this 485

study, soil temperature measured in the field after urea top-dressing varied from 2 °C to 9 °C, close to or just above the thresholds for nitrification (above 5.0 °C) (Anderson et al., 1971) and urea hydrolysis (~ 2 °C) (Xu et al., 1993; Yadav et al., 1987). It is obvious that low soil temperature led to the absence of fertilizer N-induced N₂O flux peaks following the supplemental fertilization and urease or nitrification inhibitors should not necessarily be applied with supplemental fertilizers during the wheat growth season.

Application of urea with NBPT and/or DCD compared with urea alone slightly 493 increased wheat yields, which differs from application of NP. Similar results were 494 also obtained by Ju et al. (2011) and Liu et al. (2013) in the North China Plain. A 495 meta-analysis of data measured in Germany showed that N fertilizers with 496 497 nitrification inhibitors did not significantly influence the yields of all investigated crops (Hu et al., 2014). The absence of inhibitor effects on crop yields might have 498 been ascribed to the following three reasons. Firstly, low precipitation during the 499 wheat growth season reduced the risk of N leaching and resulted in low N losses. This 500 501 is evidenced by the significant stimulation of NP on wheat yields. Secondly, it is well known that the application rate of N fertilizers is far above optimum for crops (West 502 503 et al., 2014). The overloading of N fertilizer might mask the influence on crop yields of increased mineral N in soils caused by inhibitors. The result of Sharma and Prasad 504 (1996) supported the hypothesis that application of DCD significantly increased 505 maize yield when the application rate of fertilizer N was as low as $60 \text{ kg N} \text{ ha}^{-1}$. It 506 should be noted that the increase in NH_4^+ concentration in the test soil due to DCD 507

application alone following the basal fertilization may stimulate NH₃ volatilization, 508 resulting in higher N losses compared with urea alone, since NH₃ volatilization 509 accounted for ~ 13 % of N applied (Ni et al., 2009). Mahmood et al. (2011) 510 demonstrated that application of DCD to an alkaline calcareous soil increased 511 fertilizer N losses. Finally, also more importantly, application of DCD with 512 513 supplemental fertilizer slowed the nitrification rate and then lowered NO₃⁻ supply for wheat growth when it was at the rapid growth stage. A lower soil NO_3^- concentration 514 in the NP treatment than in the urea-added treatments following the supplemental 515 516 fertilizer in this study supports this speculation. Based on this study, it is not necessary to apply DCD with supplemental fertilizer urea and a combination of urease and 517 nitrification inhibitors would be a better approach to reduce N₂O emission than urease 518 519 or nitrification inhibitor application alone with basal fertilizer urea for wheat cultivation. 520

521

522 **5 Conclusions**

The present field study provided an insight into N₂O emissions from a calcareous soil during the wheat growth season in the North China Plain, as affected by application of urease or nitrification inhibitors and nitrate-based fertilizer nitrophosphate. A single N₂O flux peak was found following basal fertilization during the wheat growth period. Application of urea with NBPT, DCD or NBPT + DCD significantly reduced N₂O emissions from urea by 36.7 %, 42.9 % or 46.9 %, respectively. Application of nitrophosphate also resulted in reduction of total N₂O emissions by 42.9 %, compared

with application of urea alone. NBPT and/or DCD were effective in reducing N₂O 530 emissions following basal fertilization. Compared with urea application alone, 531 application of inhibitors with urea, either individually or combined together, slightly 532 increased wheat yield and NUE, while nitrophosphate significantly increased wheat 533 yield by 12.3 % and increased NUE from 28.8 % (urea alone) to 35.9 %. N₂O flux 534 535 was primarily affected by soil temperature and low temperature at the study site minimized fertilizer N-induced N₂O peaks following application of supplemental 536 fertilizer. Based on our findings, the combination of NBPT and DCD with basal 537 fertilizer urea would be an effective practice for reducing N₂O emission. As well, this 538 study suggests that application of nitrophosphate, instead of urea, is an optimum 539 agricultural strategy for reducing N₂O emission and for increasing crop yield and 540 541 NUE for wheat cultivation in the soils of the North China Plain.

542

Acknowledgments: This work was supported by the National Basic Research Program
of China (2012CB417102), Strategic Priority Research Program of the Chinese
Academy of Sciences (XDB15020101) and National Natural Science Foundation of
China (41171191, 41471207).

547

548 **Reference**

Alluvione, F., Bertora, C., Zavattaro, L., and Grignani, C.: Nitrous oxide and carbon
dioxide emissions following green manure and compost fertilization in corn, Soil
Sci. Soc. Am. J., 74, 384–395, 2010.

552	Anderson, O. E., Boswell, F. C., and Harrison, R. M.: Variations in low temperature
553	adaptability of nitrifiers in acid soils, Soil Sci. Soc. Am. Pro., 35, 68-71, 1971.
554	Asing, J., Saggar, S., Singh, J., and Bolan, N. S.: Assessment of nitrogen losses from
555	urea and organic manure with and without nitrification inhibitor, dicyandiamide,
556	applied to lettuce under glasshouse conditions, Aust. J. Soil Res., 46, 535-541,
557	2008.

- Bouwman, A. F., Boumans, L. J. M., and Batjes, N. H.: Emissions of N₂O and NO
 from fertilized fields: summary of available measurement data, Global
 Biogeochem. Cy., 16, 1058, 2002..
- Cai, G., Chen, D., White, R. E., Fan, X. H., Pacholski, A., Zhu, Z. L., and Ding, H.:
 Gaseous nitrogen losses from urea applied to maize on a calcareous fluvo-aquic
 soil in the North China Plain, Aust. J. Soil Res., 40, 737–748, 2002.
- Cai, Y. J., Ding, W. X., and Luo, J. F.: Nitrous oxide emissions from Chinese
 maize-wheat rotation systems: a 3 year field measurement, Atmos. Environ.,
 65:112–122, 2013.
- 567 Chantigny, M. H., Angers, D. A., Morvan, T., and Pomar, C.: Dynamics of pig slurry
 568 nitrogen in soil and plant as determined with ¹⁵N, Soil Sci. Soc. Am. J. 68,
 569 637–643, 2004.
- 570 Chantigny, M. H., Pelster, D. E., Perron, M. H., Rochette, P., Angers, D. A., Parent, L.
- 571 E., Massé, D., and Ziadi, N.: Nitrous oxide emissions from clayey soils amended
- with paper sludges and biosolids of separated pig slurry, J. Environ. Qual., 42,
- 573 30–39, 2013.

574	Cui, F., Yan, G. X., Zhou, Z. X., Zheng, X. H., and Deng, J.: Annual emissions of
575	nitrous oxide and nitric oxide from a wheat-maize cropping system on a silt loam
576	calcareous soil in the North China Plain, Soil Biol. Biochem., 48, 10–19, 2012.
577	Ding, W. X., Cai, Y., Cai, Z. C., Yagi, K., and Zheng, X. H.: Nitrous oxide emissions
578	from an intensively cultivated maize-wheat rotation soil in the North China Plain,
579	Sci. Total Environ., 373, 501–511, 2007.
580	Dobbie, K. E., and Smith, K. A.: Impact of different forms of N fertilizer on N ₂ O
581	emissions from intensive grassland, Nutr. Cycl. Agroecosys., 67, 37-46, 2003.
582	Dobbie, K. E., McTaggart, I. P., and Smith, K. A.: Nitrous oxide emissions from
583	intensive agricultural systems: variations between crops and seasons, key driving
584	variables and mean emission factors, J. Geophys. Res. 104, 26891–26899, 1999.
585	Edwards, A. C., and Killham, K.: The effect of freeze/thaw on gaseous nitrogen loss
586	from upland soils. Soil Use Manage., 3, 86–91, 1986.
587	Engel, R., Liang, D. L., Wallander, R., and Bembenek, A.: Influence of urea fertilizer
588	placement on nitrous oxide production from a silt loam soil, J. Environ. Qual., 39,
589	115–125, 2010.
590	FAO: World Agriculture: Towards 2015/2030. An FAO Perspective. FAO, Rome. 97,
591	2003.
592	Firestone, M. K., and Davidson, E. A.: Microbiological basis of NO and N_2O
593	production and consumption in soil, in: Exchange of trace gases between
594	terrestrial ecosystems and the atmosphere, edited by: Andreae, M. O., and
595	Schimel, D. S., John Wiley & Sons, New York, 7–21, 1989.

596	Foster, N. W., Beauchamp, E. G., and Corke, C. T.: The influence of soil moisture on
597	urea hydrolysis and microbial respiration in jack pine humus, Can. J. Soil Sci.,
598	60, 675–684, 1980.

- Fowler, D., Pilegaard, K., Sutton, M., Ambus, P., Raivonen, M., Duyzer, J., Simpson, 599
- D., Fagerli, H., Fuzzi, S., and Schjrring, J. K.: Atmospheric composition change: 600
- ecosystems atmosphere interactions, Atmos. Environ., 43, 5193-5267, 2009. 601
- Gagnon, B., Ziadi, N., Rochette. P., Chantigny, M. H., and Angers, D. A.: Fertilizer 602
- source influenced nitrous oxide emissions from a clay soil under corn, Soil Sci. 603
- 604 Soc. Am. J., 75, 595-604, 2011.
- Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z. C., Freney, J. 605
- R., Martinelli, L. A., Seitzinger, S. P., and Sutton, M. A.: Transformation of the 606 607 nitrogen cycle: recent trends, questions, and potential solutions, Science, 320, 889-892, 2008. 608
- Granli, T., and Bøckman, O.C.: Nitrous oxide from agriculture, Nor. J. Agric. Sci., 12, 609 1-128, 1994. 610
- Hoben, J. P., Gehl, R. J., Millar, N., Grace, P. R., and Robertson, G. P.: Nonlinear 611 nitrous oxide (N₂O) response to nitrogen fertilizer in on-farm corn crops of the 612 US Midwest, Glob. Change Biol., 17, 1140–1152, 2011. 613
- Hu, Y., Schraml, M., von Tucher, S., Li, F., and Schmidhalter, U.: Influence of 614 nitrification inhibitors on yields of arable crops: A meta-analysis of recent 615 studies in Germany, Int. J. Plant Prod., 8, 1735-6814, 2014. 616
- IPCC: Climate Change 2007, The Physical Science Basis, Contribution of Working 617

- Group I to the Fourth Assessment Report of the Intergovernmental Panel on
 Climate Change, Cambridge University Press, Cambridge, UK and New York,
 NY, USA, 2007.
- IPCC: Climate Change 2013, The Physical Science Basis, Working Group I
 Contribution to the Fifth Assessment Report of the Intergovernmental Panel on
 Climate Change, Cambridge University Press, 2013.
- Johnson, J. M. F., Weyers, S. L., Archer, D. W., and Barbour, N. W.: Nitrous oxide,
 methane emission, and yield-scaled emission from organically and
 conventionally managed systems, Soil Sci. Soc. Am. J., 76, 1347–1357, 2012.
- 627 Ju, X. T., Xing, G. X., Chen, X. P., Zhang, S. L., Zhang, L. J., Liu, X. J., Cui, Z. L.,
- Yin, B., Christie, P., Zhu, Z. L., and Zhang, F. S.: Reducing environmental risk
 by improving N management in intensive Chinese agricultural systems, P. Natl.
- 630 Acad. Sci. USA, 106, 3041–3046, 2009.
- Ju, X. T., Lu, X., Gao, Z. L., Chen, X. P., Su, F., Kogge, M., Römheld, V., Christie, P.,
- and Zhang, F. S.: Processes and factors controlling N₂O production in an
 intensively managed low carbon calcareous soil under sub-humid monsoon
 conditions, Environ. Pollut., 159, 1007–1016, 2011.
- Lebender, U., Senbayram, M., Lammel, J., and Kuhlmann, H.: Effect of mineral
 nitrogen fertilizer forms on N₂O emissions from arable soils in winter wheat
 production, J. Plant Nutr. Soil Sci., 177, 722–732, 2014.
- Li, X. L., Zhang, G. B., Xu, H., Cai, Z. C., and Yagi, K.: Effect of timing of joint
 application of hydroquinone and dicyandiamide on nitrous oxide emission from

640	irrigated lowland rice paddy field, Chemosphere, 75, 1417-1422, 2009.
641	Liu, C., Yu, J., and Kendy, E.: Groundwater exploitation and its impact on the
642	environment in the North China Plain. Water Int., 26, 265–272, 2001.
643	Liu, C., Wang, K., and Zheng, X.: Effects of nitrification inhibitors (DCD and DMPP)
644	on nitrous oxide emission, crop yield and nitrogen uptake in a wheat-maize
645	cropping system, Biogeosciences, 10, 2427-2437, doi:10.5194/bg-10-2427-2013,
646	2013.
647	Maharjan, B., and Venterea, R. T.: Nitrite intensity explains N management effects on
648	N ₂ O emissions in maize, Soil Biol. Biochem. 66, 229–238, 2013.
649	Mahmood, T., Ali, R., Latif, Z., and Ishaque, W.: Dicyandiamide increases the
650	fertilizer N loss from an alkaline calcareous soil treated with ¹⁵ N-labelled urea
651	under warm climate and under different crops, Biol. Fert. Soils, 47, 619-631,
652	2011.
653	Manunza, B., Deiana, S., Pintore, M., and Gessa, C.: The binding mechanism of urea,
654	hydroxamic acid and N-(n-butyl)-phosphoric triamide to the urease active site: a
655	comparative molecular dynamics study, Soil Biol. Biochem., 31, 789–796, 1999.
656	Meijide, A., Garcia-Torres, L., Arce, A., and Vallejo, A.: Nitrogen oxide emissions
657	affected by organic fertilization in a non-irrigated Mediterranean barley field, Agric.
658	Ecosyst. Environ., 132, 106–115, 2009.
659	Menéndez, S., Merino, P., Pinto, M., González-Murua, G., and Estavillo, J. M.: Effect
660	of N-(n-butyl) thiophosphoric triamide and 3, 4-dimethylpyrazole phosphate on
661	gaseous emissions from grasslands under different soil water contents, J. Environ.

- 662 Qual. 38, 27–35, 2009.
- Meng, L., Ding, W. X., and Ca, Z. C.: Long-term application of organic manure and
 nitrogen fertilizer on N₂O emissions, soil quality and crop production in a sandy
 loam soil, Soil Biol. Biochem., 37, 2037–2045, 2005.
- 666 Milchunas, D. G., Parton, W. J., Bigelow, D. S., and Schimel, D. S.: Factors
- influencing ammonia volatilization from urea in soils of the shortgrass steppe, J.
 Atmos. Chem., 6, 323–340, 1988.
- 669 Mørkved, P. T., Dörsch, P., Henriksen, T. M., and Bakken, L. R.: N₂O emissions and
- 670 product ratios of nitrification and denitrification as affected by freezing and 671 thawing, Soil Biol. Biochem., 38, 3411–3420, 2006.
- Müller, C., and Sherlock, R. R.: Nitrous oxide emissions from temperate grassland
 ecosystems in the Northern and Southern Hemispheres, Global Biogeochem. Cy.,
- 674 18, GB1045, doi:10.1029/2003GB002175, 2004.
- Myrold, D. D., and Tiedje, J. M.: Diffusional constraints on denitrification in soil,
 Soil Sci. Soc. Am. J., 49, 651–657, 1984.
- Ni, K., Ding, W. X., and Cai, Z. C.: Ammonia volatilization from soil as affected by
 long-term application of organic manure and chemical fertilizers during wheat
 growing season, J. Agro-Environ. Sci., 28, 2614–2622, 2009.
- 680 Nishimura, S., Sawamoto, T., Akiyama, H., Sudo, S., Cheng, W. G., and Yagi, K.:
- 681 Continuous, automated nitrous oxide measurements from paddy soils converted
 682 to upland crops, Soil Sci. Soc. Am. J., 69, 1977–1986, 2005.
- 683 Parkin, T. B., and Hatfield, J. L.: Enhanced efficiency fertilizers: effect on nitrous

- oxide emissions in Iowa, Agron. J., 106, 694–702, 2014.
- Pathak, H., and Nedwell, D. B.: Nitrous oxide emission from soil with different
 fertilizers, water levels and nitrification inhibitors, Water Air Soil Poll., 129,
 217–228, 2001.
- Pihlatie, M., Syväsalo, E., Simojoki, A., Esala, M., and Regina, K.: Contribution of
 nitrification and denitrification to N₂O production in peat, clay and loamy sand
 soils under different soil moisture conditions, Nutr. Cycl. Agroecosys., 70,
 35–141, 2004.
- Prasad, R., and Power, J. F.: Nitrification inhibitors for agriculture, health and the
 environment, Adv. Agron., 54, 233–281, 1995.
- Rover, M., Heinemeyer, O., and Kaiser, E. A.: Microbial induced nitrous oxide
 emissions from an arable soil during winter, Soil Biol. Biochem., 30, 1859–1865,
 1998.
- Sharma, S. N., and Prasad, R.: Use of nitrification inhibitors (neem and DCD) to
 increase N efficiency in maize-wheat cropping system, Fertil. Res., 44, 169–175,
 1996.
- 700 Shoji, S., Delgado, J., Mosier, A., and Miura, Y.: Use of controlled release fertilizers
- and nitrification inhibitors to increase nitrogen use efficiency and to conserve air
 andwater quality, Commun. Soil Sci. Plant Anal., 32, 1051–1070, 2001.
- Soil Survey Staff: Keys to soil taxonomy, 6th edn. United States Department of
 Agriculture, Natural Resources Conservation Service, Washington, DC, 1994.
- 705 Stehfest, E., and Bouwman, L.: N₂O and NO emission from agricultural fields and

706	soils under natural vegetation: summarizing available measurement data and
707	modeling of global annual emissions, Nutr. Cycl. Agroecosys., 74, 207-228,
708	2006.

- Suter, H. C., Pengthamkeerati, P., Walker, C., and Chen, D.: Influence of temperature
 and soil type on inhibition of urea hydrolysis by N-(n-butyl) thiophosphoric
 triamide in wheat and pasture soils in south-eastern Australia, Soil Res., 49,
 315–319, 2011.
- Syväsalo, E., Regina, K., Pihlatie, M., and Esala, M.: Emissions of nitrous oxide from
 boreal agricultural clay and loamy sand soils, Nutr. Cycl. Agroecosys., 69,
 155–165, 2004.
- Teepe. R., Brumme, R., and Beese, F.: Nitrous oxide emissions from frozen soils
 under agricultural, fallow and forest land, Soil Biol. Biochem., 32, 1807–1810,
 2000.
- Tenuta, M., and Beauchamp, E. G.: Nitrous oxide production from granular nitrogen
 fertilizers applied to a silt loam soil, Can. J. Soil Sci., 83, 521–532, 2003.
- United States Environmental Protection Agency (USEPA): Global Anthropogenic
 Non-CO₂ Greenhouse Gas Emissions: 1990–2020, EPA 430-R-06-003, United
 States Environmental Protection Agency, Washington, DC, 2006.
- Van Groenigen, J. W., Kasper, G. J., Velthof, G. L., Dasselaar, Pol-van van den A.,
- and Kuikman, P. J.: Nitrous oxide emissions from silage maize fields under
 different mineral nitrogen fertilizer and slurry application, Plant Soil, 263,
 101–111, 2004.

728	Venterea, R. T., Burger, M., and Spokas, K. A.: Nitrogen oxide and methane
729	emissions under varying tillage and fertilizer management, J. Environ. Qual., 34,
730	1467–1477, 2005.

- 731 Venterea, R. T., Dolan, M. S., and Ochsner, T. E.: Urea decreases nitrous oxide
- emissions compared with anhydrous ammonia in a Minnesota corn cropping system,
- 733 Soil Sci. Soc. Am. J., 74, 407–418, 2010.
- 734 Wan, Y. J., Ju, X. T., Ingwersen, J., Schwarz, U., Stange, C. F., Zhang, F. S., and
- Streck, T.: Gross nitrogen transformations and related nitrous oxide emissions in
 an intensively used calcareous soil, Soil Sci. Soc. Am. J., 73, 102–112, 2009.
- 737 West, P. C., Gerber, J. S., Engstrom, P. M., Mueller, N. D., Brauman, K. A., Carlson,
- 738 K. M., Cassidy, E. S., Johnston, M., MacDonald, G. R. D. K., and Siebert, S.:
- Leverage points for improving global food security and the environment, Science,
 345, 325–327, 2014..
- 741 Wolf, B., Zheng, X., Brüggemann, N., Chen, W., Dannenmann, M., Han, X., Sutton,
- M. A., Wu, H., Yao, Z., and Butterbach-Bahl, K.: Grazing-induced reduction of
 natural nitrous oxide release from continental steppe, Nature, 464, 881–884,
 2010.
- Xie, Z. B., Zhu, J. G., Liu, G., Georg, C., Toshihiro, H., Chen, C. M., Sun, H. F.,
 Tang, H. Y., and Zeng, Q.: Soil organic carbon stocks in China and changes from
 1980s to 2000s, Glob. Change Biol., 13, 1989–2007, 2007.
- Xing, G. X.: N₂O emission from cropland in China, Nutr. Cycl. Agroecosys., 52,
 249–254, 1998.

- Xu, J. G., Heeraman, D. A., and Wang, Y.: Fertilizer and temperature effects on urea
 hydrolysis in undisturbed soil, Biol. Fert. Soils, 16, 63–65, 1993.
- 752 Xu, X. K., Boeckx, P., van Cleemput, O., and Zhou, L. K.: Urease and nitrification
- inhibitors to reduce emissions of CH_4 and N_2O in rice production, Nutr. Cycl.
- 754 Agroecosys., 64, 203–211, 2002..
- Yadav, D. S., Kumar, V., Singh, M., and Relan, P. S.: Effect of temperature and
 moisture on kinetics of urea hydrolysis and nitrification, Aust. J. Soil Res., 25,
 185–191, 1987.
- Yu, H. Y., Ding, W. X., Luo, J. F., Geng, R. L., and Cai, Z. C.: Long-term application
 of compost and mineral fertilizers on aggregation and aggregate-associated
 carbon in a sandy loam soil, Soil Till. Res., 124, 170–177, 2012.
- Zaman, M., Nguyen, M. L., Blennerhassett, J. D., and Quin, B. F.: Reducing NH₃,
- N_2O and NO_3 -N losses from a pasture soil with urease or nitrification inhibitors
- and elemental S-amended nitrogenous fertilizers, Biol. Fert. Soils, 44, 693–705,
 2008.
- Zaman, M., Saggar, S., Blennerhassett, J. D., and Singh, J.: Effect of urea and
 nitrification inhibitors on N transformation, gaseous emissions of ammonia and
 nitrous oxide, pasture yield and N uptake in grazed pasture system, Soil Biol.
 Biochem., 41, 1270–1280, 2009.
- Zebarth, B. J., Rochette, P., and Burton, D. L.: N₂O emissions from spring barley
 production as influenced by fertilizer nitrogen rate, Can. J. Soil Sci., 88, 197–205,
 2008.

772	Zhang, H. J., Ding, W. X., He, X. H., Yu, H. Y., Fan, J. L., and Liu, D. Y.: Influence of
773	20 year organic and inorganic fertilization on organic carbon accumulation and
774	microbial community structure of aggregates in an intensively cultivated sandy
775	loam soil, Plos One, 9, e92733, doi:10.1371/journal.pone.0092733, 2014a.

- Zhang, W., Yu, Y. Q., Li, T. T., Sun, W. J., and Huang, Y.: Net greenhouse gas balance
- in China's croplands over the last three decades and its mitigation potential,
 Environ. Sci. Technol., 48, 2589–2597, 2014b.
- Zhang, Y., Mu, Y., Zhou, Y., Liu, J., and Zhang, C.: Nitrous oxide emissions from
 maize-wheat field during 4 successive years in the North China Plain,
 Biogeosciences, 11, 1717–1726, 2014c.
- 782 Zhao, R. F., Chen, X. P., Zhang, F. S., Zhang, H., Schroder, J., And Romheld. V.:
- 783 Fertilization and nitrogen balance in a wheat maize rotation system in North
- 784 China, Agron. J., 98, 938–945, 2006.

Table 1. Soil properties.

Soil depth	pН	Bulk density	Organic C	Total N	C/N	NO ₃ ⁻ -N	NH4 ⁺ -N	Particle s	size distrub	ution (%)
(cm)	(H ₂ O)	$(Mg m^{-3})$	$(g C kg^{-1})$	$(g N kg^{-1})$		(mg N kg ⁻¹)	$(mg N kg^{-1})$	Sand	Silt	Clay
0-20	8.60	1.40	12.0	1.50	8.0	14.70	2.48	17.0	72.0	11.0

787 **Table 2.** Effects of urease and/or nitrification inhibitors and nitrophosphate on wheat biomass, amount of N uptake by crops and N use

788	efficiency.
-----	-------------

Treatment	Biomass (kg ha	i ⁻¹)		Amount of N	N uptake (kg N	N use efficiency (%)		
	Grain	Straw	Total Grain Straw		Straw	Total		
Control	2297±150 c	2215±134 b	4513±283 c	24.4±1.6 c	11.9±0.7 b	36.4±2.3 c	_	
U	4652±11 b	4075±81 a	8727±85 b	59.6±0.1 b	34.2±0.7 a	93.9±0.7 b	28.8 ±0.8 b	
NBPT	4711±126 b	4098±356 a	8809±472 b	60.4±1.6 b	34.4±3.0 a	94.8±4.5 b	29.2 ±1.0 b	
DCD	4736±103 ab	4080±52 a	8816±86 b	60.7±1.3 b	34.3±0.4 a	95.0±1.1 b	29.3 ±0.9 b	
NBPT + DCD	4735±290 ab	4535±503 a	9271±764 ab	60.7±3.7 b	38.1±4.2 a	98.8±7.6 ab	31.2 ±1.2 b	
NP	5225±142 a	4906±251 a	10131±370 a	67.0±1.8 a	41.2±2.1 a	108.2±3.7 a	35.9 ±1.1 a	

789 Mean \pm standard error (n = 3).

790 Different letters within the column indicate significantly difference between treatments at P < 0.05.

Treatment	WFPS	T _{5cm}	T _{10cm}	T_{15cm}	NH_4^+ -N	NO ₃ ⁻ -N	Inorganic N
Control	0.095	0.413**	0.376*	0.392*	-0.153	0.140	0.109
U	0.023	0.381**	0.340*	0.346*	0.274*	0.365**	0.380**
NBPT	0.118	0.275^{*}	0.264	0.274	0.215	0.206	0.222
DCD	0.323*	0.282^{*}	0.180	0.189	0.104	-0.127	-0.092
NBPT + DCD	0.021	0.216	0.252	0.272	0.074	0.155	0.156
NP	0.084	0.301*	0.370^{*}	0.403**	0.105	-0.056	-0.037

Table 3. Correlation between $\ln [N_2O \text{ flux} + 1]$ and soil WFPS, soil temperature at depths of 5 (T_{5cm}), 10 (T_{10cm}) and 15 cm (T_{15cm}), ammonium

 (NH_4^+-N) , nitrate (NO_3^--N) or inorganic nitrogen $(NH_4^+-N \text{ plus } NO_3^--N)$ concentration.

P < 0.05, **P < 0.01.

794 **Table 4.** Effects of urease and/or nitrification inhibitors and nitrophosphate on cumulative N₂O emissions, fertilizer N-induced N₂O emission

Treatment	Cumulative N ₂ O em	ission (kg N ₂ O-N ha ^{-1})	Ratio of peak to total	Emission factor	Yield-scaled N ₂ O emission		
Troutment	Total	Peak	emissions (%)	(% of applied N)	(g N ₂ O-N kg ⁻¹ grain)		
Control	0.16±0.02 c	0.03±0.00 d	18.8±2.3 d	_	0.068±0.006 b		
U	0.49±0.12 a	0.28±0.10 a	57.1±4.2 a	0.17±0.05 a	0.105±0.026 a		
NBPT	0.31±0.01 b	0.14±0.01 b	45.2±3.9 b	0.08±0.00 b	0.065±0.003 b		
DCD	0.28±0.01 b	0.06±0.01 c	21.4±2.1 d	0.06±0.00 b	0.060±0.004 b		
NBPT + DCD	0.26±0.01 b	0.09±0.00 bc	34.6±3.2 c	0.05±0.00 b	0.056±0.003 b		
NP	0.28±0.03 b	0.11±0.03 bc	39.3±3.7 c	0.06±0.01 b	0.053±0.008 b		

factors and yield-scaled N_2O emissions.

796 Mean \pm standard error (n = 3).

797 Peak emission denotes cumulative emissions during the 18 days' period following the basal fertilizer application from 16 October to 3

798 November.

799 Different letters within the column indicate significantly difference between treatments at P < 0.05.

	NH4I	NO ₃ I	IONI		
Treatment	$(g N d kg^{-1})$	$(g N d kg^{-1})$	$(g N d kg^{-1})$		
Control	0.24±0.01 e	2.58±0.01 d	2.82±0.00 d		
U	0.40±0.03 d	4.75±0.13 c	5.15±0.16 c		
NBPT	0.61±0.02 c	6.18±0.08 a	6.79±0.08 b		
DCD	0.96±0.01 b	5.74±0.01 b	6.70±0.01 b		
NBPT + DCD	1.07±0.01 a	6.11±0.16 a	7.17±0.16 a		
NP	0.36±0.02 d	4.69±0.09 c	5.05±0.07 c		

Table 5. Effects of urease and/or nitrification inhibitors and nitrophosphate on soil
ammonium (NH₄I), nitrate (NO₃I) and inorganic N (IONI) intensities.

802 Mean \pm standard error (n = 3). Different letters within the column indicate significantly

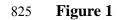
⁸⁰³ difference between treatments at P < 0.05.

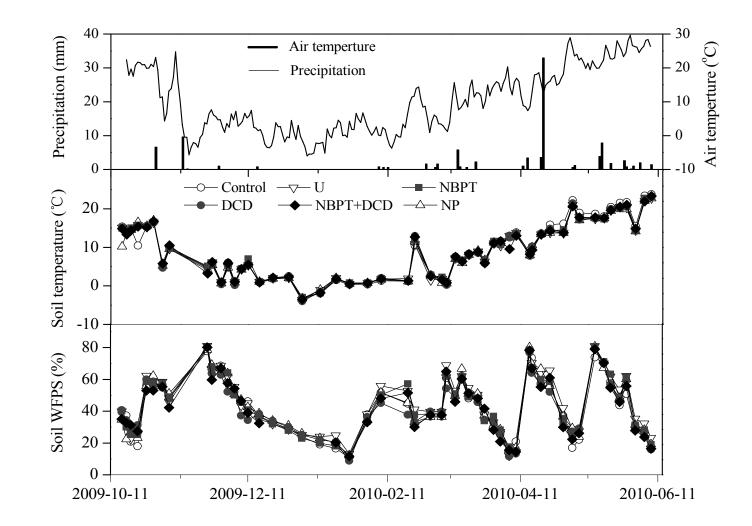
Site	Site MAT MAP SOC pH			pН	Warm season					Cold season			Whole year			Reference
	(°C)	(mm)	(g C	, ,	Crop	Applied N	N ₂ O	N ₂ O	Crop	Applied N	N_2O	N ₂ O	Applied N	N ₂ O	N ₂ O	-
			kg^{-1})			(kg N ha^{-1})	emission	EF		(kg N ha^{-1})	emission	EF	(kg N	emission	EF	
							(kg N ha^{-1})	(%)			(kg N ha ⁻¹)	(%)	ha^{-1})	(kg N ha^{-1})	(%)	
Fengqiu, China	14	615	7	8.7	Maize	250	3.8	1.3	Wheat	250	0.6	0.3	500	4.5	0.8	Ding et al. (2007)
Huantai, China	13	586	10	8.3	Maize	330	1.6	0.4	Wheat	270	2.4	0.8	600	4.0	0.6	Cui et al. (2012)
Baoding, China	12	555	9	8.1	Maize	173	4.5	2.2	Wheat	165	3.3	1.3	338	7.7	1.8	Zhang et al. (2014c)
Tsukuba, Japan	16	1460	19	5.7	Soybean	20	2.7	13	Wheat	100	0.5	0.5	120	3.2	2.7	Nishimura et al. (2005)
Fukushima, Japan	14	1207	14	7.4	Barley	150	3.2	2.0	-	-	_	_	_	-	-	Shoji et al. (2001)
Madrid, Spain	13	430	8	7.3	Onion	110	0.8	0.6	Fallow	0	0.25	_	110	1.2	0.7	Meijide et al. (2009)
Lavesum, Germany	10	887	18	5.3	Wheat	220	0.6	0.2	Fallow	0	1.0	-	220	1.9	0.5	Lebender et al. (2014)
Turin, Italy	12	734	10	8.1	Maize	130	0.0	0.0	Fallow	0	2.9	-	130	2.9	3.4	Alluvione et al. (2010)
Boone, USA	9	825	33	7.2	Maize	168	2.9	1.0	-	-	-	-	_	_	-	Parkin and Hatfield (2014)
Michigan, USA	8	628	20	7.0	Maize	225	3.9	1.4	_	_	_	_	_	_	_	Hoben et al. (2011)
Michigan, USA	8	628	20	7.0	Maize	180	2.5	1.2	_	_	_	_	_	_	_	Hoben et al. (2011)
Michigan, USA	8	628	20	7.0	Maize	135	1.7	0.9	_	_	_	_	_	_	_	Hoben et al. (2011)
Michigan, USA	8	628	20	7.0	Maize	90	1.1	0.7	_	_	_	_	_	_	_	Hoben et al. (2011)
Michigan, USA	8	628	20	7.0	Maize	45	0.9	1.1	-	-	_	_	_	_	_	Hoben et al. (2011)
Morris, USA	6	645	32	7.2	Maize	78	_	_	Fallow	0	_	_	78	5.2	3.0	Johnson et al. (2012)
Morris, USA	6	645	32	7.2	Wheat	78	_	_	Fallow	0	_	_	78	4.2	2.8	Johnson et al. (2012)

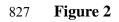
Table 6. Summary of N₂O emissions from uplands under inorganic fertilizer application in the countries with temperate climate.

805 MAT, mean annual temperature; MAP, mean annual precipitation; EF, the N₂O emission factor of applied N.

806 Figure caption


Figure 1. Temporal variation of daily precipitation and air temperature, and mean soil moisture and water-filled pore space (WFPS) at time of N₂O sampling in the control, urea alone (U), urea with NBPT (NBPT), urea with DCD (DCD), urea with NBPT + DCD (NBPT + DCD) and nitrophosphate (NP) treatments during the wheat growth season. The standard errors of soil temperature and moisture were not shown for figure clarity.


813


Figure 2. Temporal variation of nitrous oxide fluxes in the control, urea alone (U),
urea with NBPT (NBPT), urea with DCD (DCD), urea with NBPT + DCD (NBPT +
DCD) and nitrophosphate (NP) treatments during the wheat growth season. Flux
values are mean values ± standard errors for three replicates. Arrows indicate date of
fertilizer application.

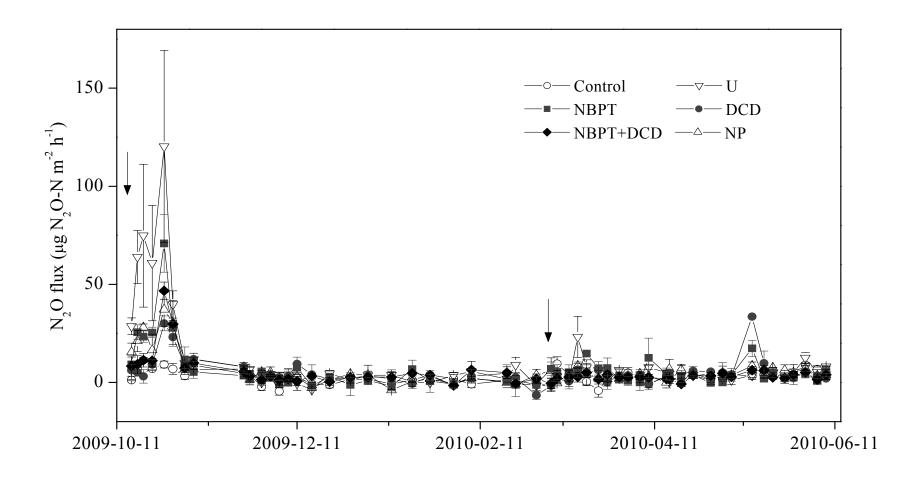

819


Figure 3. Temporal variation of ammonium and nitrate concentrations in samples from the 0–20 cm depth in the control, urea alone (U), urea with NBPT (NBPT), urea with DCD (DCD), urea with NBPT + DCD (NBPT + DCD) and nitrophosphate (NP) treatments during the wheat growth season. Vertical bars denote the standard error of the means (n = 3).

