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Abstract 20 

Cultivation of the terrestrial land surface can create either a source or sink of atmospheric CO2, 21 

depending on land management practices. The Community Land Model (CLM) provides a useful 22 

tool to explore how land use and management impact the soil carbon pool at regional to global 23 

scales. CLM was recently updated to include representation of managed lands growing maize, 24 

soybean, and spring wheat. In this study, CLM-Crop is used to investigate the impacts of various 25 

management practices, including fertilizer use and differential rates of crop residue removal, on 26 

the soil organic carbon (SOC) storage of croplands in the continental United States over 27 

approximately a 170-year period. Results indicate that total U.S. SOC stocks have already lost 28 

over 8 Pg C (10%) due to land cultivation practices (e.g., fertilizer application, cultivar choice, 29 

and residue removal), compared to a land surface composed of native vegetation (i.e., 30 

grasslands). After long periods of cultivation, individual subgrids (the equivalent of a field plot) 31 

growing maize and soybean lost up to 65% of the carbon stored, compared to a grassland site. 32 

Crop residue management showed the greatest effect on soil carbon storage, with low and 33 

medium residue returns resulting in additional losses of 5% and 3.5%, respectively, in U.S. 34 

carbon storage, while plots with high residue returns stored 2% more carbon. Nitrogenous 35 

fertilizer can alter the amount of soil carbon stocks significantly. Under current levels of crop 36 

residue return, not applying fertilizer resulted in a 5% loss of soil carbon. Our simulations 37 

indicate that disturbance through cultivation will always result in a loss of soil carbon, and 38 

management practices will have a large influence on the magnitude of SOC loss.  39 

  40 
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1. Introduction 41 

Bioenergy crops are promoted as a renewable energy source capable of improving energy 42 

security and mitigating greenhouse gas (GHG) emissions from fossil fuels. These crops are 43 

considered environmentally friendly and economically competitive, because CO2 emitted by 44 

biofuel combustion is partially balanced by atmospheric uptake through photosynthesis (Hughes 45 

et al., 2010). The Renewable Fuel Standard of the U.S. Energy Independence and Security Act 46 

(EISA 2007) sets a national target of producing 136 billion liters of renewable fuels by 2022. Of 47 

this, at least 61 billion liters is expected to come from cellulosic ethanol (U.S. Environmental 48 

Protection Agency, 2010). Though maize grain and sugarcane are currently the major global 49 

sources for bioethanol production, maize production in the United States is not sufficient to meet 50 

the renewable fuel targets. Furthermore, recent studies suggest that production of ethanol from 51 

corn grain might in fact increase GHG emissions because of changes in land use (Searchinger et 52 

al., 2008; Kim et al., 2009; Melillo et al., 2009). For these reasons, cellulosic biofuels produced 53 

from cellulose and hemicellulose plant biomass are considered a viable alternative to 54 

conventional crop-based biofuels.  55 

Cellulosic biofuels can be made from perennial feedstocks or from residues of annual 56 

cropping and forestry activities, thereby reducing or eliminating the need for additional 57 

agricultural land. The use of crop residues for bioethanol production shows promise for fulfilling 58 

U.S. renewable fuel goals, but more research is needed on the effects on soil organic carbon 59 

(SOC) of crop residue removal from croplands (Mishra et al., 2013) and net GHG balance 60 

(McKone et al., 2011). Furthermore, crop residues play a crucial role in sustainability and 61 

resilience of agroecosystems (Karlen et al., 2009). Therefore, to understand the environmental 62 

consequences of using crop residues for bioenergy production on large spatial scales, it is 63 
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essential to know the impacts on the SOC pool of differential rates of crop residue removal and 64 

nitrogenous fertilizer applications. 65 

Crop residue is responsible for maintaining soil moisture, returning carbon and other 66 

nutrients to soil, and erosion mitigation; in general, it provides a sustainable environment for 67 

cultivation activities (Lal, 2009). Without residue cover, wind and water erosion will increase 68 

(Van Pelt et al., 2013). Long-term residue harvest results in loss of yields and productivity by 69 

decreasing the nutrient content of soils (Blanco-Canqui and Lal, 2009a). These arguments 70 

demonstrate that using crop residues as a bioenergy fuel resource could have detrimental impacts 71 

on agroecosystems (Blanco-Canqui and Lal, 2009a). 72 

Globally, soils store more carbon than the atmosphere and biosphere combined, acting 73 

both as a source and sink of atmospheric CO2 (IPCC, 2013). However, cultivation loss of SOC 74 

ranges from 50% to70% (Lal and Bruce, 1999). Over the U.S. Midwest, land conversion led to a 75 

25-50% reduction of soil carbon (Houghton et al., 1999; Lal, 2002). The result is large carbon 76 

payback times, ranging from a few years to several centuries (Fargione et al., 2008; Gibbs et al., 77 

2008; Searchinger et al., 2008). On the other hand, conversion from cultivation to native 78 

grasslands, such as through enrollment in the Conservation Reserve Program, resulted in 79 

increased soil carbon (Anderson-Teixeira et al., 2009; Pineiro et al., 2009). Therefore, it is 80 

critical to evaluate the impact of agricultural land use and management on regional carbon 81 

budgets. 82 

The influence of agriculture on the carbon cycle is complex; carbon capture and storage 83 

in croplands are dependent on management practices, including tillage, fertilizer applications, 84 

residue management, and crop sequence (West and Post, 2002; Hooker et al., 2005; Dou and 85 
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Hons, 2006; Huggins et al., 2007; Khan et al., 2007; Kim et al., 2009). SOC stocks and fluxes at 86 

a particular location are soil and site specific and reflect the long-term balance between organic 87 

matter inputs from vegetation and losses due to decomposition, erosion, and leaching. Some 88 

studies have attempted to quantify carbon sequestration from mitigation strategies such as no-till 89 

or conservation tillage practices, residue management, use of cover crops, and restoration and 90 

reserve actions (Conant et al., 2001; West and Post, 2002). These studies showed that as farming 91 

techniques are improved to maximize yield and minimize disturbance, SOC can be maintained 92 

and perhaps even increased over time.  93 

However, the effect of altered management on agricultural soil’s ability to store or emit 94 

carbon is unresolved, largely as a result of conflicting evidence. For example, some studies on 95 

the effects of nitrogen fertilizer indicated a decrease in SOC caused by increased decomposition 96 

(Khan et al., 2007; Russell et al., 2009), while others reported an increase in SOC from increased 97 

biomass returned to the soil after harvest (Jung and Lal, 2011; Halvorson et al., 1999; Wilts et 98 

al., 2004). SOC increases when crop residue is returned to the land (Buyanovsky and Wagner, 99 

1998; Wilhelm et al, 2004; van Groenigen et al., 2011), but residue can also increase 100 

decomposition in warm, moist areas (Johnson et al., 2005). Perhaps the disagreement is the result 101 

of the large variability and uncertainty of field measurements, which make developing 102 

conclusions difficult (Karlen et al., 2011). For example, Smith et al. (2012) found no differences 103 

between the residue-returned and residue-harvested treatments, and in some cases the residue-104 

harvested sites had increased SOC. Thorburn et al. (2012) also found no consensus regarding 105 

residue harvest and SOC response. Nonetheless, most studies found a loss of SOC with residue 106 

harvesting. Although the variability of SOC measurements can be attributed to any number of 107 

effects — including topography (Senthilkumar et al., 2009b), SOC baseline (Senthilkumar et al., 108 
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2009a), aggregate protection (Ananyeva et al., 2013), and even depth (Kravchenko and 109 

Robertson, 2011; Syswerda et al., 2011) — it is generally agreed that if crop residue is used as 110 

feedstock for biofuels, additional carbon losses can occur (Karlen et al., 2011).  111 

SOC losses can be mitigated through recommended management practices, but studies 112 

disagree on the limits of harvestable crop residue to maintain SOC levels in soils. Estimates of 113 

harvestable non-grain biomass range from 13% (Tan et al., 2012) to 50% (Blanco-Canqui and 114 

Lal, 2009a), with an average of about 25%, although that might require stabilization of SOC 115 

(Tan et al., 2012). These estimates consider erosion, soil productivity, maintaining SOC, surface 116 

crusting, porosity, aggregate breakdown, compaction, and soil temperature, but the wide range in 117 

estimated biomass available for harvest leaves questions regarding the sustainability of cellulosic 118 

ethanol. However, because the rate of SOC loss tends to increase with increased biomass harvest 119 

(Lemke et al., 2010), harvesting small amounts of residue for biofuel might be feasible. 120 

Modeling studies can supplement observational data and explore possible differences in 121 

SOC by investigating idealized cases. A benefit is that the wide study area can be extended to 122 

regional or global scales without resorting to geospatial methods of interpolating sparse data. In 123 

this study, we evaluated the influence of cultivation on SOC by using the agriculture version of 124 

the Community Land Model (CLM), CLM-Crop (Drewniak et al., 2013). Our analysis includes 125 

impacts of changes in land use and also in management practices, such as crop residue harvesting 126 

and fertilizer application. A description of the model and the simulations performed is presented 127 

in Sect. 2, followed by results and a discussion in Sect. 3 and Sect. 4, respectively.  128 
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2  Methods 129 

2.1  CLM-Crop model description 130 

 CLM-Crop, the agriculture version of CLM, includes representations of maize, spring 131 

wheat, and soybean crop types with fully coupled carbon-nitrogen cycling (Drewniak et al., 132 

2013). The variation of carbon and nitrogen allocation to plant components with the growth 133 

phase of crop development is based on the dynamic vegetation model Agro-IBIS (Kucharik and 134 

Brye, 2003). The growth phases are defined as planting, emergence, grain fill, and harvest. Plant 135 

date and growth period are determined from the Crop Calendar Dataset (Sacks et al., 2010), and 136 

each phase is reached according to a phenological heat unit (PHU) method (see Drewniak et al., 137 

2013).  138 

 Several processes governing nitrogen cycling are included in CLM-Crop to represent 139 

nitrogen retranslocation, fertilization, and nitrogen fixation in soybean. Nitrogen retranslocation 140 

occurs during the grain fill growth phase, when nitrogen in the leaves and stem are mobilized to 141 

meet organ demands. Fertilizer is applied during the emergence phase for 20 days at constant 142 

rates of 150 kg/ha for maize, 80 kg/ha for spring wheat, and 25 kg/ha for soybean. The 20-day 143 

fertilization period is designed to optimize nitrogen usage and reduce loss of excess nitrogen 144 

through denitrification. Soybean nitrogen fixation allows soybean crops to behave as legumes 145 

fixing additional nitrogen through roots — a treatment similar to that of the SWAT model 146 

(Neitsch et al., 2005). 147 

 Harvest occurs as soon as maturity is reached. Grain is removed from the system to 148 

represent the consumption of that plant component. The remaining stems and leaves are 149 

considered residue and are split into litter and product pools. Litter is returned to the soil through 150 

7 
 



the decomposition process, while product is removed with the grain for uses such as biofuels, 151 

animal bedding, etc. The amount of residue returned as litter can be varied for different 152 

scenarios. High returns represent sustainable agriculture practices to maintain soil fertility, and 153 

low returns are indicative of high cellulosic biofuel usage.  154 

2.2 Input data 155 

 CLM-Crop requires two types of input: climate data and surface data. The climate data 156 

from the National Center for Environmental Protection reanalysis for 1948-2004 (Kalnay et al., 157 

1996) include temperature, wind speed, humidity, precipitation, solar radiation, and surface 158 

pressure at 3-hr intervals. Because the spin-up of the model requires over 600 yr of simulation, 159 

we cycled through the reanalysis data to reach a steady state (Thornton and Rosenbloom, 2005).  160 

Surface data sets assign the proportion of each land type and plant functional type in a 161 

grid cell; crops are grown separately from natural vegetation to eliminate competition for 162 

resources. Natural vegetation prescribed from Bonan et al. (2002) includes a generic crop area. 163 

Crop distribution for 1992 from Leff et al. (2004) is used to construct maize, wheat, and soybean 164 

coverage from the total generic crop area. Because the wheat coverage includes both spring and 165 

winter wheat, we model winter wheat as spring wheat in CLM-Crop. Some crop areas 166 

overestimated as double cropping in the data set might result in a crop area being counted twice.  167 

In addition to land use, the surface data include the planting dates and growth period of 168 

each crop type from the Crop Calendar Dataset (Sacks et al., 2010). Planting date is the average 169 

day of year when planting occurs, aggregated from 0.5° resolution to 2.8° for CLM-Crop. In 170 

regions where data are not available, Sacks et al. (2010) used nearest-neighbor extrapolation to 171 

infer planting date. Growth period is calculated in Sacks et al. (2010) as the average number of 172 
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PHUs between the average planting date and the average harvest date for the 30-yr Climatic 173 

Research Unit data set (New et al., 1999). 174 

2.3 Simulations 175 

CLM-Crop was run at a resolution of 2.8° × 2.8° by using the spin-up procedure in 176 

Thornton and Rosenbloom (2005). During spin-up, only natural vegetation was active, and 177 

croplands were simulated as grass until a steady SOC state was reached. At the end of the spin-178 

up, the land use was converted to include agriculture, representative of the early 1990’s land use 179 

maps from Leff et al. (2004). CLM does not have a dynamic vegetation capability when crops 180 

are active, so land use/land cover is held constant for the remaining simulations. Several case 181 

studies were designed and run to evaluate the influence of management practices on SOC (Table 182 

1). Each case study was run for a total of 171 years (three complete cycles of the 1948-2004 183 

data) at an hourly time step to represent the most intense cultivation period in North America 184 

(Ramankutty and Foley, 1999). However, we consider only the last 57 yr of simulation for 185 

analysis with averaged data. The control simulation, representing current fertilizer and 186 

management practices over North America, is compared to an extension of the spin-up, with 187 

crops represented as grass. Additional experiments compared the impact on soil carbon from four 188 

agricultural practices (high, medium, and low residue levels and zero fertilizer) with our control 189 

simulation. 190 

To investigate the effects of land use changes on SOC, different residue management 191 

practices, and varied fertilizer application, the results from six scenarios were analyzed (Table 1). 192 

First, conventional crop management (control run, 70% residue) is compared with crops 193 

simulated as grass (grass run). Second, effects of high (90%), medium (30-40%), and low (10%) 194 

9 
 



residue are compared with values for the control run. Third, the effect of no fertilizer application 195 

(with 70% residue) is evaluated by comparison with the control run. 196 

3  Results 197 

3.1 Soil organic carbon 198 

Simulated SOC values from the control run range from < 2 kg C m-2 in the Southwest to 199 

> 20 kg C m-2 in the northern United States (Fig. 1). Average SOC values are lower in crop 200 

ecosystems than in natural vegetation systems because of biomass removal and other land 201 

management. The total stored SOC over all land surface types in the United States, as calculated 202 

by CLM-Crop, is 84 Pg C, which falls within the range of previous estimates of 78-85 Pg C 203 

(Kern, 1994). CLM-Crop-simulated SOC for agriculture sites over the contiguous United States 204 

(CONUS) has a pattern similar to that of total SOC, with higher SOC in the northern part of the 205 

country and lower SOC in the southern regions.  206 

The general spatial pattern of the model-calculated SOC over CONUS is evaluated by 207 

using available spatially gridded data sets of SOC. The data developed by the global soil carbon 208 

International Geosphere-Biosphere Program (IGBP; Global Soil Data Task Group, 2000) for 209 

CONUS are summarized in Fig. 1b. The SOC pattern and magnitude are similar to the model-210 

calculated values (Fig. 1a). The differences between the model-calculated SOC and the IGBP 211 

data set are shown in Fig. 1c. In most regions, the percent difference between the data set and the 212 

model simulation is < 5%. Areas with higher percent differences are in boreal regions, where 213 

CLM tends to underestimate soil carbon (Koven et al., 2013).  214 

Figure 1 includes both managed and natural lands. To evaluate the model-simulated SOC 215 

over agricultural lands, we selected self-identified measurements of SOC from agricultural lands 216 
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available from the International Soil Carbon Network (ISCN; 2014). This data set has over 4,000 217 

unique SOC measurements to 1-m depth from croplands over CONUS. Although CLM soil 218 

depth (3.8 m) is deeper than the observations (1 m), we feel that the mismatch has little impact 219 

on results since most SOC is in the top soil layers (Jobbagy and Jackson, 2000). Because the 220 

ISCN data were collected over a wide variety of soils, at different points in the crop cycle and 221 

different times since the change in land used, variability is large, and the number of outliers from 222 

the median of the sample is significant. The plot in Fig. 2 shows the range of values with 223 

significant occurrences in the upper quartile and above the 90th percentile of the distribution. We 224 

filtered out outliers with SOC measurements > 50 kg C m-2 in this figure only to improve 225 

readability of the graph, since only a small portion (2.5%) of the measured values were higher 226 

than 50 kg C m-2 and SOC in agriculture lands is typically less than 50 kg C (Kern et al., 1994; 227 

Mishra et al., 2010). The model results for the grid cells identified as cropland are included in 228 

Fig. 2. The model results have a smaller range than the ISCN data, as would be expected for 229 

SOC values extracted at the end of the simulation period and post-harvest. In addition, the SOC 230 

in the model is less variable because of the larger grid cells with uniform soil type. Nevertheless, 231 

the median SOC values simulated by CLM-Crop fall within range of the middle 50% of the 232 

ISCN measurements (Fig. 2), and thus the simulated values are comparable, on average, with the 233 

observations. 234 

In a further evaluation of the model’s performance over agricultural lands, we completed 235 

a site-by-site comparison of modeled SOC to observed SOC. We applied a filter to separate soil 236 

over the modeling domain into three types (clay, sand, and silt), to examine the model behavior 237 

against the different textures. Figure 3 plots simulation results versus observations of SOC for 238 

values selected as described above. Each point indicates the mean observational SOC stock at the 239 
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model grid scale with the standard deviation. The plot indicates that although the model does 240 

tend to underestimate soil carbon over croplands, CLM does reasonably well at catching a wide 241 

range of SOC values at agricultural sites for all soil textures. The model does not capture the 242 

individual site observations well, due to the high spatial variability. CLM tends to simulate high 243 

SOC in sandy soils, low SOC for silt soils, and clay SOC in between, however the soil texture is 244 

determined from the model data and therefore may not accurately represent the soil texture of the 245 

observations. This result is encouraging, in view of difficulties in comparing CLM-Crop-246 

simulated SOC with observations at agriculture sites. First, the large grid size used in the model 247 

simulation cannot resolve the small-scale variability between farm-scale measurements, which 248 

are apparent from the large standard deviation in observations. Second, the model is run with 249 

static management for long time periods and cannot capture changes in management or land use 250 

over long temporal and large spatial resolutions while observations are taken over various time 251 

frames with vastly different land use history. Finally, measurements are 1 m depth, and CLM-252 

Crop estimates SOC for the total soil column (> 300 cm). Despite these challenges, CLM can 253 

capture the range of SOC present at many agriculture sites and in many cases CLM SOC 254 

estimates fall within the standard deviation of the observations. 255 

In order to explore the model performance further, we examined the effect of climate 256 

variability on SOC stocks. CLM SOC stocks decrease with increasing mean annual temperature 257 

and total annual precipitation (Fig. 4), which is also supported by observations. Higher 258 

temperatures and soil moisture generally result in higher below ground activity and therefore 259 

faster turnover of soil carbon (Wei et al., 2014). Natural vegetation follows the same temperature 260 

trends, but regions with higher annual precipitation indicate higher SOC stock. This is possibly 261 
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the result of increased productivity when precipitation is high, however the variability in natural 262 

vegetation is quite high making conclusions difficult. 263 

Finally, we also consider the ability of the model to capture temporal changes in SOC 264 

from land use conversion. Percent SOC loss since conversion from forest to agriculture, as 265 

summarized in Wei et al. (2014), is plotted in Fig. 5 over temporal periods ranging from 1-207 266 

years with a subset (500 points) of CLM SOC percent loss taken from random grids and time 267 

periods. Although CLM does not simulate the rapid loss of SOC that occurs in some field 268 

observations, by the end of the simulation, CLM does capture the range of SOC loss as seen in 269 

observations. Initial lower SOC stocks likely cause the initial modest decline in SOC simulated 270 

by the model, since SOC loss increases with increasing initial SOC concentration (Wei et al., 271 

2014). This result highlights CLMs ability to capture changes in SOC over long time periods. 272 

3.2 CLM-Crop-simulated changes in soil carbon  273 

Most grid cells lost between 3% and 45% of total SOC, averaged across the grid cell. The 274 

amount of SOC lost was correlated with the size of the agriculture land base; higher agriculture 275 

land use resulted in larger SOC loss. Individual crop soil columns indicate high losses of SOC, 276 

up to a maximum of 75% of total SOC, although average soil loss is 33-51%. Total loss also 277 

varied with crop type; maize and wheat lost about 10% less SOC than soybean. This is 278 

understandable, given the low residue of soybean crops, although this result varied with location. 279 

For example, total simulated SOC loss over maize and soybean soil columns at the Bondville site 280 

in Illinois was 48%. At the Mead, Nebraska, site, losses of SOC for maize and soybean columns 281 

were approximately 44% and 52%, respectively.  282 
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While these site-level SOC losses are comparable with observations (Lal, 2004), 283 

comparison with the SOC values in the control simulation might be exaggerated as a result of the 284 

subgrid hierarchy, because the accumulated SOC estimated by the grass simulation was 285 

influenced by all vegetation types in the soil column, while the soil column in the control 286 

simulation only included one crop type. In addition, Ramankutty and Foley (1999) showed that 287 

most early croplands from the late 1800s were formed through deforestation and later prairie 288 

removal. This implies that our estimation might be exaggerated, because grassland ecosystems 289 

can hold more carbon than forests (Schlesinger, 1997). Overall, a 10% loss in total SOC over the 290 

United States between the control run and the grass run accounts for a nationwide carbon loss of 291 

more than 8 Pg (Fig. 6).  292 

Residue management can have the largest impact on soil carbon. Increasing the residue 293 

left on the field to 90% results in a 2.6% increase of SOC, but allowing a 10% residue amount 294 

(as a potential result of increased cellulosic biofuel demand) leaves an SOC decrease of over 295 

5.7%. The difference between these two scenarios is over 7 Pg C, almost the same amount as the 296 

total carbon loss due to agricultural land use. Interestingly, we found no notable differences 297 

between crop responses. Even a more modest decrease in the residue returned to the field (30-298 

40%) results in a 3.5% loss of SOC compared to the control simulation. Increasing the residue 299 

harvest will increase the amount of SOC loss (Anderson-Teixeira et al., 2009; Blanco-Canqui 300 

and Lal, 2009b). Harvesting residue results in the loss of not only soil carbon, but also soil 301 

fertility, indicated by declining yields (data not shown). This implies that increased residue 302 

harvest for cellulose might result in expansion of croplands to counter yield declines. 303 

Eliminating fertilizer use showed the biggest impact on yields and SOC, simulating over 304 

6% loss (Fig. 6). Globally, decreases in yields of roughly 60-70% occurred for maize and wheat, 305 
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but soybeans, relying less on fertilizer inputs, suffered a 22% decrease in yields. The different 306 

response between plant types was large: individual maize and wheat soil columns lost an average 307 

of 63% SOC, whereas soybean only lost 11%. Despite low yields, leaving 70% residue allowed 308 

carbon inputs to maintain nearly the same SOC level as in the run with low residue return. This 309 

indicates a critical role for fertilization in soil carbon storage, without which an additional 5 Pg C 310 

might be lost due to cultivation. The observed result is not surprising, as fertilizer contributes to 311 

the total biomass accumulated during crop development, and increased biomass returned as 312 

residue will allow the soil to retain some of the nutrients taken up during crop growth, improving 313 

the soil fertility.  314 

4. Discussion 315 

CLM-Crop has proven to be a valuable tool for evaluating changes in soil carbon under 316 

various management practices. Our results indicate that the SOC for agricultural sites will be 317 

reduced through any management practice while disturbance continues, with the total amount 318 

lost depending on the management practice. Model-estimated U.S. losses of SOC due to current 319 

cultivation practices are around 10%, with a potential for greater loss as the amount of harvested 320 

residue increases. 321 

The amount of biomass residue left on the field after grain harvest has the most 322 

significant effect on SOC. Cellulosic biofuels rely on harvesting the stems and leaves of crops, 323 

resulting in an additional 5% loss of carbon within the soil system. Currently, model subgrids 324 

growing a single crop type on an independent soil column typically lose 33-51% of SOC, and 325 

that loss increases to nearly 90% when residue is harvested. Over long time scales, this effect can 326 

degrade the sustainability of the soil for crop growth and can negatively affect yield. For 327 
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example, plant nitrogen uptake (Fig. 7) decreased linearly with increasing residue harvest. The 328 

high residue returns uptake 7.4% more N than the current residue runs, whereas medium and low 329 

residue returns have 6.6% and 15.6% lower N uptake, respectively. When fertilizer is not 330 

included, the resulting N uptake is 57% lower. This impact is transferred to yields (Fig. 8) 331 

resulting in 9% and 17% lower yields for the medium and low residue returns, respectively. 332 

Thus, the effects of residue management on SOC are very important, and increasing the amount 333 

of residue used for cellulosic ethanol production could have a significant impact on soil carbon 334 

storage and ultimately plant productivity. Leaving plant residue from crop production in the soil 335 

decreases the amount of carbon lost to the atmosphere. However, meeting cellulosic biofuel 336 

demand through cultivation of managed grasses such as switchgrass and Miscanthus has been 337 

shown to increase soil carbon storage over time (Anderson-Teixeira et al., 2009), most likely 338 

because nutrient demands and management practices are different for these types of biofuel 339 

crops. 340 

 Disagreement between studies about the possible effect of fertilizer on SOC leaves this 341 

management practice open for further research. Our findings suggest that fertilizer use might 342 

improve yield and increase the amount of carbon returned to the soil in crop residue; however, 343 

increased residue removal for biofuels could reduce this effect. As fertilizers improve and are 344 

applied to maximize plant uptake while minimizing loss to leaching and denitrification, fertilizer 345 

might provide an important tool for farmers to mitigate the soil carbon loss due to increasing 346 

residue harvest for biofuel use. However, care must be taken to ensure that fertilizer inputs do 347 

not exceed plant uptake, which could result in increased nitrogen leached into the groundwater 348 

and increased greenhouse gas emission of N2O via nitrification and denitrification pathways. The 349 

effect of increased decomposition when fertilizer is used also needs to be explored.  350 

16 
 



 Expanding the model to incorporate other management practices (rotation, tillage, 351 

irrigation, etc.) is important activity for future model development. Erosion, for example, is 352 

expected to increase as a result of crop residue harvest (Lal and Pimentel, 2007). This secondary 353 

effect of residue harvest can have multiple consequences. First, soil fertility will decline with the 354 

loss or transport of soil organic matter. Second, erosion processes result in the breakdown of soil 355 

aggregates promoting oxidation of SOC. Both effects will reduce nutrient and water holding 356 

capacities of the soil (Lal and Pimentel 2008). Finally, the loss of nutrients will result in a 357 

decline of crop productivity, further enhancing SOC loss. As such, our result should be 358 

considered a lower bound estimate of SOC loss from residue harvest. Including these effects and 359 

expanding agricultural models to a global scale should be a priority for future model 360 

development. Given the challenges comparing with observations, focusing on model 361 

developments that capture cropland SOC dynamics is equally important as developing datasets 362 

that can be used for climate model validation, especially considering the increasing complexity 363 

of ESMs that include cropland representation. Although the crop representation in CLM-Crop is 364 

flexible enough for expansion to a global scale, rigorous testing is needed to ensure that crop 365 

behavior is consistent with regional observations. 366 

 There are some limitations to our modeling approach that lead to uncertainties in the 367 

model prediction of SOC. For example, changes in land use and land cover are not included in 368 

CLM. Historical changes in land use indicate a steady increase in cultivated land which peaked 369 

in the 1940’s and declined thereafter (Waisanen and Bliss, 2002). Using a modern land use cover 370 

over the historical period may result in an over prediction of SOC loss, because the model will 371 

overestimate the agricultural land base in some (early) years and the model won’t capture 372 

increases in SOC when agriculture land is abandoned. This also limits the influence of beneficial 373 
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agriculture practices such as crop rotation and fallowing. Historical changes in land management 374 

are also not represented in the model, such as changes in residue harvest over time or organic 375 

matter additions. For example, Lal et al. (1999) suggest early cultivation removed residue 376 

following harvest until after 1940 when residue was returned to the field. The high spatial 377 

variability and difficulty finding these types of historical data is a major challenge for trying to 378 

add these features to CLM.  379 

Finally, further research is needed for full evaluation of the importance of agro-380 

ecosystem impacts on soil carbon. We have shown here that SOC loss can vary greatly, 381 

depending on management practices. Practices such as residue management can have significant 382 

impact on SOC retained in agricultural soils, with higher residue removal from soil leading to 383 

higher SOC losses. Use of fertilizer can compensate for some of the loss, but the benefit is 384 

limited. Further modeling studies are important for simulating these competing effects on carbon 385 

storage. Our study suggests that considerable care is needed in designing appropriate 386 

management practices to realize the full carbon mitigation benefits of using biofuels from 387 

cellulosic ethanol. 388 
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Figure 1. (a) Total SOC (kg C m-2) simulated by CLM-Crop over the contiguous United States. 576 

(b) Total SOC from the IGBP over the same domain as in (a). (c) Percent difference between (a) 577 

and (b). 578 

Figure 2. Box plot of the weighted average total SOC over croplands, as simulated in CLM-Crop 579 

and in observations from the ISCN. Observations reporting > 50 kg C m-2 were removed from 580 

the analysis. 581 

Figure 3. CLM-modeled SOC (kg C m-2) versus ISCN observations for model derived soil 582 

texture types clay, sand, and silt. Each point represents the mean observed SOC value in the grid 583 

cell; error bars show the standard deviation. The black line represents the 1:1 ratio.  584 

Figure 4. Top: The effects of temperature on SOC stock from CLM crops (blue) and natural 585 

vegetation (green) and ISCN observations (red). Bottom: The effects of precipitation on SOC 586 

stock from CLM crops (blue) and natural vegetation (green) and ISCN observations (red). 587 

Figure 5. Percent decrease of SOC after conversion from natural vegetation to cropland. Percent 588 

decrease data from Wei et al. (2014) are in red (US points are orange) and CLM percent loss is 589 

blue. 590 

Figure 6: Simulated change in total U.S. SOC (Pg C) due to agricultural land management for all 591 

scenarios. 592 

Figure 7. The effect of agricultural land management change on crop annual average nitrogen 593 

uptake. 594 

Figure 8.The effect of agricultural land management change on annual crop yield.  595 
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Table 1. CLM-Crop simulations performed. 596 

Run name Land use Fertilizer Residue 

Control Leff et al., 2004 Yes 70% — all crops 

High residue Leff et al., 2004 Yes 90% — all crops 

Medium residue Leff et al., 2004 Yes 30% — maize 

30% — wheat 

40% — soybean  

Low residue Leff  et al., 2004 Yes 10% — all crops 

No fertilizer Leff  et al., 2004 No 70% — all crops 

Grass Bonan  et al., 2002 Not applicable Not applicable 

 597 

  598 

30 
 



 599 

Figure 1. (a) Total SOC (kg C m-2) simulated by CLM-Crop over the contiguous United States. (b) Total 600 

SOC from the IGBP over the same domain as in (a). (c) Percent difference between (a) and (b). 601 
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 602 

Figure 2. Box plot of the weighted average total SOC over croplands, as simulated in CLM-Crop and in 603 

observations from the ISCN. Observations reporting > 50 kg C m-2 were removed from the analysis. 604 
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 606 

Figure 3. CLM-modeled SOC (kg C m-2) versus ISCN observations for model derived soil 607 

texture types clay, sand, and silt. Each point represents the mean observed SOC value in the grid 608 

cell; error bars show the standard deviation. The black line represents the 1:1 ratio.  609 
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 611 

Figure 4. The effects of temperature (top) and precipitation (bottom) on SOC stock from CLM crops 612 

(blue) and natural vegetation (green) and ISCN observations (red).  613 
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 615 

Figure 5. Percent decrease of SOC after conversion from natural vegetation to cropland. Percent decrease 616 

data from Wei et al. (2014) are in red (US points are orange) and CLM percent loss is blue. 617 
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Figure 6: Simulated change in total U.S. SOC (Pg C) due to agricultural land management for all 620 

scenarios. 621 
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 623 

Figure 7. The effect of agricultural land management change on crop annual average nitrogen uptake. 624 
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 626 

Figure 8.The effect of agricultural land management change on annual crop yield. 627 
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