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Abstract 20	  

Cultivation of the terrestrial land surface can create either a source or sink of atmospheric CO2, 21	  

depending on land management practices. The Community Land Model (CLM) provides a useful 22	  

tool to explore how land use and management impact the soil carbon pool at regional to global 23	  

scales. CLM was recently updated to include representation of managed lands growing maize, 24	  

soybean, and spring wheat. In this study, CLM-Crop is used to investigate the impacts of various 25	  

management practices, including fertilizer use and differential rates of crop residue removal, on 26	  

the soil organic carbon (SOC) storage of croplands in the continental United States over 27	  

approximately a 170-year period. Results indicate that total U.S. SOC stocks have already lost 28	  

over 8 Pg C (10%) due to land cultivation practices (e.g., fertilizer application, cultivar choice, 29	  

and residue removal), compared to a land surface composed of native vegetation (i.e., 30	  

grasslands). After long periods of cultivation, individual subgrids (the equivalent of a field plot) 31	  

growing maize and soybean lost up to 65% of the carbon stored, compared to a grassland site. 32	  

Crop residue management showed the greatest effect on soil carbon storage, with low and 33	  

medium residue returns resulting in additional losses of 5% and 3.5%, respectively, in U.S. 34	  

carbon storage, while plots with high residue returns stored 2% more carbon. Nitrogenous 35	  

fertilizer can alter the amount of soil carbon stocks significantly. Under current levels of crop 36	  

residue return, not applying fertilizer resulted in a 5% loss of soil carbon. Our simulations 37	  

indicate that disturbance through cultivation will always result in a loss of soil carbon, and 38	  

management practices will have a large influence on the magnitude of SOC loss.  39	  

  40	  
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1. Introduction 41	  

Bioenergy crops are promoted as a renewable energy source capable of improving energy 42	  

security and mitigating greenhouse gas (GHG) emissions from fossil fuels. These crops are 43	  

considered environmentally friendly and economically competitive, because CO2 emitted by 44	  

biofuel combustion is partially balanced by atmospheric uptake through photosynthesis (Hughes 45	  

et al., 2010). The Renewable Fuel Standard of the U.S. Energy Independence and Security Act 46	  

(EISA 2007) sets a national target of producing 136 billion liters of renewable fuels by 2022. Of 47	  

this, at least 61 billion liters is expected to come from cellulosic ethanol (U.S. Environmental 48	  

Protection Agency, 2010). Though maize grain and sugarcane are currently the major global 49	  

sources for bioethanol production, maize production in the United States is not sufficient to meet 50	  

the renewable fuel targets. Furthermore, recent studies suggest that production of ethanol from 51	  

corn grain might in fact increase GHG emissions because of changes in land use (Searchinger et 52	  

al., 2008; Kim et al., 2009; Melillo et al., 2009). For these reasons, cellulosic biofuels produced 53	  

from cellulose and hemicellulose plant biomass are considered a viable alternative to 54	  

conventional crop-based biofuels.  55	  

Cellulosic biofuels can be made from perennial feedstocks or from residues of annual 56	  

cropping and forestry activities, thereby reducing or eliminating the need for additional 57	  

agricultural land. The use of crop residues for bioethanol production shows promise for fulfilling 58	  

U.S. renewable fuel goals, but more research is needed on the effects on soil organic carbon 59	  

(SOC) of crop residue removal from croplands (Mishra et al., 2013) and net GHG balance 60	  

(McKone et al., 2011). Furthermore, crop residues play a crucial role in sustainability and 61	  

resilience of agroecosystems (Karlen et al., 2009). Therefore, to understand the environmental 62	  

consequences of using crop residues for bioenergy production on large spatial scales, it is 63	  
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essential to know the impacts on the SOC pool of differential rates of crop residue removal and 64	  

nitrogenous fertilizer applications. 65	  

Crop residue is responsible for maintaining soil moisture, returning carbon and other 66	  

nutrients to soil, and erosion mitigation; in general, it provides a sustainable environment for 67	  

cultivation activities (Lal, 2009). Without residue cover, wind and water erosion will increase 68	  

(Van Pelt et al., 2013). Long-term residue harvest results in loss of yields and productivity by 69	  

decreasing the nutrient content of soils (Blanco-Canqui and Lal, 2009a). These arguments 70	  

demonstrate that using crop residues as a bioenergy fuel resource could have detrimental impacts 71	  

on agroecosystems (Blanco-Canqui and Lal, 2009a). 72	  

Globally, soils store more carbon than the atmosphere and biosphere combined, acting 73	  

both as a source and sink of atmospheric CO2 (IPCC, 2013). However, cultivation loss of SOC 74	  

ranges from 50% to70% (Lal and Bruce, 1999). Over the U.S. Midwest, land conversion led to a 75	  

25-50% reduction of soil carbon (Houghton et al., 1999; Lal, 2002). The result is large carbon 76	  

payback times, ranging from a few years to several centuries (Fargione et al., 2008; Gibbs et al., 77	  

2008; Searchinger et al., 2008). On the other hand, conversion from cultivation to native 78	  

grasslands, such as through enrollment in the Conservation Reserve Program, resulted in 79	  

increased soil carbon (Anderson-Teixeira et al., 2009; Pineiro et al., 2009). Therefore, it is 80	  

critical to evaluate the impact of agricultural land use and management on regional carbon 81	  

budgets. 82	  

The influence of agriculture on the carbon cycle is complex; carbon capture and storage 83	  

in croplands are dependent on management practices, including tillage, fertilizer applications, 84	  

residue management, and crop sequence (West and Post, 2002; Hooker et al., 2005; Dou and 85	  
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Hons, 2006; Huggins et al., 2007; Khan et al., 2007; Kim et al., 2009). SOC stocks and fluxes at 86	  

a particular location are soil and site specific and reflect the long-term balance between organic 87	  

matter inputs from vegetation and losses due to decomposition, erosion, and leaching. Some 88	  

studies have attempted to quantify carbon sequestration from mitigation strategies such as no-till 89	  

or conservation tillage practices, residue management, use of cover crops, and restoration and 90	  

reserve actions (Conant et al., 2001; West and Post, 2002). These studies showed that as farming 91	  

techniques are improved to maximize yield and minimize disturbance, SOC can be maintained 92	  

and perhaps even increased over time.  93	  

However, the effect of altered management on agricultural soil’s ability to store or emit 94	  

carbon is unresolved, largely as a result of conflicting evidence. For example, some studies on 95	  

the effects of nitrogen fertilizer indicated a decrease in SOC caused by increased decomposition 96	  

(Khan et al., 2007; Russell et al., 2009), while others reported an increase in SOC from increased 97	  

biomass returned to the soil after harvest (Jung and Lal, 2011; Halvorson et al., 1999; Wilts et 98	  

al., 2004). SOC increases when crop residue is returned to the land (Buyanovsky and Wagner, 99	  

1998; Wilhelm et al, 2004; van Groenigen et al., 2011), but residue can also increase 100	  

decomposition in warm, moist areas (Johnson et al., 2005). Perhaps the disagreement is the result 101	  

of the large variability and uncertainty of field measurements, which make developing 102	  

conclusions difficult (Karlen et al., 2011). For example, Smith et al. (2012) found no differences 103	  

between the residue-returned and residue-harvested treatments, and in some cases the residue-104	  

harvested sites had increased SOC. Thorburn et al. (2012) also found no consensus regarding 105	  

residue harvest and SOC response. Nonetheless, most studies found a loss of SOC with residue 106	  

harvesting. Although the variability of SOC measurements can be attributed to any number of 107	  

effects — including topography (Senthilkumar et al., 2009b), SOC baseline (Senthilkumar et al., 108	  
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2009a), aggregate protection (Ananyeva et al., 2013), and even depth (Kravchenko and 109	  

Robertson, 2011; Syswerda et al., 2011) — it is generally agreed that if crop residue is used as 110	  

feedstock for biofuels, additional carbon losses can occur (Karlen et al., 2011).  111	  

SOC losses can be mitigated through recommended management practices, but studies 112	  

disagree on the limits of harvestable crop residue to maintain SOC levels in soils. Estimates of 113	  

harvestable non-grain biomass range from 13% (Tan et al., 2012) to 50% (Blanco-Canqui and 114	  

Lal, 2009a), with an average of about 25%, although that might require stabilization of SOC 115	  

(Tan et al., 2012). These estimates consider erosion, soil productivity, maintaining SOC, surface 116	  

crusting, porosity, aggregate breakdown, compaction, and soil temperature, but the wide range in 117	  

estimated biomass available for harvest leaves questions regarding the sustainability of cellulosic 118	  

ethanol. However, because the rate of SOC loss tends to increase with increased biomass harvest 119	  

(Lemke et al., 2010), harvesting small amounts of residue for biofuel might be feasible. 120	  

Modeling studies can supplement observational data and explore possible differences in 121	  

SOC by investigating idealized cases. A benefit is that the wide study area can be extended to 122	  

regional or global scales without resorting to geospatial methods of interpolating sparse data. In 123	  

this study, we evaluated the influence of cultivation on SOC by using the agriculture version of 124	  

the Community Land Model (CLM), CLM-Crop (Drewniak et al., 2013). Our analysis includes 125	  

impacts of changes in land use and also in management practices, such as crop residue harvesting 126	  

and fertilizer application. A description of the model and the simulations performed is presented 127	  

in Sect. 2, followed by results and a discussion in Sect. 3 and Sect. 4, respectively.  128	  
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2  Methods 129	  

2.1  CLM-Crop model description 130	  

 CLM-Crop, the agriculture version of CLM, includes representations of maize, spring 131	  

wheat, and soybean crop types with fully coupled carbon-nitrogen cycling (Drewniak et al., 132	  

2013). The variation of carbon and nitrogen allocation to plant components with the growth 133	  

phase of crop development is	  based on the dynamic vegetation model Agro-IBIS (Kucharik and 134	  

Brye, 2003). The growth phases are defined as planting, emergence, grain fill, and harvest. Plant 135	  

date and growth period are determined from the Crop Calendar Dataset (Sacks et al., 2010), and 136	  

each phase is reached according to a phenological heat unit (PHU) method (see Drewniak et al., 137	  

2013).  138	  

 Several processes governing nitrogen cycling are included in CLM-Crop to represent 139	  

nitrogen retranslocation, fertilization, and nitrogen fixation in soybean. Nitrogen retranslocation 140	  

occurs during the grain fill growth phase, when nitrogen in the leaves and stem are mobilized to 141	  

meet organ demands. Fertilizer is applied during the emergence phase for 20 days at constant 142	  

rates of 150 kg/ha for maize, 80 kg/ha for spring wheat, and 25 kg/ha for soybean. The 20-day 143	  

fertilization period is designed to optimize nitrogen usage and reduce loss of excess nitrogen 144	  

through denitrification. Soybean nitrogen fixation allows soybean crops to behave as legumes 145	  

fixing additional nitrogen through roots — a treatment similar to that of the SWAT model 146	  

(Neitsch et al., 2005). 147	  

 Harvest occurs as soon as maturity is reached. Grain is removed from the system to 148	  

represent the consumption of that plant component. The remaining stems and leaves are 149	  

considered residue and are split into litter and product pools. Litter is returned to the soil through 150	  
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the decomposition process, while product is removed with the grain for uses such as biofuels, 151	  

animal bedding, etc. The amount of residue returned as litter can be varied for different 152	  

scenarios. High returns represent sustainable agriculture practices to maintain soil fertility, and 153	  

low returns are indicative of high cellulosic biofuel usage.  154	  

2.2 Input data 155	  

 CLM-Crop requires two types of input: climate data and surface data. The climate data 156	  

from the National Center for Environmental Protection reanalysis for 1948-2004 (Kalnay et al., 157	  

1996) include temperature, wind speed, humidity, precipitation, solar radiation, and surface 158	  

pressure at 3-hr intervals. Because the spin-up of the model requires over 600 yr of simulation, 159	  

we cycled through the reanalysis data to reach a steady state (Thornton and Rosenbloom, 2005).  160	  

Surface data sets assign the proportion of each land type and plant functional type in a 161	  

grid cell; crops are grown separately from natural vegetation to eliminate competition for 162	  

resources. Natural vegetation prescribed from Bonan et al. (2002) includes a generic crop area. 163	  

Crop distribution for 1992 from Leff et al. (2004) is used to construct maize, wheat, and soybean 164	  

coverage from the total generic crop area. Because the wheat coverage includes both spring and 165	  

winter wheat, we model winter wheat as spring wheat in CLM-Crop. Some crop areas 166	  

overestimated as double cropping in the data set might result in a crop area being counted twice.  167	  

In addition to land use, the surface data include the planting dates and growth period of 168	  

each crop type from the Crop Calendar Dataset (Sacks et al., 2010). Planting date is the average 169	  

day of year when planting occurs, aggregated from 0.5° resolution to 2.8° for CLM-Crop. In 170	  

regions where data are not available, Sacks et al. (2010) used nearest-neighbor extrapolation to 171	  

infer planting date. Growth period is calculated in Sacks et al. (2010) as the average number of 172	  
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PHUs between the average planting date and the average harvest date for the 30-yr Climatic 173	  

Research Unit data set (New et al., 1999). 174	  

2.3 Simulations 175	  

CLM-Crop was run at a resolution of 2.8° × 2.8° by using the spin-up procedure in 176	  

Thornton and Rosenbloom (2005). During spin-up, only natural vegetation was active, and 177	  

croplands were simulated as grass until a steady SOC state was reached. At the end of the spin-178	  

up, the land use was converted to include agriculture, representative of the early 1990’s land use 179	  

maps from Leff et al. (2004). CLM does not have a dynamic vegetation capability when crops 180	  

are active, so land use/land cover is held constant for the remaining simulations. Several case 181	  

studies were designed and run to evaluate the influence of management practices on SOC (Table 182	  

1). Each case study was run for a total of 171 years (three complete cycles of the 1948-2004 183	  

data) at an hourly time step to represent the most intense cultivation period in North America 184	  

(Ramankutty and Foley, 1999). However, we consider only the last 57 yr of simulation for 185	  

analysis with averaged data. The control simulation, representing current fertilizer and 186	  

management practices over North America, is compared to an extension of the spin-up, with 187	  

crops represented as grass. Additional experiments compared the impact on soil carbon from four 188	  

agricultural practices (high, medium, and low residue levels and zero fertilizer) with our control 189	  

simulation. 190	  

To investigate the effects of land use changes on SOC, different residue management 191	  

practices, and varied fertilizer application, the results from six scenarios were analyzed (Table 1). 192	  

First, conventional crop management (control run, 70% residue) is compared with crops 193	  

simulated as grass (grass run). Second, effects of high (90%), medium (30-40%), and low (10%) 194	  
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residue are compared with values for the control run. Third, the effect of no fertilizer application 195	  

(with 70% residue) is evaluated by comparison with the control run. 196	  

3  Results 197	  

3.1 Soil organic carbon 198	  

Simulated SOC values from the control run range from < 2 kg C m-2 in the Southwest to 199	  

> 20 kg C m-2 in the northern United States (Fig. 1). Average SOC values are lower in crop 200	  

ecosystems than in natural vegetation systems because of biomass removal and other land 201	  

management. The total stored SOC over all land surface types in the United States, as calculated 202	  

by CLM-Crop, is 84 Pg C, which falls within the range of previous estimates of 78-85 Pg C 203	  

(Kern, 1994). CLM-Crop-simulated SOC for agriculture sites over the contiguous United States 204	  

(CONUS) has a pattern similar to that of total SOC, with higher SOC in the northern part of the 205	  

country and lower SOC in the southern regions.  206	  

The general spatial pattern of the model-calculated SOC over CONUS is evaluated by 207	  

using available spatially gridded data sets of SOC. The data developed by the global soil carbon 208	  

International Geosphere-Biosphere Program (IGBP; Global Soil Data Task Group, 2000) for 209	  

CONUS are summarized in Fig. 1b. The SOC pattern and magnitude are similar to the model-210	  

calculated values (Fig. 1a). The differences between the model-calculated SOC and the IGBP 211	  

data set are shown in Fig. 1c. In most regions, the percent difference between the data set and the 212	  

model simulation is < 5%. Areas with higher percent differences are in boreal regions, where 213	  

CLM tends to underestimate soil carbon (Koven et al., 2013).  214	  

Figure 1 includes both managed and natural lands. To evaluate the model-simulated SOC 215	  

over agricultural lands, we selected self-identified measurements of SOC from agricultural lands 216	  
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available from the International Soil Carbon Network (ISCN; 2014). This data set has over 4,000 217	  

unique SOC measurements to 1-m depth from croplands over CONUS. Although CLM soil 218	  

depth (3.8 m) is deeper than the observations (1 m), since nearly two-thirds of SOC is found 219	  

within the top 1 m (Jobbagy and Jackson, 2000), the bulk of the soil carbon is still captured in 220	  

the observations. Because the ISCN data were collected over a wide variety of soils, at different 221	  

points in the crop cycle and different times since the change in land used, variability is large, and 222	  

the number of outliers from the median of the sample is significant. The plot in Fig. 2 shows the 223	  

range of values with significant occurrences in the upper quartile and above the 90th percentile 224	  

of the distribution. We filtered out outliers with SOC measurements > 50 kg C m-2 in this figure 225	  

only to improve readability of the graph, since only a small portion (2.5%) of the measured 226	  

values were higher than 50 kg C m-2 and SOC in agriculture lands is typically less than 50 kg C 227	  

(Kern et al., 1994; Mishra et al., 2010). The model results for the grid cells identified as cropland 228	  

are included in Fig. 2. The model results have a smaller range than the ISCN data, as would be 229	  

expected for SOC values extracted at the end of the simulation period and post-harvest. In 230	  

addition, the SOC in the model is less variable because of the larger grid cells with uniform soil 231	  

type. Nevertheless, the median SOC values simulated by CLM-Crop fall within range of the 232	  

middle 50% of the ISCN measurements (Fig. 2), and thus the simulated values are comparable, 233	  

on average, with the observations. In order to compensate for the mismatch of soil depth, we 234	  

added an additional 36% of SOC to the observed stocks (to account for the ~1/3 carbon between 235	  

2-3 m soil depth; Jobbagy and Jackson, 2000). The resulting increase in observed SOC (not 236	  

shown) caused median CLM-Crop SOC stocks to fall outside the 50 percentile of the 237	  

observations, but the top 75 percentile of CLM SOC still fall within observed range. 238	  
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In a further evaluation of the model’s performance over agricultural lands, we completed 239	  

a site-by-site comparison of modeled SOC to observed SOC. We applied a filter to separate soil 240	  

over the modeling domain into three types (clay, sand, and silt), to examine the model behavior 241	  

against the different textures. Figure 3 plots simulation results versus observations of SOC for 242	  

values selected as described above. Each point indicates the mean observational SOC stock at the 243	  

model grid scale with the standard deviation. The plot indicates that although the model does 244	  

tend to underestimate soil carbon over croplands, CLM does reasonably well at catching a wide 245	  

range of SOC values at agricultural sites for all soil textures. The model does not capture the 246	  

individual site observations well (RSME = 13.1 kg C m-2; R2 = 0.016), due to the high spatial 247	  

variability. CLM tends to simulate high SOC in sandy soils, low SOC for silt soils, and clay SOC 248	  

in between, however the soil texture is determined from the model data and therefore may not 249	  

accurately represent the soil texture of the observations. This result is encouraging, in view of 250	  

difficulties in comparing CLM-Crop-simulated SOC with observations at agriculture sites. First, 251	  

the large grid size used in the model simulation cannot resolve the small-scale variability 252	  

between farm-scale measurements, which are apparent from the large standard deviation in 253	  

observations. Second, the model is run with static management for long time periods and cannot 254	  

capture changes in management or land use over long temporal and large spatial resolutions 255	  

while observations are taken over various time frames with vastly different land use history. 256	  

Finally, measurements are 1 m depth, and CLM-Crop estimates SOC for the total soil column (> 257	  

300 cm). When we attempt to adjust the observed SOC to include carbon at deeper soil layers 258	  

(by adding ~1/3 more carbon as in Fig. 2), RSME increases to 18.8 kg C m-2, although R2 did not 259	  

change. Despite these challenges, CLM can capture the range of SOC present at many 260	  
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agriculture sites and in many cases CLM SOC estimates fall within the standard deviation of the 261	  

observations. 262	  

In order to explore the model performance further, we examined the effect of climate 263	  

variability on SOC stocks. CLM SOC stocks decrease with increasing mean annual temperature 264	  

and total annual precipitation (Fig. 4), which is also supported by observations. Higher 265	  

temperatures and soil moisture generally result in higher below ground activity and therefore 266	  

faster turnover of soil carbon (Wei et al., 2014). Natural vegetation follows the same temperature 267	  

trends, but regions with higher annual precipitation indicate higher SOC stock. This is possibly 268	  

the result of increased productivity when precipitation is high, however the variability in natural 269	  

vegetation is quite high making conclusions difficult. 270	  

Finally, we also consider the ability of the model to capture temporal changes in SOC 271	  

from land use conversion. Percent SOC loss since conversion from forest to agriculture, as 272	  

summarized in Wei et al. (2014), is plotted in Fig. 5 over temporal periods ranging from 1-207 273	  

years with a subset (500 points) of CLM SOC percent loss taken from random grids and time 274	  

periods. Although CLM does not simulate the rapid loss of SOC that occurs in some field 275	  

observations, by the end of the simulation, CLM does capture the range of SOC loss as seen in 276	  

observations. Initial lower SOC stocks likely cause the initial modest decline in SOC simulated 277	  

by the model, since SOC loss increases with increasing initial SOC concentration (Wei et al., 278	  

2014). This result highlights CLMs ability to capture changes in SOC over long time periods. 279	  

3.2 CLM-Crop-simulated changes in soil carbon  280	  

Most grid cells lost between 3% and 45% of total SOC, averaged across the grid cell. The 281	  

amount of SOC lost was correlated with the size of the agriculture land base; higher agriculture 282	  
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land use resulted in larger SOC loss. Individual crop soil columns indicate high losses of SOC, 283	  

up to a maximum of 75% of total SOC, although average soil loss is 33-51%. Total loss also 284	  

varied with crop type; maize and wheat lost about 10% less SOC than soybean. This is 285	  

understandable, given the low residue of soybean crops, although this result varied with location. 286	  

For example, total simulated SOC loss over maize and soybean soil columns at the Bondville site 287	  

in Illinois was 48%. At the Mead, Nebraska, site, losses of SOC for maize and soybean columns 288	  

were approximately 44% and 52%, respectively.  289	  

While these site-level SOC losses are comparable with observations (Lal, 2004), 290	  

comparison with the SOC values in the control simulation might be exaggerated as a result of the 291	  

subgrid hierarchy, because the accumulated SOC estimated by the grass simulation was 292	  

influenced by all vegetation types in the soil column, while the soil column in the control 293	  

simulation only included one crop type. In addition, Ramankutty and Foley (1999) showed that 294	  

most early croplands from the late 1800s were formed through deforestation and later prairie 295	  

removal. This implies that our estimation might be exaggerated, because grassland ecosystems 296	  

can hold more carbon than forests (Schlesinger, 1997). Overall, a 10% loss in total SOC over the 297	  

United States between the control run and the grass run accounts for a nationwide carbon loss of 298	  

more than 8 Pg (Fig. 6).  299	  

Residue management can have the largest impact on soil carbon. Increasing the residue 300	  

left on the field to 90% results in a 2.6% increase of SOC, but allowing a 10% residue amount 301	  

(as a potential result of increased cellulosic biofuel demand) leaves an SOC decrease of over 302	  

5.7%. The difference between these two scenarios is over 7 Pg C, almost the same amount as the 303	  

total carbon loss due to agricultural land use. Interestingly, we found no notable differences 304	  

between crop responses. Even a more modest decrease in the residue returned to the field (30-305	  
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40%) results in a 3.5% loss of SOC compared to the control simulation. Increasing the residue 306	  

harvest will increase the amount of SOC loss (Anderson-Teixeira et al., 2009; Blanco-Canqui 307	  

and Lal, 2009b). Harvesting residue results in the loss of not only soil carbon, but also soil 308	  

fertility, indicated by declining yields (data not shown). This implies that increased residue 309	  

harvest for cellulose might result in expansion of croplands to counter yield declines. 310	  

Eliminating fertilizer use showed the biggest impact on yields and SOC, simulating over 311	  

6% loss (Fig. 6). Globally, decreases in yields of roughly 60-70% occurred for maize and wheat, 312	  

but soybeans, relying less on fertilizer inputs, suffered a 22% decrease in yields. The different 313	  

response between plant types was large: individual maize and wheat soil columns lost an average 314	  

of 63% SOC, whereas soybean only lost 11%. Despite low yields, leaving 70% residue allowed 315	  

carbon inputs to maintain nearly the same SOC level as in the run with low residue return. This 316	  

indicates a critical role for fertilization in soil carbon storage, without which an additional 5 Pg C 317	  

might be lost due to cultivation. The observed result is not surprising, as fertilizer contributes to 318	  

the total biomass accumulated during crop development, and increased biomass returned as 319	  

residue will allow the soil to retain some of the nutrients taken up during crop growth, improving 320	  

the soil fertility.  321	  

4. Discussion 322	  

CLM-Crop has proven to be a valuable tool for evaluating changes in soil carbon under 323	  

various management practices. Our results indicate that the SOC for agricultural sites will be 324	  

reduced through any management practice while disturbance continues, with the total amount 325	  

lost depending on the management practice. Model-estimated U.S. losses of SOC due to current 326	  
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cultivation practices are around 10%, with a potential for greater loss as the amount of harvested 327	  

residue increases. 328	  

The amount of biomass residue left on the field after grain harvest has the most 329	  

significant effect on SOC. Cellulosic biofuels rely on harvesting the stems and leaves of crops, 330	  

resulting in an additional 5% loss of carbon within the soil system. Currently, model subgrids 331	  

growing a single crop type on an independent soil column typically lose 33-51% of SOC, and 332	  

that loss increases to nearly 90% when residue is harvested. Over long time scales, this effect can 333	  

degrade the sustainability of the soil for crop growth and can negatively affect yield. For 334	  

example, plant nitrogen uptake (Fig. 7) decreased linearly with increasing residue harvest. The 335	  

high residue returns uptake 7.4% more N than the current residue runs, whereas medium and low 336	  

residue returns have 6.6% and 15.6% lower N uptake, respectively. When fertilizer is not 337	  

included, the resulting N uptake is 57% lower. This impact is transferred to yields (Fig. 8) 338	  

resulting in 9% and 17% lower yields for the medium and low residue returns, respectively. 339	  

Thus, the effects of residue management on SOC are very important, and increasing the amount 340	  

of residue used for cellulosic ethanol production could have a significant impact on soil carbon 341	  

storage and ultimately plant productivity. Leaving plant residue from crop production in the soil 342	  

decreases the amount of carbon lost to the atmosphere. However, meeting cellulosic biofuel 343	  

demand through cultivation of managed grasses such as switchgrass and Miscanthus has been 344	  

shown to increase soil carbon storage over time (Anderson-Teixeira et al., 2009), most likely 345	  

because nutrient demands and management practices are different for these types of biofuel 346	  

crops. 347	  

 Disagreement between studies about the possible effect of fertilizer on SOC leaves this 348	  

management practice open for further research. Our findings suggest that fertilizer use might 349	  
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improve yield and increase the amount of carbon returned to the soil in crop residue; however, 350	  

increased residue removal for biofuels could reduce this effect. As fertilizers improve and are 351	  

applied to maximize plant uptake while minimizing loss to leaching and denitrification, fertilizer 352	  

might provide an important tool for farmers to mitigate the soil carbon loss due to increasing 353	  

residue harvest for biofuel use. However, care must be taken to ensure that fertilizer inputs do 354	  

not exceed plant uptake, which could result in increased nitrogen leached into the groundwater 355	  

and increased greenhouse gas emission of N2O via nitrification and denitrification pathways. The 356	  

effect of increased decomposition when fertilizer is used also needs to be explored.  357	  

 Expanding the model to incorporate other management practices (rotation, tillage, 358	  

irrigation, etc.) is important activity for future model development. Erosion, for example, is 359	  

expected to increase as a result of crop residue harvest (Lal and Pimentel, 2007). This secondary 360	  

effect of residue harvest can have multiple consequences. First, soil fertility will decline with the 361	  

loss or transport of soil organic matter. Second, erosion processes result in the breakdown of soil 362	  

aggregates promoting oxidation of SOC. Both effects will reduce nutrient and water holding 363	  

capacities of the soil (Lal and Pimentel 2008). Finally, the loss of nutrients will result in a 364	  

decline of crop productivity, further enhancing SOC loss. As such, our result should be 365	  

considered a lower bound estimate of SOC loss from residue harvest. Including these effects and 366	  

expanding agricultural models to a global scale should be a priority for future model 367	  

development. Given the challenges comparing with observations, focusing on model 368	  

developments that capture cropland SOC dynamics is equally important as developing datasets 369	  

that can be used for climate model validation, especially considering the increasing complexity 370	  

of ESMs that include cropland representation. Although the crop representation in CLM-Crop is 371	  
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flexible enough for expansion to a global scale, rigorous testing is needed to ensure that crop 372	  

behavior is consistent with regional observations. 373	  

 There are some limitations to our modeling approach that lead to uncertainties in the 374	  

model prediction of SOC. For example, changes in land use and land cover are not included in 375	  

CLM. Historical changes in land use indicate a steady increase in cultivated land which peaked 376	  

in the 1940’s and declined thereafter (Waisanen and Bliss, 2002). Using a modern land use cover 377	  

over the historical period may result in an over prediction of SOC loss, because the model will 378	  

overestimate the agricultural land base in some (early) years and the model won’t capture 379	  

increases in SOC when agriculture land is abandoned. This also limits the influence of beneficial 380	  

agriculture practices such as crop rotation and fallowing. Historical changes in land management 381	  

are also not represented in the model, such as changes in residue harvest over time or organic 382	  

matter additions. For example, Lal et al. (1999) suggest early cultivation removed residue 383	  

following harvest until after 1940 when residue was returned to the field. The high spatial 384	  

variability and difficulty finding these types of historical data is a major challenge for trying to 385	  

add these features to CLM.  386	  

Finally, further research is needed for full evaluation of the importance of agro-387	  

ecosystem impacts on soil carbon. We have shown here that SOC loss can vary greatly, 388	  

depending on management practices. Practices such as residue management can have significant 389	  

impact on SOC retained in agricultural soils, with higher residue removal from soil leading to 390	  

higher SOC losses. Use of fertilizer can compensate for some of the loss, but the benefit is 391	  

limited. Further modeling studies are important for simulating these competing effects on carbon 392	  

storage. Our study suggests that considerable care is needed in designing appropriate 393	  
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management practices to realize the full carbon mitigation benefits of using biofuels from 394	  

cellulosic ethanol. 395	  
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Figure 1. (a) Total SOC (kg C m-2) simulated by CLM-Crop over the contiguous United States. 583	  

(b) Total SOC from the IGBP over the same domain as in (a). (c) Percent difference between (a) 584	  

and (b). 585	  

Figure 2. Box plot of the weighted average total SOC over croplands, as simulated in CLM-Crop 586	  

and in observations from the ISCN. Observations reporting > 50 kg C m-2 were removed from 587	  

the analysis. 588	  

Figure 3. CLM-modeled SOC (kg C m-2) versus ISCN observations for model derived soil 589	  

texture types clay, sand, and silt. Each point represents the mean observed SOC value in the grid 590	  

cell; error bars show the standard deviation. The black line represents the 1:1 ratio.  591	  

Figure 4. Top: The effects of temperature on SOC stock from CLM crops (blue) and natural 592	  

vegetation (green) and ISCN observations (red). Bottom: The effects of precipitation on SOC 593	  

stock from CLM crops (blue) and natural vegetation (green) and ISCN observations (red). 594	  

Figure 5. Percent decrease of SOC after conversion from natural vegetation to cropland. Percent 595	  

decrease data from Wei et al. (2014) are in red (US points are orange) and CLM percent loss is 596	  

blue. 597	  

Figure 6: Simulated change in total U.S. SOC (Pg C) due to agricultural land management for all 598	  

scenarios. 599	  

Figure 7. The effect of agricultural land management change on crop annual average nitrogen 600	  

uptake. 601	  

Figure 8.The effect of agricultural land management change on annual crop yield.  602	  



31	  
	  

Table 1. CLM-Crop simulations performed. 603	  

Run name Land use Fertilizer Residue 

Control Leff et al., 2004 Yes 70% — all crops 

High residue Leff et al., 2004 Yes 90% — all crops 

Medium residue Leff et al., 2004 Yes 30% — maize 

30% — wheat 

40% — soybean  

Low residue Leff  et al., 2004 Yes 10% — all crops 

No fertilizer Leff  et al., 2004 No 70% — all crops 

Grass Bonan  et al., 2002 Not applicable Not applicable 

	  604	  

	   	  605	  
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	  606	  

Figure 1. (a) Total SOC (kg C m-2) simulated by CLM-Crop over the contiguous United States. (b) Total 607	  

SOC from the IGBP over the same domain as in (a). (c) Percent difference between (a) and (b). 608	  
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	  609	  

Figure 2. Box plot of the weighted average total SOC over croplands, as simulated in CLM-Crop and in 610	  

observations from the ISCN. Observations reporting > 50 kg C m-2 were removed from the analysis. 611	  

	  612	  

               CLM                OBS

0

10

20

30

40

50

SO
C

 (k
g 

C
/m

^2
)

CLM
OBS



34	  
	  

	  613	  

Figure 3. CLM-modeled SOC (kg C m-2) versus ISCN observations for model derived soil 614	  

texture types clay, sand, and silt. Each point represents the mean observed SOC value in the grid 615	  

cell; error bars show the standard deviation. The black line represents the 1:1 ratio.  616	  
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	  618	  

Figure 4. The effects of temperature (top) and precipitation (bottom) on SOC stock from CLM crops 619	  

(blue) and natural vegetation (green) and ISCN observations (red).  620	  
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	  622	  

Figure 5. Percent decrease of SOC after conversion from natural vegetation to cropland. Percent decrease 623	  

data from Wei et al. (2014) are in red (US points are orange) and CLM percent loss is blue. 624	  
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Figure 6: Simulated change in total U.S. SOC (Pg C) due to agricultural land management for all 627	  

scenarios. 628	  
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Figure 7. The effect of agricultural land management change on crop annual average nitrogen uptake. 631	  
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Figure 8.The effect of agricultural land management change on annual crop yield. 634	  
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