

1 **Emissions from prescribed fire in temperate forest in**
2 **south-east Australia: implications for carbon accounting**

3

4 **M. Possell^{1, 2}, M. Jenkins¹, T. L. Bell^{1, 2}, and M. A. Adams¹**

5 [1] {Faculty of Agriculture and Environment, University of Sydney, NSW 2006, Australia}

6 [2]{Bushfire Cooperative Research Centre, 340 Albert Street, East Melbourne, VIC 3002,
7 Australia}

8 Correspondence to: M. Possell (malcolm.possell@sydney.edu.au)

9

10 **Abstract**

11 We estimated emissions of carbon, as CO₂-equivalents, from planned fire in four sites in a
12 south-eastern Australian forest. Emission estimates were calculated using measurements of
13 fuel load and carbon content of different fuel types, before and after burning, and
14 determination of fuel-specific emission factors. Median estimates of emissions for the four
15 sites ranged from 20 to 139 Mg CO_{2-e} ha⁻¹. Variability in estimates was a consequence of
16 different burning efficiencies of each fuel type from the four sites. Higher emissions resulted
17 from more fine fuel (twigs, decomposing matter, near-surface live and leaf litter) or coarse
18 woody debris (CWD; >25 mm diameter) being consumed. In order to assess the effect of
19 declining information quantity and the inclusion of coarse woody debris when estimating
20 emissions, Monte-Carlo simulations were used to create seven scenarios where input
21 parameters values were replaced by probability density functions. Calculation methods were:
22 (1) all measured data were constrained between measured maximum and minimum values for
23 each variable; (2) as for (1) except the proportion of carbon within a fuel type was constrained
24 between 0 and 1; (3) as for (2) but losses of mass caused by fire were replaced with burning
25 efficiency factors constrained between 0 and 1; and (4) emissions were calculated using
26 default values in the Australian National Greenhouse Accounts (NGA), National Inventory
27 Report 2011, as appropriate for our sites. Effects of including CWD in calculations were
28 assessed for calculation Method 1, 2 and 3 but not for Method 4 as the NGA does not
29 consider this fuel type. Simulations demonstrate that the probability of estimating true
30 median emissions declines strongly as the amount of information available declines. Including

1 CWD in scenarios increased uncertainty in calculations because CWD is the most variable
2 contributor to fuel load. Inclusion of CWD in scenarios generally increased the amount of
3 carbon lost. We discuss implications of these simulations and how emissions from prescribed
4 burns in temperate Australian forests could be improved.

5

6 **1 Introduction**

7 Fire affects the carbon balance of terrestrial biomes by immediately releasing carbon dioxide
8 (CO_2), carbon monoxide (CO), methane (CH_4), volatile organic compounds (VOCs) and
9 particulate matter (PM) into the atmosphere through the consumption of fuel (e.g. Urbanski et
10 al., 2009) and by modifying carbon stocks in post-fire vegetation. Immediate modification of
11 carbon stocks results from combustion of fuels while post-fire changes are due to alteration in
12 activity of microorganisms responsible for decomposition of organic matter and uptake of
13 CO_2 via photosynthesis by vegetation regrowth. Over the period 1997-2009, global fire
14 emissions were estimated to contribute, on average, 2 Pg C yr^{-1} to the atmosphere, with 15%
15 of those emissions coming from extra-tropical fires (van der Werf et al., 2010). Australia
16 contributes about 6.7% of the global fire emissions, the fourth largest contributor behind
17 Africa (51.6%), South America (14.5%), and Equatorial Asia (9.5%) (van der Werf et al.,
18 2010). A recent study estimated that fires in Australia contribute 127 Tg C yr^{-1} to the
19 atmosphere, about 6% of the net primary productivity with the greatest contribution coming
20 from fires in tropical and savanna bioclimatic regions (Haverd et al., 2013). In contrast,
21 contributions from cool and warm temperate bioclimatic regions to total annual fire emissions
22 were limited except during severe bushfire seasons (Haverd et al., 2013).

23 Emissions from fires are still widely estimated as products of fuel load, burning efficiency,
24 area burnt and emission factors for gases and particles of interest (Seiler and Crutzen, 1980;
25 Langmann et al., 2009). Uncertainties in any of these variables can lead to a wide range of
26 estimates for different gases. In large part these uncertainties are a function of burning
27 efficiency and vegetation characteristics (e.g. Stropiana et al., 2010), and spatial and temporal
28 scales of measurement (e.g. Urbanski et al., 2011). Techniques such as LIDAR are being used
29 to improve estimates of fuel load (e.g. Loudermilk et al., 2009). Even so, fuel accumulation
30 varies widely in space and time as a result of the interaction of many factors such as
31 topography, soils, disturbance history (e.g. previous land use, insects, fire) and climate (e.g.
32 due to variations in rainfall patterns; Bradstock, 2010); hence, remote sensing techniques will

1 require intensive calibration. In Australia, estimates of emissions from forest fires are based
2 on fine fuels (e.g. grass, leaves, bark and twigs) and tend to ignore fuel types such as coarse
3 woody debris (CWD) or understorey fuels (Volkova and Weston, 2013). A more
4 comprehensive set of fuel load measurements is required to develop reliable fuel load models.
5 A major source of uncertainty in estimates has been emission factors as they invariably
6 contain large uncertainties (Andreae and Merlet, 2001; Akagi et al., 2011; Urbanski et al.,
7 2011). Published emission factors for forests in south-east Australia are few. One study
8 developed emission factors for a small set of gases directly using aircraft-based sampling
9 (Hurst et al., 1996), while another used Fourier transform infrared spectroscopy at ground
10 level (Paton-Walsh et al., 2014). Ground-based spectrometry or satellite-derived
11 enhancement ratios have also been used to derive emission factors (Paton-Walsh et al., 2004;
12 Paton-Walsh et al., 2005; Young and Paton-Walsh, 2011; Glatthor et al., 2013). These non-
13 direct methods often use as a reference, an emission factor for CO. However, that factor too
14 is often assumed rather than measured. Compared to emission measurements made for
15 savanna and grassland in Australia (e.g. Hurst et al., 1994a; Hurst et al., 1994b; Paton-Walsh
16 et al., 2010), emission factors from Australian temperate forests are usually aggregated for all
17 fuel types and do not account for factors such as fire severity and patchiness (cf. Russell-
18 Smith et al., 2009). There have been no studies of seasonal variation in emission factors in
19 Australian forests or demonstration that such variation is minimal, as found for savanna in
20 Australia for certain trace gases (Meyer et al., 2012).

21 Return frequencies of wildfires in extra-tropical (temperate) forests in Australia are typically
22 longer than that of tropical grassland and savanna and are often decadal compared to annual
23 and biannual (Bradstock, 2010; Adams, 2013). In addition, the total area of temperate forest
24 burnt on an annual basis is considerably smaller (Russell-Smith et al., 2007), notwithstanding
25 large single fire events (Adams, 2013). Planned or prescribed burning in temperate forests to
26 mitigate risks to life and property from wildfires is used at moderate return frequencies (e.g. 7
27 – 10 years) (Penman et al., 2007; McCaw, 2013). Bennett et al. (2013) recently demonstrated
28 that in a mixed species eucalypt forest, repeated prescribed burning at shorter intervals (e.g. 3
29 - 5 years) reduces tree-based carbon stocks. The generality of such findings requires further
30 research, as does the fate of the carbon released during combustion. Among the few indirect
31 analyses of emissions from temperate forests (based on changes in litter and biomass C),
32 Volkova and Weston (2013) estimated that 6.7 Mg C ha^{-1} was emitted to the atmosphere from

1 prescribed burning in *Eucalyptus obliqua* forests in south-east Australia. However, there
2 remains a general paucity of direct empirical data on emissions, and this impedes efforts to
3 calibrate indirect estimates.

4 Here we present emission factors for different fuel types from a temperate *Eucalyptus* forest
5 in south-east Australia and use these in conjunction with measurements of fuel load and
6 carbon content to estimate emissions from this forest type. We compare our estimates to
7 those made using more restricted datasets and based upon the methodology described in the
8 Australian National Greenhouse Gas Inventory Report 2011 (DIICCSRTEE, 2013) and
9 discuss the merits of the different approaches.

10

11 **2 Materials and methods**

12 **2.1 Study sites**

13 The general study area was located in East Gippsland, Victoria, Australia ($37^{\circ}42' 0''$ S, $148^{\circ} 27' 0''$). The elevation of study sites range from 56 to 124 m above sea level and the study
14 area has an average annual precipitation of 850 mm. Sites were selected using the Victorian
15 Department of Environment and Primary Industries (DEPI; Victoria, Australia) fire
16 operations plans for the area. Three sites west of Orbost were burnt in planned fires in 2011
17 and one site east of Orbost was burnt in a planned fire in 2012. The selected sites were named
18 according to the nearest crossroad or location: Oliver, Pettmans, South Boundary and Upper
19 Tambo. All sites are classified as Lowland Forest (Ecological Vegetation Class 16; Victoria
20 Department of Sustainability and Environment, 2004). Sites varied in overstorey tree species
21 composition although all were dominated by Yellow Stringybark (*Eucalyptus muelleriana*
22 A.W.Howitt), White Stringybark (*E. globoidea* Blakely) or Yerchuck (*E. consideniana*
23 Maiden). The understorey vegetation in the western sites (Pettmans, South Boundary and
24 Upper Tambo) is dominated by Sunshine Wattle (*Acacia terminalis* (Salisb.) J.F.Macbr.),
25 Black Wattle (*A. mearnsii* De Wild.) and Burgen (*Kunzea ericoides* (A.Rich.) Joy Thomps.)
26 with Bracken (*Pteridium esculentum* (G.Forst.) Cockayne) as the most common groundcover
27 species. The eastern site (Oliver) was selected primarily because the understorey composition
28 differed from the western sites. Here the understorey is dominated by Forest Geebung
29 (*Persoonia silvatica* L.A.S.Johnson) and Sunshine Wattle (*A. terminalis*) with Wire Grass
30 (*Tetrarrhena juncea* R.Br.) as groundcover. Soils at all sites were formed on Pliocene (2-5
31 Ma) sands and gravels (Hendrickx et al., 1996; Van den Berg et al., 1996).

1 **2.2 Sampling protocol**

2 **2.2.1 Overstorey and understorey biomass**

3 Within each study site, three permanent circular plots were established at least 500 m apart in
4 similar vegetation type. Due to the small elevation change of the general study area, all study
5 sites had similar slope and aspect. Plots were located close to the road (20-50 m) to ensure
6 they were burnt during the planned fire and were circular in shape (22.5 m radius; 1590.4 m²).
7 A schematic of the plot and sampling design is shown in Figure 1. All pre-fire data were
8 collected 1-3 months prior to the planned burning and post-fire data were collected within 1
9 month of burning. Diameter at breast height over bark (DBHOB; 1.3 m) and number of
10 individuals of trees in two size classes (≥ 2 cm to < 20 cm; ≥ 20 cm) were measured for all
11 overstorey (whole plot) and understorey tree species found in four circular subplots (radius =
12 5 m) located 5 m along the north-south and east-west axes of each of the larger plots, as
13 measured from the centre point. At least six trees per plot were measured for tree height to
14 provide a representative stand height.

15 To determine aboveground biomass and carbon stocks represented by overstorey and
16 understorey trees (equivalent to overstorey and intermediate tree canopy fuel layers,
17 respectively in Gould et al., 2011), Understorey allometric equations were developed for
18 Yellow Stringybark (*E. muelleriana*; n = 10 individuals harvested) and Silver Wattle (*Acacia*
19 *mearnsii*; n = 11 individuals harvested) using destructive harvesting. When species-specific
20 allometric equations were not available or could not be developed by destructive sampling
21 (i.e. overstorey), equations from Bi et al. (2004) for the species with the most similar size and
22 growth form were used instead. Tree diameter and density were measured before planned
23 burning. Data for overstorey species of *Eucalyptus* were pooled to represent a single biomass
24 component (hereafter referred to as 'Overstorey') and data for all other tree species were
25 pooled to form a second biomass component (hereafter referred to as 'Understorey').

26 Ground layer vegetation (ground cover of grasses and Bracken; equivalent to the near-surface
27 live fuel layer in Gould et al., 2011) together with any scattered small shrubs (equivalent to
28 the elevated fuel layer in Gould et al., 2011), was collected by pruning at ground level four 1
29 m² quadrats, each located 17.5 m along the north-south and east-west axes of each plot, as
30 measured from the centre point. Samples were dried to constant weight at 70°C and
31 subsamples were ground and analysed for total carbon content (% dry weight) by combustion
32 analysis (Elementar Vario Max CNS, Analysensysteme GmbH, Hanau, Germany). The mass

1 of ground layer vegetation, twigs and litter (see below) remaining after prescribed burning
2 was measured in the same way using quadrats positioned 2-3 m from the position of the
3 original quadrat to avoid the influence of biomass removal prior to prescribed burning.

4

5 **2.2.2 Litter and coarse woody debris**

6 Litter on the forest floor (<25 mm diameter; equivalent to the surface fuel layer in Gould et
7 al., 2011) was collected from the same quadrats used for sampling near-surface live biomass.
8 Samples were carefully collected from the soil surface to avoid contamination from the
9 underlying mineral soil. Samples were dried to constant weight at 70°C, weighed and sorted
10 into size fractions. Fractions included plant material that was <10 mm diameter (hereafter
11 referred to as ‘Decomposing litter’); twigs, wood and bark that was 10-25 mm diameter
12 (hereafter referred to as ‘Twigs’), and partial or whole leaves between 10-25 mm diameter
13 (hereafter referred to as ‘Leaf litter’). Samples were collected pre- and post-fire, dried at
14 70°C to constant weight and subsamples of the pre-fire fraction were ground and analysed for
15 total carbon content (% dry weight) by combustion analysis (Elementar Vario Max CNS,
16 Analysensysteme GmbH, Hanau, Germany).

17 The volume of CWD was determined using the line intersect method (Van Wagner, 1968),
18 where the north-south and east-west axes of each plot were used as transects (45 m each).
19 The diameter and length and state of decomposition (sound or rotten) of all pieces of CWD
20 (>25 mm diameter) intersecting each transect was measured. Subsamples of sound and rotten
21 CWD were used to determine specific gravity (Ilic et al., 2000) and dried pre-fire subsamples
22 ground and analysed for total carbon content (% dry weight) by combustion analysis
23 (Elementar Vario Max CNS, Analysensysteme GmbH, Hanau, Germany). The volume of
24 CWD was determined before and after planned burning.

25

26 **2.3 Combustion analysis**

27 A ventilation-controlled Mass Loss Calorimeter (MLC; Fire Testing and Technology, East
28 Grinstead, UK) with a porous holder was used for the combustion analysis. The MLC
29 consisted of a conical heater and a load cell to measure the change in mass of a sample over
30 time. The cone heater and load cell were contained within a stainless steel enclosure, which
31 was supplied with compressed air at a known flow rate of 140 L min^{-1} . A 90 cm tall, 12 cm

1 diameter stainless steel chimney on top of the enclosure contained a gas sampling ring probe
2 mounted 60 cm above the enclosure. Air was drawn through the gas sampling ring at 2 L
3 min^{-1} into a stainless steel housing (Model H130; Head line Filters, Aylesford, UK)
4 containing a silica-bonded borosilicate glass microfibre filter (Head Line Filters, Aylesford,
5 UK) and heated to 200°C to remove PM from the airstream. Air movement continued from
6 the heated filter via a heated line (200°C) into a sampling manifold. Air in the sampling
7 manifold was diluted with ambient air, filtered through a 1 micron PTFE filter (Pall Australia
8 Pty. Ltd., Cheltenham, Australia) and pumped into the manifold to ensure that gas
9 concentrations in the manifold were within the linear range of the various analysers used.
10 Flow rates from the sample and dilution line were controlled by mass flow controllers
11 (Aalborg, Orangeburg, US). The air temperatures in the manifold and stainless steel chimney
12 were measured at 1 Hz using type K thermocouples connected to a digital acquisition board
13 (Model NI USB-9211A; National Instruments, Sydney, Australia).

14 Mixing ratios of CO₂ and CO were measured at 1 Hz using non-dispersive infra-red gas
15 analysers (Models 410i and 48i; Thermo Fisher Scientific Australia Pty. Ltd., Melbourne,
16 Australia) and were calibrated using high purity CO₂ or CO diluted in zero air (BOC Ltd.,
17 North Ryde, Australia).

18 In the MLC, a sample holder (10 × 10 × 3 cm) with a porosity of 27% was used to allow
19 diffusion of air through the samples. For all material, samples were trimmed to fit the holder
20 to uniformly fill the sample holder so that the sample thickness was maintained at
21 approximately 3 cm. The mass of the samples were recorded before burning and the mass of
22 the residue after burning. The bulk density of the sample (kg m⁻³) was calculated as the initial
23 sample mass divided by the volume of the sample holder. The moisture content (MC) of
24 combusted samples (dry weight basis), determined by drying at 70°C until constant weight,
25 ranged between 2-14%. Samples were combusted in triplicate at an irradiance of 25 kW m⁻²
26 and a 10 kV spark ignitor was used to provide piloted ignition. A schematic of the equipment
27 used for the combustion analysis is provided in Supplementary Figure 1.

28

29 **2.4 Emission factors**

30 Emission factors for the gas species CO₂ (EFCO₂) and CO (EFCO) from each fuel (biomass)
31 type were calculated in g kg⁻¹ dry fuel burnt. The mass of CO₂ or CO released was calculated

1 by summing products of excess CO₂ or CO concentrations and flow rate measured at each
2 time step for the duration of the burn.

3 Using the carbon-mass balance method approach described by Radke et al. (1988) and
4 outlined in Hurst et al. (1994b), emission factors for each fuel type were also expressed
5 relative to elemental carbon content of dry fuels (g C g C⁻¹). The EFCO₂ was calculated from
6 the fraction of total fuel carbon released to the atmosphere during combustion and CO₂-
7 normalised emission ratios of CO, CH₄, non-methane hydrocarbons (VOC) and PM. EFCO₂
8 was calculated as:

$$9 \quad EFCO_2 = \frac{\Delta CO_2}{C_{fuel}} = \frac{\frac{\Sigma C_{emit}}{C_{fuel}}}{1 + \frac{\Delta CO}{\Delta CO_2} + \frac{\Delta CH_4}{\Delta CO_2} + \frac{\Delta \Sigma NHMC}{\Delta CO_2} + \frac{\Delta PM}{\Delta CO_2}} \quad (1)$$

10 where ΣC_{emit} is the mass of carbon released to the atmosphere during burning and C_{fuel} is the
11 initial carbon content of the fuel. Therefore, $\Sigma C_{emit}/ C_{fuel}$ represents the fraction of fuel carbon
12 that is burned and released to the atmosphere during combustion. Δ represents the excess
13 molar mixing ratio of a species (CO₂, CO, CH₄, Σ VOC and PM) over the background (the
14 difference between its mixing ratios in smoke and clean air) (Hurst et al., 1994b). Emission
15 factors (g C g C⁻¹) for carbon-based species other than CO₂ were calculated as:

$$16 \quad EF_x = \frac{\Delta X}{\Delta CO_2} \times n \times EFCO_2 \quad (2)$$

17 where ΔX is the excess mixing ratio of species X (CO, CH₄, Σ VOC or PM) and n is the
18 number of carbon atoms per molecule of species X. By definition, the sum of the emission
19 factors for the carbon gases and PM, when measured on a g C g C⁻¹ basis, will equal $\Sigma C_{emit}/$
20 C_{fuel} .

21 Emission factors measured relative to elemental carbon content can be converted to emission
22 factors (g kg⁻¹ dry fuel) using Equation (3):

$$23 \quad EF_x [gX \ kg^{-1} \ fuel] = \frac{EF_x [gC \ gC^{-1}] \cdot C_{fuel}}{(12/Mw_x)} \times 1000 \quad (3)$$

24 where Mw_x is the molecular weight (g mol⁻¹) of chemical species X and 12 is the molecular
25 weight of carbon.

1 In this study, CH₄, VOC and PM concentrations were not measured and hence the CO₂-
2 normalised emission ratios of these compounds are not available for the direct calculation of
3 EFCO₂ according to Equation (1). Using EFCO₂ (g CO₂ kg⁻¹), EFCO₂ (g C g C⁻¹) was solved
4 for each fuel type by re-arranging Equation (3). This allowed for calculation of EFCO (g C g
5 C⁻¹) using Equation (2) and known [CO]/[CO₂] ratios. As the sum of emission factors for
6 carbon gases and PM, when measured on a g C g C⁻¹ basis, will equal $\Sigma C_{emit}/ C_{fuel}$, CH₄,
7 VOC and PM were treated as pooled species ($\Sigma(CH_4, VOC, PM)$). $\Sigma C_{emit}/ C_{fuel}$ ratios were
8 measured for each fuel fraction by subtracting the mass of carbon remaining in the ash after
9 combustion from the amount of carbon measured before combustion. The excess $\Sigma(CH_4,$
10 VOC, PM) to excess CO₂ ratio was then solved through optimisation (MS Excel v.14;
11 Microsoft Corporation, Redmond, US) in order to make the sum of EFCO₂, EFCO and
12 EF $\Sigma(CH_4, VOC, PM)$ equal to the measured $\Sigma C_{emit}/ C_{fuel}$. This method assumes that the value
13 of n used in Equation (2) in order to calculate EF $\Sigma(CH_4, VOC, PM)$ is equal to one.

14

15 **2.5 Emission calculations**

16 Emissions, in terms of CO₂-equivalents (E_j ; Mg CO_{2-e} ha⁻¹), from each plot at each site (j)
17 were calculated as the sum of the emissions from each fuel (biomass) class (k) for each carbon
18 species (x):

$$19 E_j = \sum_{xk} EF_{xjk} (C_{fuel_{jk}} \times (m_{pre_{jk}} - m_{post_{jk}})) \times 3.66 \quad (4)$$

20 where m_{pre} and m_{post} are the fuel loads (Mg ha⁻¹) before and after burning and 3.66 is a
21 conversion factor from C to CO₂. C_{fuel} for CWD was assumed to equal that measured from
22 twigs (<25 mm diameter).

23 Emissions can also be calculated using Equation (4) but by substituting $m_{pre} - m_{post}$ with the
24 product of the pre-fire fuel load and a burning efficiency factor (BEF).

$$25 E_j = \sum_{xk} EF_{xjk} (C_{fuel_{jk}} \times m_{pre_{jk}} \times BEF_{jk}) \times 3.66 \quad (5)$$

26 The BEF is defined as the mass of fuel that is exposed to fire that is pyrolysed (Russell-Smith
27 et al., 2009). It is determined from the mass of fuel (m_{pre}) before combustion and the mass of
28 the unburnt fuel residue and ash remaining after combustion (m_{post}):

1
$$BEF = 1 - \frac{m_{post}}{m_{pre}} \quad (6)$$

2 Equation (5) was used to calculate emission estimates for the sites as described in the
3 Australian National Greenhouse Gas Inventory Report 2011 (AUSNIR; DIICCSRTE, 2013)
4 for a prescribed burn. Default values for the parameters in Equation (5) are described in
5 AUSNIR as: emission factors are taken from Hurst et al. (1996) ($\Sigma C_{emit}/C_{fuel} = 0.9684$), C_{fuel} is
6 0.5, BEF is 0.42 and the fuel load is 17.9 Mg ha^{-1} .

7

8 **2.6 Uncertainty analysis of emission calculations**

9 We completed seven different Monte-Carlo simulations for each site, in which input
10 parameters were replaced by normally distributed probability density functions (PDFs). Table
11 1 outlines for the seven different scenarios the equation used to do the calculations (Equation
12 4 or Equation 5), the range of the values used for each input parameter (for each fuel fraction
13 and site) and whether coarse woody debris was included in the calculations. Scenario 7 used
14 the default fuel load applicable to these sites from the Australian National Greenhouse
15 Accounts, National Inventory Report 2011 (DIICCSRTE, 2013). A priori analysis of the
16 initial number of iterations for each Monte-Carlo simulation needed to produce an analysis
17 where the true mean of the distribution lies within 1% of the estimate were made before each
18 simulation. The maximum estimated number of simulations for any one set of sites and
19 scenario was 71,233. The true error of the estimated mean for each site and scenario was
20 always less than 1%. Results of the simulations are expressed as 95% uncertainty ranges
21 defined by the 2.5 and 97.5 percentiles. The simulations were performed using Microsoft
22 Excel 2010 (Microsoft Corporation, Redmond, WA, USA).

23

24 **2.7 Statistics**

25 Linear mixed models (IBM SPSS Statistics, v. 21.0; IBM, Armonk, US) were used to analyse
26 effects of fire on fuel (biomass) type; with site, plot and fuel type as subject variables and
27 time as the repeated variable. Time, site and time \times site interactions were used as fixed
28 effects. Fuel loads for the different types of fuel (i.e. twigs, decomposing matter, near-surface
29 live, leaf litter, CWD, understorey and overstorey), before and after burning, carbon content,
30 $\Sigma C_{emit}/C_{fuel}$, and emission factors were analysed with linear mixed models where site, plot and

1 fuel type were subject variables. Site, fuel type and site \times fuel type interactions were used as
2 fixed effects. The Bonferroni test was used for pairwise comparisons of the site and fuel type
3 factors. Carbon content, $\Sigma C_{\text{emit}}/C_{\text{fuel}}$, and the emission factors were arc-sine transformed to
4 meet assumptions of normality and homogeneity of variance.

5

6 **3 Results**

7 **3.1 Fuel load and carbon content**

8 Total fuel load before planned burning ranged from $61.7 \pm 15.3 \text{ Mg ha}^{-1}$ (mean \pm standard
9 deviation) at South Boundary to $111.3 \pm 26.2 \text{ Mg ha}^{-1}$ at Upper Tambo but were not
10 significantly different among sites (Linear mixed model; $P = 0.303$). There was 10-fold more
11 CWD than all other fuel types at all sites ($P < 0.001$; Table 2). Masses of all remaining fuel
12 types at each site were similar (less than 8 Mg ha^{-1} ; $P = 1.000$) and there were no significant
13 site \times fuel type interactions ($P = 0.692$). After burning, total fuel loads at all sites were
14 significantly reduced ($P < 0.001$) and ranged from $20.1 \pm 7.2 \text{ Mg ha}^{-1}$ at Upper Tambo to 97.2
15 $\pm 24.7 \text{ Mg ha}^{-1}$ at Oliver (Table 2). Reductions in fuel load due to burning were not consistent,
16 resulting in significant time \times site ($P = 0.025$) and time \times fuel type interactions ($P = 0.003$;
17 Table 2; Fig. 1). Time \times site interactions resulted mainly from an 80% reduction in total fuel
18 load at Upper Tambo, but only a 10% reduction at Oliver (Fig. 1). Fuel loads at Pettmans
19 were reduced by an average of 28% and at South Boundary by 40% (Fig. 1). A significant
20 time \times fuel type interaction was expected given small reductions in CWD mass after burning
21 compared to other fuel types ($P = 0.002$; Table 2; Fig. 1). Even so, there were significant
22 differences in amounts of CWD burnt among sites. At Oliver, Pettmans and South Boundary,
23 amounts of CWD biomass consumed were significantly less than at Upper Tambo ($P = 0.017$;
24 Table 2; Fig. 1).

25 Twig mass (up to 8 Mg ha^{-1} pre-burn) was significantly reduced by burning ($P < 0.001$) with
26 an average loss of close to 5 Mg ha^{-1} . There were no time \times site interactions ($P = 0.656$) but
27 the mass of twigs measured at Oliver was significantly greater than at Upper Tambo both
28 before and after burning ($P = 0.05$; Table 2; Fig. 1). Burning significantly reduced the mass
29 of decomposing matter at all sites (up to 7 Mg ha^{-1} pre-burn) by almost 5 Mg ha^{-1} ($P < 0.001$).
30 Reductions in mass were greater at Pettmans, South Boundary and Upper Tambo than at
31 Oliver. Again, there was a significant time \times site interaction ($P = 0.007$).

1 Fuel loads represented by the ground layer vegetation (up to 0.6 Mg ha⁻¹ pre-burn for
2 Pettmans, South Boundary and Upper Tambo) were significantly less after burning ($P = 0.002$; Table 2; Fig. 1). There were significant site \times time interactions ($P = 0.004$) as a
3 consequence of substantially greater amounts of such vegetation at Oliver before burning (3
4 Mg ha⁻¹) than any of the other sites. None or very little of this fuel type remained after
5 burning. Fire strongly reduced the mass of leaf litter and there were no major differences
6 among sites before and after burning (2-9 Mg ha⁻¹; $P = 0.398$; Table 2).

8 Understorey biomass was not significantly different after burning compared to before burning
9 at all sites ($P = 0.392$), but was significantly different among sites ($P = 0.001$). Understorey
10 biomass at Oliver was significantly greater (nearly 2 Mg ha⁻¹ pre-burn) than at any of the
11 other sites before and after burning ($P = 0.001$ to 0.013). Overstorey biomass was
12 significantly different among sites before (ranging from 6-15 Mg ha⁻¹; $P < 0.001$) and after
13 burning (ranging from 2-12 Mg ha⁻¹; $P = 0.009$). There was no interaction between site and
14 time ($P = 0.167$). Understorey fuel loads at all sites decreased after burning by a little more
15 than 1 Mg ha⁻¹.

16 Mean carbon contents of decomposing matter ($30 \pm 2\%$) were significantly less than of other
17 fuel types at all sites (Linear mixed model; $P < 0.001$; Table 2). Carbon contents of all other
18 fuel types were in a narrow range (45-56%) resulting in significant site \times fuel type
19 interactions ($P = 0.009$; Table 2).

20 **3.2 Emission factors**

21 Amounts of carbon lost to the atmosphere relative to amounts held in aboveground biomass
22 (the so called ‘fuel carbon’) were similar among the four sites (Linear mixed model; $P = 0.456$; $\Sigma C_{\text{emit}}/C_{\text{fuel}}$; Table 3). For the four sites, the mean proportion of fuel carbon lost to the
23 atmosphere was 86% with a 95% confidence interval range of 77-95%. There were
24 significant differences among different fuel types ($P < 0.001$). $\Sigma(C_{\text{emit}}/C_{\text{fuel}})$ was significantly
25 less in decomposing matter compared to other fuels ($P < 0.001$; Table 3). Twigs, CWD and
26 understorey biomass had statistically similar $\Sigma(C_{\text{emit}}/C_{\text{fuel}})$ ($P > 0.05$). These $\Sigma(C_{\text{emit}}/C_{\text{fuel}})$
27 were all less than those for ground layer, overstorey and leaf litter ($P < 0.04$). The latter three
28 fuel types had statistically similar $\Sigma(C_{\text{emit}}/C_{\text{fuel}})$ ($P > 0.05$).

30 For the four sites, the mean proportion of carbon lost to the atmosphere in the form of CO₂
31 was 71% with a range of 65-80% (Table 4). In contrast, proportions of carbon lost to the
32 atmosphere as CO were much smaller (2-4%). Emission factors for CO₂ were similar among

1 the four sites ($P = 0.456$) albeit with significant differences among different fuel types (P
2 <0.001). Emission factors for CO_2 ranged from 0.43-1.00 g C g C^{-1} among the different fuel
3 types. Twigs and leaf litter produced significantly smaller emission factors than decomposing
4 matter and overstorey biomass ($P < 0.05$). Emission factors for ground layer and understorey
5 biomass were similar to those for twigs and leaf litter. Emission factors for CO were
6 dependent on site \times fuel type interactions ($P = 0.026$; Table 3). At South Boundary and
7 Upper Tambo, emission factors for CO were greater for decomposing matter and ground layer
8 fuels relative to the other types ($P < 0.05$; Table 3). In contrast, at Oliver and Pettmans,
9 decomposing material had greater emission factors for CO than other fuel types ($P < 0.026$;
10 Table 3).

11 Pooled emission factors for CH_4 , VOC and PM ($\Sigma(\text{CH}_4, \text{VOC}, \text{PM})$; Table 4) were
12 significantly different among sites ($P = 0.002$) and fuel types ($P < 0.001$). Emission factors
13 for $\Sigma(\text{CH}_4, \text{VOC}, \text{PM})$ for fuel collected from Upper Tambo were significantly less than fuels
14 of other sites ($P < 0.049$). As a consequence, the average proportion of carbon lost to the
15 atmosphere as $\Sigma(\text{CH}_4, \text{VOC}, \text{PM})$ from the four sites ranged widely (13-23%). Differences in
16 emission factors among fuel types was due to lesser emission factors for decomposing matter
17 relative to all other fuel types and greater emission factors for leaf litter relative to understorey
18 and overstorey biomass ($P < 0.017$).

19 Carbon content of the different fuel types and ash (from the calorimeter) (Table S1), initial
20 bulk density and residual mass fractions (Table S2), excess CO/ CO_2 and excess $\Sigma(\text{CH}_4, \text{VOC},$
21 PM)/ CO_2 ratios (Table S3) used to calculate the emission factors, on both a mass of
22 compound released per unit of fuel mass burnt and on a carbon mass balance basis, can be
23 found in the supplementary material.

24 **3.3 Emission estimates**

25 Results of the Monte-Carlo simulations of estimated emissions from the four sites, using
26 seven different calculation scenarios, are shown in Fig. 2. Scenario 1 produced symmetrically
27 distributed estimates, with median estimates ranging from close to 20 Mg $\text{CO}_{2\text{-e}} \text{ha}^{-1}$ for Oliver
28 to 139 Mg $\text{CO}_{2\text{-e}} \text{ha}^{-1}$ for Upper Tambo. If CWD was omitted (Scenario 2), distributions were
29 narrower and median estimates were reduced. The reduction in the median estimate varied
30 among sites; for Oliver the reduction was 3%, Pettmans 34%, South Boundary 38% and
31 Upper Tambo 71%.

1 Scenario 3 produced positively skewed distributions for all sites and reduced median
2 estimates (by 40-54% from Scenario 1). Outputs of Scenario 4 (Scenario 3 excluding CWD)
3 were similarly positively skewed, but more narrowly distributed. Relative to Scenario 1,
4 excluding CWD lowered median estimated emissions by 53-83%. Relative to Scenario 3,
5 such exclusion lowered median estimates by 4-69%. Scenario 5 produced the most positively
6 skewed distributions for Oliver, Pettmans and South Boundary (Fig. 2). Consequently, the
7 median estimate for Oliver was 90% greater than that of Scenario 1. Median estimates for
8 other sites were between 16 and 76% less. When the same calculation method (Scenario 5)
9 was applied, but excluding CWD data (Scenario 6), the distribution was still positively
10 skewed but with a much narrower range (Fig. 2). The omission of CWD data in Scenario 6
11 resulted in a median estimate (relative to Scenario 1) being reduced by between 36 and 91%
12 across all sites.

13 Simulations for sites using default fuel load, carbon content and emission factors from
14 the Australian National Greenhouse Accounts, National Inventory Report 2011 (AUSNIR;
15 DIICCSRTE, 2013; hereafter referred to as Scenario 7) were highly positively skewed, with a
16 median estimate of 4.5 Mg ha^{-1} . This is some 77-97% less than median estimates for the four
17 sites from Scenario 1. The 95% confidence range of Scenario 7 ranged from 0.05 Mg ha^{-1} to
18 more than 35 Mg ha^{-1} with a mean value of close to 8 Mg ha^{-1} . Using default values in
19 AUSNIR, estimated mean total emission across all sites was 13.3 Mg ha^{-1} . This is in the
20 upper quartile of estimates for Scenario 7.

21 Based on Scenario 7, the probability that emissions are less than the median calculated using
22 Scenario 1 was 88% for Oliver, 96% for Pettmans and 97% for South Boundary. For Upper
23 Tambo, emission estimates based on Scenario 1 were outside the range of those calculated
24 under Scenario 7.

25

26 **4 Discussion**

27 There were large differences in mass (biomass plus litter) lost among the four sites due to
28 prescribed fire. These differences were due to the differing abundances, and consumption
29 during fire, of the different fuel types. Given planned burning aims especially to reduce the
30 loads of fine fuels (e.g. twigs, decomposing matter, ground layer vegetation and leaf litter),
31 the fires studied here achieved this goal with only small changes in understorey and
32 overstorey biomass. Losses of mass from CWD accounted for much of the variation among

1 sites, especially when considered in proportion to losses from finer fuels. When expressed in
2 terms of carbon content, losses of carbon from CWD at Pettmans and South Boundary (18-
3 24%) were greater than from *Eucalyptus obliqua* forests of south-east Australia (Volkova and
4 Weston, 2013), but consistent with the model results of Hollis et al. (2011). In contrast, fine
5 fuel and CWD accounted for 79% of the C lost at the Upper Tambo site. The site east of
6 Orbost (Oliver) lost the least amount of mass (and C), retaining most of its fine fuels and
7 showing no appreciable change in CWD. Estimation of fuel load is a major source of
8 uncertainty in any estimation of potential or actual fire emissions, and the large variability in
9 burning efficiency across the sites used in this study is consistent with variability described by
10 Stropiana et al. (2010) and Urbanski et al. (2011).

11 Across the four sites, the mean proportion of fuel carbon lost to the atmosphere relative to the
12 total amount of carbon ($\Sigma C_{\text{emit}}/C_{\text{fuel}}$) was 86%. This is less than the 97% suggested by Hurst
13 et al. (1996) for the one planned burn they measured in a south-east Australian forest.
14 However, a direct comparison of this study with the Hurst et al. (1996) study cannot be made
15 due to the significantly different methodological approaches taken that they may bias either
16 study. These methodological differences include factors such as: the measurement of
17 aggregated emissions from naturally structured fuels taken using an aircraft, compared to
18 individual fuel components measured at a very small scale in the laboratory; and neither study
19 measures the same range of compounds. Indeed, these methodological differences also
20 prevent direct comparison of emission factors, not just with Hurst et al. (1996) but also the
21 recent work of Paton-Walsh et al. (2014) who made ground-based emission measurements
22 from planned fires in temperate south-east Australian fires. There are large variabilities in
23 emission factors for certain compounds among different ecosystems (see reviews by Andreae
24 and Merlet (2001) and Akagi et al. (2011)). This demonstrates the need for more
25 comprehensive emissions measurements for specific ecosystems and regions, including south-
26 east Australian forests. If these measurements are conducted in a manner similar to those for
27 the south-eastern and south-western US (e.g. Yokelson et al., 2013), field and laboratory
28 measurements may be reconciled.

29 Monte-Carlo simulations clearly demonstrated the significance of availability of data to
30 accurate calculations of likely emissions. If only fuel load (before and after burning) is
31 known and default values from AUSNIR are used, estimated emissions could vary from true
32 emissions by as much as 100%. One characteristic common across all simulations was that

1 when data for CWD is included, the range of emissions increased strongly, as a result of large
2 variation in mass of CWD among sites. In addition, there was wide variation among sites in
3 consumption of CWD during prescribed fires . Emissions estimated using Scenarios 1, 2, 3
4 and 4, where fuel loads were known before and after burning, had greatly reduced variance.
5 Distributions of estimated emissions were more positively skewed as the amount of data
6 available declined. In other words, the probability of an estimate being in the low portion of
7 the distribution is greatly increased, in addition to the diminished probability that the estimate
8 matches the true emission. This is amply demonstrated by the distribution of estimates
9 calculated using Scenario 7 (AUSNIR default values) which encompassed the median
10 emissions estimate of Scenario 1 for three of the four sites. There was, at most, only 12%
11 probability of matching values. For the fourth site, Scenario 7 could not produce a
12 distribution that overlapped with that calculated using Scenario 1.

13 This study has shown that even within a single, well-defined vegetation type, there is wide
14 variability in emissions principally because of different burning efficiencies among sites and
15 fuel types. In order to improve both the accuracy and precision of estimated emissions from
16 planned burning, the use of a single efficiency factor, as described in AUSNIR, is clearly
17 insufficient. The methodology used to predict emissions from savanna and grassland, where
18 burning efficiencies are described as a function of fuel type and fire severity (Russell-Smith et
19 al., 2009), is only effective if fuel loads are accurately known (Stropiana et al., 2010;
20 Urbanski et al., 2011). Spatial variability in fuel loads (Burgan et al., 1998; Keane et al.,
21 2001) and the spatio-temporal variability in fuel conditions (Clinton et al., 2006) mitigate
22 against such a scenario. We have shown that in addition to the mass of different fuel types,
23 their carbon content plays a significant role in potential emissions. The Australian National
24 Greenhouse Gas Inventory Report 2011 (DIICCSRTEE, 2013) assumes a 50% default value
25 for carbon content of forest fuels. Fuel types in this study, with the exception of decomposing
26 matter, had carbon contents ranging between 45% and 56%, mostly close to the default value.
27 However decomposing matter had a much lower C content (average 30%). Combustion of
28 fuels with low carbon contents could lead to overestimation of carbon loss. Considerable
29 improvements in emissions estimates from temperate forests in south-eastern Australia could
30 be made if a greater number of emission factors were available for different fuel types. This
31 would eliminate current reliance on site-aggregated values and would aid in the development
32 of predictive models for emission factors, particularly if different combustion conditions such
33 as fuel moisture content, fuel load, fuel arrangement and fire intensity could be incorporated

1 (Yokelson et al., 1999; Andreae and Merlet, 2001; Possell and Bell, 2013). Field studies are
2 still required to verify laboratory determined emission factors.

3 **5 Summary**

4 Planned fires in a temperate *Eucalyptus* forest in south-east Australia released between 20 to
5 139 Mg CO₂-e ha⁻¹. Variability in the range of emissions was a consequence of different
6 burning efficiencies among investigated fuel types, with greater emissions when appreciable
7 amounts of CWD were burnt. Simulation of emissions showed that as the amount of
8 information available to calculate emissions is reduced, the probability of estimating true
9 emissions greatly diminishes. Ideally, measurement of fuel load and carbon content of
10 different fuel types should be made before and after fire. In conjunction with emission factors
11 for a greater range of fuel types and conditions, our ability to estimate of carbon loss from
12 forests via prescribed burns would be greatly improved and would provide invaluable data on
13 carbon apportionment for the calibration of fuel models.

14

15 **Acknowledgements**

16 This project was funded by a Linkage Grant from the Australian Research Council (Jenkins)
17 and the Bushfire Cooperative Research Centre (Possell). It was conducted in conjunction
18 with the Victorian Department of Environment and Primary Industries (DEPI). We thank
19 Jaymie Norris (DEPI) and operations staff from the Orbost district office, particularly Greg
20 McCarthy, Dean Kleinitz, Grant Tucker and Michael Ryan. We thank Peter Perry for assisting
21 with site selection and implementing field protocols. We also thank Felipe Aires, Cristina
22 Aponte, Tom Fairman, Simon Murphy, Cheryl Poon and Rob Law for assistance in the field
23 and Cheryl Poon for assistance in preparing Figure 1.

24

1 **References**

2 Adams, M. A.: Mega-fires, tipping points and ecosystem services: Managing forests and
3 woodlands in an uncertain future, *Forest Ecology and Management*, 294, 250-261,
4 10.1016/j.foreco.2012.11.039, 2013.

5 Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse,
6 J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use
7 in atmospheric models, *Atmos. Chem. Phys.*, 11, 4039-4072, 10.5194/acp-11-4039-2011,
8 2011.

9 Andreae, M. O., and Merlet, P.: Emission of trace gases and aerosols from biomass burning,
10 *Glob. Biogeochem. Cycle*, 15, 955-966, 2001.

11 Bennett, L. T., Aponte, C., Tolhurst, K. G., Low, M., and Baker, T. G.: Decreases in standing
12 tree-based carbon stocks associated with repeated prescribed fires in a temperate mixed-
13 species eucalypt forest, *Forest Ecology and Management*, 306, 243-255,
14 10.1016/j.foreco.2013.06.036, 2013.

15 Bi, H. Q., Turner, J., and Lambert, M. J.: Additive biomass equations for native eucalypt
16 forest trees of temperate Australia, *Trees-Structure and Function*, 18, 467-479,
17 10.1007/s00468-004-0333-z, 2004.

18 Bradstock, R. A.: A biogeographic model of fire regimes in Australia: current and future
19 implications, *Global Ecology and Biogeography*, 19, 145-158, 10.1111/j.1466-
20 8238.2009.00512.x, 2010.

21 Burgan, R. E., Klaver, R. W., and Klaver, J. M.: Fuel models and fire potential from satellite
22 and surface observations, *International Journal of Wildland Fire*, 8, 159-170,
23 10.1071/wf9980159, 1998.

24 Clinton, N. E., Gong, P., and Scott, K.: Quantification of pollutants emitted from very large
25 wildland fires in Southern California, USA, *Atmospheric Environment*, 40, 3686-3695,
26 10.1016/j.atmosenv.2006.02.016, 2006.

27 DIICCSRTE.: Australian National Greenhouse Accounts, National Inventory Report 2011.,
28 Department of Industry, Innovation Climate Change, Science, Research and Tertiary
29 Education, Canberra, 2013.

1 Glatthor, N., Hopfner, M., Semeniuk, K., Lupu, A., Palmer, P. I., McConnell, J. C., Kaminski,
2 J. W., von Clarman, T., Stiller, G. P., Funke, B., Kellmann, S., Linden, A., and Wiegele, A.:
3 The Australian bushfires of February 2009: MIPAS observations and GEM-AQ model results,
4 *Atmos. Chem. Phys.*, 13, 1637-1658, 10.5194/acp-13-1637-2013, 2013.

5 Haverd, V., Raupach, M. R., Briggs, P. R., Canadell, J. G., Davis, S. J., Law, R. M., Meyer,
6 C. P., Peters, G. P., Pickett-Heaps, C., and Sherman, B.: The Australian terrestrial carbon
7 budget, *Biogeosciences*, 10, 851-869, 10.5194/bg-10-851-2013, 2013.

8 Hendrickx, M., Willman, C. E., Magart, A. P. M., and Vandenberg, A. H. M.: Orbost and part
9 of Hartland 1:50 000 geological map. Geological Survey of Victoria 1v Map, 1996.

10 Hollis, J. J., Matthews, S., Anderson, W. R., Cruz, M. G., and Burrows, N. D.: Behind the
11 flaming zone: Predicting woody fuel consumption in eucalypt forest fires in southern
12 Australia, *Forest Ecology and Management*, 261, 2049-2067, 10.1016/j.foreco.2011.02.031,
13 2011.

14 Hurst, D. F., Griffith, D. W. T., and Cook, G. D.: Trace-gas emissions from biomass burning
15 in Australia, in: *Biomass Burning and Global Change*, edited by: Levine, J. S., The MIT
16 Press, Massachusetts, 787-794, 1996.

17 Hurst, D. F., Griffith, D. W. T., Carras, J. N., Williams, D. J., and Fraser, P. J.: Measurements
18 of trace gases emitted by Australian savanna fires during the 1990 dry season, *J. Atmos.*
19 *Chem.*, 18, 33-56, 1994a.

20 Hurst, D. F., Griffith, D. W. T., and Cook, G. D.: Trace gas emissions from biomass burning
21 in tropical Australian savannas, *Journal of Geophysical Research-Atmospheres*, 99, 16441-
22 16456, 1994b.

23 Ilic, J., Boland, D., McDonald, M., Downes, G., Blakemore, P.: Woody density phase 1 -
24 state of knowledge., National Carbon Accounting System Technical Report, Vol 18.,
25 Australian Greenhouse Office, Canberra , 2000.

26 Keane, R. E., Burgan, R., and van Wagendonk, J.: Mapping wildland fuels for fire
27 management across multiple scales: Integrating remote sensing, GIS, and biophysical
28 modeling, *International Journal of Wildland Fire*, 10, 301-319, 10.1071/wf01028, 2001.

1 Langmann, B., Duncan, B., Textor, C., Trentmann, J., and van der Werf, G. R.: Vegetation
2 fire emissions and their impact on air pollution and climate, *Atmospheric Environment*, 43,
3 107-116, 10.1016/j.atmosenv.2008.09.047, 2009.

4 Loudermilk, E. L., Hiers, J. K., O'Brien, J. J., Mitchell, R. J., Singhania, A., Fernandez, J. C.,
5 Cropper, W. P., and Slatton, K. C.: Ground-based LIDAR: a novel approach to quantify fine-
6 scale fuelbed characteristics, *International Journal of Wildland Fire*, 18, 676-685,
7 10.1071/wf07138, 2009.

8 McCaw, L.: Managing forest fuels using prescribed fire – a perspective from southern
9 Australia. *Forest Ecology and Management*. 294, 217–224, 2013.

10 Meyer, C. P., Cook, G. D., Reisen, F., Smith, T. E. L., Tattaris, M., Russell-Smith, J., Maier,
11 S. W., Yates, C. P., and Wooster, M. J.: Direct measurements of the seasonality of emission
12 factors from savanna fires in northern Australia, *Journal of Geophysical Research-
13 Atmospheres*, 117, 10.1029/2012jd017671, 2012.

14 Paton-Walsh, C., Jones, N., Wilson, S., Meier, A., Deutscher, N., Griffith, D., Mitchell, R.,
15 and Campbell, S.: Trace gas emissions from biomass burning inferred from aerosol optical
16 depth, *Geophysical Research Letters*, 31, L0511610.1029/2003gl018973, 2004.

17 Paton-Walsh, C., Jones, N. B., Wilson, S. R., Haverd, V., Meier, A., Griffith, D. W. T., and
18 Rinsland, C. P.: Measurements of trace gas emissions from Australian forest fires and
19 correlations with coincident measurements of aerosol optical depth, *Journal of Geophysical
20 Research-Atmospheres*, 110, 10.1029/2005jd006202, 2005.

21 Paton-Walsh, C., Deutscher, N. M., Griffith, D. W. T., Forgan, B. W., Wilson, S. R., Jones,
22 N. B., and Edwards, D. P.: Trace gas emissions from savanna fires in northern Australia,
23 *Journal of Geophysical Research-Atmospheres*, 115, D1631410.1029/2009jd013309, 2010.

24 Paton-Walsh, C., Smith, T. E. L., Young, E. L., Griffith, D. W. T., and Guérette, É. A.: New
25 emission factors for Australian vegetation fires measured using open-path Fourier transform
26 infrared spectroscopy - Part 1: methods and Australian temperate forest fires, *Atmos. Chem.
27 Phys.*, 14, 11313-11333, 10.5194/acp-14-11313-2014, 2014.

28 Penman, T.D., Kavanagh, R.P., Binns, D.L., Melick, D.R.:Patchiness of prescribed burns in
29 dry sclerophyll eucalypt forests in south-eastern Australia. *Forest Ecology and Management*
30 252 (1–3), 24–32, 2007.

1 Possell, M., and Bell, T. L.: The influence of fuel moisture content on the combustion of
2 *Eucalyptus* foliage, *Int. J. Wildland Fire*, 22, 343-352, 10.1071/WF12077, 2013.

3 Radke, L., Hegg, D., Lyons, J., Brock, C., Hobbs, P., Weiss, R., and Rasmussen, R.: Airborne
4 measurements on smokes from biomass burning, in: *Aerosols and Climate*, edited by: Hobbs,
5 P., and McCormick, M., A. Deepak, Hampton, 411-422, 1988.

6 Russell-Smith, J., Yates, C. P., Whitehead, P. J., Smith, R., Craig, R., Allan, G. E., Thackway,
7 R., Frakes, I., Cridland, S., Meyer, M. C. P., and Gill, M.: Bushfires 'down under': patterns
8 and implications of contemporary Australian landscape burning, *International Journal of*
9 *Wildland Fire*, 16, 361-377, 10.1071/wf07018, 2007.

10 Russell-Smith, J., Murphy, B. P., Meyer, C. P., Cook, G. D., Maier, S., Edwards, A. C.,
11 Schatz, J., and Brocklehurst, P.: Improving estimates of savanna burning emissions for
12 greenhouse accounting in northern Australia: limitations, challenges, applications,
13 *International Journal of Wildland Fire*, 18, 1-18, 10.1071/wf08009, 2009.

14 Seiler, W., and Crutzen, P. J.: Estimates of gross and net fluxes of carbon between the
15 biosphere and the atmosphere from biomass burning, *Climatic Change*, 2, 207-247,
16 10.1007/bf00137988, 1980.

17 Stewart, H. T. L., Flinn, D. W., and Aeberli, B. C.: Above-ground biomass of a mixed
18 eucalypt forest in eastern Victoria, *Australian Journal of Botany*, 27, 725-740,
19 10.1071/bt9790725, 1979.

20 Stroppiana, D., Brivio, P. A., Gregoire, J. M., Liousse, C., Guillaume, B., Granier, C.,
21 Mieville, A., Chin, M., and Petron, G.: Comparison of global inventories of CO emissions
22 from biomass burning derived from remotely sensed data, *Atmos. Chem. Phys.*, 10, 12173-
23 12189, 10.5194/acp-10-12173-2010, 2010.

24 Vandenberg, A. H. M., Hendrickx, M. A., Willman, C. E., Magart, A. P. M., Oranskaia, A.,
25 Rooney, S., and White, A. J. R.: The geology and prospectivity of the Orbost 1:100,000 map
26 area, Eastern Victoria. Victorian Initiative for Minerals and Petroleum Report, 25, 158 pp.,
27 1996.

28 van Wagner, C.: The line intersect method in forest fuel sampling, *Forest Sci*, 10, 267-276,
29 1968.

1 Urbanski, S. P., Hao, W. M., and Baker, S.: Chemical composition of wildland fire emissions,
2 in: Wildland Fires and Air Pollution, edited by: Bytnerowicz, A., Arbaugh, M. J., Riebau, A.
3 R., and Andersen, C., Developments in Environmental Science, 79-107, 2009.

4 Urbanski, S. P., Hao, W. M., and Nordgren, B.: The wildland fire emission inventory: western
5 United States emission estimates and an evaluation of uncertainty, *Atmos. Chem. Phys.*, 11,
6 12973-13000, 10.5194/acp-11-12973-2011, 2011.

7 van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S.,
8 Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the
9 contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009), *Atmos.*
10 *Chem. Phys.*, 10, 11707-11735, 10.5194/acp-10-11707-2010, 2010.

11 Volkova, L., and Weston, C.: Redistribution and emission of forest carbon by planned
12 burning in *Eucalyptus obliqua* (L. Herit.) forest of south-eastern Australia, *Forest Ecology*
13 and Management

14 Yokelson, R. J., Goode, J. G., Ward, D. E., Susott, R. A., Babbitt, R. E., Wade, D. D.,
15 Bertschi, I., Griffith, D. W. T., and Hao, W. M.: Emissions of formaldehyde, acetic acid,
16 methanol, and other trace gases from biomass fires in North Carolina measured by airborne
17 Fourier transform infrared spectroscopy, *Journal of Geophysical Research-Atmospheres*, 104,
18 30109-30125, 10.1029/1999jd900817, 1999.

19 Yokelson, R. J., Burling, I. R., Gilman, J. B., Warneke, C., Stockwell, C. E., de Gouw, J.,
20 Akagi, S. K., Urbanski, S. P., Veres, P., Roberts, J. M., Kuster, W. C., Reardon, J., Griffith,
21 D. W. T., Johnson, T. J., Hosseini, S., Miller, J. W., Cocker, D. R., Jung, H., and Weise, D.
22 R.: Coupling field and laboratory measurements to estimate the emission factors of identified
23 and unidentified trace gases for prescribed fires, *Atmos. Chem. Phys.*, 13, 89-116,
24 10.5194/acp-13-89-2013, 2013.

25 Young, E., and Paton-Walsh, C.: Emission ratios of the tropospheric ozone precursors
26 nitrogen dioxide and formaldehyde from Australia's Black Saturday fires, *Atmosphere*, 2,
27 617-632, 10.3390/atmos2040617, 2011.

1 Table 1. Summary of parameters and range of values used to calculate emission estimates for seven different scenarios by Monte Carlo
 2 simulation. Max. to min. refers to the maximum and minimum values recorded for each fuel type and site. CWD is coarse woody debris. See
 3 text for further details of the equations used.

4

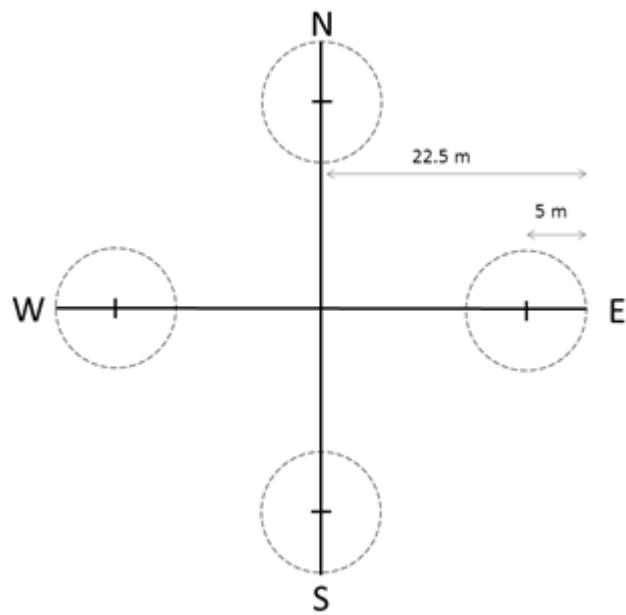
Scenario	Calculation equation	Parameters						CWD included?
		Carbon content (%)	Emission factors (g C g C ⁻¹)	Mass loss (Mg ha ⁻¹)	Pre-burn fuel loads (Mg ha ⁻¹)	Burning efficiency factor		
1	4	Max. to min.	Max. to min.	Max. to min.	-	-	-	Yes
2	4	Max. to min.	Max. to min.	Max. to min.	-	-	-	No
3	4	0 – 100	0 – 1	Max. to min.	-	-	-	Yes
4	4	0 – 100	0 – 1	Max. to min.	-	-	-	No
5	5	0 – 100	0 – 1	-	Max. to min.	0 – 1	0 – 1	Yes
6	5	0 – 100	0 – 1	-	Max. to min.	0 – 1	0 – 1	No
7	5	0 – 100	0 – 1	-	17.9	0 – 1	0 – 1	No

1 Table 2. Fuel load and pre-burn carbon content of a range of fuel types measured before and after fire in four forest sites in East Gippsland,
 2 south-eastern Australia. Values are mean \pm standard deviation (n = 3).

3

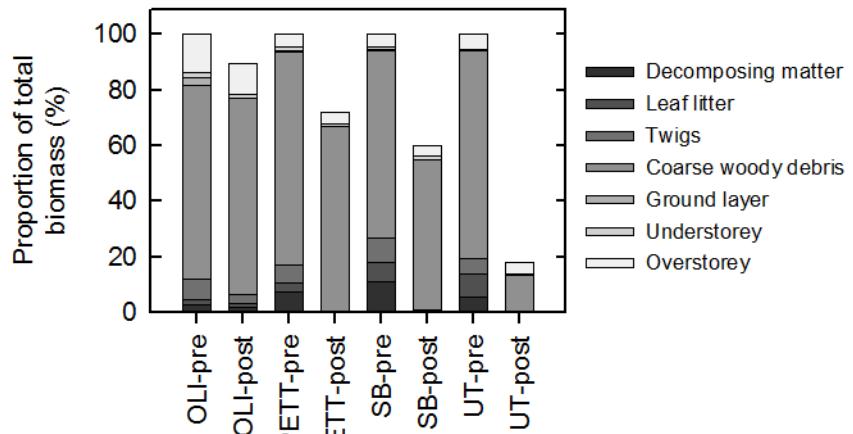
Fuel type	Oliver			Pettmans		
	Fuel load (Mg ha ⁻¹)		Carbon content (% dry weight)	Fuel load (Mg ha ⁻¹)		Carbon content (% dry weight)
	Pre-burn	Post-burn	Pre-burn	Pre-burn	Post-burn	Pre-burn
Twigs	7.75 \pm 1.65	3.70 \pm 1.58	49.67 \pm 0.15	5.23 \pm 1.31	0.01 \pm 0.01	48.78 \pm 0.88
Decomposing matter	3.11 \pm 0.57	2.03 \pm 2.01	29.79 \pm 6.04	5.69 \pm 1.36	0.02 \pm 0.01	23.87 \pm 7.05
Ground layer	3.31 \pm 1.57	0.02 \pm 0.03	46.68 \pm 0.08	0.62 \pm 0.33	0	46.74 \pm 1.36
Leaf litter	1.85 \pm 0.59	1.25 \pm 0.17	54.95 \pm 0.31	2.80 \pm 0.29	0.27 \pm 0.13	52.35 \pm 1.92
Coarse woody debris	75.91 \pm 19.64	76.43 \pm 21.73	49.67 \pm 0.15	61.14 \pm 55.33	53.11 \pm 58.08	48.78 \pm 0.88
Understorey	1.78 \pm 1.50	1.69 \pm 1.48	53.53 \pm 0.36	0.80 \pm 0.54	0.76 \pm 0.49	53.53 \pm 0.36
Overstorey	14.87 \pm 4.32	12.08 \pm 3.17	54.95 \pm 0.31	3.73 \pm 1.40	3.38 \pm 1.80	54.95 \pm 0.31
South Boundary						
Twigs	5.32 \pm 0.67	0.07 \pm 0.03	49.59 \pm 0.42	5.91 \pm 0.68	0.06 \pm 0.02	49.14 \pm 1.26
Decomposing matter	6.89 \pm 0.23	0.05 \pm 0.02	32.13 \pm 2.69	5.94 \pm 1.05	0.03 \pm 0.01	35.42 \pm 2.06
Ground layer	0.33 \pm 0.18	0	47.72 \pm 1.85	0.11 \pm 0.06	0	47.57 \pm 0.94
Leaf litter	4.25 \pm 0.82	0.37 \pm 0.11	53.55 \pm 2.45	9.49 \pm 10.56	0.30 \pm 0.18	53.70 \pm 1.69
Coarse woody debris	41.66 \pm 16.39	33.35 \pm 15.00	49.59 \pm 0.42	83.70 \pm 37.29	14.56 \pm 5.99	49.14 \pm 1.26
Understorey	0.52 \pm 0.37	1.01 \pm 0.22	53.53 \pm 0.36	0.10 \pm 0.17	0.29 \pm 0.49	53.53 \pm 0.36
Overstorey	2.78 \pm 1.41	2.12 \pm 0.91	54.95 \pm 0.31	6.07 \pm 1.95	4.89 \pm 1.40	54.95 \pm 0.31
Upper Tambo						

1 Table 3. Proportion of the fuel carbon burned emitted into the atmosphere from different fuel types from forest sites in East Gippsland, south-
 2 eastern Australia. C_{emit} is the total carbon emitted into the atmosphere through combustion and C_{fuel} is the initial carbon content of fuel.
 3 Coarse woody debris was assumed to have the same values as twigs. Values are mean \pm standard deviation (n = 3).

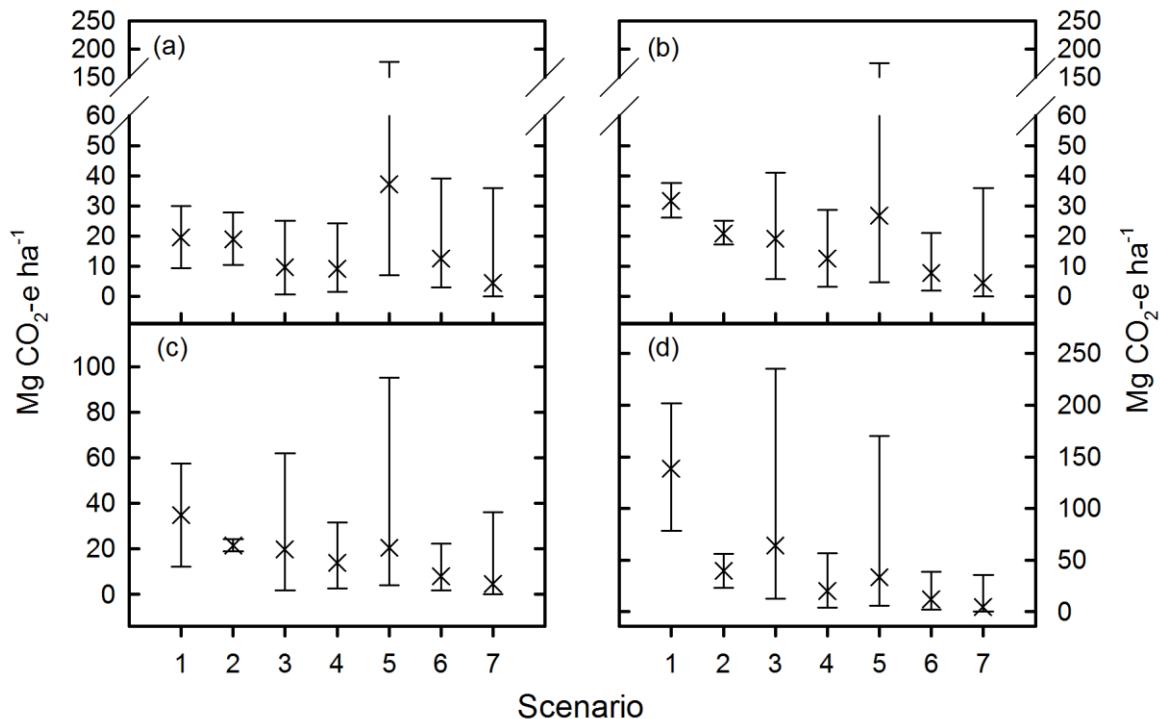

Fuel type	Oliver	Pettmans	South Boundary	Upper Tambo
	$\Sigma C_{\text{emit}}/C_{\text{fuel}}$			
Twigs	0.882 ± 0.015	0.819 ± 0.043	0.844 ± 0.026	0.857 ± 0.060
Decomposing matter	0.710 ± 0.177	0.558 ± 0.342	0.751 ± 0.136	0.632 ± 0.090
Ground layer	0.978 ± 0.009	0.960 ± 0.017	0.948 ± 0.058	0.986 ± 0.009
Leaf litter	0.957 ± 0.013	0.975 ± 0.025	0.956 ± 0.035	0.915 ± 0.019
Understorey	0.859 ± 0.054	0.859 ± 0.054	0.859 ± 0.054	0.859 ± 0.054
Overstorey	0.942 ± 0.014	0.942 ± 0.014	0.942 ± 0.014	0.942 ± 0.014

4

1 Table 4. Emissions factors for CO₂, CO and pooled CH₄, volatile organic compounds (VOC) and particulate matter (PM) for different fuel
 2 types from forest sites in East Gippsland, south-eastern Australia, that were combusted in a mass-loss calorimeter. Coarse woody debris was
 3 assumed to have the same values as twigs. Values are mean \pm standard deviation (n = 3).


4

Fuel type	Oliver			Pettmans		
	CO ₂	CO	Σ CH ₄ , VOC, PM	CO ₂	CO	Σ CH ₄ , VOC, PM
Twigs	0.59 \pm 0.03	0.02 \pm 0.01	0.28 \pm 0.05	0.58 \pm 0.03	0.02 \pm 0.01	0.23 \pm 0.04
Decomposing matter	0.87 \pm 0.13	0.06 \pm 0.02	0.05 \pm 0.08	1.00 \pm 0.08	0.06 \pm 0.01	0
Ground layer	0.62 \pm 0.02	0.03 \pm 0.01	0.35 \pm 0.02	0.58 \pm 0.04	0.03 \pm 0.01	0.37 \pm 0.05
Leaf litter	0.53 \pm 0.03	0.02 \pm 0.01	0.42 \pm 0.02	0.56 \pm 0.07	0.03 \pm 0.01	0.40 \pm 0.06
Coarse woody debris	0.59 \pm 0.03	0.02 \pm 0.01	0.28 \pm 0.05	0.58 \pm 0.03	0.02 \pm 0.01	0.23 \pm 0.04
Understorey	0.66 \pm 0.19	0.02 \pm 0.02	0.20 \pm 0.15	0.66 \pm 0.19	0.02 \pm 0.02	0.20 \pm 0.15
Overstorey	0.79 \pm 0.06	0.03 \pm 0.01	0.14 \pm 0.06	0.79 \pm 0.06	0.03 \pm 0.01	0.14 \pm 0.06
South Boundary				Upper Tambo		
Twigs	0.47 \pm 0.02	0.02 \pm 0.01	0.36 \pm 0.02	0.70 \pm 0.06	0.02 \pm 0.01	0.15 \pm 0.07
Decomposing matter	0.68 \pm 0.05	0.03 \pm 0.01	0.07 \pm 0.08	0.89 \pm 0.17	0.05 \pm 0.01	0
Ground layer	0.69 \pm 0.18	0.04 \pm 0.01	0.23 \pm 0.12	0.74 \pm 0.03	0.05 \pm 0.01	0.22 \pm 0.03
Leaf litter	0.65 \pm 0.07	0.02 \pm 0.01	0.29 \pm 0.10	0.68 \pm 0.04	0.03 \pm 0.01	0.22 \pm 0.04
Coarse woody debris	0.59 \pm 0.03	0.02 \pm 0.01	0.28 \pm 0.05	0.58 \pm 0.03	0.02 \pm 0.01	0.23 \pm 0.04
Understorey	0.66 \pm 0.19	0.02 \pm 0.02	0.20 \pm 0.15	0.66 \pm 0.19	0.02 \pm 0.02	0.20 \pm 0.15
Overstorey	0.79 \pm 0.06	0.03 \pm 0.01	0.14 \pm 0.06	0.79 \pm 0.06	0.03 \pm 0.01	0.14 \pm 0.06


2 Figure 1. Plot layout for data and sample collection.

3

1
2 Figure 2. Proportion of the total biomass for each fuel type, at each site, before and after
3 planned burning. The sites are: Oliver (OLI), Pettmans (PETT), South Boundary (SB) and
4 Upper Tambo (UT). Each section of each bar represents the mean proportion measured from
5 three plots within each site. ‘Pre’ and ‘post’ refer to measurements made before and after the
6 planned burn.

7

1
2 Figure 3. Estimates of CO₂-equivalent emissions from four forest sites in East Gippsland,
3 south-eastern Australia using Monte-Carlo simulations of seven different scenarios. Sites are
4 (a) Oliver, (b) Pettmans, (c) South Boundary, and (d) Upper Tambo. See Table 1 for
5 description of the seven scenarios. Crosses represent the median emission as determined by
6 the Monte Carlo simulations ($n \leq 71,233$). The error bars represent the 95% confidence
7 intervals of the Monte Carlo simulations.