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Abstract

We examined phytoplankton community responses to natural iron fertilisation at 32
sites over and downstream from the Kerguelen Plateau in the Southern Ocean dur-
ing the austral spring bloom in October–November 2011. Community structure was
estimated from chemical and isotopic measurements (particulate organic carbon POC,5
13C-POC, particulate nitrogen PN, 15N-PN, and biogenic silica BSi) on size-fractionated
samples from surface waters (300, 210, 50, 20, 5, and 1 µm fractions). Higher values
of 13C-POC (vs. co-located 13C-DIC source values) were taken as indicative of faster
growth rates, and higher values of 15N-PN (vs. co-located 15N-NO3 source values) as
indicative of greater nitrate use.10

Community responses varied in relation to both regional circulation and the advance
of the bloom. Iron fertilised waters over the plateau developed dominance by very large
diatoms (50–210 µm) with high BSi/POC ratios, high growth rates, and significant
ammonium recycling as biomass built up. In contrast, downstream Polar Frontal wa-
ters with similar or higher iron supply were dominated by smaller diatoms (20–50 µm)15

and exhibited greater ammonium recycling. Stations in a deep water bathymetrically
trapped recirculation south of the Polar Front with lower iron levels showed the large
cell dominance observed on the plateau, but much less biomass. Comparison of these
communities to surface water nitrate (and silicate) depletions as a proxy for export
shows that the low biomass recirculation feature exported similar amounts of nitrogen20

to the high biomass blooms over the plateau and north of the Polar Front. This suggests
that trophodynamic and export responses differed between regions with persistent low
levels vs. punctual high levels of iron fertilisation.

1 Introduction

Natural iron fertilisation from islands, shelves, and plateaus in the Southern ocean25

produces local and downstream elevations of phytoplankton biomass, ∼ 10-fold higher
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than in surrounding high nutrient low chlorophyll (HNLC) waters, e.g. (de Baar et al.,
1995). In some of these systems, carbon export has been observed to be elevated
∼ 2–3 fold, e.g. over the Kerguelen Plateau (Blain et al., 2008; Savoye et al., 2008)
and to the north of Crozet Island (Pollard et al., 2007). But these studies produced
order of magnitude variations in estimates of the amount of carbon export per unit iron5

supply, as have deliberate iron fertilisation studies (Boyd et al., 2007). These variations
appear to reflect both observational limitations and system complexity, including the
possibility of variations in initial communities prior to fertilisation (as a result of north-
south oceanographic variations or the extent of connection to coastal habitats).

General principles for expected phytoplankton responses have been elucidated,10

though they remain to be fully tested. These include increased growth rates for all
size classes and elevated new production, i.e. increased nitrate use (e.g. Armstrong,
1999; Maldonado et al., 2001). A prevailing view of the overall community response is
that it depends on the interaction of these changes with the response of zooplankton
grazers, which are thought to be more able to keep up with small cell growth and thus15

to favour accumulation of larger phytoplankton (Assmy et al., 2013; Morel et al., 1991).
This in turn, may favour export, via either direct sinking or aggregation (Smetacek,
1985, 1998). Variations in diatom life cycles and strategies add seasonal complexity
to this picture (Queguiner, 2013), and the translation of increases in new production
into enhancements in export can be relatively weak (as a result of strong N recycling;20

Mosseri et al., 2008).
The KEOPS2 expedition sought to examine these and other aspects of community

responses to natural iron fertilisation over and downstream of the Kerguelen plateau,
in austral spring, October–November 2011, as detailed in the multiple papers in this
volume. In this paper, we examine a suite of chemical and isotopic indicators of phyto-25

plankton community structure and function (chemometrics) and relate them to nitrate
(and silicate) depletion in surface waters as a proxy for carbon export. The following
paragraphs provide an overview of the approach and the structure of the paper.
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We first describe the complex regional circulation, and use it to cluster the stations
into 5 groups (coastal, plateau, waters well downstream near the Polar Front, and wa-
ters in a recirculation close to the plateau – separated into an early survey and a later
time series). For these groups we briefly summarize the relative levels of iron fertili-
sation from dissolved and particulate standing stocks (Queroue et al., 2014; van der5

Merwe et al., 2014) and Fe supply estimates (Bowie et al., 2014; Blain et al., 2014). We
also assess the elapsed time since iron fertilisation and its persistence, from seasonal
perspectives on vertical mixing (Blain et al., 2014) and Lagrangian perspectives on
water mass trajectories around the Kerguelen Plateau (d’Ovidio et al., 2014). We also
consider two other overarching perspectives on ecosystem responses: the elapsed10

time since the beginning of phytoplankton accumulation (from an animation of satellite
ocean colour images; Supplement), and the level of biomass enrichment at the time of
sampling. Our subsequent chemometric analysis is undertaken at the level of these 5
groups, against this framework of relative intensities and timings of Fe fertilisation and
biomass accumulation.15

Next, we describe the chemometric approach, i.e. total particulate organic carbon
(POC) as an indication of eutrophy, size distribution as a indicator of diversity, biogenic
silica/particulate organic carbon (BSi/POC) ratios as a measure of diatom dominance,
13C as a metric for growth rates, and 15N as a metric for ammonium recycling. For
our 13C and 15N chemometrics, which present methods to estimate rates from stand-20

ing stocks, we provide a comparison to shipboard incubation results for growth rates
and f ratios (from 13C and 15N tracer uptake experiments, Cavagna et al., 2014). To
determine nitrate (and silicic acid) depletion by the biological pump, we explore both
temperature and salinity based approaches to estimate initial winter surface water con-
centrations, and also evaluate the fraction of the observed depletion that still remains25

in the water column for potential future export (using particulate nitrogen and biogenic
silica stocks from CTD casts; Lasbleiz et al., 2014; Blain et al., 2014).

Finally, with help from additional comparisons to 234Th depletions (Planchon et al.,
2014) and sediment trap collections (Laurenceau et al., 2014), we arrive at an overview
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of the relative importance of Fe inputs and temporal evolution in the control of commu-
nity structure and carbon export.

2 Methods

2.1 Site description

The KEOPS2 campaign was carried out in October–November 2011 over and down-5

stream of the Kerguelen Plateau in the Southern Ocean, under conditions of com-
plex circulation and rapidly changing phytoplankton biomass, as summarized in Figs. 1
and 2, and further showcased in the full annual satellite chlorophyll animation (Supple-
ment).

The Kerguelen Plateau is a northwest-southeast oriented seafloor feature which10

rises to ∼ 500 m below the surface over much of its extent. It also hosts several vol-
canic islands, in particular the large Kerguelen Island archipelago in the north and
the smaller Heard Island at the southern edge of the central Kerguelen Plateau. The
plateau blocks the eastward flowing Antarctic Circumpolar Current (ACC). Much of the
ACC flow goes to the south of the plateau and through the Fawn Trough (to the south15

of Heard Island), with a smaller portion associated with the Subantarctic Front flowing
around the northern edge of Kerguelen Island. A narrow jet of ACC water also flows
across the plateau in the narrow, mid-depth (∼ 1000 m) channel just to the south of
Kerguelen Island (Fig. 1). This feature corresponds with the northernmost presence
of a subsurface temperature minimum formed by winter cooling (near 200 m depth),20

and thus defines the northernmost branch of the Polar Front (Park et al., 2008, 2014b;
d’Ovidio et al., 2014). This jet was a particularly important feature of the area sampled
during KEOPS2, because it separated the central plateau and downstream offshore
stations to the south of the Polar Front (PF), from those to the north of the PF, where
the coastal stations were also located. As discussed in Sect. 2.2, the modes of supply25

of Fe to the waters north and south of this jet may also differ, with some downstream
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Polar Front stations potentially influenced by Fe inputs from coastal waters associated
with Kerguelen Island or its shallow northern shelf (Blain et al., 2014).

From a dynamical perspective, the full ocean depth branch of the Polar Front lies to
the south of Heard Island, where the ACC flow transits the Fawn Trough (Sokolov and
Rintoul, 2009). As this flow passes to the east of the pleateau it follows the bathymetric5

contours to the north where it enters a bathymetrically-trapped recirculation region to
the south of the Polar Front, before eventually exiting downstream (Park et al., 2008,
2014b; d’Ovidio et al., 2014). This recirculation feature and the flow along the PF jet
are fixed in space by the bathymetry close to the plateau, but at their eastern edge over
the abyssal plain (where the strong ACC flows passing south and north of the plateau10

re-join) meandering is strong and varies with time. For example, the animation of ocean
colour (Supplement) suggests the PF moved southward in this region over the course
of the KEOPS2 observations.

As shown in Fig. 1, the initial sampling was carried out along a deep water tran-
sect (stations TNS 1–10) run northwards from the central plateau (TNS-10) across the15

recirculation feature and Polar Front and into Subantarctic waters (TNS-1). This was
followed by a west to east transect (stations TEW 1–8) running offshore from the Ker-
guelen Island coast, across the middle of the recirculation, and reaching the southward
meandering Polar Front in the far east of the study region. This initial survey was fol-
lowed by multiple “time-series” visits to the recirculation feature, (designated as stations20

E1–E5, with two stations at the E4 time step – to the western side, E4-W, and eastern
side, E4-E, of this recirculation). In addition several other features at the margins of
the survey region were also sampled, with rather complicated nomenclature based on
locations, links to other programs, durations, and purposes:

– reference HNLC waters to the west of the plateau (stations R and R2).25

– A central plateau station that had served as the bloom reference site in the previ-
ous KEOPS campaign in late summer/autumn 2005 (station A3).
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– High biomass waters in the extreme northeast of the study region, near the down-
stream location of the Polar Front (Stations F-L and F-S; L for long, S for short).

– Two stations carried out to compare geochemical tracer concentrations in waters
over the plateau (G1) with Kerguelen coastal waters (G2).

All of these stations (except TNS-4 and TNS-7) on the initial survey transect were sam-5

pled for our size-fractionated chemometric analyses (with some stations also sampled
both at night and day).

The five colour-coded Groups mapped in Fig. 1 cluster the KEOPS2 stations based
largely on the interactions of the circulation with the bathymetry (with some additional
regard for temporal evolution and the timing and extent of iron supply and biomass10

accumulation, as discussed below). The properties of these Groups are summarized in
Table 1. In brief, Groups 1 and 2 cluster stations from the recirculation feature. Group 1
consists of stations in this region occupied during the initial transects when biomass
was low, and also for convenience includes the upstream HNLC reference site R2.
Group 2 holds the stations occupied as a pseudo-Lagrangian time series within the15

recirculation. Group 3 holds the central plateau stations, including waters that flow
northward to leave the plateau along the south side of the Polar Front jet. Group 4 has
the coastal stations; although the inclusion of TEW-3 is debateable given its location
at the plateau edge. Group 5 has the downstream stations near and north of the Polar
Front. Two stations in this Group, at the northern Subantarctic end of the initial survey,20

TNS-1 and TNS-2, were included to keep the number of Groups low, but stand out
as quite distinct in having lower biomass with greater proportions of non-diatom taxa
(Lasbleiz et al., 2014). Additional discussion of stations near the boundaries of these
Groups is provided below, and other clusterings are possible, especially for stations at
the boundaries among the Groups (for further discussion see Lasbleiz et al., 2014).25

The majority of the analysis presented in this paper is based on comparisons across
these Groups rather than individual stations (although variations within the Groups do
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occur and sometimes provide additional insights, and for this reason the figures display
the individual stations in each group in chronological order (e.g. see Fig. 3).

2.2 Intensity and timing of Fe fertilisation

Iron sampling and analysis was carried out at a much-reduced subset of the sta-
tions discussed here, albeit with greater vertical resolution (Bowie et al., 2014; van5

der Merwe et al., 2014; Queroue et al., 2014). Thus, comparisons to our results are
only possible at the level of our station Groups, and only in a relative sense. The low-
est Fe levels were observed at the HNLC reference station upstream to the west of
the Kerguelen Plateau (slightly less than 0.1 nM at station R2). The recirculation re-
gion (Groups 1 and 2) had low to moderate dissolved Fe (0.06–0.38 nM at stations E2,10

E3 and E5). Slightly higher minimum concentrations were observed over the plateau
(0.18–0.21 nM at the Group 3 stations A3-1 and G1). Moderate enrichments were also
observed in the Group 5 downstream waters near the Polar Front (∼ 0.26 nM at station
F-L). The highest dissolved Fe levels were in the Group 4 Kerguelen Island coastal
waters (surface concentrations of 2.17 nM for TEW 1 and 1.26 nM for TEW 2).15

Particulate Fe levels were not measured in coastal waters, but generally exceeded
dissolved Fe levels in the Group 3 stations over the plateau (by factors of 13–20) and
offshore in the Group 1 and 2 stations in the recirculation feature and the single Group 5
station in the downstream plume (by factors of 2–34). The bio-availability of this partic-
ulate Fe is unknown, but assuming a conservative fraction of 1 % (for discussion see20

van der Merwe et al., 2014) leads to a 20 % increase over the plateau of available iron
and 4–34 % increase offshore.

Estimating Fe supply is more difficult. It appears possible that downstream waters
north of the Polar Front (Group 5 stations F-S, F-L, TEW-7, and TEW-8, but not the
Subantarctic influenced stations TNS-1 and TNS-2) receives more iron than the plateau25

(Group 3) especially in summer when stratification reduces vertical supply over the
plateau, but advection continues to sweep iron-rich coastal waters from the northern
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Kerguelen shelf along the northern side of the Polar Front jet (Blain et al., 2014; Bowie
et al., 2014).

The nature of Fe fertilisation also varies among the regions, in terms of both its
timing relative to our sampling, and its persistence. Recent and brief iron fertilisation
appears likely to characterize the Polar Front (Group 5 region). Water parcel trajectories5

calculated from drifter trajectories and altimetry based geostrophic currents (d’Ovidio
et al., 2014) suggest times of less than 0.5 to 1 month for the downstream Polar Front
stations (Group 5 stations F-S, F-L, TEW-7, TEW-8), with rapid dispersal and thus
low persistence. In comparison, it appears to take longer for northern Kerguelen shelf
waters to reach the recirculation region (Group 1 and 2 stations), where the water10

is then retained for a relatively long time, but is also diluted by approximately equal
volumes of waters derived from the south (D’Ovidio et al., 2014; Park et al., 2014a).
These supply paths are also indicated by Ra isotope distributions (Sanial et al., 2014).
Thus fertilisation of the recirculation feature appears to be less recent and intense than
that of the Polar Frontal region, but probably more persistent. For the Kerguelen coastal15

stations (Group 4), where water columns were well mixed to the bottom, fertilisation
is both recent and persistent. Fertilisation over the plateau is also relatively recent
in a seasonal context, having presumably reached a maximum at the time of deepest
winter mixing (i.e. ∼ 2 months from maximum cooling in August–September to sampling
in October–November and) and continued episodically via entrainment through spring.20

Its persistence may be similar or somewhat larger than that of the recirculation region
given estimates of water parcel residence times over the plateau of order 2–3 months
(Park et al., 2008).

In summary, this evaluation of iron inputs yields rank orders as follows:
Intensity of Fe fertilisation (lowest to highest):25

recirculation feature<plateau <≈=Polar Front plume� coastal stations
Elapsed time since Fe fertilisation and its persistence (most recent to oldest):
Polar Front plume< recirculation feature<≈plateau < coastal stations
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For easy reference these properties are summarized for the station Groups in Ta-
ble 1.

2.3 Intensity and timing of phytoplankton biomass accumulation

The KEOPS2 sampling was carried out in spring, spanning the period when phyto-
plankton biomass was rapidly increasing both over and downstream of the plateau,5

forming rather complex patterns in satellite chlorophyll images (Fig. 2). Thus the time
of sampling relative to the development of surface biomass enrichment varied strongly
among the stations. The sequence of ocean colour images in Fig. 2. (see also the Sup-
plement) suggests that this occurred first in coastal Kerguelen Island waters (starting
in mid-September very close to the island and extending northwards by mid October;10

but reaching only moderate Chl a levels near 1 µg L−1), followed by the downstream
plume north of the Polar Front (near Group 5 stations F-S, F-L, TEW-7, TEW-8) where
chlorophyll biomass jumped very rapidly from below 0.5 to above 2 µg L−1 early in the
first week of November.

At this time (as shown in the animation in the Supplement), the central plateau and15

the recirculation feature still had only minor biomass development, with concentrations
near 0.5 µg L−1. But, within a few days, by 9 November, all strongly Fe enriched regions
(coastal, central plateau, and the downstream waters near the Polar Front) had Chl a
levels above 2.5 µg L−1. Yet, the recirculation region still had low levels of ∼ 0.5 µg L−1

for another week, and only reached levels of 1–1.5 µg L−1 by end November. Only in20

early December, after the end of field sampling, did the recirculation feature reach
levels of 2.5–3 µg L−1. Interestingly, the downstream waters near the Polar Front main-
tained high levels throughout most of this period, but the central plateau bloom faded
(as sampled by station A3-2) before being replaced by a second bloom somewhat
further east, though still over the plateau. The animation of these satellite chlorophyll25

images provides further detail of the structure and sequence of biomass accumulation,
both during and after the voyage (Supplement).

In summary, satellite biomass accumulation yields rank orders as follows:
13851
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Magnitude of biomass accumulation (lowest to highest, at end of voyage):
recirculation feature< coastal stations <plateau <≈Polar Front plume
Elapsed time since initiation of biomass accumulation (most recent to oldest):
recirculation feature<Polar Front plume<≈plateau � coastal stations
For easy reference these properties are summarized for the station Groups in Ta-5

ble 1.

2.4 Samples

This study is based primarily on chemical and isotopic compositions of dissolved nu-
trients and size-fractionated particles sampled from surface waters using the ship’s
clean seawater supply. Full details of the sample collection and analytical methods are10

provided in Appendix A. In brief, particles were analysed for 6 size fractions collected
by large volume sequential filtration through a pre-screen (1000 µm) and 6 filters (300,
210, 50, 20, 5 and 1 µm pore sizes). These samples were analysed for POC, PN, BSi,
13C-POC and 15N-PN (although BSi could not be analysed on the 1 µm fraction, as
it was collected with a quartz filter). Seawater samples collected from the same sup-15

ply, and also from Niskin bottles on the CTD system, were analysed for nitrate and
dissolved inorganic carbon concentrations and isotopic compositions (DIC, 13C-DIC,
NO−

3 , 15N-NO−
3 , and 18O-NO−

3 ). In addition, small volume samples (∼=1 L) were filtered
for bulk POC and PN concentrations and these are reported along with a total POC that
is the sum of the size fractions. Surface water nitrate concentrations were continuously20

mapped using an ultra-violet nitrate sensor.
Speaking broadly for all stations, the largest size fractions (300–1000 µm) for the

suspended particles were dominated by zooplankton, primarily copepods. Intact faecal
pellets and phytoplankton aggregates did not contribute significantly to these fractions
(presumably they were disaggregated by the pumping system, because both particle25

types were observed in sediment traps equipped with polyacrylamide gels (Laurenceau
et al., 2014); although the presence of intact needles of Thallasiothrix antarctica and
chains of Fragilariopsis kerguelensis diatoms suggests individual cells were largely
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undamaged). The smaller size-fractions were dominated by diatom frustules, with small
centric diatoms abundant on the 5 µm filter, a mix of centric and pennate diatoms on
the 20 and 50 µm filters, and large diatoms and chains of pennate diatoms and small
copepods on the 210 µm filter. The particles on the 1 µm quartz filter were too small to
examine in any detail using stereo microscopy. The light beige colour of these filters,5

in comparison to the greener shades of the intermediate sizes suggests important
contributions from detritus and/or bacteria. Absorption of dissolved organic matter onto
these filters may have also occurred, but was not quantified.

More detailed information on the organisms present on our filters is not available, but
other studies during KEOPS2 of bacterial abundances (Christaki et al., 2014), phyto-10

plankton (George et al., 2014; Lasbleiz et al., 2014), diatom species (L. Armand, per-
sonal communication, 2014), and zooplankton (Carlotti et al., 2014; C. Cotte, personal
communiation, 2014) are consistent with our chemometric interpretation that detritus,
bacteria, and phytoplankton contributed to the 1 µm fraction; phytoplankton dominated
the 5, 20, and 50 µm fractions; a mix of large diatoms and copepods were present in15

the 210 µm fraction and copepods, isopods, and occasionally krill were the primary
contributions to the 300 µm fraction.

2.5 Chemometric methods for community structure and function

Evaluation of community structure and function is ideally done via detailed taxonomy
and physiology, but the plethora of organisms makes this very difficult. Chemical meth-20

ods offer an easier path with the added advantages of quantitative connections to dis-
solved chemical concentrations and budgets. Size fractionation adds value to this ap-
proach, firstly because it provides some separation of phytoplankton (which dominated
the 1, 5, 20 and 50 µm fractions) from heterotrophs (210 and 300 µm fractions), and
secondly because differing sizes of phytoplankton often occupy different biogeochem-25

ical niches (e.g. greater reliance on ammonium by small phytoplankton; less contribu-
tion to direct export owing to smaller sinking rates) and experience differing ecological
couplings (e.g. tighter coupling to grazing control in smaller sizes, because smaller
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zooplankton have shorter life cycles). Thus our primary chemometric tool is to simply
examine variations in the distribution of POC across the size fractions as an indicator
of community structure. (To remove the influence of our particular choice of filter sizes,
we express the POC concentration variations as spectra, i.e. we divide the concen-
trations by the width of each filtration interval, yielding units of µM µm−1). Secondarily5

we use high BSi/POCratios as an indication of community dominance by diatoms (of
course this is simplistic given the presence of silicoflagellates at some stations (Las-
bleiz et al., 2014) and the occurrence of a wide range of BSi/POC ratios in diatoms
(Ragueneau et al., 2006), and low POC/PN ratios as an indication of contributions from
heterotrophic biomass (below the values of ∼ 6–7 that characterise most phytoplank-10

ton; e.g. Anderson and Sarmiento, 1994; Redfield et al., 1963).

2.5.1 Isotopic chemometric principles – 13C

The isotopic chemometric tools are not as common and require greater explanation.
Variations in 13C-POC and 15N-PN values derive from both primary photosynthetic pro-
duction and the overlay of secondary heterotrophic imprints, especially in the smallest15

size fraction (1–5 µm) in which bacterial processing was important and the two largest
size fractions (210–300 and 300–1000 µm) which contained significant contributions
from zooplankton. For the middle size fractions (5–20, 20–50 and 50–210 µm), biomass
was dominated by phytoplankton and thus these fractions can be used to examine the
impacts of iron fertilisation and other controls on primary production. This is our focus20

for the use of these tools. In particular we interpret 13C enrichment as indicative of
higher growth rates and 15N enrichment as indicative of higher f ratios (i.e. greater use
of nitrate in comparison to reduced forms of nitrogen). In the following paragraphs we
introduce quantitative expressions for these relationships, but also acknowledge that
they rest on many assumptions, which we evaluate further in light of our results. After25

this discussion of these autotrophic expressions, we also briefly describe the scale of
heterotrophic effects.

13854

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/13841/2014/bgd-11-13841-2014-print.pdf
http://www.biogeosciences-discuss.net/11/13841/2014/bgd-11-13841-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
11, 13841–13903, 2014

Chemometric
perspectives on

plankton community
responses to natural

iron fertilization

T. W. Trull et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Controls on the 13C composition of phytoplankton are complex (Goericke et al.,
1994), but in general, within a phytoplankton size-class (and relative to source com-
positions) 13C enrichment is a sign of faster growth (Popp et al., 1998, 1999; Rau et al.,
1997; Trull et al., 2008). In other words, discrimination against 13C assimilation is less
strong in rapidly growing cells. We briefly review the processes involved in this dis-5

crimination to inform our use of 13C-POC variations to estimate approximate growth
rates, and return to this issue again in the results section in light of the specifics of the
KEOPS2 observations.

One possible control is a change from use of the scarce molecular CO2 form of DIC
to greater use of the ∼ 100-fold more abundant bicarbonate form (although this form10

is electrically charged and thus likely to be more energetically costly to assimilate).
Assimilation of bicarbonate raises 13C-POC, because it has much higher13C contents
than dissolved molecular CO2 (∼ 11 ‰ higher at KEOPS2 temperatures, as expressed
by the approximate equilibrium fractionation expression; Rau et al., 1997):

13C-CO2 =
13C-DIC+23.644−9701.5/Tkelvin (1)15

There is presently no understanding of how a possible switch from CO2 to HCO−
3 as-

similation might depend on growth rate, but some aspect of the relative availability of
CO2 supply vs. biological demand is likely to be involved. This balance also affects the
extent of fractionation that occurs if only one external species (e.g. molecular CO2) is20

assimilated, and models of supply vs. demand have been shown to reproduce 13C vari-
ations well for many phytoplankton (e.g. Rau et al., 1997; Popp et al., 1998), and we
rely on this approach to re-express our field 13C variations in terms of (relative) growth
rates.

The discrimination against 13C that accompanies intra-cellular enzymatic fixation of25

CO2 (εf ∼ 25–28 ‰ for the most common enzymes but less for other forms) exceeds
the isotopic offset between the external DIC species, and thus has been a focus for
the likely control on fractionation during carbon assimilation. The extent to which this
enzymatic discrimination is expressed in the 13C-POC depends on the balance of sup-
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ply into the cell vs. demand from growth. If all supply is assimilated 13C-POC equals
the supply value, but if little is assimilated (with the rest re-exported), the full enzymatic
fractionation occurs (i.e. 13C-POC approaches the supply value minus εf). Laboratory
experiments have confirmed the general validity of the supply vs. demand model and
shown (for a limited set of phytoplankton) that 13C-POC increases linearly with growth5

rate (Popp et al., 1998). Specifically, Popp et al. (1998) applied the model that:

13C-POC = (13Csource −εf)+k demand-rate/supply-rate (2)

in which the first term expresses the lowest possible 13C contents of the cell as growth
rate approaches zero, and the second term describes the linear (constant k) depen-10

dence of isotopic composition on the relative rates of CO2 supply into the cell and it’s
cellular fixation. They found an excellent fit to data by assuming the chemical form is
aqueous molecular CO2 and that supply rate depends linearly on its external concen-
tration modulated by the surface to volume ratio (S/V ) of the cell:

13C-POC = (13C-CO2 −25)+182µ/([CO2]S/V ) (3)15

Rewriting this equation for growth rate, µ, and our measured 13C-DIC and 13C-POC
values yields a possible path to quantitative growth rates for our size fractions:

µ = S/V [CO2][13C-POC− (13C-CO2 −25)]/182 (4)
20

with 13C-CO2 calculated using Eq. (1), [CO2] obtained from underway pCO2 obser-
vations (Lo Monoco et al., 2014) and Henry’s Law (Weiss, 1974). In this expression,
growth rate µ is in d−1, S/V in µm−1, and [CO2] in µmol kg−1.

As discussed further in the results section, this expression predicts two useful things.
Firstly, it predicts growth rates that we compare to other estimates. Secondly it shows25

that a given 13C-POC increase predicts a larger increase in growth rate for small cells
than for large cells, because smaller cells have higher S/V (and this sensitivity to S/V
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is large). Of course, comparison of these rates is sensitive to S/V estimates and to the
assumption that transport into and out of the cell scales with this parameter. For this
reason, our growth rate estimates must be viewed with great caution.

Trophic 13C enrichment is thought to be relatively small within a given class of com-
pounds for carbon (∼ 1 ‰ per trophic level; Michener and Schell, 1994). However, ac-5

cumulation of lipids, which are 13C depleted owing to their multi-step synthesis path-
ways, causes many zooplankton to have lower 13C contents than their diet (Michener
and Schell, 1994; Syvaranta and Rautio, 2010). This is a probable contributor to the
13C-POC values of the two largest size fractions, as discussed in the results section.

Finally, because our focus is on extracting information about growth conditions for the10

communities at the time of sampling, we remove the influence of source inorganic car-
bon isotopic composition spatial variations on the 13C-POC variations, by considering
only their offset relative to the source rs: 13C-POCrs =

13C-POC− 13C-DIC.

2.5.2 Isotopic chemometric principles – 15N

Phytoplankton 15N-PN variations result primarily from the relative use of reduced ni-15

trogen (mainly ammonium) which has low 15N contents vs. the more abundant nitrate
pool which has higher 15N contents, and secondarily from variations in the isotopic frac-
tionation accompanying nitrate assimilation (Goericke et al., 1994; Karsh et al., 2003,
2014; Trull et al., 2008). As with the carbon isotopes, we discuss the 15N-PN variations
relative to co-located 15N-NO3 source values (15N-PNrs =

15N-PN− 15N-NO3), to sep-20

arate source composition effects (that have accumulated from the history of nitrogen
metabolism in a given parcel of water) from the fractionation associated with current PN
production. This source composition effect was larger for nitrogen than for carbon, be-
cause variation in 15N-NO3 values was larger (6.1–8. ‰), and 15N-PN variations were
smaller (6 ‰).25

By estimating expected values for 15N-PNrs formation from nitrate and from ammo-
nium, estimates of new vs. recycled production (i.e. f ratios) can be obtained for each
size fraction by mass balance. The observed range of fractionation factors for nitrate
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assimilation during KEOPS2, (εna of −4 to −4.5 ‰, as estimated from 15N-NO3 varia-
tions in the water column; Dehairs et al., 2014) provides an upper limit for growth on
nitrate of 15N-PNrs (−4 ‰). For ammonium, the simplest approximation is to use a value
just below the lowest observed 15N-PNrs, i.e. to assume that these cells grew on am-
monium alone (Trull et al., 2008). Using these end members (15N-PNNrs = −4‰ for5

growth on nitrate; 15N-PNArs = −8‰ for growth on ammonium), yields f ratio estimates
for each size-fraction, from:

f = (15N-PNrs − 15N-PNArs)/(15N-PNNrs − 15N-PNArs) (5)

In comparison to carbon, trophic enrichment of 15N is relatively large (3 ‰ vs. ∼ 1 ‰;10

(Michener and Schell, 1994; Wada and Hattori, 1978), which provides a cautionary note
on the interpretation of the f ratio estimates. The largest zoo-plankton containing size
fractions (210–300 µm, 300–1000 µm) have higher 15N-PNrs values than are achievable
by primary production and derive from this process.

3 Results15

3.1 Total biomass variations

POC biomass concentrations in surface waters varied from ∼ 3 to 25 µM (Table 2),
reported as the “total” sum of fractions as filtered from as much as 2600 L of underway
supply water, and are in agreement with our 1 L single filter “bulk” filtrations (Appendix
A). Although there are some differences in POC results across the multiple sample20

methodologies of the entire mission e.g. underway supply, Niskin bottles, in-situ pumps
(Tremblay et al., 2014; Dehairs et al., 2014; Lasbleiz et al., 2014) these remain to be
fully assessed hence we focus on our own internally consistent results.

There were significant variations of POC concentrations within the Groups as well
as among them (Fig. 3). The Group 1 upstream Fe-poor HNLC reference station R225
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and the early sampled furthest south and coldest Group 3 plateau station A3–1 had
the lowest values. The recirculation initial survey Group 1 had somewhat higher values
(5–10 µM; with a single higher value of 15 at TEW-4), with little increase over time as
represented by the Group 2 recirculation time series (again with a single outlier at E4-
E). The Group 5 downstream Polar Front bloom stations had the highest biomasses,5

exceeding all but 1 of the Group 3 Plateau stations as well as all Group 4 coastal
stations. Note that the Group 5 stations from warmer waters north of and near the
Subantarctic front (TNS 1 and 2), where the upstream flow may not cross the Kergue-
len shelf, stand out from the other Group 5 stations as having much lower biomass,
similar to the upstream HNLC reference station (R2). This distribution of POC among10

the Groups provides important results: (i) waters that have not crossed the plateau
have low biomass, presumably reflecting a lack of Fe fertilisation, and (ii) downstream
blooms achieve higher concentrations of biomass than coastal blooms. Given that Fe
concentrations were highest in the coastal waters (Table 1; Sect. 2.2), this means that
ecosystem dynamics must also contribute importantly to the control of biomass.15

Distributions of POC with particle size also varied significantly (Fig. 3). All stations
exhibited the highest concentrations in the smallest size fraction (1–5 µm) when nor-
malized to the width of this fraction interval (Fig. 3), but these concentrations were
relatively constant across the Groups. In contrast the concentrations in the three phy-
toplankton dominated intermediate size fractions (5, 20, 50 µm filters) varied among20

the groups, and drove the total POC biomass changes described above. There were
significant variations within these 3 size fractions as well. Abundance decreased mono-
tonically with size at the HNLC reference station. The Group 1, and even more so the
Group 2, stations exhibited greater increases (as total biomass increased either among
stations in Group 1 or with time in the Group 2 time series; note that Table 2 lists all25

stations in chronological order) in the 20 µm fraction than the 5 µm fraction, but still
low values in the 50 µm fraction. The Group 3 plateau stations started with this slightly
“humped” (i.e. 5 < 20 > 50 µm) POC distribution, but as biomass increased the 50 µm
fraction came to dominate. Interestingly, this never occurred in the Group 4 coastal or
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Group 5 Polar Frontal biomass rich stations, which remained dominated by the 20 µm
size fraction.

Heterotrophic biomass (as represented by the two largest size filters, 210 and
300 µm) was generally an order of magnitude lower than autotrophic biomass (as rep-
resented by the 3 intermediate fractions), and more than 2 orders of magnitude lower if5

the smallest fraction is also included. It generally increased with total biomass in all the
Groups, except the Group 4 coastal waters. Station TEW-4 in Group 1 had unusually
high heterotrophic biomass, which explains its outlier status of exceptionally high total
POC for this Group.

3.2 Variations in BSi concentrations and associated contributions to biomass10

BSi estimates were not possible for the smallest size fraction (owing to use of a quartz
1 µm filter). Thus total BSi is underestimated, and comparisons to total POC must be
done cautiously. As shown in Fig. 3 (top row), the highest BSi levels were observed
in the Plateau stations late in the voyage, with these exceeding those of the Group 5
Polar Frontal bloom stations as well as all the other Groups. The lowest levels were15

in the Polar Frontal Zone and Subantarctic stations (Group 5, stations TNS1 and 2).
More detailed evaluation is possible on a size-fractionated basis. The initial survey of
Group 1 low biomass waters found a wide range of BSi/POC ratios that covered most
of the variability seen across the entire KEOPS2 study (Fig. 3; bottom row). Among the
other groups, the Group 3 plateau stations stands out for having high BSi/POC ratios20

in all the autotrophic fractions (5, 20, 50 µm filters), in contrast to uniformly low ratios for
the Group 5 stations. The presence of non-zero BSi/POC ratios in many of the largest,
zooplankton dominated size fractions (210 and 300 µm filters) reflects the presence of
chain-forming diatoms, although their POC biomass was insignificant in comparison to
that of the autotrophic intermediate fractions.25

Much of the range in BSi/POC ratios for the intermediate size fractions overlaps
with that expected for diatoms under iron-impoverished (BSi/POC ∼ 0.6) to iron-replete
(BSi/POC ∼ 0.15) conditions (Hoffman et al., 2007; Hutchins and Bruland, 1998;
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Takeda, 1998), but note that this is a simplistic view of diatom BSi/POC variations
in response to Fe inputs which ignores variations across taxa and across life cycle
stages (Leynaert et al., 2004; Marchetti and Cassar, 2009; Ragueneau et al., 2006;
Hoffman et al., 2007). There was no clear correspondence across the groups between
BSi/POC values and Fe fertilisation levels, in that the Group 4 Fe-rich coastal waters5

had intermediate BSi/POC ratios in comparison to the moderately Fe-rich Group 3
plateau and Group 5 downstream Polar Front waters. Community variations in the ra-
tio of diatom to non-diatom taxa thus appear to overprint any dependence on Fe for
diatom BSi/POC ratios.

3.3 13C variations10

We first note that the 13C-POCrs values of the HNLC reference station (R-2) were the
lowest of all stations, and we take them as an indication of expectations for slowly grow-
ing offshore polar phytoplankton (Fig. 4). In comparison, Group-1 and Group-2 stations
(which had indistinguishable 13C-POCrs values), were elevated by ∼ 2 ‰ (ranging from
1 to 4 ‰) in comparison to the R-2 HNLC reference level. These stations also displayed15

an increase in 13C-POCrs values from the smallest (1–5 µm) towards larger size frac-
tions (5–20, 20–50 µm) before decreasing again in the largest autotrophic size fraction
(50–210 µm) and generally also in the heterotrophic dominated size fractions (210–
300 and 300–1000 µm). This hump-shaped pattern was also present at the Group-3
plateau stations, where 13C-POCrs values were elevated further. The Group-4 coastal20

stations had the highest 13C-POCrs values, with values as high as −20 ‰.
This pattern has been found before in Antarctic polar waters, with the initial increase

in 13C-POCrs with size attributed to the effect of decreasing surface/volume on CO2
uptake (Popp et al., 1998, 1999), and the subsequent decrease in larger fractions at-
tributed to the presence of needle-shaped diatoms with high surface/volume (S/V )25

ratios similar to small cells (Trull and Armand, 2001). Detailed S/V estimates for our
samples are not yet available to assess this explanation or the influence of the pres-
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ence of chains of Fragillariopsis kerguelensis, Eucampia Antarctica, and Chaetoceros
Hyalochaeta diatoms which contribute strongly to the larger autotrophic size fractions
at many stations (L. Armand, personal communication, 2014). The presence of lipid-
rich zooplankton in the two largest size fractions is another probable cause of their low
13C-POC values, but one that we are unable to explore further.5

To translate our observed 13C-POC variations (in the autotrophic size classes) to
growth rates using the relationships described in the Methods (Sect. 2.5.1), we must
make some assumption about the size and shapes of the phytoplankton in the different
filter fractions. This choice is difficult in the absence of detailed observations, and we
took a very simple approach of representing the phytoplankton as rectangular prisms10

with square cross-sections, with the dimensions given in Table 3 for the 1, 5, 20 and
50 µm filter fractions. For the two larger fractions, we assumed diatoms were predomi-
nantly present as chains (based on microscopy; L. Armand, personal communication,
2014), and that the surface for CO2 exchange was accordingly reduced (the details ac-
company Table 3). These assumptions are of course tenuous because diatom chains15

vary in their morphology, and of course the relationship between S/V and uptake is
itself a large assumption. Nevertheless, on this basis, we obtained growth rate varia-
tions for each of the autotrophic size fractions (Table 2) and total community growth
rates (Fig. 5) for each station by summing results for the four smallest size fractions (1,
5, 20, 50 µm). Similar variations across the stations were obtained by limiting the sum20

to the 5, 20, and 50 µm fraction results (data not shown). The growth rates decreased
with size across the size fractions (from the 1 to the 50 µm filter) by factors of 10 to
15, in excellent agreement with allometric relationships assembled for a much broader
range of phytoplankton, although the high growth rates of 2 to 3 d−1 in the smallest frac-
tion are greater than expected for polar waters (Chisholm, 1992; Cózar and Echevarría,25

2005).
Our community (sum of fractions) model growth rates compare reasonably well with

a limited set of incubation results, calculated by integrating results from different light
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level deck onboard incubations (Cavagna et al., 2014) over the depth of the surface
mixed layers as shown in Table 4 (Park et al., 2014b).

The overall dynamic range of the incubation and model growth rates was identical
(0.18 d−1). For the model this ranged from 0.08 d−1 at the coldest early-sampled low
biomass station over the plateau (A3–1) to 0.27 d−1 at coastal station TEW-2. The in-5

cubations ranged from a low value of 0.065 d−1 at the HNLC reference station (A3–1
was not studied) to a high of 0.24 d−1 at the Group 5 Polar Front station F-L (coastal
stations were not studied). Overall correlation between the 8 pairs of results from the
same stations (though not sampled at identical times) was very poor (r2 < 0.1) but this
was driven by strong disagreement at the single Group 5 downstream Polar Front sta-10

tion where the incubations found their highest depth integrated growth rate (0.24 d−1 at
F-L) but our 13C-based estimates were much lower, and without this pair, the correlation
was reasonably strong (r2 = 0.67).

Given the importance of S/V variations to the growth rate estimates, variations be-
tween Groups with similar size distributions and phytoplankton flora (the Group 1, 215

recirculation and Group 3 plateau stations) are probably more reliably assessed than
variations between Groups with more distinct flora (coastal Group 4 stations and down-
stream Polar Front Group 5 stations). The Group 2 recirculation time series showed
quite constant and moderate growth rates (0.17–0.19 d−1). Interestingly, values during
the earlier Group 1 initial survey were somewhat higher in this region (0.19–0.21 d−1),20

and reached 0.23 d−1 at the southern end of the north-south transect over the plateau
(TNS 9, 10). Later sampled Group 3 plateau stations (A3–2, G1, E4W, E4W2) also had
high model growth rates (0.19–0.24 d−1).

These growth rate variations are in broad agreement with the development of blooms
in these regions – in that the lowest biomass accumulation over the study period oc-25

curred in the recirculation, with higher values over the plateau. In contrast, the model
suggests that the highest growth rates occurred in Group 4 coastal waters, where
biomass accumulation was only moderate, and found only moderate growth rates for
the Group 5 Polar Front stations where a strong bloom was already underway at the
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time of sampling (Fig. 2). It is not currently possible to determine why this misfit oc-
curred, and it is not really surprising given the simplicity of the model and the complex-
ity of the ecosystem dynamics. The misfit provides a useful cautionary note that the
apparent growth rate variations have no real quantitative validity; at best they provide
indicative information on the relative intensities of CO2 assimilation across the Groups.5

3.4 15N variations

Similarly to the carbon isotopes, we discuss the 15N-PN variations relative to co-located
15N-NO3 values (15N-PNrs =

15N-PN− 15N-NO3), for the reasons outlined in the Meth-
ods (Sect. 2.5.2). As shown in Fig. 4, almost all the phytoplankton dominated size frac-
tions (5–20, 20–50, 50–210 µm) had 15N-PNrs values that fall between the upper bound10

of production from nitrate (15N-PNrs = −4) and the lower bound of production from am-
monium (15N-PNrs = −8). There was also a tendency across all Groups towards lower
15N-PNrs in the smaller phytoplankton fractions; consistent with greater use of am-
monium by smaller phytoplankton (Armstrong, 1999; Karsh et al., 2003). The largest
zoo-plankton containing size fractions (210–300, 300–1000 µm) had higher 15N-PNrs15

values, which presumably result from the relatively large (∼ 3 ‰) trophic enrichment
that occurs in many marine organisms (Michener and Schell, 1994; Wada and Hattori,
1978). While these general variations with size held for all Groups, there were signif-
icant differences. In particular, the Group 3 plateau stations had the lowest 15N-PNrs
values for the larger autotrophic size classes (20–50 and 50–210 µm).20

Using the end-member mixing model (Methods Sect. 2.5.2), we obtained the esti-
mated community f ratios as shown in Fig. 5. The Group 3 plateau stations tended
to have somewhat higher values (∼ 0.7 vs. ∼ 0.6) than the Group 5 downstream Po-
lar Front bloom stations (TEW-7, TEW-8, and F-S); although this was not true for the
highest biomass station (F-L). As with the growth rates, the Group 1 recirculation sta-25

tions sampled early on the TNS transit were somewhat surprising in having relatively
high values, though these were not observed on the later TEW transit or during the
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Group 2 time series. Finally, the coastal stations had high apparent f ratios, including
values that exceed 1 (pointing to limitations of the model). Importantly, these high val-
ues are driven by the relatively low 15N-NO3 values in these coastal waters, rather than
by higher 15N contents in their PON. The low 15N-NO3 values are a surprise given the
relatively low nitrate concentrations in these coastal waters (Fig. 6), suggesting other5

processes are at work. Our observations are insufficient to explain this. One possibility
is delivery of low 15N nitrate from sedimentary nitrification, but this still leaves open
the question of why recently formed PN does not track the overall nitrate pool isotopic
composition. Reliance on the f ratios from these coastal stations is thus not advisable.
In contrast, comparison of our offshore f ratios to incubation results (Fig. 5; Cavagna10

et al., 2014) shows similar values and excellent correlation (r2 = 0.90; provided the
very low incubation based f ratio at the HNLC station R2 is discounted).

3.5 Nutrient depletion estimates

Surface water nutrient concentrations provide an initial perspective on the efficiency
of the biological pump. Overall, the surface nitrate concentrations indicate lower val-15

ues north than south of the Polar Front, but of course this may reflect longer term,
larger region, controls on nitrate. Determination of the role of local recent biological
activity in nitrate depletion requires a much closer examination. Figure 6 shows high
spatial resolution maps of nitrate, temperature, and salinity obtained with the sensors
operated continuously underway. Waters upstream from the plateau and south of the20

Polar Front were cold and saline with high nitrate concentrations, with these parame-
ters reaching their highest values over the central plateau early in the voyage (near the
Group 3 KEOPS bloom reference station A3–1), with temperature less than 2 ◦C, salin-
ity greater than 33.9, and nitrate above 30 µM. At the other extreme, Group 4 coastal
waters had the lowest surface nitrates (below 10 µM), in association with very fresh25

(salinity< 33.6) and relatively warm (> 3.5 ◦C) waters. The Group 5 waters downstream
in the bloom that formed north of the Polar Front well to the east (near 74–75◦ E and
the Group 5 stations TEW-7, -8, F-L and F-S), also had relatively low surface nitrates
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(15–20 µM) and low salinities (33.7–33.8), and were quite warm (> 4 ◦C). In compari-
son, the Group 2 recirculation feature had intermediate nitrate concentrations between
the plateau, coastal, and downstream Polar Front plume conditions.

These conditions evolved over the course of the study, with decreases in surface
nitrate values being particularly strong (reaching 6–8 µM from winter conditions; Ta-5

ble 4) in regions of rapid biomass accumulation over the central plateau (especially
along the plateau edge to the north of the A3 station) and in the bloom north of the Po-
lar Front (near stations TEW-8, F-L, F-S). Low nitrate concentrations were also found
in association with relatively low salinities to the southeast of the recirculation region,
where the ship transited without station sampling. This appears to represent southward10

supply of waters from north of the Polar Front in association with its meandering (as
also suggested by the satellite chlorophyll image sequences (Fig. 2 and animation in
the Supplementary Materials, and by water parcel trajectories estimated from drifters
and satellite altimetry; d’Ovidio et al., 2014). This process also appears to have driven
warming and freshening in the recirculation over time. Thus nitrate budgets require15

partitioning of temporal changes driven by both hydrology and biology.
To separate local biological nitrate depletion from hydrological controls, we exam-

ined nitrate depletions in surface waters relative to estimates of initial winter nitrate
concentrations for each station, as estimated from CTD profiles. We considered in-
tegrations to two different depths: (a) the frequently used choice (e.g. Arrigo et al.,20

1999; Sweeney et al., 2000) of the depth of the remnant winter water temperature min-
imum (Tmin-depth), and (b) shallower depths based on a threshold increase in salinity of
0.05 (Sthreshold-depth). This second choice was motivated by the presence of significant
salinity gradients above the Tmin-depth (examples are shown in Fig. 7), particularly in
waters near and north of the Polar Front, suggesting either that the most recent win-25

ter mixing was not as deep as previous years, or that horizontal mixing had brought
fresher waters over the top of the Tmin, and thus in either case that nitrate depletion be-
tween the Tmin-depth and Sthreshold-depth was not attributable to recent consumption.
Note that each of these nitrate depletion metrics reflects the sum of export since strati-
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fication and the current standing stock, which may make a contribution to future export
(at some unknown discounted rate owing to heterotrophic loss).

The two nitrate depletion metrics give differing views of the contributions to export
from the different community Groups (as summarized in Fig. 8). Estimates based on
the Tmin approach were much higher than those from the Sthreshold approach, because5

the Tmin-depth and was generally deeper and had higher nitrate than the Sthreshold-depth
(Table 2). The Tmin approach also yielded more widely varying results within a Group,
and suggested that the greatest depletion occurred for the downstream plume of Ker-
guelen island coastal waters that formed the bloom to the north of the Polar Front. In
contrast, the Sthreshold approach identified the highest seasonal nitrate depletion as oc-10

curring over the central plateau, with somewhat lower values in the recirculation feature,
followed by the Polar Frontal bloom and the reference station. These methodological
differences were even larger for the silicic acid depletions (Fig. 8). This analysis under-
lines the importance of appropriate winter nitrate (and silicic acid) surface nitrate con-
centration estimates to the assignment of export magnitudes. We believe the Sthreshold15

approach is the most appropriate given the observed salinity stratification, especially
for the relatively weak (deep, winter) thermal stratification observed in the Group 5
stations near the Polar Front. (Note that we could not estimate export for the Group 4
Kerguelen Island coastal stations because neither the Tmin nor the Sthreshold approaches
were compatible with their shallow water columns). Both the Tmin and Sthreshold based20

nitrate depletions are relatively small as percentages of the initial upper water column
inventories (2–18 %; Table 4). This reflects the early seasonal sampling, as well as
a significant extent of recycling via nitrification (Dehairs et al., 2014; Lasbleiz et al.,
2014). Fractional depletions of silicate were higher (3–53 %; data but not values shown
in Table 4), consistent with the results of the autumn KEOPS expedition which revealed25

low nitrate removal but near complete Si depletion (Mosseri et al., 2008).
Our preferred Sthreshold nitrate depletion estimate can be further refined by removal

of the standing stock of other nitrogen forms produced by the ecosystem (ammonium,
urea, dissolved organic nitrogen, particulate nitrogen) to give a better estimate of N
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export from surface waters. PN dominated these stocks, with concentrations up to 5 µM
(Lasbleiz et al., 2014), in contrast to ammonium, nitrite, and surface enhancements of
DON (i.e. the fresh component) with concentrations below 1 µM (Dehairs et al., 2014;
Blain et al., 2014). Subtracting PN stocks (integrated to 200 m depth; Lasbleiz et al.,
2014) suggests that for many stations about half of the consumed nitrate has been5

exported and about half remains in the water column (Table 4).
A few stations exhibited negative N export estimates, because of higher PN stocks

than their nitrate depletion estimates (Table 4). This could arise from either underesti-
mation of nitrate depletions owing to entrainment of subsurface waters (an effect that
can halve nutrient depletion estimates under conditions of weak water column strat-10

ification and strong winds; Wang et al., 2003), or horizontal interleaving of relatively
undepleted water parcels with relatively PN rich waters. Notably the largest excesses
of PN stock over nitrate depletions occurred at stations located close to fronts (TEW-3
and F-S).

Viewed at the Group level, the nitrate depletions and N export estimates (Fig. 8) pro-15

vide very useful insights. Focusing on the salinity threshold approach, we see that the
highest nitrate depletions occurred for the Group 3 plateau stations, with significantly
lower values in the Group 1 and Group 2 recirculation stations (Fig. 8 middle panel).
However, the larger standing stock of PN biomass over the plateau means that the
export up to the time of sampling was only slighter higher than in the Group 1 and 220

recirculation stations. This aspect is even stronger for the Si budgets, with the export of
Si higher for Group 1 and 2 than over the plateau in Group 3, emphasizing the retention
of N in comparison to Si during export.

Another interesting insight is that, in comparison to the Group 3 plateau stations,
nitrate depletion and export are much lower in the Group 5 Polar Frontal bloom stations.25

Considering the Sthreshold-depths (Table 4), and the associated Si depletion and export
results (Fig. 8), helps understand why the Polar Frontal bloom produces less nitrogen
depletion and export than the plateau bloom. Firstly, the Polar Frontal bloom depletion
is a shallow feature compared to that over the plateau (Fig. 7), secondly a much greater
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proportion of the assimilated nitrogen is still present as standing stock (Fig. 8 bottom
panel), and thirdly, there is some suggestion that more nitrogen than silicon is retained
as standing stock (as a portion of depletion; compare the Fig. 8 middle and bottom
panels).

4 Discussion5

Our overall interest is to understand community responses to iron fertilisation, with
a particular focus on ecosystem control of nutrient depletion and carbon export. We
expect this response to vary as a function of iron inputs, but also possibly with time
since fertilisation and its persistence (as a result of cascading trophic effects), and time
of year (as a result of strong seasonality of the physical and biological background).10

Specific probable seasonal modulators of the response to iron include insolation, strat-
ification, and the abundance of organisms with life cycles that resonate at the seasonal
scale, e.g. larger zooplankton. In the following sections, we summarize the structure
and function variations, relate them to temporal settings (as developed in the Methods
section), and compare them to our estimates of nitrate (and silicic acid) depletion from15

surface waters as a proxy for carbon export.

4.1 Overview of community structure and function variations

Our size-fractionated chemometric parameters for microbial ecosystem structure and
function identified significant differences among the various environments sampled by
the KEOPS2 program. The upstream HNLC reference station (R2) displayed low phyto-20

plankton abundance, relatively high BSi/POC ratios, slow growth rates (as indicated by
strong discrimination against 13C uptake), and 15N-PN values suggesting that growth
was predominantly on nitrate (although this result must be viewed with caution since it
differs from the low f ratio obtained by incubation (Cavagna et al., 2014). These char-
acteristics are consistent with its selection as a HNLC reference, but the total integrated25
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biomass was higher than the lowest values seen in Southern Ocean HNLC waters and
mesopelagic Ba levels indicated POC remineralization, possibly indicating a low-level
early production event (Lasbleiz et al., 2014; Jacquet et al., 2014) as a result of a small
degree of Fe fertilisation, possibly from particulate Fe inputs from the nearby Leclaire
Rise (van der Merwe et al., 2014).5

The moderate iron fertilisation of the recirculation feature downstream from the
plateau (stations in Groups 1 and 2) increased growth rates by ∼ 0.02 to 0.04 d−1

(Fig. 5) and biomass ∼ 2-fold (increasing from ∼ 50 % to 4-fold over time; Fig. 3), par-
ticularly in the larger phytoplankton size fractions (20–50 and 50–210 µm). There was
no systematic change in BSi/POC ratios, with some stations showing lower values10

consistent with relief of iron limitation, but others showing higher values. Whether this
resulted primarily from changes in species or the presence of empty frustules is un-
clear, although the analysis of depletions and standing stocks suggests loss of empty
frustules (as did earlier work during KEOPS; Mosseri et al., 2008). This may reflect
varying levels of low production coupled closely to export, as well as the possibility15

that production was in part limited by variations in mixed layer depth (Lasbleiz et al.,
2014). The 15N-PN observations indicated growth primarily on nitrate (as at the HNLC
reference station).

Both of the more strongly iron fertilised offshore regions (the Group 3 central plateau
and the Group 5 Polar Front bloom, Table 1.) exhibited increased growth rates in com-20

parison to HNLC waters (elevated by ∼ 0.05 d−1), but their community structures were
quite different. The plateau stations exhibited most of their enhanced biomass in the
largest phytoplankton size fraction (50–210 µm); whereas Polar Frontal biomass in-
creases were dominated by the next smaller size (20–50 µm). This was also true for
the very strongly Fe fertilized Group 4 coastal stations where growth rates were even25

more elevated (by 0.1–0.19 d−1 above the HNLC reference). Use of ammonium vs.
nitrate was also different between the plateau and downstream Polar Frontal blooms,
with the plateau stations using a greater proportion of nitrate.
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4.2 Links between community structure and export

Overall, one of the most important outcomes of our results regarding export (presented
in Sect. 3.5 and Fig. 8) is that surface biomass is not a good guide to the history of
export, i.e. the low biomass recirculation feature exhibited as much export as from the
higher biomass Polar Front or Plateau blooms. This same conclusion was reached5

on the basis of sparse sediment trap deployments at 200 m depth (Laurenceau et al.,
2014) and 234Th depletions in surface waters, which identified the recirculation feature
as having the highest C exports of all regions (Planchon et al., 2014).

The cause of the low export, at 200 m depth, from the Polar Front bloom (Group 5
downstream stations) may in part be the shallowness of its high biomass surface layer10

(only ∼half that of the recirculation feature and plateau; Lasbleiz et al., 2014; Lau-
renceau et al., 2014), allowing for more remineralisation before export through the
200 m depth horizon.

The cause of the high export from the low biomass recirculation feature is less easy
to understand – it suggests that production (also found to be moderately high in these15

waters compared to the other regions; Cavagna et al., 2014) and export have been in
close balance in these waters. This is a phenomenon often found in association with
small phytoplankton dominated communities, and attributed to tight coupling with small
grazers (Boyd and Newton, 1999; Cullen, 1995). Our observations show that this tight
coupling also persisted as very large, moderately to heavily silicified diatoms (Fig. 3)20

became dominant. This suggests that tight coupling may have also been achieved for
the larger phytoplankton. Notably there were abundant larger herbivorous zooplank-
ton in the recirculation region (Carlotti et al., 2014), and large fecal pellets as well as
diatom aggregates were important contributors to export, based on observations in
polyacrylamide gel filled sediment traps (Laurenceau et al., 2014).25
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4.3 Influence of fertilisation time and persistence on ecosystem responses

As developed in the Methods section, we consider four possible relative indices for the
nature of the Fe fertilization and the overall ecosystem responses:

i. Intensity of Fe fertilisation (lowest to highest):

recirculation feature<plateau <≈Polar Front plume� coastal stations5

ii. Elapsed time since Fe fertilisation and its persistence (most recent to oldest):

Polar Front plume< recirculation feature<≈plateau < coastal stations

iii. Magnitude of biomass accumulation (lowest to highest, at end of voyage):

recirculation feature< coastal stations < plateau <≈Polar Front plume

iv. Elapsed time since initiation of biomass accumulation (most recent to oldest):10

recirculation feature<Polar Front plume<≈plateau � coastal stations

If we put aside the coastal stations, where depletion and export could not be esti-
mated, we can ask which of these might explain why the recirculation feature achieved
high export in comparison to its low to moderate biomass and low to moderate intensity
of iron fertilisation. Index (ii) emerges as the most likely candidate – the recirculation15

feature receives low intensity ongoing iron fertilisation as a result of the recirculation of
waters along the Polar Front and into it from the northeast (D’Ovidio et al., 2014), with
possible augmentations from shallow Ekman transport from the nearby Kerguelen shelf
(D’Ovidio et al., 2014; Sanial et al., 2014). This is a fascinating possibility, because it
suggests ecosystems are modulated differently by persistent as opposed to punctual20

inputs of Fe.
Index (iv) also lists the recirculation as an end-member, but it seems unlikely that

lower biomass is of itself a driver of low export, given that many studies of export have
found positive correlations with biomass, though with significant modulation by com-
munity structure, e.g. Boyd and Newton, 1995, 1999; Boyd and Trull, 2007; Buesseler,25

1998; Buesseler et al., 2001, 2007.
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Do any of these indices also provide insight on why the community differs between
the two strongly iron fertilised regions (the central plateau vs. the downstream Polar
Front)? For size structure, none of the time perspectives (indices ii–iv) appears to help
– the plateau and recirculation features with their dominance by very large diatoms (vs.
the more balanced size structure of the coastal and downstream Polar Front bloom)5

do not fall appropriately along any of the time spectrums of these three “clocks”. To
the extent that the intensity of iron fertilisation (index i) may have been higher in both
coastal and Polar Front waters than over the plateau, despite similar current Fe levels
(see the Methods section for discussion), this could provide an explanation, but it would
imply that more Fe produces communities with smaller cells and thus be counter to the10

results of artificial iron experiments (Boyd et al., 1999, 2007). This leaves us with the
strong possibility that the community structure differences between the plateau and Po-
lar Front regions derive in part from other factors beyond levels, timing, or persistence
of iron fertilisation.

5 Conclusions15

A complex mosaic of phytoplankton blooms forms in response to natural iron fertilisa-
tion from the Kerguelen Plateau. Community structure variations in the downstream wa-
ters appear to have multiple influences, including the intensity and persistence of iron
fertilisation, the progress of biomass accumulation, and possibly whether they were
sourced from plateau vs. coastal waters. These differences developed even though20

phytoplankton growth rates appeared to increase more directly with the level of iron
availability, pointing to additional influences from trophodynamics. These community
effects strongly decoupled levels of surface biomass from levels of particle export to
the ocean interior over the timescales of spring bloom development studied here.
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Appendix A: Chemical and isotopic analyses

A1 Particle collection

The ship supply collected water from ∼ 7 m depth via a 10 cm diameter plastic hose ex-
tended through a vertical stainless-steel stand-pipe protruding ∼ 1 m below the ship’s
forward hull. A sealed rotary propeller pump drew the supply through a 1000 µm nylon5

cylindrical pre-filter and distributed it via a manifold at more than 50 L min−1, with most
water returned over the side. This pre-filter was cleaned before each sample, and then
a manifold valve was opened to supply a smaller flow of 8–10 L min−1 through our small
volume bulk particle and large volume sequential filtration systems. The large volume
size fractionation system passes the water through a 47 mm diameter 1000 µm screen10

(to remove any large particles that managed to pass through the pump pre-filter at
higher flow rates), followed by 142 mm diameter Nitex nylon screens (300, 210, 50, 20,
and 5 µm mesh sizes) and a final 142 mm diameter QMA quartz fibre filter (1 µm nom-
inal pore size, Sartorius). The small volume bulk enclosed sample system rapidly fills
a precisely known ∼ 1 L volume and low pressure filters it through a QMA quartz filter15

(muffled and pre-loaded under clean conditions into in-line filter holders). Quartz filters
were used in preference to glass to minimize 234Th backgrounds and to give better
combustion characteristics during elemental and isotopic analysis. The flow path al-
lowed a larger flow rate through the larger meshes (Table 2). The very minor amounts
of material on the 1000 µm screen were not analysed. Particles on the other nylon20

screens were immediately resuspended (1 µm filtered seawater from the sampling lo-
cation) and refiltered onto 25 mm diameter, 1.2 micron pore size silver membrane fil-
ters (Sterlitech) and, along with the QMA filter (Sartorius T293), were dried at 60 ◦C.
Following drying, the particles were examined under stereo-microscopy onboard the
ship at magnification up to 50x, and then analysed non-destructively onboard for 234Th25

activities (Planchon et al., 2014). All other analyses were carried out in the Hobart
laboratories.
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A2 Particle analyses

Biogenic silica (BSi), Particulate organic carbon (POC), and particulate nitrogen (PN),
δ13C-POC, and δ15N-PN analyses were carried out in Hobart. For BSi, a single 5 mm
diameter punch of the silver filters was analysed using an approach similar to the meth-
ods of Paasche (1973) and Queguiner (2001). The biogenic silica was dissolved by5

adding 4 mL of 0.2 M NaOH and incubating at 95 ◦C for 90 min. Samples were then
rapidly cooled to 4 ◦C and 1 mL of 1 M HCl was added. Thereafter samples were cen-
trifuged at 1880×g for 10 min and the supernatant was transferred to a new tube and
diluted with artificial seawater (36 g L−1 NaCl). Biogenic silica concentrations were de-
termined by spectrophotometry using an Alpkem model 3590 segmented flow analyser10

and following USGS Method I-2700-85 with these modifications: ammonium molybdate
solution contained 10 g L−1 (NH4)6Mo7O24, 800 µL of 10 % sodium dodecyl sulphate
detergent replaced Levor IV solution, acetone was omitted from the ascorbic acid so-
lution, and artificial seawater was used as the carrier solution. Biogenic silica standard
concentrations were 0 µM, 28 µM, 56 µM, 84 µM,112 µM and 140 µM. Standard curves15

across all runs had an average slope of 48 438±454 (1 s.d. n = 4). The mean concen-
tration of repeated check standards (140 µM) was 139.85±0.31 µM (n = 68). The aver-
age blank value was 0.009±0.006 µ moles punch−1 (1 s.d. n = 5), equating to 0.08 % of
the mean of 50 µm fraction samples (highest concentrations) and 1.22 % of the mean
of 300 µm fractions (lowest concentrations).20

For the POC and PN analyses, 3×5 mm punched sub-samples of the 25 mm di-
ameter silver membrane filters were placed in acid-resistant silver capsules (Sercon
SC0037), treated with two 10 µL aliquots of 2N HCl (and 2×20 µL for the bulkier QMA
filter sub-samples, 5×5 mm punches) to remove carbonates (King et al., 1998), and
dried at 60 ◦C. A first set of sub-samples was analysed for POC and PN concentra-25

tions by combustion of the encapsulated samples in a Thermo-Finnigan Flash 1112
elemental analyser with reference to sulphanilamide standards in the Central Sciences
Laboratory of the University of Tasmania. Precision of the analyses was ∼ 1 %, but
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the overall precision was limited to 5–10 % by the sub-sampling of the filters that often
had patchy or uneven coverage. Based on the POC and PN results, a third set of sub-
samples was punched for isotopic analyses with the number of punches adjusted to
ensure similar voltages within the dynamic range of the spectrometer.

δ13C-POC and δ15N-PN on the silver filters were analysed separately using a Fisons5

NA1500 Elemental Analyser coupled via a Con-flow IV interface to a Finnigan Delta
VPLUS isotope ratio mass spectrometer at CSIRO Marine and Atmospheric Re-
search with separate oxidation and reduction columns installed. For the QMA filters,
a Flash 2000 EA1112 HT Thermoscientific was fitted with a single combined oxida-
tion/reduction column with dead spaces minimised for improved precision at < 20µg N.10

During all 15N analyses, CO2 was removed using a sodium hydroxide scrubber (self-
indicating Ascarite 2, Thomas Scientific) to avoid CO+ interference at m/z 29 and 28
(Brooks et al., 2003). The δ15N and δ13C isotopic compositions are expressed in delta
notation vs. atmospheric N2 and the VPDB standard, respectively. Standardization was
by reference to CO2 and N2 working gases injected before and after each sample, with15

normalization to solid reference materials inserted (along with blank cups) after each
6 samples. For δ13C, the solid standards were NBS-22 oil (RM8539, −29.73 ‰) and
NBS-19 (limestone, RM8544, +1.95 ‰), and casein (Protein Standard OAS B2155
batch 114 859, Elemental Microanalysis, δ13C +5.94 and δ15N −26.98). For δ15N, the
solid standards were IAEA-N1 (ammonium sulphate, RM8547, +0.43 ‰) and IAEA-20

N3 (potassium nitrate, RM8549, +4.72 ‰) and casein (as above). Based on replicate
analyses of these standards the estimated precisions were typically 0.1 ‰ or 1 stan-
dard deviation for both δ13C (n = 15) and δ15N (n = 20).

Sample replicates generally had comparable precisions to the reference materials,
but filters with patchy coverage had lower precision (0.3 ‰ in the worst cases, pre-25

sumably reflecting isotopic heterogeneity within the size fractions). In addition, a small
correction (< +0.4 ‰ was made to the QMA filter results after indirect measurement of
the blank (Avak and Fry, 1999) δ13C=−29.6 at ∼ 10 % of the sample signal strength.
Procedural blanks were measured by passing 1 L of seawater through the onboard
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pumping system and subsequent processing in parallel to the samples, and yielded
negligible amounts of POC and PN (< 1 % of typical samples), and with ratios close to
those of the samples, and no correction was applied.

A3 Dissolved component analyses

Underway nitrate concentrations were mapped using an ultra-violet nitrate sensor5

(ISUS V3, Satlantic), calibrated 3 times during the voyage against sea water nitrate
standards (∼ 15, 20, 25, 30 µM), with additional comparisons to nitrate samples col-
lected from the underway supply at every station sampled for particle analyses, yield-
ing precision of ∼ 1.5 µM. Nitrate concentrations for these samples and the CTD-Niskin
bottles were measured onboard using a segmented flow spectrometric autoanalyser,10

with precision of ∼ 0.1 µM. The N and O isotopic compositions of dissolved nitrate were
measured via its bacterial conversion to nitrate to nitrous oxide followed by isotope ratio
mass spectrometry at the Vrije Universitait Bruxelles, with precision of approximately
0.2 ‰ for 15N-NO3 and of 0.4 ‰ for 18O-NO3 (further analytical details are provided in
Dehairs et al., 2014).15

Samples for measurement of the carbon isotopic composition of dissolved inorganic
carbon were collected in 10 mL Exetainer vials, with airtight septa, by filling the tubes
from QMA filtered (∼ 0.8 µm) underway supply and preserving them by addition of 20 µL
of saturated mercuric chloride. 1 mL aliquots were withdrawn and injected into acid
washed, helium flushed Exetainer tubes. 100 µL of ortho-phosphoric acid (99 %, Fluka)20

was injected and the headspace equilibrated at 25 ◦C for 18 h (modification of Assayag
et al., 2006). Solid NBS19 CaCO3 (200 to 230 µg, δ13C= +1.98, n = 10 standard devia-
tion 0.02), and bulk quality assurance sediment trap material (1200 µg, 12.9 % CaCO3,
δ13C= +2.9),was weighed into smooth wall tin capsules (5×5.5 mm SC1190, Sercon)
and lowered into the Exetainer tubes, purged, then 1 mL of DIC free sea water added25

before proceeding as for the samples. Blank, standard and sample headspaces (one
standard after each 5 samples) were sampled using a Finnigan GasBench2 (Thermo-
scientific) fitted with a 100 µL sample loop. The headspace gases from the Gas Bench
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were analysed (continuous flow) by the DeltaVPlus isotope ratio mass spectrometer and
Isodat 3 software at CSIRO Marine and Atmospheric Research.

The Supplement related to this article is available online at
doi:10.5194/bgd-11-13841-2014-supplement.
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Table 1. Station Groups.

Group Map colour1 Group name Timing in voyage Biomass2 Fe Supply3

1 blue recirculation survey and HNLC early low low
2 green recirculation time series early through late low mod.
3 yellow plateau early+ late mod. to high mod. to high
4 red coastal early mod., stable very high
5 purple downstream Polar Front middle+ late high mod. to high

1 Figure 1 shows a map of station locations.
2 Figure 2 shows biomass distributions at the time of sampling and the animation (Supplement) shows seasonal timing of it’s
accumulation.
3 The timing of Fe supply is discussed in the text.
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Table 2. Chemometric results for size-fractionated particles.

Station Volume fraction POC PN PBSi POC/ PBSi/ PBSi/ δ13CPOC δ13CPOC-δ13CDIC δ15NPN δ15NPN-δ15NO3 f ratio growth rate
Date/location L µm µM µM µM PN POC PN ‰V−PDB ‰V−PDB ‰air ‰air d−1

group atom atom atom δ13CDIC ‰V−PDB δ15NO3 ‰air [CO2]aq

A3 1 1181 300 0.01 0.00 0.00 11.15 0.21 2.30 −25.01 −26.24 #N/A #N/A
20 Nov 2011 1181 210 0.02 0.00 0.00 6.46 0.17 1.13 −26.16 −27.39 3.97 −2.12
50.6300◦ E 184 50 0.73 0.13 0.60 5.62 0.83 4.65 −23.09 −24.32 1.16 −4.93 0.77 0.07
72.0800◦ S 184 20 0.65 0.10 0.50 6.29 0.76 4.79 −22.09 −23.32 −0.28 −6.37 0.41 0.22
group3 184 5 0.14 0.02 0.08 7.91 0.58 4.57 −24.25 −25.49 0.37 −5.72 0.57 0.58

184 1 1.74 0.33 5.29 −27.07 −28.31 2.39 −3.70 1.08 0.89
total 3.29 0.58 1.19 5.63 0.77 4.65 −25.07 1.59 0.87 0.08
bulk 3.55 0.64 5.52 1.23 6.09 24.23

TNS 10 1599 300 0.02 0.00 0.01 6.53 0.32 2.11 −24.35 −25.62 2.64 −3.59
21 Oct 2011 1599 210 0.02 0.00 0.01 6.17 0.36 2.25 −25.30 −26.57 2.57 −3.66
50.2142◦ E 271 50 0.77 0.14 0.62 5.70 0.80 4.56 −22.55 −23.81 0.60 −5.63 0.59 0.21
72.1320◦ S 271 20 0.42 0.07 0.33 5.93 0.78 4.63 −22.38 −23.65 −0.18 −6.41 0.40 0.56
group3 271 5 0.12 0.02 0.07 6.94 0.57 3.99 −24.02 −25.28 0.48 −5.75 0.56 1.04

271 1 1.42 0.26 5.53 −26.61 −27.88 2.49 −3.74 1.07 2.27
total 2.77 0.49 1.03 5.69 0.76 4.48 −24.70 1.51 0.82 0.23
bulk 3.86 0.74 5.20 1.27 6.23 23.63

TNS 09 869 300 0.03 0.00 0.01 6.84 0.23 1.58 −24.63 −25.93 3.47 −2.86
21 Oct 2011 869 210 0.09 0.02 0.03 5.40 0.30 1.60 −25.77 −27.07 3.11 −3.22
49.7991◦ E 42 50 11.60 1.82 9.84 6.37 0.85 5.41 −22.57 −23.87 1.25 −5.08 0.73 0.21
72.2002◦ S 42 20 1.87 0.27 1.64 7.02 0.88 6.16 −22.32 −23.62 1.54 −4.79 0.80 0.56
group3 42 5 0.81 0.12 0.45 7.03 0.55 3.90 −23.15 −24.45 1.00 −5.33 0.67 1.11

42 1 8.53 1.40 6.11 −26.52 −27.82 1.20 −5.13 0.72 2.29
total 22.92 3.62 11.96 6.33 0.83 5.38 −24.06 1.26 0.73 0.23
bulk 6.97 1.17 5.98 1.30 6.33 23.63

TNS 08 997 300 0.04 0.01 0.01 5.47 0.23 1.25 −24.13 −25.44 3.98 −2.44
21 Oct 2011 997 210 0.12 0.02 0.02 5.03 0.15 0.73 −25.35 −26.66 3.45 −2.97
49.4628◦ E 216 50 1.46 0.23 1.18 6.37 0.80 5.12 −23.81 −25.12 1.75 −4.67 0.83 0.19
72.2401◦ S 216 20 0.60 0.09 0.51 6.93 0.85 5.91 −22.27 −23.58 1.90 −4.52 0.87 0.56
group1 216 5 0.18 0.03 0.11 6.82 0.62 4.21 −23.59 −24.90 0.82 −5.60 0.60 1.07

216 1 2.77 0.49 5.60 −26.00 −27.31 0.20 −6.22 0.44 2.42
total 5.18 0.87 1.83 5.96 0.76 4.88 −24.83 0.92 0.60 0.21
bulk 6.14 1.09 5.61 1.31 6.42 23.63

TNS 06 1025 300 0.03 0.00 0.00 6.26 0.06 0.40 −24.77 −26.09 3.77 −2.57
22 Oct 2011 1025 210 0.05 0.01 0.01 5.02 0.18 0.89 −24.92 −26.25 3.75 −2.59
48.7989◦ E 110 50 1.56 0.27 0.88 5.86 0.57 3.32 −23.14 −24.46 2.29 −4.05 0.99 0.19
72.3006◦ S 110 20 0.93 0.14 0.58 6.49 0.63 4.08 −22.63 −23.96 2.15 −4.19 0.95 0.54
group1 110 5 0.34 0.05 0.14 6.93 0.42 2.91 −24.25 −25.57 1.31 −5.03 0.74 0.99

110 1 4.30 0.85 5.04 −26.31 −27.63 0.09 −6.25 0.44 2.28
total 7.20 1.33 1.62 5.43 0.56 3.43 −25.04 0.84 0.62 0.21
bulk 4.73 0.79 6.02 1.33 6.34 23.18

TNS 05 1081 300 0.03 0.01 0.01 5.67 0.20 1.11 −24.28 −25.55 4.06 −2.18
22 Oct 2011 1081 210 0.07 0.02 0.01 4.80 0.08 0.39 −25.18 −26.45 4.06 −2.18
48.4677◦ E 151 50 1.04 0.19 0.78 5.50 0.75 4.14 −24.73 −26.01 2.16 −4.08 0.98 0.17
72.2018◦ S 151 20 0.61 0.09 0.51 6.53 0.84 5.50 −22.95 −24.23 2.06 −4.18 0.95 0.52
group1 151 5 0.28 0.04 0.17 6.72 0.61 4.11 −23.81 −25.08 1.26 −4.98 0.76 1.03

151 1 2.66 0.49 5.48 −26.64 −27.92 0.45 −5.79 0.55 2.20
total 4.68 0.83 1.48 5.65 0.73 4.29 −25.54 1.15 0.71 0.19
bulk 4.20 0.75 5.62 1.27 6.24 23.18
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Table 2. Continued.

Station Volume fraction POC PN PBSi POC/ PBSi/ PBSi/ δ13CPOC δ13CPOC-δ13CDIC δ15NPN δ15NPN-δ15NO3 f ratio growth rate
Date/location L µm µM µM µM PN POC PN ‰V−PDB ‰V−PDB ‰air ‰air d−1

group atom atom atom δ13CDIC ‰V−PDB δ15NO3 ‰air [CO2]aq

TNS 03 975 300 0.03 0.01 0.01 6.14 0.31 1.88 −25.91 −27.16 3.33 −2.87
23 Oct 2011 975 210 0.02 0.00 0.01 7.00 0.54 3.82 −25.41 −26.66 3.29 −2.91
47.8336◦ E 165 50 0.91 0.16 0.66 5.82 0.73 4.25 −22.98 −24.23 1.74 −4.46 0.89 0.19
71.9196◦ S 165 20 0.45 0.07 0.31 6.79 0.69 4.67 −22.98 −24.23 1.28 −4.92 0.77 0.51
group1 165 5 0.17 0.02 0.06 8.09 0.38 3.07 −24.07 −25.32 0.75 −5.45 0.64 0.99

165 1 2.95 0.54 5.51 −26.96 −28.21 1.17 −5.03 0.74 2.07
total 4.54 0.79 1.06 5.76 0.67 4.20 −25.64 1.30 0.77 0.21
bulk 4.04 0.69 5.83 1.25 6.20 22.75

TNS 02 784 300 0.01 #N/A 0.00 #N/A 0.20 #N/A −26.60 −27.93 #N/A #N/A
23 Oct 2011 784 210 0.01 0.00 0.00 10.77 0.20 2.19 −25.99 −27.32 #N/A #N/A
47.3318◦ E 170 50 0.17 0.02 0.07 8.20 0.43 3.57 −23.46 −24.79 2.57 −3.81 1.05 0.18
71.7013◦ S 170 20 0.40 0.06 0.15 6.32 0.38 2.38 −21.95 −23.28 1.89 −4.49 0.88 0.55
group5 170 5 0.12 0.02 0.04 6.98 0.32 2.27 −25.54 −26.87 1.93 −4.45 0.89 0.85

170 1 2.91 0.53 5.45 −26.09 −27.43 1.32 −5.06 0.73 2.27
total 3.62 0.64 0.27 5.69 0.38 2.61 −25.50 1.43 0.76 0.21
bulk 2.60 0.44 5.92 1.33 6.38 22.75

TNS 01 1279 300 0.03 0.01 0.00 5.53 0.03 0.18 −25.14 −25.93 3.32 −3.62
23 Oct 2011 1279 210 0.02 0.00 0.00 7.21 0.11 0.81 −26.26 −27.05 1.53 −5.41
46.8333◦ E 256 50 0.16 0.02 0.05 6.77 0.30 2.03 −25.66 −26.45 1.12 −5.82 0.54 0.16
71.5011◦ S 256 20 0.19 0.03 0.07 6.83 0.39 2.68 −25.02 −25.81 1.71 −5.23 0.69 0.45
group5 256 5 0.13 0.02 0.04 7.22 0.34 2.43 −24.86 −25.65 1.70 −5.24 0.69 0.96

256 1 2.88 0.52 5.52 −26.04 −26.83 −0.34 −7.28 0.18 2.42
total 3.40 0.60 0.17 5.69 0.32 2.19 −25.92 −0.09 0 .23 0.18
bulk 3.70 0.59 6.32 0.79 6.94 23.05

R 2 2685 300 0.00 0.00 0.00 10.90 0.26 2.85 −25.76 −27.07 #N/A #N/A
26 Oct 2011 2685 210 0.01 0.00 0.00 9.92 0.37 3.70 −28.86 −30.18 1.56 −4.92
50.3587◦ E 167 50 0.45 0.07 0.23 6.23 0.50 3.11 −25.66 −26.97 1.73 −4.75 0.81 0.15
66.7168◦ S 167 20 0.31 0.04 0.18 6.94 0.58 4.06 −24.84 −26.16 2.28 −4.20 0.95 0.44
group1 167 5 0.16 0.02 0.06 8.73 0.38 3.35 −25.64 −26.96 0.90 −5.58 0.60 0.85

167 1 2.89 0.51 #N/A 5.71 −28.14 −29.45 0.84 −5.64 0.59 1.80
total 3.82 0.64 0.47 5.94 0.51 3.46 −27.48 1.04 0.64 0.17
bulk 2.37 0.40 5.95 1.31 6.48 22.85

E 1 day 1209 300 0.02 0.00 0.00 7.07 0.20 1.43 −23.28 −24.65 3.04 −3.36
29 Oct 2011 1209 210 0.07 0.01 0.03 5.51 0.40 2.18 −25.75 −27.12 2.42 −3.98
48.4664◦ E 181 50 1.92 0.31 1.14 6.18 0.59 3.67 −23.52 −24.89 1.94 −4.46 0.88 0.17
72.1993◦ S 181 20 0.57 0.09 0.36 6.64 0.63 4.20 −23.29 −24.66 2.03 −4.37 0.91 0.47
group2 181 5 0.15 0.02 0.05 6.97 0.34 2.34 −24.73 −26.10 0.90 −5.50 0.62 0.88

181 1 3.64 0.62 5.87 −26.81 −28.18 −0.25 −6.65 0.34 2.00
total 6.36 1.05 1.58 6.05 0.58 3.65 −25.43 0.64 0.55 0.19
bulk 4.85 0.78 6.19 1.37 6.40 21.88

E 1 night 2449 300 0.48 0.11 0.03 4.45 0.06 0.28 −24.26 −25.48 3.24 −3.28
29 Oct 2011 2449 210 0.33 0.06 0.12 5.26 0.37 1.94 −24.82 −26.03 2.48 −4.04
48.4664◦ E 310 50 3.45 0.57 1.56 6.10 0.45 2.76 −23.88 −25.10 1.91 −4.61 0.85 0.17
72.1993◦ S 310 20 0.40 0.06 0.18 6.64 0.44 2.95 −23.55 −24.76 1.96 −4.56 0.86 0.47
group2 310 5 0.10 0.01 0.03 6.85 0.33 2.25 −24.62 −25.83 0.98 −5.54 0.62 0.90

310 1 3.45 0.58 5.90 −26.79 −28.00 −0.04 −6.56 0.36 2.04
total 8.21 1.40 1.92 5.88 0.40 2.37 −25.16 1.21 0.61 0.19
bulk 5.11 0.79 6.45 1.22 6.52 21.88
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Table 2. Continued.

Station Volume fraction POC PN PBSi POC/ PBSi/ PBSi/ δ13CPOC δ13CPOC-δ13CDIC δ15NPN δ15NPN-δ15NO3 f ratio growth rate
Date/location L µm µM µM µM PN POC PN ‰V−PDB ‰V−PDB ‰air ‰air d−1

group atom atom atom δ13CDIC ‰V−PDB δ15NO3 ‰air [CO2]aq

TEW 1 1516 300 0.03 0.01 0.00 5.06 0.08 0.39 −21.37 −22.85 5.05 −1.52
31 Oct 2011 1516 210 0.03 0.01 0.01 4.88 0.19 0.91 −20.62 −22.10 3.78 −2.79
49.1502◦ E 59 50 2.19 0.39 1.07 5.62 0.49 2.75 −19.66 −21.14 3.19 −3.38 1.15 0.23
69.8323◦ S 59 20 4.02 0.69 2.11 5.83 0.52 3.06 −19.36 −20.84 3.04 −3.53 1.12 0.64
group4 59 5 1.68 0.29 0.97 5.90 0.57 3.39 −20.44 −21.92 2.79 −3.78 1.05 1.25

59 1 6.34 0.93 6.82 −22.88 −24.36 2.11 −4.46 0.89 2.96
total 14.29 2.30 4.15 6.20 0.52 3.02 −21.10 2.66 1.02 0.26
bulk 9.29 1.57 5.93 1.48 6.57 22.17

TEW 2 650 300 0.02 0.00 0.00 6.18 0.04 0.28 −23.47 −24.86 #N/A #N/A
31 Oct 2011 650 210 0.02 0.00 0.00 5.88 0.21 1.24 −23.34 −24.74 3.52 −2.89
48.8994◦ E 161 50 0.88 0.14 0.33 6.21 0.37 2.31 −19.09 −20.48 2.37 −4.04 0.99 0.24
70.6663◦ S 161 20 2.16 0.36 0.63 6.09 0.29 1.77 −19.18 −20.57 2.20 −4.21 0.95 0.65
group4 161 5 0.13 0.02 0.09 7.25 0.64 4.67 −22.24 −23.63 2.41 −4.00 1.00 1.11

161 1 3.33 0.50 #N/A 6.64 −24.10 −25.49 1.88 −4.53 0.87 2.68
total 6.53 1.02 1.05 6.39 0.33 2.01 −21.76 2.07 0.92 0.27
bulk 8.14 1.33 6.11 1.39 6.41 22.17

TEW 3 981 300 0.09 0.02 0.00 4.15 0.01 0.04 −23.87 −25.09 4.05 −1.90
31 Oct 2011 981 210 0.01 0.00 0.00 5.58 0.17 0.97 −25.01 −26.23 #N/A #N/A
48.7991◦ E 93 50 0.11 0.02 0.06 5.82 0.52 3.05 −24.46 −25.67 #N/A #N/A #N/A 0.16
71.0176◦ S 93 20 0.74 0.12 0.32 6.23 0.43 2.69 −22.39 −23.61 1.99 −3.96 1.01 0.52
group4 93 5 0.14 0.02 0.05 7.86 0.35 2.76 −23.54 −24.75 1.93 −4.02 1.00 1.01

93 1 8.01 1.27 6.30 −25.92 −27.13 1.19 −4.76 0.81 2.28
total 9.10 1.45 0.43 6.28 0.40 2.41 −25.56 1.29 0.83 0.19
bulk 6.26 0.89 7.04 1.21 5.95 22.17

TEW 4 1150 300 0.64 0.13 0.11 4.87 0.17 0.84 −24.66 −25.32 3.65 −2.84
1 Nov 2011 1150 210 0.65 0.13 0.22 5.05 0.34 1.72 −24.36 −25.02 2.59 −3.90
48.6331◦ E 88 50 5.10 0.84 2.28 6.11 0.45 2.72 −23.84 −24.50 2.02 −4.47 0.88 0.18
71.6170◦ S 88 20 1.27 0.21 0.57 6.18 0.45 2.77 −22.69 −23.35 1.76 −4.73 0.82 0.53
group1 88 5 0.26 0.04 0.10 5.93 0.39 2.31 −23.67 −24.33 1.07 −5.42 0.64 1.05

88 1 7.95 1.45 5.48 −25.79 −26.45 0.37 −6.12 0.47 2.45
total 15.89 2.80 3.28 5.68 0.41 2.44 −24.77 1.23 0.64 0.21
bulk 9.41 1.73 5.43 0.66 6.49 22.17

E 2 1748 300 0.20 0.04 0.01 4.38 0.03 0.14 −21.25 −22.57 2.68 −3.94
1 Nov 2011 1748 210 0.06 0.01 0.01 4.65 0.09 0.42 −24.76 −26.08 2.99 −3.63
48.5234◦ E 123 50 1.44 0.25 0.63 5.71 0.44 2.52 −24.85 −26.17 1.62 −5.00 0.75 0.16
72.0771◦ S 123 20 1.26 0.20 0.50 6.22 0.40 2.49 −23.58 −24.90 1.64 −4.98 0.75 0.47
group2 123 5 0.30 0.05 0.10 6.38 0.33 2.10 −23.94 −25.26 1.02 −5.60 0.60 0.97

123 1 5.60 1.01 5.55 −26.27 −27.59 −0.52 −7.14 0.22 2.17
total 8.85 1.57 1.25 5.65 0.38 2.24 −25.46 0.27 0.39 0.18
bulk 6.78 1.21 5.62 1.32 6.62 22.17

TEW 5 1748 300 0.26 0.06 0.00 4.39 0.01 0.02 −25.67 −27.05 4.18 −2.60
1 Nov 2011 1748 210 0.05 0.01 0.00 4.57 0.06 0.28 −24.90 −26.27 3.33 −3.45
48.4678◦ E 123 50 1.28 0.21 0.54 6.00 0.42 2.53 −24.29 −25.67 2.13 −4.65 0.84 0.16
72.7997◦ S 123 20 0.85 0.13 0.31 6.58 0.37 2.44 −23.57 −24.95 1.70 −5.08 0.73 0.47
group1 123 5 0.15 0.02 0.04 6.26 0.27 1.70 −23.88 −25.26 1.04 −5.74 0.56 0.97

123 1 5.32 0.90 5.89 −26.27 −27.65 −0.43 −7.21 0.20 2.16
total 7.91 1.34 0.90 5.90 0.35 2.06 −25.59 0.44 0.37 0.18
bulk 8.25 1.49 5.52 1.38 6.78 22.17
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Table 2. Continued.

Station Volume fraction POC PN PBSi POC/ PBSi/ PBSi/ δ13CPOC δ13CPOC-δ13CDIC δ15NPN δ15NPN-δ15NO3 f ratio growth rate
Date/location L µm µM µM µM PN POC PN ‰V−PDB ‰V−PDB ‰air ‰air d−1

group atom atom atom δ13CDIC ‰V−PDB δ15NO3 ‰air [CO2]aq

TEW 6 986 300 0.36 0.09 0.00 4.17 0.00 0.01 −23.24 −24.63 3.21 −3.61
1 Nov 2011 986 210 0.12 0.03 0.00 4.47 0.03 0.12 −24.79 −26.18 2.98 −3.84
48.4662◦ E 76 50 0.74 0.13 0.21 5.74 0.29 1.65 −23.59 −24.98 2.31 −4.51 0.87 0.18
73.3998◦ S 76 20 0.77 0.12 0.31 6.51 0.40 2.63 −22.93 −24.32 2.10 −4.72 0.82 0.49
group1 76 5 0.40 0.07 0.14 5.72 0.33 1.91 −23.42 −24.81 1.31 −5.51 0.62 1.00

76 1 6.91 1.33 5.20 −25.49 −26.88 0.19 −6.63 0.34 2.35
total 9.31 1.76 0.66 5.29 0.28 1.54 −24.94 0.71 0.43 0.20
bulk 6.38 1.14 5.62 1.39 6.82 22.17

TEW 7 957 300 0.41 0.09 0.00 4.58 0.01 0.04 −22.23 −23.98 3.89 −3.87
2 Nov 2011 957 210 0.13 0.03 0.00 4.97 0.02 0.09 −22.53 −24.28 3.65 −4.11
48.4667◦ E 35 50 6.89 1.19 1.93 5.81 0.28 1.63 −20.48 −22.23 2.31 −5.45 0.64 0.20
73.9992◦ S 35 20 2.32 0.37 0.81 6.27 0.35 2.20 −19.82 −21.57 2.38 −5.38 0.66 0.55
group5 35 5 1.71 0.29 0.31 5.89 0.18 1.05 −21.38 −23.12 2.34 −5.42 0.64 1.03

35 1 8.43 1.58 5.32 −23.08 −24.83 2.08 −5.68 0.58 2.56
total 19.90 3.55 3.06 5.61 0.27 1.56 −21.63 2.27 0.61 0.22
bulk 22.82 4.09 5.58 1.75 7.76 20.04

TEW 8 1509 300 0.13 0.03 0.00 4.90 0.01 0.05 −22.06 −23.80 3.79 −4.21
2 Nov 2011 1509 210 0.04 0.01 0.00 5.04 0.10 0.48 −21.83 −23.57 3.81 −4.19
48.4676◦ E 56 50 6.61 1.07 1.94 6.16 0.29 1.81 −20.53 −22.27 2.45 −5.55 0.61 0.17
75.0032◦ S 56 20 7.10 1.15 1.65 6.17 0.23 1.43 −20.17 −21.91 2.60 −5.40 0.65 0.46
group5 56 5 1.95 0.30 0.39 6.44 0.20 1.30 −21.14 −22.88 2.46 −5.54 0.61 0.91

56 1 9.02 1.73 5.23 −22.38 −24.12 1.95 −6.05 0.49 2.35
total 24.86 4.29 3.99 5.80 0.25 1.56 −21.16 2.30 0.57 0.19
bulk 23.21 3.92 5.92 1.74 8.00 17.43

E 3 1246 300 0.07 0.01 0.00 4.84 0.04 0.20 −24.53 −25.94 3.47 −2.86
4 Nov 2011 1246 210 0.03 0.01 0.01 5.25 0.31 1.65 −24.44 −25.85 3.05 −3.28
48.6998◦ E 85 50 0.69 0.11 0.43 6.35 0.62 3.96 −23.64 −25.05 2.51 −3.82 1.04 0.17
71.9670◦ S 85 20 1.25 0.19 0.68 6.68 0.55 3.64 −23.18 −24.59 2.09 −4.24 0.94 0.48
group2 85 5 0.31 0.04 0.10 7.59 0.32 2.41 −23.92 −25.33 1.02 −5.31 0.67 0.95

85 1 6.79 1.24 5.48 −26.18 −27.59 −0.24 −6.57 0.36 2.14
total 9.13 1.60 1.22 5.72 0.52 3.43 −25.49 0.30 0.48 0.19
bulk 7.58 1.34 5.66 1.41 6.33 21.88

F L 1102 300 0.13 0.02 0.01 5.46 0.06 0.32 −21.96 −23.60 3.38 −3.87
6 Nov 2011 1102 210 0.19 0.04 0.03 4.98 0.17 0.87 −21.36 −23.00 3.11 −4.14
48.5232◦ E 60 50 6.93 1.17 2.14 5.91 0.31 1.83 −20.85 −22.49 2.35 −4.90 0.78 0.17
74.6673◦ S 60 20 5.32 0.92 1.42 5.80 0.27 1.55 −20.88 −22.52 2.33 −4.92 0.77 0.44
group5 60 5 2.31 0.39 0.42 5.88 0.18 1.07 −21.44 −23.08 2.17 −5.08 0.73 0.90

60 1 7.51 1.41 5.32 −22.07 −23.71 2.14 −5.11 0.72 2.43
total 22.38 3.95 4.03 5.66 0.27 1.58 −21.34 2.26 0.75 0.18
bulk 15.76 2.89 1.64 7.25 17.43

F S 571 300 0.23 0.05 0.02 5.03 0.10 0.52 −22.71 −24.42 3.50 −4.29
8 Nov 2011 571 210 0.45 0.09 0.13 5.21 0.28 1.46 −22.34 −24.05 2.98 −4.81
48.5006◦ E 110 50 13.05 2.20 4.80 5.93 0.37 2.18 −21.26 −22.97 2.61 −5.18 0.71 0.17
73.9998◦ S 110 20 2.24 0.36 0.62 6.15 0.28 1.71 −21.32 −23.03 2.34 −5.45 0.64 0.45
group5 110 5 1.34 0.23 0.27 5.91 0.20 1.21 −21.94 −23.66 2.22 −5.57 0.61 0.91

110 1 6.12 1.10 5.57 −22.51 −24.22 1.76 −6.03 0.49 2.48
total 23.43 4.02 5.85 5.82 0.34 2.00 −21.67 2.35 0.63 0.19
bulk 15.76 2.89 5.45 1.71 7.79 18.55

13890

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/13841/2014/bgd-11-13841-2014-print.pdf
http://www.biogeosciences-discuss.net/11/13841/2014/bgd-11-13841-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
11, 13841–13903, 2014

Chemometric
perspectives on

plankton community
responses to natural

iron fertilization

T. W. Trull et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 2. Continued.

Station Volume fraction POC PN PBSi POC/ PBSi/ PBSi/ δ13CPOC δ13CPOC-δ13CDIC δ15NPN δ15NPN-δ15NO3 f ratio growth rate
Date/location L µm µM µM µM PN POC PN ‰V−PDB ‰V−PDB ‰air ‰air d−1

group atom atom atom δ13CDIC ‰V−PDB δ15NO3 ‰air [CO2]aq

G 1 1457 300 0.11 0.02 0.05 5.69 0.44 2.53 −20.54 −22.09 3.84 −3.25
8 Nov 2011 1457 210 0.25 0.04 0.13 5.78 0.52 2.99 −21.43 −22.99 2.10 −4.99
49.9004◦ E 116 50 13.92 2.20 11.04 6.32 0.79 5.01 −21.43 −22.99 1.24 −5.85 0.54 0.20
71.8991◦ S 116 20 0.50 0.08 0.32 6.58 0.65 4.25 −20.44 −22.00 0.94 −6.15 0.46 0.57
group3 116 5 0.38 0.06 0.23 6.29 0.61 3.81 −21.25 −22.81 0.39 −6.70 0.32 1.14

116 1 3.64 0.73 5.00 −22.25 −23.80 1.85 −5.24 0.69 3.01
total 18.79 3.13 11.77 6.01 0.78 4.90 −21.56 1.38 0.57 0.22
bulk 19.40 3.29 5.90 1.55 7.09 21.59

G 2 631 300 0.03 0.01 0.00 5.78 0.06 0.36 −22.64 −24.19 4.41 −2.12
9 Nov 2011 631 210 0.16 0.03 0.08 5.52 0.50 2.77 −18.04 −19.60 3.61 −2.92
49.1331◦ E 61 50 1.94 0.32 1.07 6.03 0.55 3.34 −18.16 −19.71 3.34 −3.19 1.20 0.22
70.6498◦ S 61 20 3.63 0.61 1.21 5.93 0.33 1.98 −18.99 −20.54 2.96 −3.57 1.11 0.56
group4 61 5 0.92 0.17 0.21 5.54 0.23 1.25 −21.40 −22.95 2.84 −3.69 1.08 1.01

61 1 5.97 1.12 5.33 −20.82 −22.37 3.88 −2.65 1.34 2.99
total 12.66 2.25 2.57 5.61 0.39 2.27 −19.90 3.47 1.23 0.24
bulk 13.10 2.35 5.56 1.55 6.53 19.25

E 4W 393 300 0.07 0.01 0.02 6.38 0.33 2.09 −23.73 −25.13 2.81 −3.58
11 Nov 2011 393 210 0.05 0.01 0.01 6.36 0.26 1.65 −24.20 −25.60 3.44 −2.95
48.7667◦ E 43 50 7.09 1.23 4.53 5.77 0.64 3.69 −22.29 −23.69 1.41 −4.98 0.75 0.18
71.4294◦ S 43 20 1.18 0.18 0.67 6.55 0.57 3.70 −22.01 −23.41 1.09 −5.30 0.68 0.50
group3 43 5 0.43 0.06 0.18 7.46 0.43 3.21 −22.80 −24.20 0.28 −6.11 0.47 0.99

43 1 6.32 1.31 4.83 −23.61 −25.01 1.41 −4.98 0.76 2.63
total 15.14 2.79 5.42 5.42 0.61 3.65 −22.85 1.38 0.74 0.20
bulk 12.58 2.18 5.78 1.40 6.39 20.73

E 4E 974 300 0.14 0.03 0.02 4.80 0.12 0.58 −23.17 −24.69 3.13 −3.49
13 Nov 2011 974 210 0.24 0.05 0.06 4.71 0.26 1.23 −23.19 −24.71 3.44 −3.18
48.7141◦ E 32 50 3.12 0.54 1.74 5.74 0.56 3.20 −22.71 −24.24 2.46 −4.16 0.96 0.17
72.5708◦ S 32 20 1.86 0.29 1.12 6.39 0.61 3.87 −22.23 −23.75 1.82 −4.80 0.80 0.48
group2 32 5 0.80 0.13 0.33 6.29 0.42 2.62 −23.21 −24.73 0.80 −5.82 0.54 0.94

32 1 11.19 2.01 5.55 −23.20 −24.72 1.35 −5.27 0.68 2.48
total 17.35 3.06 3.28 5.68 0.53 3.15 −23.01 1.62 0.74 0.19
bulk 9.90 1.70 5.83 1.53 6.62 20.63

A3 2 night 586 300 0.04 0.01 0.01 4.83 0.17 0.80 −22.85 −24.16 3.79 −2.53
15 Nov 2011 586 210 0.05 0.01 0.01 4.80 0.18 0.85 −24.43 −25.74 4.02 −2.30
50.6300◦ E 161 50 6.42 1.06 4.65 6.08 0.72 4.40 −21.86 −23.17 1.06 −5.26 0.69 0.19
72.0802◦ S 161 20 0.30 0.05 0.19 6.03 0.64 3.89 −22.19 −23.50 0.62 −5.70 0.58 0.51
group3 161 5 0.09 0.02 0.08 5.81 0.92 5.37 −22.34 −23.66 0.62 −5.70 0.57 1.06

161 1 1.84 0.38 4.87 −22.14 −23.46 1.55 −4.77 0.81 3.04
total 8.74 1.52 4.94 5.76 0.72 4.33 −21.95 1.20 0.71 0.21
bulk 9.60 1.78 5.38 1.31 6.32 21.04

A3 2 day 1081 300 0.06 0.01 0.00 5.26 0.08 0.43 −22.78 −24.12 4.02 −2.47
16 Nov 2011 1081 210 0.12 0.02 0.04 5.48 0.34 1.86 −22.30 −23.64 2.81 −3.68
50.6300◦ E 209 50 6.36 0.96 4.66 6.63 0.73 4.86 −21.83 −23.16 1.54 −4.95 0.76 0.19
72.0802◦ S 209 20 0.34 0.05 0.24 6.47 0.70 4.53 −20.91 −22.24 0.69 −5.80 0.55 0.55
group3 209 5 0.14 0.02 0.09 6.11 0.64 3.89 −21.67 −23.01 0.05 −6.44 0.39 1.10

209 1 2.90 0.58 5.03 −21.95 −23.28 1.45 −5.04 0.74 3.07
total 9.91 1.64 5.03 6.03 0.72 4.72 −21.84 1.49 0.74 0.22
bulk 13.06 2.28 5.72 1.33 6.49 20.96
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Table 2. Continued.

Station Volume fraction POC PN PBSi POC/ PBSi/ PBSi/ δ13CPOC δ13CPOC-δ13CDIC δ15NPN δ15NPN-δ15NO3 f ratio growth rate
Date/location L µm µM µM µM PN POC PN ‰V−PDB ‰V−PDB ‰air ‰air d−1

group atom atom atom δ13CDIC ‰V−PDB δ15NO3 ‰air [CO2]aq

E 4W 2 1373 300 0.14 0.03 0.04 4.49 0.28 1.27 −24.25 −25.74 2.57 −3.98
18 Nov 2011 1373 210 0.71 0.13 0.40 5.36 0.57 3.03 −23.93 −25.42 2.08 −4.47
48.7666◦ E 131 50 6.82 1.13 6.42 6.02 0.94 5.66 −23.22 −24.71 1.82 −4.73 0.82 0.17
71.4798◦ S 131 20 0.24 0.04 0.17 6.27 0.71 4.44 −22.77 −24.26 1.35 −5.20 0.70 0.47
group3 131 5 0.27 0.05 0.13 5.62 0.50 2.79 −22.50 −23.99 −0.23 −6.78 0.31 1.02

131 1 3.97 0.72 5.54 −25.00 −26.50 0.38 −6.17 0.46 2.33
total 12.15 2.10 7.16 5.78 0.88 5.18 −23.83 1.30 0.67 0.19
bulk 13.36 2.51 5.32 1.49 6.55 20.96

E 5 992 300 0.29 0.07 0.01 4.02 0.05 0.20 −23.96 −25.40 2.97 −3.64
18 Nov 2011 992 210 0.11 0.03 0.01 4.43 0.13 0.57 −25.14 −26.58 2.94 −3.67
48.4178◦ E 195 50 2.08 0.36 1.31 5.84 0.63 3.67 −24.42 −25.86 1.74 −4.87 0.78 0.16
71.9973◦ S 195 20 0.44 0.07 0.28 6.53 0.63 4.11 −23.38 −24.82 1.40 −5.21 0.70 0.46
group2 195 5 0.16 0.03 0.07 6.14 0.44 2.70 −23.21 −24.65 −0.14 −6.75 0.31 0.98

195 1 2.60 0.46 5.61 −25.72 −27.16 −0.99 −7.60 0.10 2.19
total 5.67 1.01 1.68 5.62 0.55 3.08 −24.90 0.53 0.42 0.18
bulk 7.59 1.31 5.78 1.44 6.61 21.43

Bolded column headers refer to bolded quantities shown on the bulk sample lines; bulk samples were measured on water and unfractionated particle
samples collected separately.
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Table 3. Phytoplankton cell dimensions used in 13C supply vs. demand model.

Size Fraction Prism Dimensions Form
µm d1 d2 d3

1–5 3 3 3 single cells
5–20 7 7 15 single cells
20–50 15 15 30 chains∗

50–210 40 40 80 chains∗

∗ CO2 exchange is assumed to be negligible on the surface of
the cell contact within the chains, taken to be the long faces of
the prisms.
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Table 4. Surface mixed layer nutrient depletion and export estimates.

Station CTD timestamp Depth Nitrate Nitrate depletion PN stock N Export2 N Export3

MLD1 Tmin Sthreshold surface Tmin Sthreshold Tmin Sthreshold 200 m Sthreshold fraction
cast mm-dd hh-mm m m m µM µM µM mmol m−2 mmol m−2 mmol m−2 mmol m−2 %

A3-1 4 10-20 05:32 161 175 175 29.1 31.1 31.1 268 268 138 130 49
TNS10 6 10-21 07:28 163 183 179 28.9 31.1 31.0 298 270 193 77 28
TNS09 7 10-21 13:40 137 147 150 27.9 30.3 30.7 243 324 205 119 37
TNS08 8 10-21 18:48 139 192 201 27.9 30.8 31.2 362 470 179 291 62
TNS06 10 10-22 11:18 67 2804 149 26.5 33.5 29.8 1034 317 219 99 31
TNS05 11 10-22 16:56 114 1744 155 26.5 30.1 29.5 438 345 164 181 52
TNS03 13 10-23 06:41 111 1914 164 26.9 31.0 29.9 494 326 144 183 56
TNS02 14 10-23 12:06 65 3644 150 19.5 34.0 28.8 1711 279 101 179 64
TNS01 15 10-23 17:13 45 3284 144 23.6 31.2 25.5 1506 196 135 61 31
R2 17 10-25 22:59 111 1844 168 25.7 28.0 27.3 346 232 78 154 66
R2 18 10-26 01:48 123 193 167 26.0 28.3 27.3 430 239 78 161 67
E-1 27 10-29 22:46 84 200 173 25.7 29.0 28.6 492 421 208 213 51
E-1 30 10-30 09:15 63 183 151 26.0 29.0 30.8 293 493 208 285 58
TEW3 38 10-31 18:41 62 1654 138 27.2 29.1 28.1 225 89 145 −56 −63
TEW4 42 11-01 05:19 95 208 185 25.0 30.1 29.2 631 463 250 213 46
TEW5 44 11-01 19:00 60 173 174 26.1 30.2 29.8 434 354 201 153 43
TEW6 45 11-02 03:59 22 164 142 26.0 30.9 30.1 493 371 175 197 53
TEW7 46 11-02 09:34 17 4234 91 26.0 35.0 27.0 2103 391 309 82 21
TEW8 47 11-02 18:47 22 2934 75 19.5 32.7 27.2 1282 303 252 51 17
E-2 43 11-01 12:00 42 2104 157 18.9 32.7 29.3 857 221 185 36 16
E-3 50 11-03 11:57 41 203 177 25.4 30.1 29.5 467 371 194 177 48
E-3 51 11-04 01:29 32 200 166 25.8 30.0 28.7 486 253 194 59 23
E-3 55 11-04 17:22 37 184 161 26.0 29.5 28.6 520 361 194 166 46
F-L 63 11-06 21:49 21 182 79 26.0 30.5 26.4 686 368 215 153 42
F-S 69 11-08 06:13 31 267 54 18.9 35.2 24.7 1598 140 354 −214 −153
G-1 70 11-09 00:30 37 118 127 19.9 29.8 30.3 380 447
E-4W 79 11-11 08:25 67 158 147 23.0 30.2 30.1 548 527 288 239 45
E-4W 81 11-11 21:07 67 152 158 22.1 30.1 30.0 544 532 288 243 46
E-4W 87 11-12 09:30 66 164 164 22.1 30.4 30.3 652 645 288 357 55
E-4E 94 11-13 22:02 77 158 108 22.1 28.8 27.7 382 236 253 −17 −7
E-4E 95 11-14 01:30 80 159 112 24.1 28.9 27.4 439 227 253 −26 −11
A3-2 99 11-15 23:20 143 179 179 24.1 30.6 30.7 652 670 436 234 35
A3-2 108 11-17 01:08 123 182 177 25.8 30.9 30.8 593 576 436 140 24
E_4W-2 111 11-18 07:20 26 168 133 24.7 29.3 28.0 592 400 354 46 11
E-5 113 11-18 19:21 71 215 122 26.5 30.4 27.9 689 207 210 −3 −1
E-5 114 11-18 22:07 36 228 126 26.5 30.8 28.0 756 206 210 −4 −2
E-5 115 11-19 01:30 41 2224 123 26.5 30.7 27.9 686 222 210 12 6
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Table 4. Continued.

Station CTD timestamp Depth Silicate Silicate Depletion BSi Stock Si Export2 Si Export3

MLD1 Tmin Sthreshold surface Tmin Sthreshold Tmin Sthreshold 200 m Sthreshold fraction
cast mm-dd hh-mm m m m µM µM µM mmol m−2 mmol m−2 mmol m−2 mmol m−2 %

A3-1 4 10-20 05:32 161 175 175 10.79 27.12 27.12 551 551 163.5 388 70
TNS10 6 10-21 07:28 163 183 179 23.27 30.58 29.71 1244 1086 284.5 802 74
TNS09 7 10-21 13:40 137 147 150 18.74 25.27 27.07 838 1105 499.1 606 55
TNS08 8 10-21 18:48 139 192 201 17.03 22.92 23.70 884 1154 364.8 789 68
TNS06 10 10-22 11:18 67 2804 149 16.42 48.25 26.18 5896 1170 257.3 913 78
TNS05 11 10-22 16:56 114 1744 155 16.98 27.82 23.48 1529 811 239.9 571 70
TNS03 13 10-23 06:41 111 1914 164 19.32 32.79 25.54 2092 806 209.3 597 74
TNS02 14 10-23 12:06 65 3644 150 15.27 48.41 18.39 8116 307 127.9 179 58
TNS01 15 10-23 17:13 45 3284 144 7.48 33.92 10.15 5875 243 33.5 210 86
R2 17 10-25 22:59 111 1844 168 12.07 19.54 17.11 1145 718 88.6 630 88
R2 18 10-26 01:48 123 193 167 12.34 19.28 17.25 1001 634 88.6 546 86
E-1 27 10-29 22:46 84 200 173 14.94 30.42 25.24 2426 1467 332.6 1134 77
E-1 30 10-30 09:15 63 183 151 16.29 36.63 29.30 2794 1571 332.6 1238 79
TEW3 38 10-31 18:41 62 1654 138 18.63 26.52 24.23 893 547 141.0 406 74
TEW4 42 11-01 05:19 95 208 185 14.13 27.73 23.86 2128 1359 460.3 898 66
TEW5 44 11-01 19:00 60 173 174 14.47 24.81 24.99 1245 1276 145.0 1131 89
TEW6 45 11-02 03:59 22 164 142 15.83 28.41 23.92 1615 923 213.8 709 77
TEW7 46 11-02 09:34 17 4234 91 5.91 50.03 15.85 10392 557 326.2 230 41
TEW8 47 11-02 18:47 22 2934 75 6.19 36.81 16.72 4532 433 250.4 183 42
E-2 43 11-01 12:00 42 2104 157 14.52 38.83 22.79 3729 799 306.7 492 62
E-3 50 11-03 11:57 41 203 177 15.10 28.92 24.10 2033 1117 285.5 832 74
E-3 51 11-04 01:29 32 200 166 15.04 25.77 22.49 1433 833 285.5 548 66
E-3 55 11-04 17:22 37 184 161 14.81 29.39 25.69 1978 1340 285.5 1055 79
F-L 63 11-06 21:49 21 182 79 7.23 24.32 13.74 1688 373 313.8 59 16
F-S 69 11-08 06:13 31 267 54 9.88 39.60 13.42 4470 116 377.6 -261 −225
G-1 70 11-09 00:30 37 118 127 9.61 23.99 26.12 968 1228
E-4W 79 11-11 08:25 67 158 147 17.47 29.18 26.67 1255 870 379.5 490 56
E-4W 81 11-11 21:07 67 152 158 17.95 23.89 25.53 433 689 379.5 309 45
E-4W 87 11-12 09:30 66 164 164 17.00 26.26 26.26 1002 1002 379.5 622 62
E-4E 94 11-13 22:02 77 158 108 12.10 22.79 18.95 1034 520 427.0 92 18
E-4E 95 11-14 01:30 80 159 112 11.60 20.87 17.45 999 519 427.0 92 18
A3-2 99 11-15 23:20 143 179 179 19.82 27.32 27.32 1091 1091 713.3 378 35
A3-2 108 11-17 01:08 123 182 177 18.60 28.60 28.16 1231 1151 713.3 438 38
E_4W-2 111 11-18 07:20 26 168 133 9.21 30.44 22.24 2532 1297 744.3 552 43
E-5 113 11-18 19:21 71 215 122 12.04 30.72 16.98 2801 484 744.3 -260 −54
E-5 114 11-18 22:07 36 228 126 11.53 31.35 19.45 3139 707 744.3 -37 −5
E-5 115 11-19 01:30 41 2224 123 11.49 26.00 19.22 1873 704 394.4 310 44

1 Mixed layer depth where the potential density=potential density at 10 m+0.02 kg m−3. Park et al. (2014b).
2 Fraction=export/depletion, calculated for the Sthreshold depletion estimate.
3 Percent depletion of the winter mixed layer inventory.
4 No clear Tmin.
Surface data are from both the CTD Niskin bottles and underway systems. Tmin nitrate was estimated from nearest Niskin.
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Figure 1. Map of KEOPS-2 station locations. The Kerguelen and Heard islands mark the north-
ern and southern end of the central plateau (bathymetry in meters). The Polar Front jet that
passes through the mid-depth channel south of Kerguelen Island is shown as a bold line. Full
ocean depth flows of the Antarctic Circumpolar Current pass to the north of Kerguelen Is-
land in association with the Subantarctic Front and to the south of Heard Island in the Fawn
Trough. This latter flow follows the eastern slope of the plateau northwards to bring cold waters
into a bathymetrically trapped quasi-stationary recirculation feature (d’Ovidio et al., 2014; Park
et al., 2014b). Waters over the central plateau are also carried into this region. During the initial
survey, the TNS transect was sampled first (south to north) and then the TEW transect (west
to east). The E stations were designed to provide a Lagrangian temporal sequence in the re-
circulation region (including some to the east and west of its centre), with interspersed visits to
the HNLC reference station (R2); the region of high biomass near and north of the Polar Front
(F-L and F-S), and the central plateau bloom station (A3) previously studied in autumn 2005 by
the KEOPS project. Two additional stations (G1, G2) carried out for high volume geochemical
tracer studies and provided additional plateau and coastal samples, respectively. The stations
are colour coded into 5 Groups as shown on the map (QGIS) and detailed in Table 1.

13896

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/13841/2014/bgd-11-13841-2014-print.pdf
http://www.biogeosciences-discuss.net/11/13841/2014/bgd-11-13841-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
11, 13841–13903, 2014

Chemometric
perspectives on

plankton community
responses to natural

iron fertilization

T. W. Trull et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 2. Temporal development of the Kerguelen bloom. Successive images of surface chloro-
phyll distributions (NASA MODIS-Aqua; SSALTO/DUACS 1 km daily product) show the bloom
development. Image date 28 October: most stations of the initial survey downstream of Kergue-
len Island (TNS 1–10, TEW 1–6), the HNLC reference station (R2, upstream) and the first visit
to the KEOSP1 plateau reference station (A3–1 at the southern end of the TNS transect) were
sampled before any significant biomass accumulation had occurred. Image date 6 November:
the developing downstream Polar Front bloom (TEW 7, TEW 8, F-L, F-S) was sampled early in
its development, and the recirculation visited a second time (E2). Image date 11 November: the
now well developed central plateau bloom was sampled (G1; E4-W) along with also blooming
coastal waters (G2). Two more visits to the still low biomass recirculation were also completed
(E3 and E4-E). Image date 18 November: the plateau bloom was re-sampled as it began to
fade (A3–2 and E4-W2), along with the final recirculation station (E5). Bathymetry is shown by
contours at 1000, 200, and 300 m depths. A full annual animation of the phytoplankton bloom
evolution is available in the supplementary materials.
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Figure 3. Surface water total and size-fractionated POC and BSi concentrations. Top row: total
POC and BSi concentrations for the identified station Groups (see Table 1); individual stations
in each group are in chronological order from left to right. Middle row: POC size distribution
spectra, i.e. concentrations normalised by dividing by the width of the size fraction (i.e. division
by 4 for the 1–5 µm fraction); dotted lines provide visual guides and reveal little variation among
groups for the smallest particles, and largest variations in the intermediate size fractions. Bot-
tom row: BSi/POC ratios; grey band indicates approximate range of values for extant diatoms,
with higher values possibly indicative of higher iron stress.
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Figure 4. Isotopic variations in the size-fractionated particles. Top row: 13C-POC values relative
to 13C-DIC values; dotted line shows the lowest values for the intermediate, autotrophic, size
fractions samples as observed at upstream Fe poor reference station (R2). Bottom row: 15N-
PON values relative to co-located 15N-NO−

3 values; grey band indicates values expected for
phytoplankton that grow exclusively on nitrate.
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Figure 5. Isotopic chemometric estimates of growth rates and f ratios. Top row: growth rates
based on the supply vs. demand 13C isotopic fractionation model (summed across the 4 small-
est particle size fractions). Estimates from a limited set of 13C tracer uptake incubations are
shown as darker bars (measured at varying light levels and integrated to the mixed layer depth
light level; Cavagna et al., 2014). Bottom row: f ratios, i.e. the fraction of total nitrogen nutrition
provided by nitrate, based on the 15N ammonium and 15N nitrate end-member mixing model
(summed across 4 smallest particle size fractions). Estimates from a limited set of 15N tracer
uptake incubations are shown as darker bars (Cavagna et al., 2014).
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Figure 6. High resolution distributions of surface water properties from continuous sensor mea-
surements. Top to bottom: ship trajectory as revealed by dates of sampling; nitrate concen-
trations (from UV spectrometry, temperature, and salinity, ISUS). Stations at the ends of the
trajectories are indicated to aid in co-location with the lower resolution station sampling map
(Fig. 1).
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Figure 7. Example profiles of temperature, salinity, nitrate concentrations, and nitrate isotopic
compositions. Top row: group 3 central plateau station A3-2. Middle row: group 5 downstream
Polar Front station F-L. Bottom row: group 5 Subantarctic station TNS-1. Depths of the remnant
winter water Tmin mixed layer depth (Tmin-depth; solid line) and salinity stratification mixed layer
depth (Sthreshold-depth; dotted lines) are shown. These depths define our two approaches for
the calculation of depth integrated nitrate and silicate depletions (Table 4; Fig. 8).
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Figure 8. Nitrogen and silicon depletion and export estimates. Top row: nitrate (light bars) and
silicate (dark bars) depletions from the Tmin winter concentration method. Middle row: nitrate
(light bars) and silicate (dark bars) depletions from the Sthreshold winter concentration method.
Bottom row: N (light bars) and Si (dark bars) export, as estimated from the Sthreshold depletion
method, after accounting for the PN and BSi standing stocks integrated to 200 m (Table 4;
Lasbleiz et al., 2014). Group 4 coastal stations are not shown because CTD casts could not
define winter values. Negative export values are not plotted. Groups 1, 2, 3 and 4 are coloured
as in Fig. 1 and are ranked from left to right with temporal order within each group.
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