
Anonymous Referee #2  
 
This study offers two important advances on the traditional LUE model. One is the 
integration of carbon and water vapor fluxes in a single model, and this combined 
approach could be very useful. The second is the parameterization of a variable LUE 
based on chlorophyll content. The paper demonstrates the benefit of a variable LUE over 
that of an assumed fixed LUE.  

The study is well-grounded in a history of similar modeling with the TSEB approach, and 
takes advantage of a good dataset from the Mead site. The work appears sound and the 
paper is generally well-written.  

Specific comments 
 
One topic possibly worth discussing would be the functional role of [chl] in influencing 
LUE. As is, chlorophyll appears as a model “black box” with little explanation of 
mechanism (even if the mechanism seems obvious). How does this finding relate to a 
growing body of literature relating seasonally changing pigment ratios (chl:carotenoid 
ratios) and LUE? A brief explanation of the functional role of pigments seems warranted. 
For example, are pigments drivers of the LUE response, or are they the end result (e.g. 
via low N and subsequent senescence)? A bit more discussion of potential mechanism, 
even if minimal and speculative, could be useful in linking to other LUE model 
approaches. Since there is lots of recent literature on pigment ratios in the context of 
LUE, some linkage to that literature might be a useful starting point.  

Author response 

We thank the reviewer for his/her valuable input and we agree that the manuscript would 
benefit by a description of the role of chlorophyll in the photosynthetic process and how 
it relates to LUE.  We have added additional text to physically motivate the choice of 
chlorophyll as a link between optically based canopy inversion model output and the 
nominal LUE inputs required by the carbon/energy balance model.  Please see the 
additions below. 

Manuscript changes 

We have added  

Chlorophyll pigments absorb photosynthetically active radiation (PAR) and constitute a 
vital element in the photosynthetic machinery. Leaf chlorophyll is mechanistically linked 
to photosynthetic capacity (Houborg et al., 2013) through functional relationships with 
leaf nitrogen (e.g. Evans 1989; Schlemmer et al., 2013) and Rubisco (e.g. Theobald et al., 
1998; Sage et al., 1987) that acts as a catalyst for carbon fixation within the leaf 
chloroplasts. These strong correlations make leaf chlorophyll an important control on 
vegetation productivity by serving as a proxy for the nominal efficiency of leaves in 
using the absorbed light for photosynthesis. The effective LUE will fluctuate in response 
to short-term changes in environmental conditions (e.g. temperature, humidity, wind 



speed), whereas the impact of variations in leaf chlorophyll will be more gradual as 
vegetation stresses are not immediately manifested in observations of leaf chlorophyll 
content (Houborg et al., 2011). 
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Technical Corrections:  

A couple difficult sentences needing attention on p. 14136:  

The sentence starting on line 15 seems to be missing something. For example, “, and 
seasonally...” would be clearer if it were revised slightly (“and that works seasonally. . .”)  

Author Response 

We agree with this observation and have changed this sentence to: 

The challenge for regional-scale carbon flux mapping using a LUE-based modeling 
system is to find a parsimonious yet robust means for specifying LUE spatially across the 
modeling domain for different landcover types, and seasonally in response to changing 
phenology and plant stress conditions.   

Reviewer comment:    

In the sentence starting on line 20: insert “and” before “therefore”  

 



Author Response 

We agree.  This sentence has been changed to: 

Changes in canopy chlorophyll are recognized to be sensitive to vegetation stress, crop 
phenology and photosynthetic functioning of the vegetation, (Gitelson, Viña, Ciganda, 
Rundquist, & Arkebauer, 2005; Ustin, Smith, Jacquemoud, Verstraete, & Govaerts, 1999; 
Zarco-Tejada, Miller, Mohammed, Noland, & Sampson, 2002) and therefore can be 
related to GPP. 

Reviewer comment:    

On p. 14147, the term “canopy assimilation of NEE” seems redundant. NEE (or canopy 
assimilation) alone tells the story here.  

Author Response 

We agree that there is an apparent redundancy here and have changed the sentence to: 

At these times, the canopy assimilation is small and optimization of 𝛽! using measured 
Ac is not as reliable.   

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
Anonymous Referee #3  
 
The authors report on a new parameterisation of a key parameter, the nominal LUE 
(beta_n) for the coupled energy balance carbon cycle model TSEB-LUE. Overall the 
work is very solid: the authors are able to rely on an impressive set of field data (eddy 
covariance flux measurements, ancillary meteorological data, biophysical data, ...) from 
four field sites (rainfed/irrigated maize/soybean); the paper is well written, the 
presentation is solid; discussion and conclusions are appropriately based on the results.  

Having said this, the paper still left me somewhat unsatisfied as the major finding is ac- 
tually incremental: when replacing the constant beta_n parameter with the new param- 
eterisation (which is a function of time-varying leaf chlorophyll content), the authors find 
that the canopy photosynthesis simulations (and less so evapotranspiration) improve. 
This, in my view, is not surprising as the new model has more degrees of freedom – the 
authors would have been able to achieve the same results simply by fitting a polynomial 
to the residuals. The latter (provocative) comment is of course stupid, as the novel aspect 
of this study is that the authors are able to relate changes in beta_n over time to changes 
in the leaf chlorophyll content which, in theory, enables remote estimation of beta_n. I 
suggest the authors to further work on this innovative aspect of their study in order to 
make this a more significant paper.  

To this end I have the following suggestions: (i) To me it is striking that, despite 
differences between rainfed/irrigated maize/soybean, the same relationship (Fig. 4) can 
be used (although separate relationships were not explored). This merits further analysis. 
The authors discuss that differences in canopy structure (leaf angle distribution, planting 
density) may be responsible for the observed deviations from the fitted line. This would 
be an area that would merit further analysis to explore the hypothesis made using for 
example a mathematical model of canopy radiative transfer and leaf photosynthesis. 
Possibly, the structural differences between the different canopies could be accounted for, 
making the relationship more universal. On a plant physiological ground the convergence 
between a C3 and C4 plant to the same relationship merits further discussion as well.  

Author Response 

We agree that there needs to be a more robust explanation of the outliers and more 
elaboration on functional differences in the Chl– 𝛽!  relationships.  For the outliers, we 
offer a secondary explanation other than plant density.  The fraction of green (fg) may be 
the ultimate reason why rain-fed maize appear to have higher 𝛽! for a given Chl value. 
Indeed if one simply does not multiply Chl by fg it falls in line with the rest of the 
relationship (see attached figure) Since the measured Chl values were taken at the earleaf 
level (conversation with Anatoly Gitelson) the lower plant density allows for the 



measured Chl values to be more representative of the canopy as a whole.  In this case 
multiplying by fg actually introduces error.  The implications are that when using the 
functional relationship developed in the paper to estimate 𝛽! at the satellite scale (i.e. 
Landsat) the rain-fed maize will actually fall in line with the functional relationship.   

 

Separate soybean and maize specific relationships were explored, but we conclude that a 
more elaborate dataset on soybean (this study included data from only field 2 
(2002,2004) and field 3 (2002)) will be needed for further investigations into functional 
differences in the Chl – 𝛽! response between soybean and maize.   

We have added 

While separate functional relationships for soybean and maize were explored (not 
shown), the benefits of employing these species-specific relationships did not outweigh 
the advantage of having a single functional fit. A more elaborate dataset on soybean will 
be needed for further investigations into functional differences in the Chl– 𝛽! between 
soybean and maize.  

And we have added 

While semi-mechanistic relationships between leaf chlorophyll content and leaf 
photosynthetic capacity demonstrate the importance of distinguishing between species 
utilizing differing photosynthetic pathways (C3 versus C4) (Houborg et al., 2013), 
relationships at the canopy scale are governed by different mechanism sometimes 
yielding more universal relationships (Gitelson et al., 2006). 

Reviewer comment :   

(ii) The chlorophyll content measurements were inferred from hyperspectral reflectance 
measurements at the leaf level, calibrated against chlorophyll extractions, which were 
scaled up to the canopy level. When TSEB-LUE is driven only by remote sensing data, 
the question arises on the relationship between the up-scaled leaf level data used in this 
study and corresponding RS measurements. This is something that the authors at least 
should address in the discussion/conclusion. Possibly, remote sensing of the chlorophyll 
content may introduce uncertainty into the estimation of beta_n which negates the 
advantage of the proposed parameterisation (e.g. would further reduce the R2 in Fig. 4). 
This is in particular an issue as any chlorophyll content inferred from RS will have a 
“canopy structure” effect, similar to the author’s arguments regarding variability in Fig. 
4. A great addition would be hyperspectral ecosystem-scale data from field spectrometry 
or airborne remote sensing to actually demonstrate this effect.  

Author Response 

We agree that it is entirely possible that the estimation of remotely sensed Chl may 
introduce uncertainty in 𝛽!, but in most cases it will still be an improvement over a fixed 



𝛽! value.  That being said the relationship developed here was specifically designed to 
not depend on canopy structure because we are using leaf level chlorophyll 
measurements averaged over the canopy via the fraction of green.  Leaf level chlorophyll 
measurements can be estimated from remotely sensed data using radiative transfer 
inversion techniques (Houborg et al. 2013; 2015). Indeed we are working on a paper at 
the moment using remotely sensed leaf level chlorophyll content retrieved from the 
REGularized canopy reFLECtance model (REGFLEC) (Houborg & Anderson, 2009) to 
estimate carbon assimilation using the functional relationship developed in this paper.  
The initial results look promising and have been presented at the 2014 AGU annual fall 
meeting. 
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Technical Corrections:  

Minor comments: p. 14135, l. 17-19: in the equation Re however has a positive sign  

Author Response 

We agree.  This sentence has been changed to: 

Many studies derive GPP from eddy-covariance observations of NEE and estimates of 
daytime ecosystem (soil + plant) respiration (Re) as GPP = NEE+Re (Suyker & Verma, 
2010, 2012).  Here, carbon uptake by plants is defined as positive while respiration, or 
carbon release, is negative.   



 

Fig. R1.  Manuscript figure 4 without multiplying fg to leaf level chlorophyll for rain-fed 
maize. 

 

 

Additional author notes 

 

I should have introduced APAR before I used it. I have added 

The LUE constraints on Ac are imposed as 

𝐴! = 𝛽 𝛾 ∗ 𝐴𝑃𝐴𝑅                             (7)                                                                                     

where 𝛽  is the effective LUE and 𝛾  is the ratio of intercellular (𝐶!)  to ambient 𝐶!   CO2 
concentrations as diagnosed by the model and APAR is the absorbed photosynthetically 
active radiation .   
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Abstract 

Recent studies have shown that estimates of leaf	  chlorophyll	  content (Chl), defined as 

the combined mass of chlorophyll a and chlorophyll b per unit leaf area, can be useful for 

constraining estimates of canopy light-use-efficiency (LUE).   Canopy LUE describes the 

amount of carbon assimilated by a vegetative canopy for a given amount of Absorbed 

Photosynthetically Active Radiation (APAR) and is a key parameter for modeling land-

surface carbon fluxes.  A carbon-enabled version of the remote sensing-based Two-

Source Energy Balance (TSEB) model simulates coupled canopy transpiration and 

carbon assimilation using an analytical sub-model of canopy resistance constrained by 

inputs of nominal LUE (𝛽!), which is modulated within the model in response to varying 

conditions in light, humidity, ambient CO2 concentration and temperature.  Soil moisture 

constraints on water and carbon exchange are conveyed to the TSEB-LUE indirectly 

through thermal infrared measurements of land-surface temperature.  We investigate the 

capability of using Chl estimates for capturing seasonal trends in the canopy 𝛽! from in 

situ measurements of Chl acquired in irrigated and rain-fed fields of soybean and maize 

near Mead, Nebraska.  The results show that field-measured Chl is non-linearly related to 

𝛽!, with variability primarily related to phenological changes during early growth and 

senescence.  Utilizing seasonally varying 𝛽! inputs based on an empirical relationship 

with in-situ measured Chl resulted in improvements in carbon flux estimates from the 

TSEB model, while adjusting the partitioning of total water loss between plant 

transpiration and soil evaporation.   The observed Chl-𝛽! relationship provides a 

functional mechanism for integrating remotely sensed Chl into the TSEB model, with the 



potential for improved mapping of coupled carbon, water, and energy fluxes across 

vegetated landscapes.   

 

1. Introduction  

 The terrestrial biosphere continues to be impacted by climate change and 

increasing atmospheric carbon dioxide concentrations.  Understanding the implications of 

these changes requires a thorough investigation of the patterns of terrestrial vegetation 

productivity and its feedback to global biogeochemical cycles of nitrogen and carbon.  

Vegetation productivity is defined as the production of organic matter by plants through 

photosynthesis.   The total amount of organic matter produced via photosynthesis is 

known as gross photosynthesis.  The total amount of CO2 “fixed” by plants through 

photosynthesis over a spatial area for a unit time is termed gross primary productivity 

(GPP) (Gough, 2012).    

 Numerous micrometeorological studies have focused on measuring the net carbon 

flux between the atmosphere and land surface, also known as the net ecosystem carbon 

dioxide exchange (NEE).   Field campaigns have been conducted around the world and in 

many different ecosystems, often employing the eddy covariance technique to provide 

information on seasonal and interannual variations in NEE (Baldocchi, 2003).   Many 

studies estimate GPP from eddy-covariance observations of NEE and estimates of 

daytime ecosystem (soil + plant) respiration (Re) as GPP = NEE+Re  (Suyker & Verma, 

2010, 2012).  Here, carbon uptake by plants is defined as positive while respiration, or 

carbon release, is negative.   
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 Vegetation productivity is largely modulated by the amount of incoming radiation 

that is intercepted by plants.  Many GPP and NEE modeling techniques are based on 

Monteith’s hypothesis that the increase in canopy biomass is linearly related to the 

amount of light intercepted or absorbed by healthy, unstressed plants (Monteith, 1977).  

The slope of this relationship is known as the light use efficiency (LUE) or the 

conversion efficiency of light into biomass through photosynthesis. Many LUE-based 

models have used fixed values of LUE derived from studies reported in the literature, 

assigned based on vegetation class (Anderson, Norman, Meyers, & Diak, 2000; Gower, 

Kucharik, & Norman, 1999).  This practice is based on findings that maximum LUE 

tends to be relatively conservative within broad categories of plant functional type (Field, 

1991; S J Goetz & Prince, 1999; Monteith, 1977).    

 Recent studies, however, have recognized that a more detailed spatio-temporal 

representation of LUE is needed to accurately determine the seasonal trends and 

magnitudes of carbon assimilation rates (Alton, North, & Los, 2007; DeLucia, Drake, 

Thomas, & Gonzalez-Meler, 2007; Houborg, Anderson, & Daughtry, 2009; Kosugi, 

Shibata, & Kobashi, 2003; Wilson, Baldocchi, & Hanson, 2001; Xu & Baldocchi, 2003). 

LUE can vary considerably within vegetation types, at different phenological stages and 

under varying environmental conditions that induce plant stress (Gower et al., 1999; 

Houborg, Anderson, Daughtry, Kustas, & Rodell, 2011; Houborg, Cescatti, Migliavacca, 

& Kustas, 2013; Medlyn, 1998; Prince, 1991; Ruimy, Kergoat, Bondeau, & 

intercomparison, 1999; Xu & Baldocchi, 2003).  An analysis conducted by Kergoat et al. 

(2008) also supports the view that LUE varies significantly across and within biomes as 

well as among plant functional types. These studies highlight the need to account for 



variations in LUE due to plant phenological stage as well as changing conditions of light, 

humidity, and limited water and nutrient resources. 

 The challenge for regional-scale carbon flux mapping using a LUE-based 

modeling system is to find a parsimonious yet robust means for specifying LUE spatially 

across the modeling domain for different landcover types, and seasonally in response to 

changing phenology and plant stress conditions.  Chlorophyll pigments absorb 

photosynthetically active radiation (PAR) and constitute a vital element in the 

photosynthetic machinery. Leaf chlorophyll is mechanistically linked to photosynthetic 

capacity (Houborg et al., 2013) through functional relationships with leaf nitrogen 

(Evans, 1989; Schlemmer et al., 2013) and Rubisco (Sage & Pearcy, 1987; Theobald, 

Mitchell, Parry, & Lawlor, 1998) that acts as a catalyst for carbon fixation within the leaf 

chloroplasts. These strong correlations make leaf chlorophyll an important control on 

vegetation productivity by serving as a proxy for the nominal efficiency of leaves in 

using the absorbed light for photosynthesis. The effective LUE will fluctuate in response 

to short-term changes in environmental conditions (e.g. temperature, humidity, wind 

speed), whereas the impact of variations in leaf chlorophyll will be more gradual as 

vegetation stresses are not immediately manifested in observations of leaf chlorophyll 

content (Houborg et al., 2011). 

 Recent studies have shown that the variation in midday GPP can be accurately 

estimated via measurements of canopy-scale chlorophyll (Gitelson et al., 2006, 2012; 

Suyker & Verma, 2010, 2012).  Changes in canopy chlorophyll are recognized to be 

sensitive to vegetation stress, crop phenology and photosynthetic functioning of the 

vegetation, (Gitelson, Viña, Ciganda, Rundquist, & Arkebauer, 2005; Ustin, Smith, 



Jacquemoud, Verstraete, & Govaerts, 1999; Zarco-Tejada, Miller, Mohammed, Noland, 

& Sampson, 2002) and therefore can be related to GPP.   Leaf and canopy chlorophyll 

have also been shown to be useful quantities for constraining the nominal LUE (𝛽!),  over 

the course of the growing season (Gitelson et al., 2006, 2012; Houborg et al., 2011, 2013; 

Monteith, 1972, 1977; Peng, Gitelson, Keydan, Rundquist, & Moses, 2011; Peng & 

Gitelson, 2012).  Chlorophyll is a vital pigment in the photosynthetic apparatus and 

advances in the retrieval of leaf and canopy chlorophyll from remote sensing data 

(Houborg et al., 2014) makes it extremely amenable for the ultimate goal of mapping 

fluxes over larger areas.  

 Houborg et al. (2011) demonstrated the utility of using remotely sensed maps of 

leaf chlorophyll (Chl), defined as the combined mass of chlorophyll a and chlorophyll b 

per unit leaf area, generated with the REGularized canopy reFLECtance (REGFLEC) 

inversion system (Houborg & Anderson, 2009; Houborg et al., 2014) for constraining 

nominal LUE inputs. REGFLEC-derived maps of 𝛽! generated over a rain-fed maize 

production system at the Beltsville Agricultural Research Center (BARC), MD were used 

as input to a version of the thermal infrared (TIR) remote sensing based Two-Source 

Energy Balance Model (Anderson et al., 2008; Houborg et al., 2011), which employs an 

analytical LUE-based model of canopy resistance to compute coupled canopy 

transpiration and carbon assimilation fluxes (Anderson et al., 2000).  Soil moisture 

constraints on canopy resistance are effectively conveyed to the TSEB-LUE by thermal 

infrared measurements of land-surface temperature (LST), incorporated via principles of 

energy balance. Input values of 𝛽! are modified internally within the model in response 

to diurnally varying conditions in light, humidity, ambient CO2 concentration and 



temperature, and inferred soil water status.  Houborg et al. (2011) found that REGFLEC 

derived Chl was exponentially related to nominal LUE for drought conditions in 2007.  

The results improved when a 3-day lag between Chl and 𝛽! was imposed, suggesting that 

environmental stresses were not immediately manifested in the measured Chl.  Use of a 

seasonally varying 𝛽!, retrieved as a function of Chl, improved estimates of canopy 

carbon assimilation as well as latent and sensible heat fluxes in comparison to runs using 

conventional fixed values of 𝛽! derived from the literature.   

Here we extend the investigation of functional relationships between Chl and 𝛽! 

using an extensive dataset of in situ measurement of Chl collected fields of both irrigated 

and rain-fed maize and soybean in Mead, NE.  An empirically derived functional form of 

Chl versus nominal  𝛽! is used to drive the TSEB-LUE model at these sites using in-situ 

measurements of LST, Chl and micrometeorological variables, and model performance is 

evaluated using flux data from eddy covariance towers situated within the fields.  A 

follow-on study will incorporate the TSEB-LUE into a multi-scale regional energy 

balance modeling system (Anderson, Kustas, & Norman, 2007) using 𝛽! fields retrieved 

from remotely sensed estimates of Chl, enabling routine mapping of coupled carbon, 

water and energy fluxes at field to regional scales while taking into account critical 

spatio-temporal variations in photosynthetic capacities.  

2. Model description 

2.1. TSEB 

The Two-Source (soil+canopy) Energy Balance (TSEB) model (Norman, Kustas, 

& Humes, 1995) is a thermal-based diagnostic flux model that couples 

micrometeorological conditions inside and above the canopy to energy fluxes from the 



soil, plants and atmosphere (Fig 1).  The TSEB land surface model and refinements 

(Kustas & Norman, 1999, 2000) has been implemented within the Atmosphere-Land 

Exchange Inverse (ALEXI) regional modeling system, and the associated DisALEXI flux 

disaggregation approach (Anderson et al., 2007).  The ALEXI-DisALEXI modeling 

paradigm facilitates flux mapping at continental to field scales through a combination of 

thermal infrared (TIR) imagery from geostationary and polar orbiting sensors (Anderson 

et al., 2011).  The research in this paper, focusing on a local application of the TSEB 

approach using tower-based inputs, will be used to further refine regional remote sensing 

based flux mapping applications using ALEXI-DisALEXI. 

The modeling system described here uses the series version of the TSEB (Kustas 

& Norman, 2000), which partitions available energy at the surface into sensible and latent 

heat fluxes.  The fluxes are computed separately for soil (subscript ‘s’) and canopy 

(subscript ‘c’) components of the TIR measurement footprint: 

𝑅𝑁! + 𝑅𝑁! − 𝐺 = 𝐻! + 𝐻! + 𝐿𝐸! + 𝐿𝐸!                                                                                                                           (1)  

The soil and canopy components of the net radiation (𝑅𝑁!;   𝑅𝑁!) are modeled using 

equations found in (Kustas & Norman, 1999), while G is computed as a time-dependent 

fraction of 𝑅𝑁! (Santanello & Friedl, 2003).  The model partitions remotely sensed LST 

(Trad), observed at a view angle 𝜃, into canopy and soil temperature components as, 

𝑇!"# 𝜃 = [𝑓!𝑇!! + 1− 𝑓! 𝑇!!]!/!                      .                                                                          

(2) 

Here 𝑓! is the fraction of vegetation cover as apparent from the TIR sensor view angle: 

𝑓! = 1− exp !!.!!!!"#
!"#$

                                                                                                                                                                                                                     

(3) 



where LAI is the Leaf Area Index (m2/m2) and Ω! is an angular dependent vegetation-

clumping factor. Sensible heat flux from the soil (Hs) and canopy (Hc) and combined 

system (H) are then computed from the partitioned temperatures of canopy (Tc) and soil 

(Ts) using a temperature gradient series resistance network connecting the soil, canopy 

and atmosphere:  

𝐻! =   𝜌𝑐!
!!!!!"
!!

                      

(4) 

𝐻! =   𝜌𝑐!
!!!!!"
!!

                                                                             

(5) 

𝐻 =   𝜌𝑐!
!!"!!!
!!

                                                                             

(6) 

Where 𝑅! is the total two-sided leaf boundary resistance, Rs is the soil boundary 

resistance, and RA is the aerodynamic resistance.  The upper boundary condition in air 

temperature, TA, is measured or estimated at a reference height above the canopy, while 

TAC is a model-diagnosed in-canopy temperature.   In the original form of the TSEB 

(referred to here as TSEB-PT), LEc is computed using a modified Priestley-Taylor (PT) 

approach (Norman et al., 1995) applied to the divergence of net radiation within the 

canopy.  Soil evaporation, LEs, is calculated as a residual in the energy balance equations.  

Negative LEs values obtained at midday, indicating condensation onto the soil, are 

considered non-physical and likely result from an overestimation of LEc by the PT 

approximation.  This may occur under conditions of vegetation stress, where the rate of 

transpiration is reduced from the potential PT estimate due to stomatal closure.   In such 

conditions the PT coefficient is iteratively reduced until LEs approaches zero (Kustas, 



Norman, Schmugge, & Anderson, 2004) . 

2.2. Analytical canopy resistance submodel (TSEB-LUE) 

Anderson et al. (2008) replaced the PT approximation for LEc in TSEB-PT with an 

estimate of canopy transpiration generated using an analytical LUE-based model of 

canopy resistance (Anderson et al., 2000), enabling simulation of carbon fluxes in 

addition to energy and water fluxes to the atmosphere. In comparison with TSEB-PT, 

TSEB-LUE requires additional atmospheric inputs of ambient vapor pressure and CO2 

concentration, which serve as the upper boundary for flux-gradient calculations of LEc 

and Ac.  It also requires specification of 𝛽!, the LUE expected under nominal unstressed 

conditions. 

The system of equations and computational strategy used in TSEB-LUE are described in 

full in Anderson et al. (2008).  In brief, in TSEB-LUE LEc and Ac are both defined using 

gradient-resistance equations as shown in Fig. 1, coupled through simulated values of 

bulk canopy resistance (Rc).  Energy balance constraints on LEc (informed by the Tc 

component of the remotely sensed LST input) and LUE constraints on Ac (informed by 

the 𝛽! input, typically assigned by land-cover class) are used in combination to solve for 

Rc, as well as water vapor and carbon concentrations inside the leaf and canopy.  The 

bulk leaf boundary layer resistance (Rb) and aerodynamic resistance (RA) in Fig. 1 are 

dependent on wind speed and stability conditions, as described in (Anderson et al., 2000). 

Here 𝑅!, the canopy integrated two-sided leaf boundary layer resistance, is related to 𝑅!, 

the total two-sided leaf boundary resistance as 𝑅! = (𝑓!/[𝑓!×𝑓!"#])𝑅!, where 𝑓! is 

distribution of stomata over the top and bottom of the leaf, 𝑓! is the fraction of green 

vegetation and 𝑓!"# excludes the fraction of stomata that are blocked by leaf surface 



water.  For a more detailed illustration of the coupled nature of the LEc and Ac the reader 

is directed to eqs. A13 and A14 in the appendix of Anderson et al. (2008).  Here we can 

see that the fluxes of LEc and Ac are governed by Rc. 

The LUE constraints on Ac are imposed as 

𝐴! = 𝛽 𝛾 ∗ 𝐴𝑃𝐴𝑅                                    

(7)                                                                                     

where 𝛽  is the effective LUE and 𝛾  is the ratio of intercellular (𝐶!)  to ambient 𝐶!   CO2 

concentrations as diagnosed by the model and APAR is the absorbed photosynthetically 

active radiation .  Under unstressed conditions we assume that the canopy will operate 

near 𝛽! and a nominal value of Ci/Ca (𝛾!).  While curvilinear at the scale of individual 

leaves, the relationship between Ac and Ci has been shown to be more linearized at the 

canopy scale (Norman & Arkebauer, 1991).  Therefore the deviation of effective LUE 

from the nominal value is estimated through the linear relationship 

𝛽(𝛾) = !!
!!!!!

(𝛾 − 𝛾!)                                                                                                            

(8) 

where 𝛾! is the value of 𝛾 when 𝛽 is zero. 

Anderson et al. (2008) determined that deviations of effective LUE from the 

nominal value ∆𝛽 = 𝛽! − 𝛽, generated by the TSEB-LUE, reflect both variability in 

ambient meteorological conditions and surface moisture conditions implied by the 

thermal signal.  For example, riparian areas where soil moisture was non-limiting showed 

minimal ∆𝛽, while in areas with dense vegetation but relatively high Tc (in comparison 

with values expected for well-watered vegetation), 𝛽 was depressed more significantly 

from the nominally assigned value.  This indicates that the TIR inputs were conveying 



useful information regarding moisture limitations on both canopy resistance and effective 

LUE – without the need of precipitation input data and a detailed soil water balance 

characterization.  

The study by Anderson et al. (2008) assumed that the nominal LUE is constant in 

time for a given plant functional type.  However, numerous studies cited above, including 

seasonal tests with TSEB-LUE (Houborg et al., 2011), have demonstrated that the 

nominal value of LUE can vary seasonally based on stand phenology and the canopy’s 

changing capacity to fix carbon.  Here we investigate the ability of measurements of leaf 

chlorophyll content in maize and soybean to accurately reflect seasonal changes in the 𝛽! 

required by TSEB-LUE throughout several growing seasons and under different water 

management strategies. 

3. Materials and methods 

3.1.          Study site  

This study uses data collected between 2002 and 2005 at the University of 

Nebraska-Lincoln Agriculture and Development Center as part of the ongoing Carbon 

Sequestration program.  The research facility is located about 58 km northeast of Lincoln, 

NE, USA and consists of 3 ~65 ha fields of maize (Zea mays, L) and soybean (Glycine 

max [L.] Merr.) (Fig. 2).  Table 1 summarizes crop and water management by field for 

2002-2005.  Field 1 was planted with continuous maize throughout the study period, 

while Fields 2 and 3 supported a maize/soybean rotation cropping system.  Fields 1 and 2 

are equipped with a center pivot irrigation system, while Field 3 relies entirely on rainfall.  

All three fields were managed in no-till from 2001 through the extent of the study period 

examined here. Additional details regarding long-term crop management and 



measurement activities at these field sites are provided in Suyker et al. (2010). 

3.2.Micrometeorological observations 

An eddy covariance (EC) system has been deployed in each field, collecting 

continuous measurements of latent heat (LE), sensible heat (H), CO2 (NEE) and 

momentum fluxes.  These fluxes are routinely reported and available to the public as part 

of the AmeriFlux program.  Details regarding the flux and supporting 

micrometeorological instrumentation at Mead are described in Suyker et al. (2010).   In 

order to ensure the flux footprint/source area originated essentially from the field 

encompassing the flux tower, the eddy covariance sensors were mounted at 3 m above 

the ground for plant canopies that were shorter than 1 meter and were moved to 6.2 m as 

the plant canopies grew for the remainder of each growing season.   

Ancillary micrometeorological measurements were collected routinely on a 

separate tower near each flux tower.  The additional measurements include incident direct 

and diffuse photosynthetically active radiation, with absorbed PAR (APAR) quantified 

using point and line quantum sensors above and below the canopy.  Air temperature and 

humidity were measured at 3 and 6 m above ground level, and radiation at 5.5 m.  

Multiple in- and between-row measurements of soil heat flux at 0.06 m depth were 

combined to approximate an average flux. Soil heat flux (G) values used here were 

corrected for heat storage above the plates. 

EC fluxes computed for half hour intervals were assessed for closure of the 

energy budget by comparing LE+H and RN+G during the study period.  The regression 

slopes over the study period ranged from 0.9 to 1 indicating generally reasonable closure.   



For comparison with model results, energy closure was enforced by modifying the 

observed sensible and latent heat fluxes such that the observed Bowen ratio was 

maintained (Twine et al., 2000). 

3.3.    Biophysical measurements 

In order to facilitate research studies, biophysical data was collected continuously 

over the study period at six small plots (20 by 20 m) in each field.  These plots, known as 

Intensive Measurement Zones (IMZ), were established such that they represent all major 

occurrences of soil and crop production zones within each field (Gitelson, Viña, et al., 

2003; Viña, 2004).   The collection of biophysical data within the IMZ areas is described 

in detail by [Viña, 2004] and only briefly reviewed here.   

Within each IMZ, average leaf area per plant was estimated for both live and dead 

leaves using destructive samples collected every 10-14 days and measured using a LI-

3100 area meter (LI-COR, INC., Lincoln, NE, USA).  The total (LAI) and green leaf area 

(LAIg) was calculated as the leaf area per plant multiplied by the plant density 

(plants/m2) at each IMZ.  The LAI samples collected at the six IMZs were area-weighted 

averaged to obtain field-wide representative values (Gitelson et al., 2006).   

The canopy clumping factor, Ω, used in Eq. 3, was empirically estimated for each 

site by optimizing the radiation scheme in TSEB-LUE, such that modeled midday APAR 

values matched observed values.  Optimized Ω on non-clear days (fraction of direct 

radiation (fdir) < 80%) were removed and a linear interpolation between clear day values 

was applied.  The allowed range in retrieved clumping factor ranged between 0.6 and 1.0. 

In addition to LAI, reflectance measurements of the upper canopy leaves were 

taken every 2 weeks using an Ocean Optics USB2000 radiometer (400-900 nm) equipped 



with a leaf clip (Gitelson et al., 2005; Viña, Gitelson, Nguy-Robertson, & Peng, 2011).  

The Chl content was estimated from the reflectance data using a non-destructive 

methodology (Ciganda, Gitelson, & Schepers, 2009; Gitelson, Gritz, & Merzlyak, 2003).  

The method utilizes reflectance in the red edge (700-720 nm) and NIR (760-800 nm) 

regions to approximate total Chl, where Chl = a x [(RNIR/Rred edge)-1] (𝜇𝑔  𝑐𝑚!!).  The 

model coefficient a was calibrated using total Chl extracted in the lab.  The linear model 

allowed for estimates of Chl in the range of 1- 90 𝜇𝑔  𝑐𝑚!! with a Root Mean Square 

Error (RMSE) below 6 𝜇𝑔  𝑐𝑚!!.  In order to estimate average leaf chlorophyll content 

within the plant stand, leaf level measurements of chlorophyll were multiplied by the 

fraction of green leaves (fg) 

  𝐶ℎ𝑙 = 𝐶ℎ𝑙!"#$ ∗ 𝑓!                                                                                                           (9) 

where fg was computed as the ration of green (LAIg) to total LAI, LAIg/LAI. 

3.4. Soil respiration and canopy assimilation 

TSEB-LUE estimates net carbon assimilation by the canopy (Ac).  To evaluate 

model output, the EC measurements of NEE (A = Ac-As in Fig. 1) must be corrected using 

estimates of the soil respiration flux, As.  Soil respiration was measured at approximately 

3-week intervals at each field site using a portable gas exchange system.  Along with 

each soil respiration measurement, soil temperatures at 10 cm were recorded and 

gravimetric soil water content was determined for a 0–10 cm soil sample and converted 

to volumetric water contents (θ10) using measured bulk densities. 

  In order to interpolate between sampling dates, the measured soil respiration 

fluxes were fit to an empirical equation (Norman, Garcia, & Verma, 1992) describing As 



as a function of soil temperature (Ts), soil moisture and LAI: 

𝐴! = (a+ bLAI)θ!"exp  [c 𝑇!,!" − 25.0 ]                 

 (10)  

where θ!" is the soil moisture content in the 0-10 cm depth, 𝑇!,!" is the temperature of the 

soil at a depth of 10 cm and the site-specific regression coefficients a, b, and c were 

derived empirically every year for each field.   The hourly canopy carbon assimilation 

(Ac) was then obtained by adding estimates of hourly soil respiration (As), derived from 

hourly in-field observations of θ!" and 𝑇!,!" along with daily interpolated LAI, to net 

ecosystem exchange (A) (sign convention used here is such that Ac and As are positive 

away from the surface).  

3.5. Nominal LUE optimization 

The seasonal variation in model input values of 𝛽! were determined at five-day 

intervals for each field and study year by minimizing differences between measured and 

modeled canopy CO2 fluxes (Ac). The TSEB-LUE model was run for all three fields using 

tower measurements of incident solar radiation, incoming longwave radiation, air 

temperature, wind speed, atmospheric pressure and vapor pressure as well as outgoing 

longwave radiation.  The measured outgoing longwave radiation was inverted using the 

Stefan-Boltzmann law to estimate half-hourly LST (TRAD).   Previous studies (S. J. Goetz, 

Halthore, Hall, & Markham, 1995; Hatfield, Vauclin, Vieira, & Bernard, 1984) have 

indicated that this provides a more representative measurement of the composite 

(soil+vegetation) surface temperature than do measurements from infrared thermometers, 

which have relatively narrow field of view.  These runs used leaf and canopy parameters 



for maize and soybean tabulated in Houborg et al. (2009), and field-average estimates of 

LAI (section 3.3) linearly interpolated to daily values over the study period.    

Following Houborg et al. (2011), the optimization process varied 𝛽! over a 

prescribed range, selecting daily values that minimized bias between modeled and 

measured Ac fluxes during daytime hours (constrained to solar zenith angles (SZA) less 

than 50 degrees).   Optimized values of 𝛽! were then averaged over 5-day periods.  Only 

clear days were considered, defined such that the fraction of direct radiation was greater 

than 50%.   LUE is known to increase under more diffuse lighting conditions because 

light is more uniformly distributed over the canopy (Norman & Arkebauer, 1991).  By 

constraining to clear days, the resulting optimized β! are relevant to future remote 

sensing applications, which require clear-sky conditions for direct retrieval of TIR-based 

LST and a gap-filling algorithm for estimating fluxes during cloudy periods.  In addition, 

we considered fluxes only over medium to dense vegetation (LAI>2) where Ac 

dominates the observed system CO2 flux and β! optimization is well-constrained.  The 

end product was a time-series of 5-day averaged β! determined over the growing season 

for each year and site, optimized for use within the TSEB-LUE modeling framework. 

4. Results and Discussion 

4.1.  Relationship between Chl and 𝛽!   

Figure 3 shows examples of the time evolution of optimized nominal LUE and 

measurements of Chl over the growing season obtained for representative irrigated 

soybean (a) and maize (b) fields.   There is a general correspondence between time trends 

in 𝛽! and Chl, but with some deviation particularly in the beginning of the season when 



LAI is low.  At these times, the canopy assimilation is small and optimization of 𝛽! using 

measured Ac is not as reliable.  Therefore, in deriving empirical functional relationships 

between 𝛽! and Chl we only consider observations collected over medium to dense 

vegetation (LAI > 2) where canopy carbon assimilation is significant.   This does not 

imply, however, that the functional relationships cannot be used over sparse vegetation.  

The results discussed in sections 4.2, 4.3 and tables 3 and 4 show results from sparse to 

dense vegetation. 

Scatter plot comparisons of 𝛽! and Chl for all sites and years are shown in Fig. 4, 

discriminating maize from soybean and irrigated from rainfed fields.  Nominal LUE is 

shown to be non-linearly sensitive to Chl, and the reasonable goodness of fit (r2=0.52) 

provides support for the use of Chl as a remote sensing observable for retrieving 𝛽! 

inputs to TSEB-LUE.  While separate functional relationships for soybean and maize 

were explored (not shown), the benefits of employing these species-specific relationships 

did not outweigh the advantage of having a single functional fit. A more elaborate dataset 

on soybean will be needed for further investigations into functional differences in the 

Chl– 𝛽! response between soybean and maize. Figure 4 indicates that a single function 

can be used to describe the relationship for both crops, despite the differences in 

photosynthetic pathway between soybean (C3) and maize (C4) crops.  While semi-

mechanistic relationships between leaf chlorophyll content and leaf photosynthetic 

capacity demonstrate the importance of distinguishing between species utilizing differing 

photosynthetic pathways (C3 versus C4) (Houborg et al., 2013), relationships at the 

canopy scale are governed by different mechanism sometimes yielding more universal 

relationships (Gitelson et al., 2006).  For soybean, assimilation rate begins to saturate at 
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approximately 30 (µg cm-2) Chl corresponding to a 𝛽! of 0.025 (Fig. 4). C4 crops can 

assimilate more carbon per unit APAR by maintaining the concentration of CO2 at a high 

level in the leaf so that photorespiration is minimized, and saturation occurs at a higher 

Chl (~60 µg cm-2) and 𝛽! (~0.035) value. These are close to the conventional values of 

𝛽! found in the literature such as those used in the fixed 𝛽! studies of Anderson et al. 

(2008, 2000) and Houborg et al. (2009).   

The functional fit for 𝛽!(𝐶ℎ𝑙) plotted in Fig. 4 takes the form of 𝛽!= a(1-

exp(b*Chl)) and was composed using a customized nonlinear least squares fit. The 

approach finds the regression coefficients that minimize the error between x (Chl) and y 

(𝛽!).   Here the coefficients a (95% confidence bounds) and b are 0.039 (0.038, 0.040) 

and 28.14 (26.18, 30.10) respectively with a r2 of 0.52.   A leave-one-out cross validation 

reveals that 𝛽! can be estimated from Chl with an RMSE of 0.0042 mol mol-1 for both 

maize and soybean.   

Though it is evident that there is a considerable amount of deviation from the 

functional fit, there are some potential explanations for this deviation.  The outliers that 

appear to have higher 𝛽! values for low Chl values are predominantly rain-fed maize 

(Fig. 4).   A lower planting density to maximize efficiency could explain these outliers.  

In fact, the rain-fed field 3 is planted at a lower density for both maize and soybean 

(Table 2).  Lower plant density appears to have little affect on soybean likely due to the 

difference in plant structure.  In maize a lower planting density allows deeper penetration 

of light into the canopy and an increase in the intensity of diffuse light, which can 

enhance effective LUE by up to 15 % in maize (Norman & Arkebauer, 1991).  Another 



important factor may be the adopted multiplication of in-situ measured Chl with the 

fraction of green vegetation in order to produce an average (comprising both green and 

senescent leaf material) Chl over the canopy (Houborg et al., 2014).  This assumes in-situ 

sampling of entirely green leaf material, which may result in underestimation of the 

actual Chl particularly during advanced stages of leaf senescence or vegetation stress. 

This is particularly evident in the rain-fed fields of maize as seen in Fig. 4.   

4.2. Evaluation of hourly fluxes from TSEB-LUE 

Seasonal variations in both total latent heat flux and carbon assimilation over 

representative fields of irrigated maize and soybean are shown in Fig. 5. Each diurnal 

segment is represented by flux measurements averaged by hour over 5-day intervals.  The 

averaging scheme reduces the random errors associated with flux observations as well as 

natural variability for each time period (Moncrieff, Malhi, & Leuning, 1996).  Statistical 

metrics comparing observed and modeled fluxes at the hourly timestep are tabulated in 

Table 3, including Mean Bias Error (MBE), Root Mean Square Difference (RMSD), 

coefficient of regression (r2), coefficient of efficiency (E), and percent error (%error). 

The statistics in table 3 are generated from a randomly selected 2/3 of the dataset to test 

the robustness of the Chl - 𝛽! functional fit.  

The impact of including the seasonally varying nominal LUE (as a function of 

Chl) in the TSEB-LUE is most evident in model estimates of carbon assimilation (Fig. 

5a,b), with lesser impact on total fluxes of latent (Fig. 5c,d) and sensible heat. 

Differences between simulated carbon fluxes forced using a fixed 𝛽! (red line) and a 𝛽! 

dictated by variations in Chl (blue line) are particularly pronounced for maize (Fig. 5a) 

especially during senescence. Statistical metrics describing model performance at a 



hourly timestep (Table 3), demonstrate a significant decrease in the RMSD from 9 to 5 

µmol m-2 s-1 when adopting seasonally varying 𝛽! (as a function of Chl) rather than a 

fixed 𝛽!.  The coefficient of determination improves from 0.83 to 0.91, the coefficient of 

efficiency increases from 0.68 to 0.90, and the relative error is reduced to 18% using a 

varying 𝛽! down from 28 % using a fixed 𝛽! (Table 3).  Clearly, by adopting fixed 

literature-based 𝛽! values designed for healthy vegetation, carbon assimilation may be 

overestimated during times of vegetation stress and senescence and underestimated 

during times of optimal plant health.  

In this study, the impact on the total latent heat flux was minimal as evidenced by 

the RMSD values of 51 and 52 W m-2 using seasonally fixed values of 𝛽! and 𝛽!(Chl), 

respectively (Table 3).  Impacts on sensible heat fluxes were similarly minimal. In 

contrast, Houborg et al. (2011) noted a significant improvement in latent heat fluxes over 

maize during severe drought conditions.  The datasets used in the current analysis are 

based on collections over irrigated and to a lesser extent rain-fed fields not significantly 

affected by drought conditions over the studied period, and more research is still needed 

to reveal the impact of drought stress on 𝛽! and latent heat fluxes. 

  While the impact of including the varying 𝛽! on total (canopy+soil) latent heat 

fluxes is not immediately evident given the conditions sampled in this study period, there 

was a significant impact on the partitioning between canopy and soil latent heat (Fig. 6).  

In general, the predominant effect was to increase soil evaporation and decrease 

transpiration fluxes, indicating a shift of latent heat from the canopy to soil.  Changes in 

the canopy latent heat fluxes are intimately (and positively) linked to changes in carbon 

assimilation through regulation via the canopy resistance (Anderson et al., 2008).    



Scatter plot comparisons of modeled and measured hourly energy and carbon 

fluxes are shown in Figures 7 and 8, respectively.  Incorporation of time-varying 𝛽! 

serves to modulate the partition of the fluxes of carbon and water between the soil and 

canopy but it has little impact on the total energy fluxes in this study (Table 3).  In 

contrast, the overall impact on the canopy carbon flux is more pronounced, with a 

significant reduction in bias and increased goodness of fit (Fig. 8 and Table 3).    

4.3.  Evaluation of daily-integrated fluxes 

Daytime-integrated fluxes of water, energy and carbon were computed using the 

5-day averaged hourly flux values integrated over daytime hours where the solar zenith 

angle is less than 80 degrees.  Figure 9a shows the results of the daily fluxes forced by 

the fixed 𝛽!.  The latent heat fluxes are seen to be slightly overestimated at low to mid 

range values whereas the sensible heat fluxes are slightly underestimated at mid to high 

range values.  The results based on seasonally varying 𝛽! are quite similar (Fig. 9b), 

although the apparent overestimation of the latent heat fluxes seen in Fig. 9a has been 

slightly reduced. This improvement is reflected in the RMSD statistic, which changes 

from 1.44 to 1.41 (Table 4).   

The use of a seasonally varying 𝛽! rather than a fixed 𝛽!, markedly improves 

modeled carbon fluxes at the daily time scale (Fig. 10).  Errors at daily timesteps are 

significantly reduced over hourly model performance, with decreases in RMSD and MBE 

from 0.60 to 0.32 and 0.47 to 0.14 µmol m-2 s-1, respectively, and a decrease in relative 

error from 26% to 13% (Table 4).  

5. Summary and Conclusions 



The results presented in this study indicate that leaf chlorophyll (Chl) is closely 

related to the canopy nominal light use efficiency (𝛽!) input required by TSEB-LUE for 

medium to dense vegetation.   In addition, the relationship can be reasonably described 

with a single function for both soybean and maize, despite differences in photosynthetic 

pathway (C3 versus C4).  The relationship between Chl and 𝛽! was found to be 

curvilinear with 𝛽! saturating for soybean around a value of 0.025 corresponding to a Chl 

value of approximately 30 (µg/cm2) while maize appears to saturate at a 𝛽! value closer 

to 0.035 corresponding to a Chl level of around 60 (µg/cm2). These asymptotic values are 

in line with literature values and previous applications with the TSEB-LUE using fixed 

𝛽!.   

During times of plant stress or senescence, the use of a fixed land cover specific 

nominal LUE representative of healthy vegetation is not appropriate. By allowing 

nominal LUE to respond to varying conditions of plant stress via Chl modulations, 

uncertainties in modeled fluxes of carbon are significantly reduced.  While canopy 

carbon assimilation shows improved results especially in the senescing stage of the 

growing season, the impact is not apparent in total latent heat fluxes.  However varying 

𝛽! adjusts the partitioning of latent heat fluxes from the soil and canopy.  Unfortunately 

information about the partitioning of the fluxes was not available for verification 

purposes.   

The results indicate potential for improved monitoring of carbon fluxes using 

established relationships as a functional basis for using Chl as a proxy of plant condition 

and photosynthetic capacity. Because Chl can be estimated from remotely sensed data 

(Houborg & Anderson, 2009; Houborg et al., 2014), the approach outlined in this paper 



can be scaled up using satellite data with the potential for improved regional mapping of 

fluxes of carbon, water, and energy.  For regional scale mapping the challenge will be to 

establish the spatial distribution of species to inform the model for different nominal 

values (i.e. 𝛾!), which can vary between C3 to C4 plants.  For agricultural areas the 

USDA’s Cropland Data Layer (CDL) can be used; however, for other biomes a more 

robust species map may be needed then currently exists.  By implementing the TSEB-

LUE approach within the ALEXI/DisALEXI modeling system (Anderson et al., 2007), 

regional scale modeling of not only water and energy but also carbon fluxes within a 

thermal-based modeling framework will become feasible. 
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Table 1.   Cropping and water management history at Mead study field sites. 
Year 2002 2003 2004 2005 

Field 1 Irrigated corn Irrigated corn Irrigated corn Irrigated corn 
Field 2 Irrigated soybean Irrigated corn Irrigated soybean Irrigated corn 
Field 3 Rain-fed soybean Rain-fed corn NA Rain-fed corn 

 
Table 2.  Planting density (Plants/m2) 

Year 2002 2003 2004 2005 
Field 1 7.1 7.7 8.0 6.9 
Field 2 33.3 7.8 29.6 7.6 
Field 3 30.5 5.7 NA 5.4 
 
Table 3. Statistical metrics for hourly measured and modeled fluxes using 2/3 of the 
fields/years for validation.  Energy flux units are W  m!!and carbon flux units are 
µμmol  m!!s!! 
Flux N O MBE RMSD r2 E % error 
Fixed        
RN 1680 347 6 29 0.89 0.98 5 
LE 1680 268 0 51 0.84 0.90 14 
H 1680 43 -4 35 0.68 0.76 62 
G 1680 41 7 23 0.68 0.73 42 
Ac 1680 23 5 9 0.83 0.68 28 
f(Chl)        
RN 1680 347 5 29 0.88 0.98 5 
LE 1680 269 -5 52 0.82 0.90 14 
H 1680 45 0 35 0.67 0.77 59 
G 1680 40 7 22 0.70 0.75 42 
Ac 1680 23 2 5 0.91 0.90 18 
a Here N is the number of observations, O is the mean observed flux, RMSD is the root-mean-square 
difference between the modeled (P) and observed (O) values, MBE is the mean bias error (P  − O ), r2 is the 
coefficient of determination for the linear regression of P on O, E is the coefficient of efficiency, and the 
percent error is defined as the mean absolute difference between P and O divided by the mean observed 
flux. 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Table 4. Statistical metrics comparing daily measured and modeled fluxes using 2/3 of 
the fields/years for validation.  Energy flux units are MJ  m!!d!!and carbon flux units are 
gC  m!!d!! 
Flux N O MBE RMSD r2 E % error 
Fixed        
RN 140 14 0.21 0.76 0.97 0.96 4 
LE 140 11 0.18 1.44 0.89 0.89 10 
H 140 2 -0.08 1.07 0.76 0.74 50 
G 140 2 0.23 0.58 0.77 0.66 25 
Ac 140 2 0.47 0.60 0.91 0.64 26 
f(Chl)        
RN 140 14 0.1 0.74 0.97 0.96 4 
LE 140 11 -0.16 1.41 0.88 0.88 10 
H 140 2 0.07 1.03 0.78 0.76 55 
G 140 2 0.29 0.61 0.77 0.65 27 
Ac 140 2 0.14 0.32 0.92 0.90 13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Fig. 1.  Schematic illustrating the LUE-based canopy resistance method, diagramming its 

role within TSEB framework for computing coupled carbon, water and energy fluxes. 

 
 
 

 
Fig. 2.  Location of the irrigated (lower left) and rain-fed (upper right) study fields.   The 

white dots represent the locations of the micrometeorological towers. 

 
 
 



 
 



 
Fig. 3.  Seasonal trends of 𝛽!, leaf Chl and LAI for a) an irrigated maize field (field 1, 

2005), b) an irrigated soybean field (field 2, 2002) 

 
 
 
 
 
 



 
 
 
Fig. 4.   Functional relationship derived between Chl and 𝛽! for irrigated and rain-fed 

fields of maize and soybean.    
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Fig. 5. Seasonal variations in hourly canopy fluxes of carbon and latent heat over maize 

(left panels: field 1, 2004) and soybean (right panels: field 2, 2002). Fluxes modeled 

using fixed 𝛽! are shown in red and fluxes modeled using 𝛽! as a function of Chl are 

shown in blue. Each diurnal period shown represent fluxes averaged hourly over a 5-day 

segment.  
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Fig. 6. Comparison of hourly TSEB_LUE estimates of latent heat flux over maize and 

soybean field, generated using a fixed values 𝛽! and using 𝛽! as a function of Chl.  The 

green circles are the latent heat fluxes from the canopy and red circles represent latent 

heat fluxes from the soil.  The blue filled circles are the total (soil+canopy) latent heat 

fluxes.  
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Fig. 7. Comparison of hourly modeled and measured energy balance components for 

maize and soybean at Mead, NE, generated with TSEB-LUE using 𝛽! as a function of 

Chl. 
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Fig. 8. Comparison of hourly modeled and measured energy balance components for 

maize and soybean at Mead, NE, generated with TSEB-LUE using fixed values of 𝛽! 

(hollow points) and 𝛽! as a function of Chl (solid points). 
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Fig. 9. Comparison of daily modeled and measured energy balance components for maize 

and soybean at Mead, NE using TSEB-LUE with a) fixed 𝛽! and b)  𝛽! as a function of 

Chl. 

 



 
Fig. 10. Comparison of hourly modeled and measured canopy carbon assimilation fluxes 

for maize and soybean at Mead, NE, generated with TSEB-LUE using fixed values of 𝛽! 

(hollow points) and 𝛽! as a function of Chl (solid points). 
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