
 
Dear Editor, 
 
According to the reviewers' comments and suggestion, we have made revision to our 
manuscript. These main changes are given as follows:  
 
1) We give more detailed descriptions about the methodology to better understand the 
global assimilation in 1o × 1o grid resolution.  
 
2) According to the comment about initial concentration field by reviewer #1, we dis-
card the result of the first year 2000, and all of the analysis is updated according to the 
results from 2001 to 2007. 
 
3) According to the comment by reviewer #1, we added the discussion about the rela-
tionship with geostatistical methods led by Michalak et al. (2004).  
 
4) We give more details and explanation about the parameter settings in the applica-
tion. 
 
 
The point-by-point response to the reviews and the detailed changes are listed in the 
attachments. 
 
Great thanks to you and the referees for the time and effort you expend on this paper. 
 
 
 
Best Regards. 
 
 
 
 
Sincerely yours, 
 
Yong Li  
  



Response to Referee #1 
 
We would like to thank referee #1 Rayner Peter for his comprehensive review and de-
tailed suggestions concerning our manuscript. Those comments are all valuable and 
very helpful for revising and improving our paper. We have studied these comments 
carefully and made the suggested revisions. Our response to the reviewer’s comments is 
given below.   
 
General comments: 
Comment:

 

 This paper presents an optimization of 8 years of CO2 fluxes from the terrestrial 
biosphere and ocean using a method the authors describe as a dual optimization. I am still a 
bit unclear on several methodological details of the paper so some of what I’m going to say in 
the following review is probably wrong. The authors should take notice of my misunder-
standings though because they indicate places where the paper should be clearer. The most 
striking example of this is the elements in the control vector of the optimization. I think this 
vector contains a series of multipliers (λ) for patterns of terrestrial and ocean fluxes plus one 
global offset which is used to adjust the atmospheric concentration. The atmospheric concen-
tration is adjusted once per assimilation window (six weeks) but I am unclear about the time 
resolution of λ. If it is also six weeks then the method seems to be an ensemble version of a 
classic synthesis inversion (e.g. Enting et al., 1995; Rayner et al., 1999) ) with the time win-
dowing technique suggested by Law (2004). If this is correct then some of the claimed ad-
vantages of the method don’t apply. For example, the authors claim (P14291) that the 1x1 
degree resolution of the model avoids the aggregation problem described by Kaminski et al. 
(2001). In fact the aggregation problem concerns flux patterns in the real world which are 
outside the subspace spanned by the control vector. The resolution of the flux patterns them-
selves (i.e. the transport model) doesn’t help this problem. 

Response

 

: Thank you for these comments. For the time resolution of λ, we actually use a 
similar strategy to that in Peters et al., (2005). The weekly multiplier at each time t in this 
study is estimated six times and the final result is used as the estimates of λt. We have added  
these descriptions in Sec 2.2 and Sec 2.3 (see lines 27-32, page 6 and lines 17-18, page 8 for 
details).  

  Moreover, the method in this study is different from an ensemble version of a classic syn-
thesis inversion from two main aspects. Firstly, we use a newly proposed method DOM (Dual 
Optimization Method, Zheng et al., 2014) to estimate the multipliers (λ) and gridded flux 
simultaneously in each window instead of using the classical Bayesian synthesis method. In a 
classical synthesis inversion method, researchers either use the Bayesian Synthesis Inversion 
Method (shorted for BSIM in my manuscript) to estimate the flux only (e.g. Enting et al., 
1995) or use an ensemble version to estimate multipliers (e.g. Peters et al., 2007). The DOM 
uses the information of CO2 concentration observations to obtain the optimized multipliers 
and fluxes simultaneously based on a statistical model (See Zheng et al., 2014 for the details). 
Secondly, the previous ensemble method usually involves a forecast model for multipliers 
(e.g. Lokupitiya et al., 2008, Peters et al., 2007, 2010). This is different from our system 



which does not need a forecast model for the multipliers. 
   For the aggregation error, we agree that the aggregation problem concerns the internal 
shape of the flux pattern. But GCAS-DOM can still show its superiority. Kaminski et al., 
(2001) pointed that the aggregation errors for large regions may be of the same order of mag-
nitude as the fluxes themselves and hence inverted fluxes should be cautiously used when 
answering practical issues. On the other hand, a global inversion in fine grids with long peri-
ods based on a batch synthesis inversion method may often be computationally prohibitive. 
GCAS-DOM incorporates a moving-window method to do global assimilation in a 
high-resolution grid, and therefore it would significantly advance our understanding of re-
gional carbon cycles. We have deleted the sentence "... avoids the aggregation problem " and 
rewritten it as follow: 
" ...The 1o × 1o revolution for flux estimation at the global scale in our study is higher than those 
in previous studies and therefore it would significantly advance our understanding of regional 
carbon cycles." 
For details, please refer to lines 8-10, page 17. 
 
Comment:

 

 I also don’t quite understand the computational burden of the problem. As I un-
derstand it, the authors solve for approximately 250 fluxes each six week window (weeks here 
defined like GlobalView with 48 weeks in a year). That’s about 2000 unknowns per year or 
approximately 16000 for the whole period. That’s not an immense problem even using the 
analytic matrix methods. There might be other reasons for the windowing technique, e.g. an 
effective weak constraint on transport but I don’t accept the primary reason is computational. 

Response:

 

 Thank you for the comment. In fact, the computational amount of the system de-
pends on two aspects: the number of multipliers and fluxes. For each six week window, we 
solve for about 250 multipliers. However, the resolution of flux is 1 degree, which generates 
64800(180*360) elements each week. Therefore, the computational burden mainly depends 
on the dimension of the flux rather than the multipliers. That's about 3,130,400 (64800*48) 
unknowns per year and the relevant cost of matrix operations (see Eq. (12)) will be at least 
3,130,4002 which is an immense problem. We have added this explanation in the revised 
manuscript ( see lines 8-11, page 6). 

Comment:

 

 Of course it’s possible I’m completely misunderstanding the approach. The au-
thors may solve for large-scale patterns plus deviations from these, in the spirit of the 
geostatistical methods pioneered by Michalak and colleagues. If so, please disregard the 
above but the authors should discuss the relationship with these techniques. 

Response:

 

 Thank you for the suggestion. We solve for global-scale patterns plus the optimi-
zation of model parameters. We have added the discussion about the relationship with 
geostatistical methods led by Michalak et al. (2004) in the revised paper (see lines 26-30, 
page 2 and lines 9-11, page 3). 

Comment: another concern is independent of the flux resolution and concerns the treatment 
of 



the initial condition for each window. Quite reasonably, the prior estimate for this is the result 
of the simulation of the previous window. The concentration is then corrected by a global 
offset to minimise the difference with surface values at the end of the window. This updated 
concentration distribution is used, without correction, as the initial condition for the next 
window. I see three problems with this: 
1. The adjustment to match concentrations introduces a change of CO2 mass in the atmos-
phere that is not associated with any fluxes. If this correction has a consistent sign it will lead 
to a flux series that is inconsistent with the change of CO2 concentration over the whole 
timeseries, the aspect of atmospheric CO2 of which we are most sure.   
2. Why correct only the mean concentration? Peylin et al. (2005)) showed a method for im-
proving those aspects of the 3-dimensional concentration distribution observable by the con-
centration measurement network. 
 
Response to problems 1 and 2:

where C|t0  represents the initial condition and S represents the unknown sources during the 
study period. Now suppose that we have obtained the optimized flux at time t, st� , and aim to 
estimate the fluxes at time t+1, st+1. In an assimilation system, the initial condition in the 
current window includes the impacts not only from the initial condition but also from fluxes 
before time t+1 , which is denoted as C(t) (See Fig 1). Naturally, we run the transport model 
using the previously stored quantities C(t-1) forced by the optimized fluxes st�  to get a 
3-dimensional distribution of C(t). A previous assimilation system e.g. Peters et al., (2005) 
just used the above 3-dimensional distribution as the initial condition for the window. In this 
study, we hold the opinion that the spatial pattern of optimized flux st�  is rational and there-
fore can be used to simulate the C(t). However, the comparison between simulated and ob-
served concentrations indicates that there exists a systematic error in the simulated concentra-
tion. So we add an adjustment of the average for the 3-D concentration to correct this error 
but keep the same spatial pattern of the 3-D concentration.  

 Thank you for these comments. There may be some misun-
derstanding about the treatment of the concentrations for each window. In fact, we not only 
update the concentrations based on its 3-dimensional distribution, but also added an extra 
correction according to the mean of observations in situ. These can be described as follows. In 
a classic batch inversion, the measurement M could be explicitly expressed as (Peylin et al., 
2005): 

M = H0C|t0 + Hs S 

   Nevertheless, this extra correction only use the average information as the referee said. 
We have to admit it is a simple strategy but has good effects. To test these effects, we run the 
system under the same configuration but without the extra correction (similar to that by Peters et 
al., 2005). The initial concentration prescribed here is set as the site averaged concentration in 
the last week of 1999 (see lines 5-6, page 9). The following figure compares the total annual 
fluxes of the globe for the two measures with and without extra correction. The system with-
out this correction generates a -8.931 Pg C/year carbon budget for the first year 2000 which 
may be strongly impacted by the initial concentration, while the system with this correction 
quickly stabilizes and produces a relatively reasonable annual carbon budget for the spin-up 
period. The difference of total carbon budget between the two measures diminishes in 2002. 
Further research on the system bias would be done in a following paper.   



 
 

 

 Figure: The total annual fluxes in globe for with and without extra correction 
 

Comment: 

 

3. No account seems to be taken of uncertainty in the initial concentration field 
when calculating fluxes. This is a pretty direct consequence of leaving the 3-d concentration 
out of the state vector. Peylin et al. (2005) also showed that errors in the initial field could 
affect the model-measurement mismatch for 20 days i.e. about half the assimilation window 
so it would seem to be important to deal with this. 

Response:

 

 Thank you for the comment. We agree that the error in initial concentration field 
can affect the mismatch for a relatively short time (about 20 days). Therefore, the assimilation 
system usually needs a spin-up period. We have added this description in the revision (lines 
3-5, page 9). Normally, we suggest discarding the estimates of the first one to two years in the 
data assimilation period (Nassar et al., 2011; Deng et al., 2011; Jiang et al., 2013). In our 
study, we have performed several tests by using different initial concentration values and the 
results showed that the optimized values after 1 year is reliable and hardly impacted by the 
initial concentration field. We use a globally-uniform 3-D CO2 field of site-averaged concen-
tration in the last week of 1999 as the initial concentration of the system and the results from 
2001 to 2007 are reasonably used for analysis. We have discarded the results in 2000 in the 
revised paper and all of the analysis is based on the results from 2001 to 2007. Figs 4-14 and 
Tables 2-4 have been updated and the average value is computed based on the results of 
2001-2007. 

Comment:

from the diurnal cycle. I’m not clear whether the authors retain the diurnal cycle of fluxes 
from BEPS. If they do then a change of sign of the flux will also change the sign of the diur-
nal cycle. Since many of the observations in GLOBALVIEW represent particular times of the 
day this could affect the model-data mismatch at the heart of the inversion.  

 I also question the use of multipliers for flux patterns themselves rather than the 
more conventional use of separate multipliers for GPP and respiration. The problem arises 

 
Response: Thank you for the comment. In fact, we tried to estimate multipliers for GPP and 
ER, separately. As both ER and GPP are much larger than the NEP fluxes by approximately 



one order of magnitude, they are sensitive to multipliers. Moreover, the strong correlation 
between ER and GPP could result in poor performance in stability. Therefore, we decided to 
adjust the outcome of their differences rather than their separate influences (see lines 27-30, 
page 4). Moreover, we use the weekly average fluxes from BEPS and corresponding concen-
tration in situ at weekly interval to avoid the problems of the diurnal cycle (we have added 
this statement in lines 13-14, page 9). In addition, the multipliers are constrained to be greater 
than zero by the uncertainties on the λ parameters and hence they would not change the sign 
of the flux. We have added this explanation in the revised paper (see line 30, page 9). 
 
Comment:

 

 My other general concern is prior uncertainties. These are handled via uncertain-
ties on the λparameters. If I understand correctly these are set at 0.1% for regions outside 
China and 1% for China. These uncertainties are not arbitrary, they should represent the sta-
tistics of differences between simulations of the model used for the prior and the true fluxes. 
See Chevallier et al. (2006, 2012) for details on how they can be calculated and some indica-
tive numbers from a different model. The uncertainties used in this study seem very low. For 
example they approach 0 in the transition season as the net flux approaches 0 although the 
uncertainty should not. This has consequences for the results. The relatively small changes 
in λ are a likely consequence of these very small uncertainties. I suggest this choice should be 
justified. 

Response:

  On the other hand, the flux in a grid consists of six components for different PFTs and the 
similar climate condition in a grid will lead to strong correlation of these components. So we 
propose an adaptive version of DOM by adding additional regularization of parameters (lines 
10-17, page 7). For the range of λ, we think that the value should be around 1 and set an ini-
tial interval of [0.7, 1.3], as the preferences of BEPS are basically reasonable. According to 
the 3 sigma principle, the standard deviation (SD) of parameters is set to be 0.1 (i.e. variance 
of 0.01). However, the results of regions excluding China (e.g. Europe and North America) 
under this circumstance are irrational compared to previous studies. This may be caused by 
the larger error in soil carbon estimate of China in BEPS. Therefore we try to reduce the SD 
for the other regions and test the values of 0.0707 (i.e. variance of 0.005) and 0.0316 (i.e. 
variance of 0.001). The results indicate that the setting of 0.1% for regions outside China and 
1% for China can get a more reasonable pattern of flux. Our next work will focus on the op-
timal decision of constrained variance for parameters by the criterion of fit to the observation 
concentrations at sites. We have added these explanations in the revised paper (see lines 
30-34, page 9 and lines 1-5, page 10 for details).  

 Thank you for these comments. This issue is a key problem in GCAS-DOM. The 
constrained variance for parameters (line 17, page 7) is used to obtain an unique solution for 
λ, rather than to determine the prior uncertainties of fluxes. The prior uncertainty used in this 
study is the model error matrix Q for the prior flux (line 8, page 5). As we described in our 
manuscript (lines 10-12, page 13), we use uncertainties of 1.98 Pg C/year and 0.93 Pg C/year 
for the land and oceanic fluxes, respectively, which are not low compared to previous studies 
(e.g. Deng et a.,2007, 2011, Gurney et al.,2003,2004).  

 
 



Specific Comments:  
Comment:

calculating the maximum likelihood estimate 

 P14271L10 note that we don’t calculate the PDF by minimizing differences, 
that’s for 

 
Response:

"... Enting (1995, 2002) suggested to use a prior flux to regularize the inverted flux based on the 
Bayesian theory, which is referred to Bayesian synthesis inversion method (BSIM). The solution 
of BSIM usually corresponds to the minimum of a quadratic cost function in least square sense 
under the assumption of Gaussian PDFs." 

 Thanks for this comment. We have corrected this sentence in the revised paper, as 
follow:  

For details, please refer to lines 10-14, page 2. 
 
Comment: 
e.g. We hear that the system is run from time t-1 over l steps but the observations 

P14276-7 I am confused about the time windows here. Is there perhaps an error? 

listed are at t+1, t+2 ... t+l-1, should this be t-1? 
 
Response:

 

 Thanks for this comment. This is not an error. The observation concentration ct 
represents the concentration at the end of tth week, while the flux st represents the weekly 
average flux during the tth week. The ct includes the influence from initial condition at t-1 
and the tracer emission st, called the initial condition term and the source term, respectively. 
If we want to estimate the flux st, we need to run the system l steps forward starting from 
time t-1 (See Fig.1) to get the responses at t, t+1,..., t+l-1to the initial concentration. Then the 
differences between these responses and observation concentrations are caused by the emis-
sion fluxes {𝒔t,𝒔t+1, … , 𝒔t−l+1} and hence can be used to estimate them.  

Comment:

error you use. 

 P14281 You note that fire and fossil fluxes are not perfectly known and are ex-
cluded from the optimization. You need, then, to include their uncertainty in the observational 

 
Response:

 

 Thanks for this suggestion. We agree with your idea that the observational error 
actually includes the uncertainty of fire and fossil flux emission. Neglecting their uncertain-
ties will increase the error of optimized fluxes. Therefore, we included an extra contribution 
of (0.175ppm)2 to the observational error (See Eq.(14)). We added this explanation in the re-
vised paper (see lines 13-16, page 10).   

Comment:

 

 P14289 The comparison of posterior simulation and observations is a good idea 
but highlights some of the problems 

Response: Thanks for this comment. Yes, the comparison of concentrations indicates some 
problems e.g. the inability to capture the peak and the valley and seasonal cycle identified in 
the residual series. We also explained in this manuscript that this may be caused by the inabil-
ity of BEPS to simulate the large summer sinks (lines 25-32, page 16). Therefore we will 
make more efforts to improve the prior flux in terms of seasonal sink pattern in the future 



work. These problems help us identify gaps in GCAS-DOM as well as BEPS and provide 
useful directions for further development. 
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Response to Anonymous Referee #2 
 
We would like to thank the anonymous referee 2# for the constructive comments on our 
manuscript Paper. Those comments are all valuable and very helpful for revising and 
improving our paper. Please find our response to these comments below. 
 
Comment:

 

 H. Zheng et al. present in their manuscript ‘A global carbon assimilation system 
based on a dual optimisation method’ an inversion of 8 years of atmospheric CO2 data to es-
timate terrestrial and oceanic CO2 fluxes. The authors use what they call a ‘dual optimisation’ 
method to solve for scaling factors of terrestrial oceanic flux patterns based on prior fluxes 
obtained from the terrestrial ecosystem model BEPS and CarbonTracker output in the case of 
the ocean. These scaling factors are differentiated by BEPS plant functional types and latitu-
dinal zones. In addition, the authors also solve for the fluxes directly, that represents the dual 
optimisation method. The manuscript is not very clear in its methodology description. There-
fore it is unclear if the flux is solved for globally or per gridcell on a 1x1 degree resolution. 

Response:

388 800 (64800*6) at a 6-week-window, and the estimate of the earliest week in the window 
is left as the optimized fluxes of its corresponding time (See Sec 2.2 about the time-stepping). 
In response to this suggestion, two paragraphs on the dimension of fluxes and parameters 
aimed to estimate have been added in the revision paper (see lines 31-33, page 4, lines 1-6, 
page 5 and lines 21-24, page 11). The introduction of parametric model from the view of spa-
tial coordinates followed by its vector form may be a better expression to understand the in-
version in grid resolution. Then the description on the dimension of unknown states in a 
six-week window can help to understand the computation more clearly.   

 Thank you for this comment as it indeed helps us to improve the methodology 
description in our paper. In fact, the flux in the application is solved for grid cells on a 1x1 
degree resolution which includes 64 800 (180*360) elements at each week. For the applica-
tion to 1x1 degree flux estimation, the length of the flux we solved in Eq. (12) is actually  

   
Comment: 

 

Besides this unclearity there is a major problem with the set-up of this inversion 
system. The authors write that they use optimised ocean fluxes from CarbonTracker as their 
prior ocean fluxes (p14284, ll 26/27). Since the optimised CarbonTracker ocean flux has been 
derived from essentially the same atmospheric CO2 observations as used in this study for the 
inversion, the prior ocean flux is then of course not independent form the CO2 concentration 
used in this study constituting a double usage of the observational data. This has to be fixed 
before one can analyse and draw any conclusions from the results. 

Response: Thank you for this comment. We agree that the usage of optimized ocean fluxes  
from CarbonTracker in our system could result in a reuse of observational information. We 
were also conscious of this issue when doing this application, and we can still offer some ex-
planations of this problem. Firstly, we used 312 sites from the GLOBALVIEW-2011 data set 



in our assimilation system while CarbonTracker only used about 100 sites (available from 
http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2010/documentation_obs.html#ct_doc). 
So nearly two thirds of observational data is independent from the ocean fluxes we use as an 
input. We have added this explanation in the revised paper (see lines 4-8, page 11). Secondly, 
we made a test on a 2.8×2.8 degree grid cell by using the ocean fluxes computed from 
OPA-PISCES-T model (a state-of-the-art combined global ocean circulation (OPA) and bio-
geochemistry model (PISCES–T, Buitenhuis et al., 2006)) and the optimized CarbonTracker 
ocean flux as inputs respectively with all other things being equal. The optimized ocean flux-
es from these two inputs are close, so we use the CarbonTracker ocean flux as our prior ocean 
flux in this article to reduce the running time of the GCAS-DOM. Moreover, the oceanic 
fluxes before and after optimization are very similar and the optimized oceanic flux is more 
close to the results of CT2011_oi compared to the prior flux. It also indicates the rationality of 
the usage of the CarbonTracker ocean flux. 
 
References: 
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Abstract. Ecological models are effective tools to simulate the distribution of global carbon sources

and sinks. However, these models often suffer from substantial biases due to inaccurate simula-

tions of complex ecological processes. We introduce a set of scaling factors (parameters) to an

ecological model on the basis of plant functional type (PFT) and latitudes. A global carbon as-

similation system (GCAS-DOM) is developed by employing a Dual Optimization Method (DOM)5

to invert the time-dependent ecological model parameter state and the net carbon flux state si-

multaneously. We use GCAS-DOM to estimate the global distribution of the CO2 flux on 1◦×
1◦ grid cells for the period from 2000

::::
2001

:
to 2007. Results show that land and ocean absorb

−3.69± 0.49
:::::::::::
−3.63± 0.50Pg C year−1 and−1.91± 0.16

:::::::::::
−1.82± 0.16Pg C year−1, respectively. North

America, Europe and China contribute−0.96± 0.15
:::::::::::
−0.98± 0.15Pg C year−1,−0.42±0.08Pg C year−110

and −0.21± 0.28
::::::::::
−0.20± 0.29Pg C year−1, respectively. The uncertainties in the flux after opti-

mization by GCAS-DOM have been remarkably reduced by more than 60 %. Through parameter op-

timization, GCAS-DOM can provide improved estimates of the carbon flux for each PFT. Coniferous

forest (−0.97±0.27Pg C year−1) is the largest contributor to the global carbon sink. Fluxes of once-

dominant deciduous forest generated by BEPS is reduced to−0.79± 0.22
:::::::::::
−0.78± 0.23Pg C year−1,15

being the third largest carbon sink.

1



1 Introduction

The spatiotemporal distribution of carbon sources and sinks has drawn much attention in global

carbon cycle research as carbon dioxide is one of the major greenhouse gases. Techniques used to

quantify the spatial pattern of carbon fluxes has evolved during the past decades among which at-

mospheric inversion (e.g., Enting and Mansbridge, 1989; Law, 1999; Gurney et al., 2002; Röenbeck5

et al., 2003; Deng et al., 2007; Deng and Chen, 2011; Jiang et al., 2013; Peylin et al., 2013) is one

of the most commonly used techniques.

Atmospheric inversion uses CO2 observations to infer the distribution of the carbon flux from

global (Patra et al., 2005; Rödenbeck, 2005; Rayner et al., 2008; Maki et al., 2010) to regional scales

(Gerbig et al., 2003; Peylin et al., 2005; Peters et al., 2007; Schuh et al., 2010). It involves an at-10

mospheric transport model to link the measured CO2 concentration in the atmosphere to the surface

CO2 flux. However, the measurements from sparsely located observational sites are not sufficient

for estimating global carbon sources and sinks in fine grids. Enting (1995, 2002) suggested to use

a prior flux to regularize the inverted flux based on the Bayesian
:::::
theory,

:::::
which

::
is
:::::::
referred

::
to

::::::::
Bayesian

synthesis inversion method (BSIM). The posterior flux is determined by minimizing the difference15

between simulated and observed concentrations and between posterior and prior fluxes
::::::
solution

:::
of

:::::
BSIM

::::::
usually

::::::::::
corresponds

:::
to

:::
the

::::::::
minimum

::
of

::
a

::::::::
quadratic

:::
cost

::::::::
function

::
in

::::
least

::::::
square

:::::
sense

:::::
under

::
the

::::::::::
assumption

::
of

::::::::
Gaussian

:::::::::
probability

::::::::::
distribution

::::::::::::::
functions(PDFs).

In BSIM, the prior information is normally precalculated from an ecological model, e.g., Carnegie-

Ames-Stanford Approach (CASA) Biosphere model (Gurney et al., 2003, 2004; Baker et al., 2006),20

::::::
Simple

:::::::::
Biosphere

:::::
model

:::::
(SiB,

:
Sellers et al., 1986

:
)
:
and Boreal Ecosystems Productivity Simula-

tor (BEPS) model (Deng et al., 2007; Deng and Chen, 2011). These process-based models are

constructed to estimate carbon sources and sinks based on the mechanisms of photosynthesis, au-

totrophic respiration, organic matter decomposition and nutrient cycling. However, their estimates

of carbon sources and sinks at regional scales often have substantial biases, and the purpose of at-25

mospheric inversion is to reduce these biases using the additional information of atmospheric CO2

concentration. Atmospheric inversion methods differ considerably in the inverted carbon flux distri-

bution among large regions of the globe (Peylin et al., 2013), and therefore improvements are still

needed in the prior flux estimation and the optimization using atmospheric CO2 data.

In consideration of the possible biases in the prior flux produced by an ecological model, scaling30

factors are introduced to Michalak et al. (2004)
::::
used

::::
“the

:::::
model

:::
of

:::
the

:::::
mean

::
of

:::
the

:::::::
surface

::::
flux

::::::::::
distribution"

::::
with

::::::::
unknown

::::
drift

::::::::::
coefficients

::
to

::::::::
substitute the prior flux to correct the biases (,

::
in

:::
the

:::::
BSIM.

:::::
This

:::::::::::
geostatistical

::::::::
approach

::::
took

:::
into

:::::::
account

:::
the

:::::::::::::
spatiotemporal

:::::::::
correlation

::
of

:::
the

:::::::
surface

:::::
fluxes

:::
and

::::::
hence

:::
can

:::::::
recover

:::
flux

:::::::::
variations

::
on

::
a
::::::::::
significantly

:::::::
smaller

:::::
scale

::::
than

::::::
typical

::::::::
Bayesian

:::::::::
inversions.

::::::::
Different

::::
from

:
Michalak et al. (2004),

:
Peters et al. (2007)

:
,
:
2010; ; ; ) . Zupanski et al.35

(2007)
:
;
:
Lokupitiya et al. (2008)

:
;
:
Schuh et al. (2010)

:
)
:::::::::
introduced

:::::::
scaling

::::::
factors

::
to

:::
the

:::::
prior

::::
flux

::::
from

:::::::::
ecological

::::::
models

:::::
(e.g.

:::
SiB

::::
and

:::::::
CASA)

::
to

::::::
correct

::::
the

::::::
biases. In these methods, a forecast

2



model for the scaling factors is combined with an atmospheric transport model to realize the flux

evolution over time. The choice of the forecast model is usually empirical. Most researchers defined

an identity operator as the forecast model for the biases (Zupanski et al., 2007; Lokupitiya et al.,

2008), while Peters et al. (2007, 2010) considered a more complex forecast model which combines

the information of biases in two steps before the current time step. An Ensemble Kalman Filter5

(Evensen, 2007) is often used for estimating the unknown scaling factors and the posterior flux is the

prior flux scaled by the estimated scaling factors. This ensemble-based assimilation method takes

relatively long time to warm the system to reach a stable estimation of these scaling factors, and the

filtering divergence (e.g., Houtekamer and Mitchell, 1998) that retards the converge of the estimate

towards observations is still a problem.10

Zheng et al. (2014) proposed a dual optimization method (DOM) to estimate both the scaling

factors (hereinafter known as parameters) of an ecological model and gridded carbon fluxes. DOM

introduces a scaled ecological model designed by plant functional types (PFTs), and uses CO2 obser-

vations to invert the unknown states of the parameters and net flux simultaneously.
:::
This

::
is
::::::::
different

::::
from Michalak et al. (2004)

:::::
which

::::
does

:::
not

::::
need

::
to

::::
give

:::::
prior

::::::::
estimates

:::
and

:::::
hence

::::
does

::::
not

:::
rely

:::
on15

::
the

::::::::::
information

:::
of

::::::::
ecological

:::::::
models

::
at

:::
all.

::::::::
Moreover,

:
DOM is an objective method which depends

just on the information of concentration observations and the structure of the ecological model, but

no forecast model is needed. The estimation precision of fluxes can be greatly improved by the dual

optimization, and the statistical properties of parameters and fluxes also provide useful information

about the inversion accuracy.20

As DOM inverts the flux for all regions and all times simultaneously using all observations at the

same time, it requires much computational resources. Therefore, it is inconceivable to use DOM to

estimate the global distribution of the carbon flux at high spatial and temporal resolutions. In this

study, a moving-window method similar to that of Bruhwiler et al. (2005) is developed. Different

from a batch model which uses all observations to invert fluxes for all source regions at all times25

simultaneously, Bruhwiler et al. (2005) adopted a temporal moving window and used the CO2 con-

centration observations at the current time (the end of the window) to estimate carbon fluxes in the

entire window. Considering that more observations will provide more information, we propose to

use the observations in the entire time window to estimate the fluxes in this window instead of using

only the observations at the current time.30

Due to the difference of seasonal and meteorological conditions at different latitudes, we redesign

the scaling factors by dividing the globe into several latitudinal zones. Each zone shares a set of

scaling factors. The number of parameters assigned to each grid equals the number of PFTs in the

grid so that one parameter is associated with one PFT. This is different from Carbon Tracker (Peters

et al., 2007, 2010) in which each grid is assigned to one category based on the dominant vegetation35

type. On the basis of the above settings, we build a global carbon assimilation system (GCAS-

DOM) by combining DOM with an atmospheric transport model (MOZART-4). The forecast of the

3



assimilation system is embodied in updating the background concentration field. At each step, the

background CO2 concentration is updated by running MOZART-4 forward forced with the opti-

mized flux at the last step. Finally we use the GCAS-DOM to estimate the worldwide weekly flux

in 1◦× 1◦ grid for a relatively long period of 8
:
7 years. Results show its accuracy in flux estimation

and significant effect in uncertainty reduction.5

The objectives of this study are: (1) to develop a global carbon assimilation system using DOM,

i.e. GCAS-DOM for the purpose of improving the estimation of the global distribution of the carbon

flux, (2) to produce with GCAS-DOM a global carbon flux field on 1◦× 1◦ grid cells from 2000

to 2007 and analyze the flux in terms of its long-term mean, and interannual variations for the

globe and selected large regions; and (3) to investigate the impacts of atmospheric CO2 data on10

the estimation of the carbon flux per PFT for the evaluation of ecosystem models. This paper is

organized as follows. Section 2 consists of detailed descriptions on each component of the GCAS-

DOM. It begins with the introduction of state variables in Sect. 2.1. Then in Sect. 2.2, we will show

the procedure of building the GCAS-DOM by using a moving-window method. Section 2.3 presents

the estimation method of state variables in a window. The calculation of the uncertainties is given in15

Sect. 2.4. In Sect. 3, we conduct an application to estimate the global flux in 1◦×1◦ grid started with

a detailed introduction to models and data use in GCAS-DOM, followed by estimated quantities and

their uncertainties. Finally, we summarize our results and discuss future directions of our work in

Sect. 4.

2 Methodology20

GCAS-DOM consists of three major components: an ecological model and an atmospheric transport

model, a moving window and the optimization module. The ecological model provides the first

guess of the flux before data assimilation. The atmospheric transport model links the flux to the CO2

mixing concentration ratio. Considering the computational feasibility, we use a temporal moving

window in which the flux is optimized using the optimization algorithm DOM.25

2.1 State Variables

The ecosystem model is formed to simulate the variations of carbon sources and sinks based on the

mechanism of carbon cycling. As improperly simulated ecological processes could result in biases

in the flux, we consider a scaled ecosystem model similar to that of Lokupitiya et al. (2008). But

different from Lokupitiya et al. (2008), which adjusts ecosystem respiration (ER) and gross primary30

productivity (GPP) using separate scaling factors, only the net ecosystem exchange (NEE) defined

as the difference between ER and GPP is scaledbecause ER is strongly associated with GPP and

both of them .
::::
This

::
is
:::::::
because

::::
both

:::
ER

::::
and

::::
GPP

:
are much larger than the ocean flux in magnitude.

::::
NEP

:::::
fluxes

:::
by

::::::::::::
approximately

:::
one

:::::
order

::
of

::::::::::
magnitude,

::
to

:::::
adjust

:::::
their

:::::::
separate

::::::::
influence

:::::
could

::::
lead

4



::
to

:::::::
spurious

:::::::::
variations.

:::::::::
Moreover,

:::
the

:::::
strong

::::::::::
correlation

:::::::
between

:::
ER

::::
and

::::
GPP

:::::
could

:::::
result

::
in
:::::

poor

::::::::::
performance

::
in

:::::::
stability.

:
Hence the parametric model can be represented as

s(x,y) = λNEE(x,y)sNEE(x,y)+λOCE(x,y)sOCE + sFF(x,y)+ sFIRE(x,y)+ ε(x,y)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(1)

where sOCE is the
:
x
::::
and

:
y
::::::
denote

:::
the

::::::
spatial

::::::::::
coordinates;

::
s

::
is

:::
the

::::::::
unknown

:::
flux

::::::
aimed

::
to

::::::::
estimate;

::::
sOCE ::

is
:::
the first-guess ocean flux computed from an ocean exchange model; sNEE :::

sNEE:is the first-5

guess biospheric flux estimated from a terrestrial ecosystem model; sFF and sFIRE :::
sFF :::

and
:::::
sFIRE are

fossil fuel and fire fluxes estimated from inventory-based emissions; λNEE and λOCE are sets of
::::
λNEE

:::
and

:::::
λOCE :::

are scaling factors applied to land surface fluxes and ocean fluxes; the
::
the

::::
land

:::::::
surface

:::
flux

:::
and

:::
the

::::::
ocean

::::
flux,

::::::::::
respectively;

::::
and

:
ε
::
is

:::
the

:::::
model

:::::
error.

::
To

::::::::
simplify

:::
this

:::::::::
expression,

:::
we

:::
use

:::
its

:::::
vector

:::::
form:10

s= λNEE · sNEE +λOCE · sOCE + sFF + sFIRE + ε (2)

:::::
where

::
all

:::
the

::::::::
variables

:::
are

:::::
n× 1

::::::
vectors

:::
and

::
n
:::::::
denotes

:::
the

::::::
number

::
of

:::
the

:::::
grids

::
in

:::::
globe;

:::
the

:
“·” (dot

product) represents the element-by-element multiplication of two vectors with the same dimension

unless one is a scalar; and ε is the model error with zero mean and covariance matrix Q. Here, the

parameters
::::::::
parameter

:::::::
vectors (λNEE,λOCE) and s are treated as state variables and called parameter15

states and flux state
::::
states, respectively.

Zheng et al. (2014) suggests to specify the structure of parameters according to PFT to avoid

over-adjustment or excessive computation. In consideration of the fact that (1) the seasonal variation

in climate in the North Pole is opposite to that in the South Pole, and (2) the tropical rainforest has

high temperature all year around, it is not effective to specify parameter states just according to PFT.20

In this study, we divide the globe into q zones according to latitude and assume that the vegetation

distribution is mapped onto p PFTs. Thus a grid box can contain up to p+1 different types (p PFTs

and 1 oceanic type) quantified with an areal fraction for each PFT in the grid.

We decompose the flux in each grid box into p+1 components with each denoting the flux gen-

erated from one PFT. To facilitate the expression, we use sm,j for the gridded flux in the jth latitude25

zone computed from land and oceanic models, and it is denoted as follows

sm,j =
(
sjOCE sjNEE,1 sjNEE,2 · · · sjNEE,p

)
, j = 1,2, . . . , q (3)

where sjOCE is a vector for the oceanic component and sjNEE,i is a vector for the terrestrial component

for the ith PFT. Gridded fluxes at the same latitude zone share the same set of parameters and thus

the corresponding parameter for the sm,j is30

λj =
(
λjOCE λjNEE,1 λjNEE,2 · · · λjNEE,p

)T
,

where each element is a scaler
::::
scalar

:
used to scale the corresponding column vector of sm,j .

5



Then model (2) can be rewritten as

s=


sm,1

sm,2

. . .

sm,q




λ1

λ2

...

λq

+ sFF + sFIRE + ε

, smλ+ sFF + sFIRE + ε.

(4)

where sm, referred to the prior flux, is the reshaped form of the flux computed from the ecosystem

model in the order of latitude, and λ=
(
λ1T λ2T · · · λqT

)T
is a set of scaling factors

::::
with

:::::::
(p+1)q

::::::::
unknown

::::::::::
components; ε is the model error with zero mean and covariance matrix Q. In5

Model (4), as sFF and sFire are imposed without optimization, their contributions to concentration

can be subtracted from the observation concentrations directly. Then model (4) can be expressed in

a simplified expression:

s= smλ+ ε. (5)

2.2 Time-stepping10

In the application of GCAS-DOM, one of the major difficulties in estimating the carbon flux is the

computational cost at high resolution.
:::
For

:::
the

:::::::::
estimation

::
of

:::::::
weekly

:::::
fluxes

:::
on

:::::::
1o× 1o

::::
gird

:::::
cells,

::
the

::::::::::
dimension

:
n
:::

in
:::
Eq.

::::
(2)

::::
will

::
be

:::
64

:::
800

::::::::::
(180× 360)

:::
for

:::::
each

:::::
week.

:::::
That

::
is

:::::
about

::
3
:::
130

:::
400

:::::::::::
(64800× 48)

::::::::
unknowns

:::
per

:::::
year,

:::
and

:::
the

::::::
relevant

::::
cost

::
of

::::::
matrix

::::::::
operations

::::
will

::
be

::
at

::::
least

:
3

:::
130

::::
4002

:::::
which

::
is

::
an

::::::::
immense

::::::::::::
computational

::::::
burden.

:
To overcome this difficulty, we adopt a method similar15

to that of Bruhwiler et al. (2005). At each time t, we use the observations of CO2 concentration and

the carbon flux in the time window between t and t+ l− 1, where l is window length which could

be in days, weeks, or months. This is different from Bruhwiler et al. (2005) where only the observa-

tions at time t+ l−1 are used. We therefore have a (t, l)-window, which uses the CO2 concentration

observations {ct+k,0≤ k ≤ l− 1} and the carbon flux {st+k,0≤ k ≤ l− 1} at each time point t,20

where the column vector ct+k represents the observed CO2 mixing ratios of a given site at t+ k,

and the column vector st+k is the global carbon flux in the time period from t+ k− 1 to t+ k.

The time stepping in the assimilation scheme is illustrated in Fig. 1. The light shaded boxes rep-

resent the the prior flux at each step computed by the ecosystem model. The dark shaded boxes

stand for the optimized flux. We now describe one cycle of GCAS-DOM. The first step is to use the25

background CO2 concentration C(t− 1) as the initial value, which is a 3-D matrix for the spatial

distribution of CO2 concentration at each latitude and each longitude and each elevation. Then we

run l steps of the transport model forward starting fromC(t−1) to get the spatial distribution of CO2

concentration in the (t, l)-window. We keep the spatial carbon concentration patterns at all times in

this window which gives {C(t), . . . ,C(t+ l−1)} and extract CO2 mixing ratios at observation sites30

as {cbt , . . . ,cbt+l−1}. The second step is to estimate the optimized
::::::::
parameters

:::::::::::::::::::
{λ̂t+k,0≤ k ≤ l− 1}

6



:::
and fluxes {ŝt+k,0≤ k ≤ l− 1} using the resulting mixing ratios at sites {cbt , . . . ,cbt+l−1}, the ob-

servations of CO2 concentrations in the window {ct, . . . ,ct+l−1}, and the prior flux in the win-

dow {smt+k,0≤ k ≤ l− 1}. The estimation method is introduced in the next section. The optimized

::::::::
parameter

:::
λ̂t :::

and
:
flux ŝt does not need to be estimated in the next cycle and is therefore used as an

estimate of the
:::::::
estimates

::
of

:::
the

:::::::::
parameter

:::
and

:
flux at time t. In the third step, we run the transport5

model one step forward starting from C(t− 1) forced with the optimized flux ŝt to get the updated

spatial distribution of concentration C ′(t). Then we use observed CO2 concentration to assimilate

the C ′(t) instead of directly using it as the background concentration at time t for the next cycle in

previous studies. We extract updated CO2 concentration at locations of CO2 observation sits from

the C ′(t) and compare it to the observed concentration ct at time t. A constant adjustment, which10

is computed from the site-averaged difference between the above two vectors, is imposed on C ′(t)

to get an optimized spatial pattern C(t) at time t.1 In the forth step, we move the window one step

forward so a new flux smt+l and a new concentration observation ct+l are read in to the system for

the next computational cycle, which begins from background CO2 concentration C(t).

2.3 Adaptive DOM15

In this section, we introduce the method for estimating parameters and the carbon flux in a window.

Zheng et al. (2014) proposed a DOM to improve the accuracy of the optimized flux and successfully

applied it to the inversion of the flux for the globe divided into 50 regions. In this study, we expect

to use DOM in each (t, l)-window. As the fluxes computed for different PFTs are often correlated,

direct application of the DOM to flux inversion at a high resolution will result in many abnormal es-20

timators of parameters and large uncertainties of both parameters and fluxes. Therefore, we propose

an adaptive version of DOM by adding additional regularization of scale factors which is referred to

as a stochastically constrained equation (Theil and Goldberger, 1961)

1 = λ+ ζ, (6)

where 1 is a vector with all elements equaling to 1 and ζ is the random error of the regularization25

with E(ζ) = 0, and the dispersion matrix var(ζ) = W.

Then we will present the adaptive DOM in a (t, l)-window. To facilitate the discussion, we first

introduce two denotations: (1) the observations of CO2 concentration in (t, l)-window is denoted by

a vector

c(t,l) =
(
cTt cTt+1 · · · cTt+l−1

)T
, (7)30

and named as the (t, l)-window observation concentration, (2) the flux is denoted as

s(t,l) =
(
sTt sTt+1 · · · sTt+l−1

)T
(8)

1The correction is based on the idea that the optimized concentration should match the actually observed concentration.
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and named as the (t, l)-window flux.

The (t, l)-window observation concentration c(t,l) contains information from two sources, the

(t, l)-window flux s(t,l) and concentration transported from the previous time step C(t− 1). We

let cw(t,l) be the CO2 concentration determined by s(t,l), and refer it as (t, l)-window flux con-

centration. In fact, cw(t,l) is the difference between window observation concentration c(t,l) and5

{cbt , . . . ,cbt+l−1} (mentioned in Sect. 2.2). Then the cw(t,l) follows that

cw(t,l) = G(t,l)s(t,l) +η(t,l), (9)

where ε(t,l) is the error of window concentration observation, and

G(t,l) =


Gt,t

Gt+1,t Gt+1,t+1

...
...

. . .

Gt+l−1,t Gt+l−1,t+1 · · · Gt+l−1,t+l−1

 (10)

is the (t, l)-window atmospheric transport matrix. It describes the contribution of the window flux10

to the observation sites. Each submatrix Gm,n represents the influence of the flux (normalized to

1 gC) at time n on the concentration at observation sites at time m.

In a (t, l)-window, we minimize the following objective function (11) to obtain the optimized

(t, l)-window flux. This function is similar to that of DOM but with an extra penalty term, so it is

called the adaptive DOM. To simplify the expression, all subscripts (t, l) are omitted here.15

J(s,λ) =(Gs− cw)TR−1(Gs− cw)+ (s− smλ)TQ−1(s− smλ)

+ (λ−1)TW−1(λ−1) (11)

where sm = diag
(
smt , . . . ,s

m
t+l−1

)
is the prior fluxes for the (t, l) window, Q is the error covariance

matrix of the corresponding prior fluxes, R is the covariance matrix of the window concentration

observation error η, and W is the variance of constrained error.20

Solving for the minimum of cost function (11) with respect to s and λ is similar to the process in

DOM. The solutions are given by the following two equations (see Appendix A for details)λ̂= (XTΣX+W−1)−1(XTΣcw +W−11)

ŝ= QGTΣ(cw −Gsmλ̂)+ smλ̂
(12)

where Σ = (R+GQGT)−1, X = Gsm and ŝ=
(
ŝTt ŝTt+1 · · · ŝTt+l−1

)T
. As the estimation

of
::
λ̂t::::

and ŝt uses the most amount of observations, it has the highest accuracy. We therefore use
::
λ̂t25

:::
and ŝt as the optimized

::::::::
parameter

::::
and carbon flux at time t.

8



2.4 Calculation of uncertainty

The estimators given by Eq. (12) have the following uncertainties (see Appendix A for details):var(λ̂) = (XTΣX+W−1)−1

var(ŝ) = QGTΣ(I−Xvar(λ̂)XTΣ)GQ+ smvar(λ̂)(sm)T
(13)

Note that the uncertainty of the parameter estimator is incorporated into the variance of estimated

fluxes.5

3 Application

In this section, we use the GCAS-DOM to estimate the weekly carbon flux from 2000
::::
2001

:
to 2007

on 1◦× 1◦ global grid cells.
:::
The

:::::::::::
assimilation

::::::
system

::::::
usually

:::::
needs

::
a

::::::
spin-up

::::::
period.

:::::::::
Therefore

:::
the

::::::::::
assimilation

::
is

::::::::
conducted

:::::
from

::::
2000

:::
to

::::
2007

::::
with

:::
the

::::
first

::::
year

::
as

::
a

::::::
spin-up

::::::
period,

::::
and

:::
the

::::::
results

::::
from

::::
2001

:::
to

::::
2007

:::
are

::::
used

:::
for

::::::::
analysis.

::::
The

:::::
initial

:::::::::::
concentration

::
is
:::
set

::
as

::
a
::::::::::::::
globally-uniform

::::
3-D10

CO2::::
field

::
of

:::
site

::::::::
averaged

:::::::::::
concentration

::
in
:::
the

::::
last

::::
week

:::
of

:::::
1999.

3.1 Ecological model

We divide the globe into 1◦× 1◦ grid cells, 64 800 (360× 180) regions
::::
grids in total. GCAS-DOM

uses the BEPS (Liu et al., 1997) as the terrestrial ecosystem model. BEPS simulates photosynthetic

and carbon cycle processes (Chen et al., 1999; Ju et al., 2006) based on remote sensing, meteo-15

rological and soil data with a set of physical and physiological parameters related to PFT. This

model is initially developed in Canada and North America, and then expanded for applications to

the globe. The terrestrial prior fluxes is modeled by BEPS at the resolution 1◦× 1◦ . The
:::
and

:::
the

::::::
weekly

::::::
average

::::::
values

:::
are

::::
used

::
to
:::::

avoid
:::
the

::::::::
problem

::
of

:::
the

::::::
diurnal

:::::
cycle.

::::
The

::::::
weekly

:
oceanic flux

at 1◦× 1◦ spatial resolution is obtained from Carbon Tracker 2010 (CT20102) results (available via20

http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/download.html).

In BEPS, vegetation is mapped onto 6 PFTs including coniferous forest, deciduous forest, ev-

ergreen forest, shrub land, C4 vegetation and “other vegetation”. A grid cell can contain up to 7

different cover types (6PFTs +1 ocean type) with their corresponding coverage fraction. We divide

equally the globe excluding China into 30 zones by latitude and each spreads a range of 6◦. China25

is separately split into 6 zones and each spreads a range of 6◦ as well. Thus we yield a total of

30+6 = 36 zones (see Fig. 2). In each latitude zone, there are six PFTs and 1 ocean type. As PFTs

vary slowly in a short time, we assume that they are time independent within a window. Thus, we

have 7× 36 = 252 parameters (1 parameter corresponds to 1 PFT in a zone) to be estimated at each

time step. The model error covariance matrix Q for the prior flux is treated using the same principle30

in Zhang (2013) based on the theory of statistics.
2CT2010 is a earlier version of Carbon Tracker released in 2011.
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The constrained matrix W (Eq. 11) for the scaling factor is defined as a diagonal matrix with

each item Wii defining the degree of deviation from 1. The smaller the value is, the closer the

parameter and 1 are. Conversely, the parameter can be more influenced by other information such

as CO2 measurements. We
::
set

:::
an

:::::
initial

:::::::
interval

::
of [

:::
0.7,

:::
1.3]

::
as

:::
the

:::::
range

::
of

:::
the

::::::
scaling

:::::
factor

::
λ,

:::
as

::
the

::::::::::
preferences

::
of

::::::
BEPS

:::
are

:::::::
basically

::::::::::
reasonable.

:::::::::
According

::
to

:::
the

::
3
:::::
sigma

::::::::
principle,

:::
the

::::::::
standard5

:::::::
deviation

:::::
(SD)

::
of

:::::::::
parameters

::
is
:::
set

::
to

:::
be

:::
0.1

:::
(i.e.

::::::::
variance

::
of

:::::
0.01).

::::::::
However,

:::
the

::::::
results

::
of

:::::::
regions

::::::::
excluding

:::::
China

::::
(e.g.

:::::::
Europe

:::
and

:::::
North

:::::::::
America)

:::::
under

:::
this

:::::::::::
circumstance

:::
are

::::::::
irrational

:::::::::
compared

::
to

:::::::
previous

::::::
studies.

::::
This

::::
may

:::
be

:::::
caused

:::
by

:::
the

:::::
larger

::::
error

::
in

::::
soil

:::::
carbon

::::::::
estimate

::
of

:::::
China

::
in

::::::
BEPS.

::::
Then

:::
we

:::
try

::
to

::::::
reduce

:::
the

::::
SD

:::
for

:::
the

::::
other

:::::::
regions

:::
and

::::
test

:::
the

::::::
values

::
of

::::::
0.0707

::::
(i.e.

:::::::
variance

:::
of

:::::
0.005)

::::
and

::::::
0.0316

:::
(i.e.

:::::::
variance

:::
of

::::::
0.001).

:::
The

::::::
results

:::::::
indicate

:::
that

:::
the

::::::
setting

::
of

::::::
0.0316

:::
for

:::::::
regions10

::::::
outside

:::::
China

::::
and

:::
0.1

:::
for

:::::
China

::::
can

:::
get

:
a
:::::

more
:::::::::
reasonable

:::::::
pattern

::
of

::::
flux.

:::::::::
Therefore,

:::
we

:
use the

variance of 0.01 for the scaling factors corresponding to grids in China and 0.001 for the rest of the

globe. This is because we intend optimizing the flux in China by observed concentrations to a greater

extent as BEPS model might generate larger error in China.

3.2 Background fluxes15

In the process of making inference about flux from ecosystems, we need to exclude the contribution

of other CO2 fluxes such as fire and fossil fuel emissions to observed concentrations. They are

not perfectly known and but also not the target of this study. Their information is included in the

observation data we use. As mentioned in Sect. 2.1, we do not include any parameters concerning

fossil fuel and fire fluxes in the optimization. So the contribution of fossil fuel and fire emissions need20

to be extracted from the window flux concentration. Then the window flux concentration excluding

the influence of fire and fossil fuel is used in the process of ecosystem flux optimization.
::::::::
Although

::
the

::::
fire

:::
and

:::::
fossil

:::::
fluxes

:::
are

:::::::
excluded

:::::
from

:::
our

:::::::::::
optimization,

::::
their

::::::::::
uncertainties

::::::
should

:::
be

:::::::::
considered

:::
into

:::
the

::::::::::::
observational

:::::
error.

:::::::::
Therefore,

:::
we

:::::::
included

:::
an

:::::
extra

::::::::::
contribution

:::
of

:::::
(0.175

::::::
ppm)2

:::
to

:::
the

:::::::::::
observational

::::
error

::::
(See

:::::::
Eq.14).25

The fossil fuel and fire fluxes are from the CT2010 results on 1◦× 1◦ resolution. The annual

summary of fossil fuel and fire emissions is listed in Table 1.

3.3 Atmospheric transport model

The carbon fluxes of the earth’s surface at a certain time affect the CO2 concentration observed in

a subsequent time period in the atmosphere. Therefore, we can use the atmospheric CO2 concentra-30

tion to invert the historical distribution of carbon fluxes. Atmospheric transport models are generally

used to describe the process of surface fluxes spreading into the atmosphere. The commonly em-

ployed transport models include MUGCM (Law, 1993), NCAR (Erickson et al., 1996), TM5 (Krol

et al., 2005), and MOZART-4 (Emmons et al., 2010). We will use MOZART-4 in our study as

its implementation is flexible. MOZART-4 divides the space from the earth surface to a height of35
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2 hPa into 28 vertical sigma-pressure layers, and its horizontal resolution can be adjusted according

to the capacity of computers. The highest resolution by far has been 0.7◦× 0.7◦. We use the me-

teorological data from the National Centers for Environmental Prediction (NCEP) reanalysis data

(http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html).

This model here is used in two forms. In its full form, the assimilation is done by running forward5

with the optimized flux state at the previous time step to update the historical space concentration at

the current time. In its simplified form, the model is slightly reduced by leaving out the influence of

window flux on the site concentrations, and is shown as a transport matrix (see Eq. 10).

3.4 Concentration data

Weekly
::::::
average

:
observations of CO2 concentration are from GLOBALVIEW-2011 dataset (http:10

//www.esrl.noaa.gov/gmd/ccgg/obspack/data.php). These data consist of pseudo-weekly interpola-

tion CO2 concentration data measured at 312 global sites. The map of stations is shown in Fig. 3.
::
It

:::::
should

:::
be

:::::
noted

:::
that

:::
we

::::
used

:::
312

::::
sites

::
in

:::
our

::::::::::
assimilation

::::::
system

:::::
while

:::::::
CT2010

::::
only

::::
used

:::::
about

::::
100

::::
sites

::::::::
(available

::::
from http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2010/documentation_obs.

html#ct_doc
:
).
:::
So

::::::
nearly

:::
two

:::::
thirds

:::
of

:::::::::::
observational

::::
data

::
is

::::::::::
independent

:::::
from

:::
the

:::::
ocean

::::::
fluxes

:::
we15

:::
use

::
as

::
an

:::::
input

:::::::::
(mentioned

::
in
::::::::
Sec. 3.1).

As the residual standard deviations (RSD) of the CO2 concentration data given by the var files

in GLOBALVIEW-2011 dataset are in months, we convert them onto weekly value by linear inter-

polation, and impose a floor of 0.175ppm to the data uncertainty using the equation (Deng et al.,

2007)20

R =

√
(0.175ppm)2 +RSD2, (14)

where 0.175 ppm is the system error at each site.

3.5 Window length

The choice of the window length is an important issue in assimilation systems. The longer a window

size is, the more overlapping of transport integrations and the larger calculation demand are. How-25

ever, a small window size will cause significant errors. Peters et al. (2005, 2007, 2010) used a five-

week smoothing window. Here, we choose a six-week smoothing window, which is sufficiently long

for the fluxes to transmit across the world.

::
As

:::::
scale

::::::
factors

::::
vary

:::::
much

:::::
more

::::::
slowly

::::
than

:::
the

:::::
fluxes

::::::::::
themselves

:
((Zupanski et al., 2007)

:
),

::
it

:
is
:::::::::
reasonable

::::
that

:::
the

:::::
scale

:::::
factor

::
is

::::::::::::::
time-independent

::::::
within

:
a
::::::::

six-week
:::::::
window

:::
but

::::::
varies

::::::
among30

:::::::
different

::::::::
windows.

:::::::::
Therefore,

::::
the

::::::::
unknown

:::::
states

:::::
aimed

:::
to

:::::::
estimate

:::::::
involve

::::
252

:::::::::
parameters

::::
and

:::
388

:::
800

:::
(64

:::
800

:::::::
grids×6

::::::
weeks)

:::::
fluxes

:::
for

::::
each

::::::::
six-week

::::
step.

:

11
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3.6 Results

In this section, we will firstly show the variations of estimated scaling factors over time. Then the

total optimized flux and its uncertainties will be summarized to compare with those of the prior flux

and results from previous studies. We focus on the result of three large regions of North America,

Europe and China. Moreover, we further study the quantities and seasonal variations of fluxes for 65

PFTs. The spatial distribution of the optimized flux is shown in a map of 1◦× 1◦ grid cell. We also

show the fit of the optimized concentrations to the observation concentrations to evaluate the system.

3.6.1 Optimized parameters

Figure 4 shows the results of the scaling factors for 6 PFTs and an oceanic type in the latitude zone

spread from 24◦ N to 30◦ N excluding China. The estimators fluctuate around 1 with small volatility.10

If the value is larger than 1, it means that the absolute value of the prior flux is underestimated and

therefore need to be multiplied by a factor more than 1 to increase its value. On the contrary, an es-

timator smaller than 1 indicates a decrease of the absolute value of the flux. From the time series of

weekly estimates, most of the parameters show annual periodicity and the scaling factors of conifer-

ous type indicate opposite “swings” in contrast to other PFTs. The scaling factors of deciduous and15

evergreen types have less amplitudes than those of the remaining types.

3.6.2 Optimized fluxes and their uncertainties

Global Carbon Budget

We compare the optimized total flux (excluding fire and fossil fuel emissions, same as thereafter)

with the prior flux and the results of CT2011_oi which is a newer version of CarbonTracker released20

on 28 June 2013 (Fig. 5). The terrestrial fluxes make a major contribution for the year 2000
::::
2001

to 2007 before or after optimization. Before optimization, the annual average terrestrial and oceanic

fluxes are −3.16
::::
3.10 and −1.62PgCyear−1, respectively. GCAS-DOM increases the uptake in

land and ocean by a mean value 0.52
::::
0.53PgCyear−1 and 0.23

:::
0.20PgCyear−1, respectively, over

the 2000–2007
:::::::::
2001–2007. Therefore the total annual ecosystem sinks show a significant increase25

mainly due to the increase in the terrestrial sink during the 8
:
7 years. As the oceanic prior flux is

derived from the optimized results of CT2010, the oceanic fluxes before and after optimization are

very similar. Even so, the optimized oceanic flux is still more close to the results of CT2011_oi

compared to the prior flux.

The optimized result indicates that the terrestrial ecosystems and oceans respectively absorb an30

average of 3.69 and 1.85
::::
3.63

:::
and

::::
1.82PgCyear−1 over the 2000–2007

:::::::::
2001–2007

:
period. These

values compare well with the inversion results of Deng and Chen (2011), which are on average 3.63

and 1.84PgCyear−1, respectively, for the years 2002–2007. We then further compare the net land

sink and oceanic sink in our study to that of the Global Carbon Project (GCP, Table 2). The Global
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Carbon Budget 2013 v2.3 (Le Quéré et al., 2014) is the newest version released on April 2014 by

the GCP. The net land sink of GCP is calculated by the difference of land sink and land-use change

emissions in Global Carbon Budget 2013 v2.3, while that of the GCAS-DOM is computed by the

difference between the terrestrial sink (Fig. 5) and fire emission in Table 1. The GCP generates larger

oceanic sinks than GCAS-DOM, with the smallest gap of 0.1
::::
0.25PgCyear−1 in 2000

::::
2001

:
and5

largest difference of 0.92PgCyear−1 in 2002. For the net land sink, the largest difference occurs in

2002 when the GCP releases 0.52PgCyear−1 from land while the GCAS-DOM maintains a land

uptake of 1.06PgCyear−1. The 7
:
6 year mean of the net land sink excluding the year 2002 in our

study is 1.48
::::
1.38PgCyear−1 which is close to 1.39

::::
1.29PgCyear−1 in GCP. Figure 5 shows that

the total sink in land and ocean varies considerably among years, and the variation is mostly due10

to the sink in land. GCAS-DOM sink results are usually larger than the prior value, indicating the

prior flux underestimates the land sink. The multi-year mean values of GCAS-DOM and CT2011_oi

are about the same, but they differ to some extent in individual years, suggesting that different data

assimilation methods can result in considerable difference in the optimized carbon flux.

From the point of inter-annual variabilities, the ocean flux shows much smaller variability than15

land flux, revealing that the ocean sink pattern is stable. The inter-annual variation of the land sink

suggests notable correlation with the climate change. The optimized annual flux by GCAS-DOM

detects an anomaly in 2005 which shows the smallest sink. This could be mainly attributed to a con-

tinuing drought from July to September in the Amazon that affects plant growth and high temperature

in 2005 which intensifies the ecosystem respiratory activities (Deng and Chen, 2011). The relatively20

weak sinks in 2002 and 2007 may be related to the EI Niño Southern Oscillation event in 2002–

2003 and 2006–2007, respectively, that causes anomalies in precipitation causing draughts in some

regions.

Before optimization, we use an uncertainty of 1.98PgCyear−1 for the land flux, and an uncer-

tainty of 0.93PgCyear−1 for the oceanic flux, resulting in a total uncertainty of 2.18PgCyear−125

for the globe. Table 3 shows the uncertainty of optimized fluxes by GCAS-DOM. We can see differ-

ent levels of uncertainty reductions for land and ocean. The uncertainty of the globe is significantly

reduced by about 75–80 % and ocean has the slightly larger reduction than the global value. It is

mostly due to the stronger constraint by the elongated clustered observation sites over the Pacific

Ocean (see Fig. 3). The uncertainty reductions of ocean and land respectively stabilize at around30

82 % and 75 % for the years 2000–2007
:::::::::
2001–2007.

4 Regional Carbon Budget

::::::::
Regional

:::::::
Carbon

::::::
Budget

We further analyze three large regions: Europe, North America and China. As shown in Table 4,

GCAS-DOM respectively increases the sink by 0.14PgCyear−1 for Europe and 0.32
:::
0.31PgCyear−135
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for North America compared to the prior flux for the eight-year
:::::::::
seven-year mean. The uncertainties

before optimization (0.44PgCyear−1 and 0.86PgCyear−1 for Europe and North America, re-

spectively) are reduced to 0.08PgCyear−1 and 0.15PgCyear−1, respectively. The uncertainty

reductions for these two regions, are remarkably large at about 80 %, possibly because the at-

mospheric CO2 is densely observed in these two regions. In Europe, the carbon sink from our5

study (−0.42± 0.08PgCyear−1) is higher than CT2011_oi (−0.33± 1.86PgCyear−1), Deng

and Chen (2011, −0.22PgCyear−1) and Jiang et al. (2013, −0.28± 0.17PgCyear−1). In North

America, our result (−0.96± 0.15
:::::::::::
−0.98± 0.15PgCyear−1) agrees well with Deng and Chen

(2011,−0.89±0.18PgCyear−1), but shows slightly stronger sink than Jiang et al. (2013,−0.81±
0.21PgCyear−1). In China, the carbon uptake slightly increases from the prior to−0.21

::::
0.20PgCyear−1,10

which is weaker than Jiang et al. (2013, −0.28± 0.18PgCyear−1) and Piao et al. (2009, −0.35±
0.33PgCyear−1). Although the change of sink in China before and after optimization is small,

the uncertainty reduction is about 67 %, which is smaller than those of Europe and North America

because of relatively few atmospheric data observed within and around China.

The inter-annual variations of fluxes before and after optimization are shown in Fig. 6. With15

a minor fluctuation, the carbon uptake of Europe has an increasing trend before 2004, and then

decreases after 2005. Similar temporal trends are also found in North America. In the first five
::::
four

years, the carbon sink in China is stable around −0.22PgCyear−1, and slightly decreases from

2005 to 2007. The uncertainties of optimized fluxes for three regions vary slightly from year to year

and are remarkably reduced from those of the prior fluxes.20

Fluxes for each PFT

Our gridded inversion system at 1◦ resolution affords us the possibility to analyze the impacts of

atmospheric CO2 data on the estimation of the carbon sink by PFT. Figure 7 shows the annual mean

terrestrial flux for 6 PFTs. “Prior” stands for fluxes simulated by BEPS consisting of 6 PFT com-

ponents with corresponding coverage fraction in each grid, while “GCAS-DOM” represents fluxes25

optimized by GCAS-DOM and the statistics are based on the principle that each 1◦× 1◦ gridbox is

assigned to a single category according to the locally dominant PFT. As shown in Fig. 7, the order of

the sink magnitudes of different PFTs is altered after optimization. The carbon flux of once-dominant

deciduous forests is reduced from−0.96
:::
0.93

:
to−0.79

:::
0.78PgCyear−1. After optimization, largest

net uptake is shown in regions dominated by coniferous forest (−0.97± 0.27PgCyear−1) and is30

increased by 115.68
::::::
118.20 %. As the coniferous forest is mainly distributed in North America, Eu-

rope and part of Russia, this results in the notable increase of the sinks in North American and

Europe (Table 4). This large increase in the sink magnitude for conifer from the prior estimate

suggests that the ecosystem model considerably underestimates the sink for this PFT. “Other vege-

tation” (−0.86±0.20PgCyear−1) and deciduous forest (−0.79± 0.22
:::::::::::
−0.78± 0.23PgCyear−1)35

are respectively the second and third PFTs in terms of their total sink magnitude. Evergreen forests
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most located in the Southern Hemisphere absorb −0.77± 0.21
:::::::::::
−0.72± 0.22PgCyear−1 on aver-

age. Relatively speaking, shrub land (−0.17± 0.12
:::::::::::
−0.16± 0.12PgCyear−1) and C4 vegetation

(−0.26± 0.13
::::::::::
−0.25± 0.13PgCyear−1) make the least contributions to the total global carbon

sink. The slight changes in the sink magnitudes of Shrub land and C4 vegetation before and after

optimization suggest that BEPS provides nearly unbiased sink estimates for these two PFTs. The5

sink magnitude of the “other vegetation” is modified greatly by optimization, suggesting BEPS does

not work well for all other land cover types lumped into this PFT. One way to improve BEPS would

be to introduce more PFTs. Through this analysis, we show that GCAS-DOM has provided a useful

model framework to evaluate an ecosystem model by PFT, and it can potentially provide directions

for further development of ecosystem models.10

To further investigate the seasonal variation of the carbon flux, we compare the optimized weekly

fluxes to the prior fluxes by PFT. For this purpose, we select the results of coniferous forest and “other

vegetation” (Figs. 8 and 9), as fluxes by these two types present largest change after optimization

among all PFTs. All the time series exhibit pronounced seasonality, and Northern Hemisphere and

Southern Hemisphere show opposite seasonal patterns. In Northern Hemisphere, the optimized flux15

of coniferous forest shows a general shift towards larger sinks in all seasons from that of the prior

flux. After optimization, greater net uptake is found in the growing season and smaller net source in

autumn and winter. In Southern Hemisphere, the optimized flux shows a smaller seasonal amplitude

than the prior flux with departures from the prior occurring in winter and summer. Note that the sink

magnitude is much smaller than that of Northern Hemisphere, and therefore the optimization of the20

conifer flux in Southern Hemisphere does not make much difference in the overall sink estimate.

For “other vegetation”, similar deviations of the optimized flux from the prior flux in June through

September are observed, but fluxes in other months show good agreements. In Southern Hemisphere,

the optimized flux present larger amplitudes than the prior flux, and this is opposite to the case of

coniferous forest.25

Spatial distribution of fluxes

Figures 10 and 11 show the long-term mean spatial pattern of the flux on 1◦× 1◦ net before and

after optimization. This flux does not include the carbon emission due to fires, and the net land sink

is those shown in Figs. 10 and 11 minus fire emission. The uptakes over boreal Asia, Europe and

southeastern Canada have been greatly increased by GCAS-DOM, while the sink in tropical America30

is slightly reduced after optimization. For the oceanic flux, a slight decrease of the source is found in

Tropical Ocean. The results of this study show that relatively large sinks are located in the Northern

Hemisphere continents, and tropical continental areas. The northern continental areas from 30◦ N

to 90◦ N contribute the largest sink of −2.05
::::
2.07PgCyear−1. Next, the continental areas in the

range of 30◦ S–30◦ N contribute a sink of −1.76
:::
1.68PgCyear−1. Intense sinks mainly appear in35

eastern US, Europe, tropical America, tropical Asia and central Africa. South continental areas (30–
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90◦ S) show an approximately neutral flux. For ocean, carbon uptake is distributed relatively evenly

between north (30–90◦ N) and south (30–90◦ S), while the region 30◦ S–30◦ N generates a weak

source of 0.32
::::
0.33PgCyear−1.

3.0.3 Fit to CO2 concentrations

The fit of the simulated CO2 concentration by GCAS-DOM to the observed concentration is an im-5

portant aspect for overall evaluation of optimization. To evaluate the performance of GCAS-DOM,

we run MOZART-4 forward forced by the prior flux and optimized flux, respectively, and com-

pare the simulated time series of CO2 concentrations to the observed concentrations. We integrate

the concentration data of all the 312 sites for 8
:
7 years to a series with 119 808

::::::
104 832 (312× 48

weeks×8
::
×7 years) elements and draw the simulated vs. observed scatterplot (Fig. 12). The blue10

points show an upward departure from the one-to-one line, indicating the simulated concentrations

with the prior flux are overestimated. The RMSE between the simulated and observed concentrations

of the 119 808 weekly data points items is significantly reduced from 5.49
::::
5.58 ppm to 2.74

:::
2.76ppm

after optimization. The correlation between the simulated and the observed concentration is also im-

proved after optimization with R2 increasing from 0.67 to 0.83
::::
0.64

::
to

::::
0.80. This suggests that the15

optimized flux is a significant improvement over the prior flux.

Generally speaking, the simulated concentration at sites at Northern Hemisphere shows better

agreement with the observed concentration than the sites at Southern Hemisphere. We present the

seasonal cycles fitted to the simulated and observed concentration time series of two sites in Fig. 13.

At Dahlen, the simulated concentrations based on the optimized flux follows closely the observed20

values. However, the simulated concentration based on the prior flux show an upward drift from

the observed concentrations especially in the last several years. This indicates that the prior flux

is biased and the cumulative effect of this bias will get progressively larger over time. This result

is consistent with the viewpoint that the prior sink value is underestimated. Moreover, the green

points present a seasonal cycle with smaller amplitudes. This may be due to the shortcoming in the25

terrestrial biosphere model which may not well describe the seasonal cycle of ecosystem processes.

At Mace Head, the simulated concentrations with the optimized flux deviate less from the obser-

vations in winter than in summer. This inability of the optimization procedure to capture the depth of

summer carbon drawdown by photosynthesis was also found in CarbonTracker North America and

Europe (Peters et al., 2007, 2010) and a carbon cycle assimilation system based on the Biosphere30

Energy Transfer Hydrology model (CCDAS, Rayner et al., 2005). One common problem would be

that biospheric models tend to underestimate the carbon sink in summer and this bias is not fully

rectified in the optimization process because of insufficient atmospheric CO2 data and the signifi-

cant model-data mismatch errors in the CO2 observation. Nevertheless, the optimized concentration

is still a large improvement over the case of the prior flux. In addition, it should be noted that some35
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discontinued high anomalies in the simulated concentration with the prior flux have been remarkably

ameliorated after optimization.

We also investigate the overall quality of 312 sites used in our system by week. In Fig. 14,

week-by-week residuals (simulated minus observed) are made to assess the bias of the optimized

CO2 field against the observations. The errors averaged by 312 sites can be controlled within about5

±0.5
::::
0.51ppm, indicating a satisfactory performance of our assimilation system. However, an obvi-

ous seasonal cycle is identified in the residual series. This is mainly caused by the generally worse fit

to observed concentration at the sites in Southern Hemisphere. Although the residual error is small,

the clear seasonal pattern of the residual error indicates that there is still some useful information in

the CO2 data that are not fully utilized. The inability of BEPS to simulate the large summer sinks10

may be part of the reason because the bias in summer is not fully corrected through optimization (as

shown in Fig. 13). Our study therefore suggests that efforts should be made to improve the prior flux

estimation not only in terms of the annual sink magnitude but also the seasonal sink pattern.

4 Conclusions

In this study, we build a global carbon assimilation system (GCAS-DOM) and employ GCAS-DOM15

to optimize a record of the globally gridded CO2 flux at 1◦× 1◦ resolution for the years from 2000

::::
2001

:
to 2007. This newly developed system combines the ecological model BEPS, atmospheric

transport model MOZART-4 and observations of CO2 concentration to optimize the optimize the

carbon flux
::::::::
parameter

:::
and

::::::
carbon

::::
flux

:::::::::::::
simultaneously. In consideration of errors in climate data and

the structure of BEPS, we design a set of inflation parameters for optimization according to lati-20

tude and plant function type in BEPS, resulting in 252 parameters at each time step. The 1◦× 1◦

for flux estimation at the global scale in our study is higher than those in previous studies . This

high resolution has the advantage of reducing aggregation error in each grid
:::
and

:::::::
therefore

::
it
::::::
would

::::::::::
significantly

:::::::
advance

:::
our

::::::::::::
understanding

::
of

:::::::
regional

::::::
carbon

::::::
cycles. To reduce the computational de-

mand, a moving-window method is used in the system so as to obtain time-varying parameters and25

fluxes.

Our optimized results show that the mean terrestrial and oceanic carbon fluxes over the period of

2000–2007 are−3.69± 0.49
:::::::::
2001–2007

:::
are

:::::::::::
−3.63± 0.50PgCyear−1 and−1.91± 0.16

:::::::::::
−1.82± 0.16PgCyear−1,

respectively. North America, Europe and China contribute−0.96± 0.15
:::::::::::
−0.98± 0.15PgCyear−1,

−0.42± 0.08PgCyear−1 and −0.21± 0.28
:::::::::::
−0.20± 0.29PgCyear−1, respectively. Large sinks30

are mainly located in the Northern Hemisphere and tropical continental areas. Moreover, the uncer-

tainties of carbon fluxes are notably reduced by more than 60 % after optimization for the globe and

aforementioned 3 regions.

Coniferous forest, deciduous forest, shrub, crop,
:::::::
evergreen

::::::
forest,

:::::
shrub

::::
land, grass, C4 plants, and

other vegetation contribute to the global carbon flux at−0.97±0.27PgCyear−1,−0.79± 0.22
::::::::::
−0.78± 0.23PgCyear−1,35
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−0.77± 0.21
:::::::::::
−0.72± 0.22PgCyear−1,−0.17± 0.12

:::::::::::
−0.16± 0.12PgCyear−1,−0.26± 0.13

::::::::::
−0.25± 0.13PgCyear−1,

−0.86± 0.20PgCyear−1, respectively. The optimized flux of conifer differs most from its prior,

indicating that the biospheric model BEPS might have the largest error for this PFT. Shrub land

and C4 vegetation show only slight changes from the prior after optimization. In terms of seasonal

variation, the optimized flux shows larger uptake in growing season than the priors for coniferous5

forest and “other vegetation” in Northern Hemisphere. In Southern Hemisphere, the optimized flux

of coniferous forest shows a reduced amplitude from its prior, while the opposite occurs for “other

vegetation”.

After the flux optimization by GCAS-DOM, the agreement between the simulated and observed

CO2 concentrations is greatly improved (R2 increased from 0.67 to 0.83
:::
0.64

::
to

::::
0.80, and RMSE re-10

duced from 5.49 to 2.74
::::
5.58

::
to

::::
2.76ppm). However the residual differences between simulated and

observed concentrations show some seasonal structure, indicating that some deficiency in the prior

flux that has not been rectified in the optimization process. Since atmospheric CO2 data are sparse,

errors in the biospheric model used to produce the prior flux can propagate to the final optimization

results. Further effort is needed to improve photosynthesis and respiration calculation in BEPS in15

order to reduce the biases in the flux estimation in both summer and winter.

Appendix A: Proof of Eqs. (11) and (12)

According to the theory of DOM, for any fixed λ, the optimized s that achieves the minimum of

cost function (11) is

s(λ) = QGTΣ−1(cw −Gsmλ)+ smλ, (A1)20

where Σ = (R+GQGT).

Plug Eq. (A1) into the cost function (11), we can get

J(λ) =(Gs(λ)− cw)TR−1(Gs(λ)− cw)+ (s(λ)− smλ)TQ−1(s(λ)− smλ)

+ (λ−1)TW−1(λ−1)

=(Xλ− cw)TΣ−1(Xλ− cw)+ (λ−1)TW−1(λ−1) (A2)25

where X = Gsm and the first item is referred to the DOM. Then the optimized estimator λ̂ is easy

to get by derivation of Eq. (A2) with respective to λ

λ̂= (XTΣ−1X+W−1)−1(XTΣ−1cw +W−11) (A3)

Thus the optimized fluxes can be obtained by replacing λ in the (A1) by the λ̂.

Note that30

cw = Gs+η = G(smλ+ ε)+η = Xλ+γ, (A4)
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whereE(γ) = 0,var(γ) = Σ and 1 can be treated as a random error with expectation λ and variance

matrix W. It is not hard to obtain the variance of λ̂.

var(λ̂) = (XTΣX+W−1)−1. (A5)

The variance of ŝ

var(ŝ) = var(QGTΣ−1(cw −Gsmλ̂)+ smλ̂)5

= var(QGTΣ−1(cw −Gsm(XTΣ−1X+W−1)−1(XTΣ−1cw +W−11))

+ sm(XTΣ−1X+W−1)−1(XTΣ−1cw +W−11))

= var((QGTΣ−1−QGTΣ−1Xvar(λ̂)XTΣ−1 + smvar(λ̂)XTΣ−1)cw)

+ var((smvar(λ̂)W−1−QGTΣ−1Xvar(λ̂)W−1)1) (A6)

where10

var((smvar(λ̂)W−1−QGTΣ−1Xvar(λ̂)W−1)1)

= (smvar(λ̂)−QGTΣ−1Xvar(λ̂))(W−1var(λ̂)(sm)T−W−1var(λ̂)XTΣ−1GQ)

= QGTΣ−1Xvar(λ̂)W−1var(λ̂)XTΣ−1GQ− var(λ̂)W−1var(λ̂)XTΣ−1GQ−

QGTΣ−1Xvar(λ̂)W−1var(λ̂)(sm)T + smvar(λ̂)W−1var(λ̂)(sm)T (A7)

and15

var((QGTΣ−1−QGTΣ−1Xvar(λ̂)XTΣ−1 + smvar(λ̂)XTΣ−1)cw)

= (QGTΣ−1−QGTΣ−1Xvar(λ̂)XTΣ−1 + smvar(λ̂)XTΣ−1)Σ

(Σ−1GQ−Σ−1Xvar(λ̂)XTΣ−1GQ+Σ−1Xvar(λ̂)(sm)T)

= (QGT−QGTΣ−1Xvar(λ̂)XT + smvar(λ̂)XT)

(Σ−1GQ−Σ−1Xvar(λ̂)XTΣ−1GQ+Σ−1Xvar(λ̂)(sm)T)20

= QGTΣ−1GQ−QGTΣ−1XA−1XTΣ−1GQ+QGTΣ−1Xvar(λ̂)(sm)T−

QGTΣ−1Xvar(λ̂)XTΣ−1GQ+QGTΣ−1Xvar(λ̂)XTΣ−1Xvar(λ̂)XTΣ−1GQ

−QGTΣ−1Xvar(λ̂)XTΣ−1Xvar(λ̂)(sm)T + smvar(λ̂)XTΣ−1GQ−

smvar(λ̂)XTΣ−1Xvar(λ̂)XTΣ−1GQ+ smvar(λ̂)XTΣ−1Xvar(λ̂)(sm)T (A8)

Combining Eqs. (A7) and (A8), we can get25

var(ŝ) = smvar(λ̂)(sm)T +QGTΣ−1GQ−QGTΣ−1Xvar(λ̂)XTΣ−1GQ

= QGTΣ−1(I−Xvar(λ̂)XTΣ−1)GQ+ smvar(λ̂)(sm)T (A9)
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Table 1. Annual fossil fuel and fire emissions across 2000–2007
::::::::
2001–2007 (in PgCyear−1).

Year Fossil Fuel Fire

2000 7.0196 2.0574 2001 7.1527 2.1868

2002 7.2069 2.4057

2003 7.5434 2.2687

2004 7.9537 2.3422

2005 8.1887 2.3541

2006 8.4376 2.1479

2007 8.6908 2.3267

Table 2. Comparison of the optimized carbon sinks in this study with the “Global Carbon Budget 2013 v2.3”

(in PgCyear−1).

GCP GCAS-DOM

Year Net land sink Oceanic sink Net land sink Oceanic sink

2000 −1.99 −2.14 −2.08 −2.04 2001 −1.14 −1.95 −1.77 −1.70

2002 (0.52)∗ −2.45 −1.06 −1.53

2003 −0.24 −2.42 −1.59 −1.68

2004 −2.06 −2.33 −1.52 −1.87

2005 −0.53 −2.43 −0.77 −1.78

2006 −2.17 −2.51 −1.50 −2.19

2007 −1.57 −2.55 −1.14 −2.00

∗ “(0.52)” represents the carbon resource of 0.52PgCyear−1.

Table 3. The uncertainties of optimized fluxes for the globe, land and ocean by GCAS-DOM (in PgCyear−1).

Year 20002001 2002 2003 2004 2005 2006 2007

Globe 0.47 0.51 0.50 0.53 0.52 0.54 0.54 0.53

Land 0.44 0.48 0.47 0.51 0.50 0.51 0.51 0.50

Ocean 0.16 0.16 0.17 0.15 0.16 0.17 0.16 0.15
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Table 4. Comparison of the long-term mean optimized carbon fluxes by GCAS-DOM with previous studies

during 2000–2007
::::::::
2001–2007.

Region Europe North America China

Model −0.28± 0.44 −0.64± 0.86
::::::::::
−0.67± 0.86 −0.17± 0.87

GCAS-DOM −0.42± 0.08 −0.96± 0.15
::::::::::
−0.98± 0.15 −0.21± 0.28

::::::::::
−0.20± 0.29

CT2011_oi −0.33± 1.86
::::::::::
−0.32± 1.84 −0.66± 1.39

::::::::::
−0.66± 1.35 −0.26

Deng and Chen (2011)a −0.22 −0.89± 0.18 –

Jiang et al. (2013)b −0.28± 0.17 −0.81± 0.21 −0.28± 0.18

Piao et al. (2009)c – – −0.35± 0.33

a Mean from 2002 to 2007.
b Mean from 2002 to 2008.
c Mean from 1996 to 2005, and the result is based on inversion method.

Figure 1. Illustration of three cycles in GCAS-DOM in which a state vector composes of the flux at l steps.
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Figure 2. The partition of zones in globe.
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Figure 3. The distribution of 312 stations used in this study. The x-axis and y-axis stand for longitude and

latitude respectively. The sign “ * ” represents the location of sites.
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Figure 4. The results of optimized weekly scaling factors in the 20th latitude zone, where Coni stands for conif-

erous forest, Deci for deciduous forest, Evgn for evergreen forest, Shrub for shrub land, C4 for C4 vegetation

and Other for other vegetation. Blue lines are estimated parameters, while Red lines are constants which equal

to 1. Note different scales are used.
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Figure 5. Annual fluxes for the land and ocean from 2000
::::
2001

:
to 2007 in comparison with results of

CT2011_oi. “Prior”, “GCAS-DOM” are the fluxes before and after optimization. Black horizontal lines de-

note the uncertainties of global flux. The uncertainties of global flux from CT2011_oi are averagely about

6PgCyear−1 which is not shown in this figure. All units are in PgCyear−1. The fossil fuel and fire emis-

sions are excluded here.
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Figure 6. Fluxes and their uncertainties in three large regions before and after optimization from 2000
::::
2001 to

2007 (in PgCyear−1) (a) Europe (b) North America (c) China.
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Figure 7. Annual mean flux per PFT and its uncertainty for the period 2000–2007
::::::::
2001–2007. Coni stands

for coniferous forest, Deci for deciduous forest, Evgn for evergreen forest, Shrub for shrub land, C4 for C4

vegetation and Other for other vegetation. “Prior”, “GCAS-DOM” are the fluxes before and after optimization.

All units are in PgCyear−1.

29



2001 2002 2003 2004 2005 2006 2007
-2

-1.5

-1

-0.5

0

0.5

1
x 1014

Fl
ux

 (g
C

 y
ea

r -1
)

2001 2002 2003 2004 2005 2006 2007
-6

-4

-2

0

2

4

6
x 1011

Time

Fl
ux

 (g
C

 y
ea

r -1
)

 

 

the optimized flux by GCAS-DOM
the prior flux

(a)

(b)

Figure 8. Weekly fluxes for coniferous forest. (a) Northern Hemisphere (b) Southern Hemisphere. All units are

in gCyear−1. Note different scales are used.
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Figure 9. Weekly fluxes for “other vegetation”. (a) Northern Hemisphere (b) Southern Hemisphere. All units

are in gCyear−1. Note different scales are used.

Figure 10. The average annual pattern of the prior flux for the years 2000-2007
:::::::::
2001–2007 excluding fossil

fuel and fire emissions (in gCm−2 year−1).
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Figure 11. The average annual pattern of the optimized flux by GCAS-DOM for the years 2000–2007

::::::::
2001–2007

:
(in g C m−2 year−1).

Figure 12. Comparison between observed concentration with simulated concentration.
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Figure 13. Observed (blue dot) concentration, simulated concentration with the optimized flux (red square)

and simulated concentration with the prior flux (green circle) from (a) Dahlen, North Dakota, United States

(47.5◦ N 99.24◦ W) (b) Mace Head, County Galway, Ireland (53.33◦ N, 9.9◦ W).
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Figure 14. Simulated-minus-observed CO2 for a set of 312 observation sites by week.
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