

1   **Poor correlation between phytoplankton community growth rates and nutrient**  
2   **concentration in the sea**

3

4   Aurore Regaudie-de-Gioux<sup>\*1</sup>, Sofía Sal, and Ángel López-Urrutia

5

6   Instituto Oceanografico Español, Avenida Principe de Asturias 70bis, 33212 Gijón,  
7   Spain.

8   |<sup>1</sup> Present address: Centro de Biologia Marinha, Rodovia Manoel Hypolito do Rego  
9   km131.5, Praia do Cabelo Gordo, São Sebastiao, 11600-000, Brazil.

10

11   \* Corresponding author: auroreregaudie@yahoo.fr

12 **Abstract**

13 Nutrient availability is one of the major factors regulating marine productivity  
14 and phytoplankton community structure. While the response of phytoplankton species  
15 to nutrient variation is relatively well known, that of phytoplankton community remains  
16 unclear. We question whether phytoplankton community growth rates respond to  
17 nutrient concentration in a similar manner to phytoplankton species composing the  
18 community, that is, following Monod's model. Data on in situ marine community  
19 growth rates in relation to nutrient concentration and the behaviour of a simple multi-  
20 species community model suggest that community growth rate does not respond to  
21 nutrient concentration according to the Monod equation. Through a simulation study we  
22 show this can be explained as a consequence of changes in size structure. Marine  
23 biogeochemical models must not parameterize phytoplankton community growth rate  
24 response to nutrient concentration usign a single Monod equation but rather involve  
25 different phytoplankton functional groups each with different equation parameters.

26 **1. Introduction**

27 There is little doubt that nutrient availability is one of the major factors  
28 regulating marine productivity and phytoplankton community structure. In most areas of  
29 the oceans, phytoplankton species compete for available nutrients. We know from  
30 laboratory experiments that most of the steady state growth rates of monocultures of  
31 phytoplankton species in a gradient of nutrient concentration are well represented by  
32 Monod theory (Dugdale, 1967). Small phytoplankton species have low half-saturation  
33 constants and high maximum growth rates that allow them to uptake nutrients at a faster  
34 rate than larger cells and to dominate in nutrient limited conditions (Eppley et al., 1969;  
35 Aksnes and Egge, 1991; Hein et al. 1995). Large phytoplankton species achieve slower  
36 growth rates (Grover, 1989) but often dominate when nutrient concentration is high  
37 (Tremblay and Legendre, 1994; Li, 2002) (Fig. 1). Indeed, large phytoplankton  
38 communities seem to dominate in productive ecosystems thanks to their physical and  
39 chemical capacities to escape to zooplankton grazing (Irigoien et al., 2004; Irigoien et  
40 al., 2005). Furthermore, it has been observed that large phytoplankton dominate in high  
41 turbulence regime (Rodríguez et al., 2001; Li, 2002) and that when nitrogen supply is  
42 pulsed, large cells could dominate due to their enhanced storage capacities (Litchman et  
43 al., 2009).

44 This leaves a scenario (Fig. 1) where nutrient-limited ecosystems are dominated  
45 by fast-growing, small phytoplankton cells, while high-nutrient environments are  
46 dominated by slow-growing, large phytoplankton species. As a result, it is possible to  
47 reach the counterintuitive result that the community growth rate ( $\mu_{\text{com}}$ ), i.e., the mean  
48 growth rate of the phytoplankton cells in a community, can be higher when nutrients are  
49 limited (Fig. 1). Franks (2009) contended the common practice in marine ecosystem  
50 models to parameterize phytoplankton community growth rates using Michaelis-Menten  
51 kinetics. Following our conceptual argumentation, it is indeed quite likely that the  
52 response of community growth rate is different to that of individual species.

53 In this study, we use a database of in situ phytoplankton community growth rate  
54 measurements in surface waters of the global ocean covering oligotrophic as well as  
55 productive ecosystems and test the hypothesis that the response of phytoplankton  
56 community growth rates to nutrient concentration does not follow Monod kinetics. We  
57 also develop a simple statistical model summarizing our conceptual framework (Fig. 1).  
58 We first parameterize, using in-situ phytoplankton size structure data (Marañon et al.,  
59 2012), the steeper phytoplankton size spectra slope when nutrient concentrations are

60 low. We then combine this size structure information with simple allometric equations  
61 describing the response of phytoplankton species growth to nutrients (Edwards et al.,  
62 2012) and calculate the predicted response of phytoplankton community growth rates to  
63 nutrients.

64

## 65 2. Methods

66 **2.1. In situ community growth data.** We used an independent dataset containing  
67 phytoplankton in situ growth rate measurements in surface waters of the ocean  
68 compiled by Chen and Liu (2010) (see Chen and Liu (2010) Web appendix, Table A1,  
69 [http://www.aslo.org/lo/toc/vol\\_55/issue\\_3/0965a.html](http://www.aslo.org/lo/toc/vol_55/issue_3/0965a.html)). We refer here to community  
70 growth rate ( $\mu_{\text{com}}$ ) as the specific growth rate measured in a dilution experiment which  
71 represents the average biomass-specific growth rates of the cells in a phytoplankton  
72 community. The dataset covers open ocean, coastal regions as well as High Nutrient-  
73 Low Chlorophyll (HNLC) areas and is restricted to experiments conducted in surface  
74 waters to reduce the effects of light limitation. The results described here represent the  
75 whole dataset, including HNLC. We removed from the original dataset all data for  
76 which nitrate concentration was below the detection limit or lower than  $0.01 \mu\text{mol L}^{-1}$ .  
77 The database compiles data from experiments based on the dilution technique (Landry  
78 and Hassett, 1982) to estimate in situ phytoplankton community growth rate ( $\mu_{\text{com}}$ ,  $\text{d}^{-1}$ ).  
79 Two different estimates of phytoplankton community growth rates are obtained in  
80 dilution experiments: nutrient amended or maximum growth rate ( $\mu_{\text{com\_max}}$ ) and non-  
81 amended or growth rate ( $\mu_{\text{com}}$ ) under natural conditions.

82 If the in situ community growth rate ( $\mu_{\text{com}}$ ) responds to the nutrient  
83 concentration following Monod's equation, we could formulate:

$$84 \mu_{\text{com}} = \frac{S}{S + K_s} \mu_{\text{com\_max}} \quad (1)$$

85 Where S is the nutrient concentration (e.g. nitrate, phosphate, silicate, iron and so on)  
86 and  $K_s$  is the half-saturation constant for that nutrient.

87 The population maximum growth rate ( $\mu_{\text{com\_max}}$ ) is the growth rate measured  
88 when the population is not limited by nutrients and depends directly on the same  
89 parameters than the growth rate but nutrient concentration.

$$90 \mu_{\text{com}_{\text{max}}} = f(T, \text{PAR}, \text{s.s.}, d.l., s.c., \dots) \quad (2)$$

91 Where T is the temperature, PAR is the photosynthetically active radiation, s.s. is the

92 species size, d.l. is the day length, and s.c. is the species composition.  
 93 Thus, the ratio  $\mu_{com}:\mu_{com\_max}$  is a direct index of nutrient-limited growth (Brown et al.  
 94 2002), also called relative reproductive rate ( $\mu_{com\_rel}$ ) (Sommer 1991).

$$95 \quad \mu_{com_{rel}} = \frac{\mu_{com}}{\mu_{com_{max}}} \quad (3)$$

$$95 \quad \mu_{com_{rel}} = \frac{S}{S+K_s}$$

96 **2.2. Community growth rate model description.** We simulate the growth rate of a  
 97 community under different nutrient concentrations. For that we used a database  
 98 containing size structure information for 423 different phytoplankton communities  
 99 (Marañon et al., 2012). For simplicity, only one nutrient (nitrogen) was considered to be  
 100 limiting. In our simulations, the phytoplankton community is composed by 55  
 101 phytoplankton species ranging in cell size from  $0.33 \mu\text{m}^3$  to  $5 \times 10^5 \mu\text{m}^3$  of volume. This  
 102 size range encompasses the whole phytoplankton species size range observed in situ,  
 103 from prochlorococcus size (Partensky et al., 1999) to the largest diatoms (Agustí et al.,  
 104 1987). The size-abundance spectrum slope determined the relative abundance of each  
 105 species. Because size spectra slope varies depending on the trophic state of the system,  
 106 we empirically derived a relationship between size spectra slope and nutrient  
 107 concentration (see subsection below). Indeed, Platt and Denman (1997) exposed the use  
 108 of a property of the biomass size in that the normalized biomass is an estimate of the  
 109 number of density of organisms in each size class. Although this should be considered  
 110 an approximation (Blanco et al., 1994), we used the changes in scaling of normalized  
 111 biomass with different nutrient levels to simulate the changes in the size scaling of the  
 112 numerical abundance of species at different nutrient levels. The community growth rate  
 113 is the average growth rate of all the cells within the community and is calculated as the  
 114 mean growth rate of the 55 phytoplankton species weighted by the total biomass of each  
 115 species. This rate is equivalent to the growth rate measured experimentally as the rate of  
 116 total community in situ growth rate ( $\mu$ , in the dilution dataset).

117 **2.3. Parameterisation of the size-spectrum dependence on resource levels with in-**  
 118 **situ size structure data.** Chlorophyll *a* (Chl *a*) data for 3 different size classes (0.2-2  
 119  $\mu\text{m}$ , 2-20  $\mu\text{m}$ , and  $>20 \mu\text{m}$ ) were collected from Marañon et al. (2012). As Sprules and  
 120 Munawar (1986), we used the Chl *a* data to calculate the normalized biomass spectrum  
 121 (NBSS) by regressing the logarithm of the normalized chlorophyll by biovolume. The  
 122 biovolume was calculated using the volume equation of a sphere (Hillebrand et al.,

123 1999). Nutrient concentration ( $\Sigma$ ,  $\mu\text{mol (NO}^3\text{+NO}^2\text{)} \text{ L}^{-1}$ ) for each station of the Chl *a*  
124 dataset was estimated from the nitrate climatology in the World Ocean Atlas 2009  
125 (WOA). We then fitted a model describing the effects of nutrient concentration on  
126 NBSS.

127 **2.4. Parameterisation of species size-dependent nutrient resource acquisition and**  
128 **growth rate.** The dependence of growth rate ( $\mu$ ) on ambient nutrient concentration is  
129 usually modeled using Droop model (Droop, 1973). Aksnes and Egge (1991) developed  
130 a theoretical framework that explains how cell size should affect the parameters in  
131 Droop model. This theoretical prediction was demonstrated with experimental data by  
132 Litchman et al. (2006). Edwards et al. (2012) estimated the allometric parameters for  
133  $V_{\max}$  (the maximum cell-specific nutrient uptake rate,  $\mu\text{mol nutrient cell}^{-1} \text{ d}^{-1}$ ) and  $K_m$   
134 that we use here in our model (Fig. 2B):

135  $\log_{10}(V_{\max}) = -8.1 + \log_{10}(Vol) \times 0.82$  (4)

136  $\log_{10}(K_m) = -0.84 + \log_{10}(Vol) \times 0.33$  (5)

137 Where  $Vol$  is the cell volume ( $\mu\text{m}^3$ ) and  $K_m$  is the nutrient concentration where  
138  $V=V_{\max}/2$  (Litchman et al., 2009).

139 To reach an estimate of a relationship between  $\mu$  and  $S$  using Droop model  
140 requires the solution of a set of differential equations. Because our intention is only to  
141 evaluate the possible effects that a nutrient dependence formulation can have on the  
142 determination of community growth rates, we have followed a simpler approach by  
143 using relative uptake rate as a proxy for growth rate (Aksnes and Egge, 1991). Hence  
144 we have formulated the relative uptake rate ( $V_{\text{rel}}$ ,  $\text{d}^{-1}$ ) as:

145 
$$V_{\text{rel}} = \mu_{\text{sp}} = V_{\max} \frac{S}{Q(K_m + S)}$$
 (6)

146 Where  $\mu_{\text{sp}}$  is the growth rate ( $\text{d}^{-1}$ ), the subscript “sp” is used to differentiate the  
147 monospecific growth rate ( $\mu_{\text{sp}}$ ) from the multispecific community-average growth rate  
148 ( $\mu_{\text{com}}$ ) as measured in dilution experiments,  $Q$  is the cell nutrient content ( $\mu\text{mol of}$   
149  $\text{nutrient cell}^{-1}$ ) and  $V_{\max}$  is the maximum uptake rate constrained by diffusion in the  
150 boundary layer outside the cell. In eq. 6,  $V_{\max}$  and  $K_m$  are calculated from cell size using  
151 Eqs. 4-5. To estimate  $Q$ , we follow Aksnes and Egge (1991) in assuming biomass as the  
152 average number of atoms of a given element within the cell, estimated from cell carbon  
153 content using a carbon-to-volume ratio ( $\text{C:V}_{\text{ratio}}$ ) of 0.28  $\text{pg C } \mu\text{m}^3$  based on the  
154 empirical equation given in Litchman et al. (2007) and a redfield ratio of 106 C: 16 N.

155 The implications of these assumptions are evaluated in the discussion.

156 The community-average growth rate ( $\mu_{com}$ ) as measured in dilution experiments can be  
157 calculated from knowledge of the monospecific growth rate for each of the species in  
158 the community  $\mu_{sp_i}$  and the biomass of each species in the community which can be  
159 calculated from the numerical abundance times the species cell carbon content. The  
160 community biomass at the beginning of the dilution experiment ( $B_{initial}$ ) is:

$$B_i = N_i \times C_i$$

$$B_{initial} = \sum_{i=1}^n B_i$$

(7)

162 Where  $B_i$  is the biomass (g C mL<sup>-1</sup>),  $N_i$  is the numerical abundance (cell mL<sup>-1</sup>) and  $C_i$   
163 the cell carbon content (g C cell<sup>-1</sup>) of each species in the community.

164 At the end of the experiment (assuming a 24 hour experiment in the absence of  
165 grazing), the biomass ( $B_{final}$ ) would be:

$$B_{final} = \sum_{i=1}^n (B_i \exp^{\mu_{sp_i} \times t})$$

(8)

167 Where  $t$  is the duration of experiment (d<sup>-1</sup>).

168 The predicted community growth rate is so defined as:

$$\mu_{com} = \frac{\log(B_{final}/B_{initial})}{t}$$

(9)

170

### 171 3. Results

172 **3.1. In situ data** - In situ phytoplankton community growth rates ( $\mu_{com}$ ) do not respond  
173 to nutrient variation following Monod's kinetics (Fig. 3A). The correlation between in  
174 situ  $\mu_{com}$  and estimated in situ nutrient concentration was non significant ( $R^2 = 0.01, p =$   
175 0.2849). The response of the growth rate to nutrient concentration is often considered  
176 to follow a Monod model when phytoplankton community is limited by nutrient (below  
177 1  $\mu\text{mol L}^{-1}$ ). In our dataset, for nutrient concentrations below 1  $\mu\text{mol L}^{-1}$ , in situ  
178 phytoplankton community growth rate does not respond to nutrient concentration either  
179 ( $R^2 = 0.05, p = 0.0578$ , Fig. 3B). Even if data are corrected for temperature effects  
180 (using Arrhenius-Boltzmann equation with activation energy of -0.33 eV, López-Urrutia  
181 et al. (2006)), the in situ community growth rate did not follow Monod kinetics (Fig. 4).  
182 However, our results show that the in situ  $\mu_{com}:\mu_{com\_max}$  ratios (or  $\mu_{com\_rel}$ ) do indeed  
183 follow a Monod model with  $K_s = 0.16 \pm 0.02$  and  $\mu_{com\_rel\_max} = 0.99 \pm 0.02$  (Fig. 3C).  
184 For nutrient concentration below 1  $\mu\text{mol L}^{-1}$ , in situ  $\mu_{com\_rel}$  also follows Monod's

185 growth kinetics with  $K_s = 0.14 \pm 0.06$  and  $\mu_{com\_rel\_max} = 0.91 \pm 0.14$  (Fig. 3D).

186 **3.2. Simulation** - A linear model of NBSS v.s nutrient concentration explained 43% of  
187 the variance with an increasing size spectra slope (i.e., less negative NBSS) with  
188 increasing nutrient concentration (Fig. 2A). Each species composing the simulated  
189 phytoplankton community was limited by nutrient and respond to the nutrient  
190 concentration following Monod's model. However, the predicted community growth  
191 rate ( $\mu_{com\_predicted}$ ) for the simulated communities did not follow Monod kinetics (Fig.  
192 5A). On the contrary, and similar to in situ results, the predicted  $\mu_{com\_rel}$  was well in  
193 accordance with Monod's model (Fig. 5B,  $K_s = 0.11 \pm 0.01$  and  $\mu_{com\_rel\_max} = 0.98 \pm$   
194 0.01).

195

#### 196 **4. Discussion**

197 In this study, we observed that in situ phytoplankton community growth rate  
198 does not respond to nutrient concentration following a Monod kinetic as phytoplankton  
199 species composing the community do. However, [for the relative reproductive rates](#), the  
200 Monod model is a good characterization of community dynamics.

201 [The lack of significant response following a Monod kinetic may be explained by](#)  
202 [factors other than nitrate concentration limiting phytoplankton community growth rate.](#)  
203 [Indeed, we observed that from the total 242 in situ phytoplankton community growth](#)  
204 [rate data, 110 were from High Nutrient-Low Chlorophyll \(HNLC\) oceanic regions and](#)  
205 [so under iron limitation. If the data from HNLC zones are removed from our analysis,](#)  
206 [we observe that the relationship between phytoplankton community growth rate and](#)  
207 [nitrate concentration is closer to follow a Monod kinetic than considering the whole](#)  
208 [dataset \( \$R^2 = 0.43\$ ,  \$p < 0.05\$ \). The iron limitation may partly explain the lack of Monod](#)  
209 [kinetic between the in situ phytoplankton community growth rate and nitrate](#)  
210 [concentration presented here. However, we observed that in situ phytoplankton](#)  
211 [community growth rate does not respond to nutrient concentration following a Monod](#)  
212 [kinetic at nutrient concentrations below 1  \$\mu\text{mol L}^{-1}\$  although these data do not](#)  
213 [correspond to iron-limited HNLC regions. The estimation of phytoplankton growth rate](#)  
214 [by dilution experiments in the most oligotrophic regions may be biased and have to be](#)  
215 [taken with caution. Indeed, Latasa et al. \(2014\) explained that most of the studies](#)  
216 [determining phytoplankton growth rate from dilution experiment presented regression](#)  
217 [slopes between apparent phytoplankton growth rate and dilution different from zero](#)

218 when the null hypothesis to be tested in dilution experiment should be the positive slope  
219 ( $b < 0$ ) and not a null slope ( $b = 0$ ). Latasa and co-workers believed that a proportion of  
220 the experiments with non-significant regressions were disregarded eliminating  
221 ecological situations of low growth and grazing. This may result in an overestimation of  
222 phytoplankton growth rates.

223 Although the presented patterns from dilution experiments have to be taken with  
224 caution considering the iron limitation at high nutrient concentration and the possible  
225 overestimation of phytoplankton growth rate at low nutrient concentration, we observed  
226 similar results from in situ phytoplankton community growth rate determined by  
227 another methodology. Indeed, we analysed the response of the in situ phytoplankton  
228 community growth rate calculated from primary production and standing stocks (Chen  
229 and Liu 2010) and nitrate concentration (Fig. 6). As we observed for the dilution  
230 experiment, the in situ phytoplankton community growth rate does not respond to  
231 nitrate concentration following a Monod kinetic both considering and excluding data  
232 from HNLC zones ( $R^2 = 0.17, p < 0.05$  and  $R^2 = 0.06, p < 0.05$  respectively). This result  
233 confirms our previous observation of the lack of Monod kinetic between in situ  
234 phytoplankton community growth rate and nutrient concentration. Unfortunately, the  
235 primary production data did not have been analysed under nutrient amended and the  
236 maximum growth rate could not have been estimated.

237 Marine biogeochemical models in use are composed by three or four compartments (i.e.  
238 nutrient phytoplankton zooplankton, NPZ or nutrient phytoplankton zooplankton  
239 detritus, NPZD) (McCreary et al., 2001; Hood et al., 2003; Kantha, 2004) to 20 or more  
240 components including different phytoplankton functional groups, various nutrients and  
241 so on (Anderson, 2005; Lancelot et al., 2005; Le Quéré et al., 2005). The NPZ and  
242 NPZD models describe a simple food web system assuming dissolved nutrients are  
243 consumed by the phytoplankton community following Monod kinetics. For these  
244 models, the phytoplankton compartment is considered as a whole community and  
245 assumed to respond to nutrient concentration as phytoplankton species do. As we  
246 observed in this study, in situ and predicted phytoplankton community do not  
247 necessarily respond to nutrient concentration like individual phytoplankton. Thus,  
248 marine biogeochemical models using different phytoplankton functional groups  
249 (Anderson, 2005; Le Quéré, 2005) or based on phytoplankton size structure (Follows et  
250 al., 2007; Edwards et al., 2012) should rather be used instead of simpler models as NPZ  
251 or NPZD. This is well in line to the findings of Friedrichs et al. (2006; 2007) that

observed that complex models with multiple phytoplankton functional groups fit better the available data than the simpler models. This is mainly due to the use of many tuning parameters and thus degrees freedom. The parameterization of planktonic ecosystem models should not use the same variables for a community than for species. Franks (2009) warned about the use of community variables parameterized using data from individual species and suggested that the response to nutrient concentration of an individual or species should not represent necessarily the response of a diverse community. Contrary to our results, Franks (2009) observed a linear relation between the community nutrient uptake rate and nutrient concentration that could be explained by the use of the same half-saturation constant ( $K_s$ ) for all phytoplankton size classes in his simulations. Several published works reported that  $K_s$  is different between species (Sommer, 1991; Chisholm, 1992; Cermeño et al., 2011). In our study, the relationship between the in situ community growth rate and nutrient concentration did not follow a Monod kinetic, neither a linear relationship.

Many models (e.g. Darwin model) use a trade-off between  $K_s$  and  $\mu_{max}$ —some organisms grow fast at high nutrient concentrations (high  $V_{max}$  or  $\mu_{max}$ ) and others may be better competitors at low nutrient concentrations with low  $K_s$ . Without this trade-off, small phytoplankton would outcompete large phytoplankton in the whole ocean unless other constraints are introduced (e.g. top-down differences). Although this trade-off would maintain species coexistence in a competition model, this theoretical perspective is in contrast with the empirical evidence on the size dependence of  $K_s$  and  $\mu_{max}$ . Indeed, the most up-to-date compilations on the size dependence of  $K_s$  and  $\mu_{max}$  do not reveal the existence of a trade-off between these two variables. Edwards et al. (2012) found that  $K_s$  increases with increasing cell size and  $V_{max}$  and  $\mu_{max}$  decrease with increasing size. Furthermore, Fiksen et al. (2013) were unable to identify any mechanistic trade-off conflicts between  $K_s$  and  $V_{max}$ . In this work, we decided to parameterize empirical phytoplankton growth rate and size (Fig. 1) without accounting the trade-off between  $K_s$  and  $\mu_{max}$  considering that recent empirical data do not reveal its existence.

Several studies have shown that the high surface area to volume (S:V) ratio of small phytoplankton species result in high maximum nutrient uptake rates and low  $K_s$  and may explain why small phytoplankton species dominate in natural nutrient-limited ecosystems (Eppley et al., 1969; Aksnes and Egge, 1991; Hein et al., 1995). Conversely, large phytoplankton species seem to dominate in productive and well-

285 mixed ecosystems (Irwin et al., 2006) due to their physical and chemical capacities to  
286 escape to zooplankton grazing (Irigoién et al., 2004; Irigoien et al., 2005) and due to  
287 upward motion increasing their residence time in upper layer against their tendency to  
288 sink (Li, 2002; Rodríguez et al., 2001). Furthermore, allometric equations explain that  
289 small phytoplankton species achieves higher growth rate than a large phytoplankton  
290 species at a same nutrient concentration (Edwards et al., 2012). Considering the  
291 allometric equations and the low nutrient-small phytoplankton and high nutrient-large  
292 phytoplankton relations, the community growth rate can be higher at low than at high  
293 nutrient concentration. We observed in this study that most of the community growth  
294 rates tended to decrease from 5 to 30 mmol  $\text{NO}_3^++\text{NO}_2^- \text{ m}^{-3}$  (Fig. 3A) for the in situ data  
295 ( $R^2 = 0.15, p < 0.001$ ) and from 2.5 to 25 mmol  $\text{NO}_3^++\text{NO}_2^- \text{ m}^{-3}$  (Fig. 5A) for the  
296 predicted data ( $R^2 = 0.17, p < 0.001$ ). Therefore, our results support our hypothesis of  
297 higher community growth rates at intermediate than at the highest nutrient  
298 concentrations.

299 In our simulation, we assumed that the intrinsic nutrient storage is related to the  
300 growth rate and ignored, for the sake of simplicity in the simulations the cell storage  
301 capacity. Indeed, Litchman et al. (2009) observed that when nitrogen supply is pulsed,  
302 large cells could dominate due to their enhanced storage capacities. By this observation,  
303 we should expect to observe higher growth rates for large phytoplankton species at high  
304 nutrient concentration than for small phytoplankton species, but if so a better  
305 relationship between community growth rate and nutrient concentration would be  
306 expected. The relationship between  $\mu_{\text{sp\_max}}$  and cell volume might influence the kinetic  
307 of the community growth rate response to nutrient concentration. Although there is  
308 consensus on the fact that smaller cells have lower half-saturation constants, the  
309 relationship between  $\mu_{\text{sp\_max}}$  and cell size is still under debate (Chen and Liu, 2011; Sal  
310 and López-Urrutia, 2011). Two different relations have been observed between  
311  $\mu_{\text{sp\_max}}$  and cell volume: unimodal (Bec et al., 2008; Chen and Liu, 2011; Marañon et  
312 al., 2013) and declined lineal (Edwards et al. 2012). In addition, the parameterizations  
313 of some models argue for an increased lineal relationship (Follows et al., 2007). To  
314 understand the consequences of different relationships between  $\mu_{\text{sp\_max}}$  and cell size, we  
315 | repeated our simulations but using unimodal (Fig. 7A) and positive (Fig. 7B)  
316 | relationships between  $\mu_{\text{sp\_max}}$  and cell size. We observed that when the relation between  
317  $\mu_{\text{sp\_max}}$  and cell volume is unimodal, the predicted community growth rates did not

318 | follow Monod's kinetic either (Fig. 7A). When the relation between  $\mu_{sp\_max}$  and cell  
319 | volume is positive (i.e., larger cells have higher  $\mu_{sp\_max}$ ), the model output suggests a  
320 | possible relation between the predicted community growth rates and nutrient  
321 | concentration (Fig. 7B). Hence, the observed lack of relationship in the in situ data (Fig.  
322 | 3A) could be reproduced with the unimodal but not with the positive relationship.

323 |       Although community growth rates did not respond to nutrient concentration  
324 | following Monod kinetics, the in situ and simulated  $\mu_{com\_rel}$  did (Fig.s 3B, 5B). The  
325 |  $\mu_{com\_rel}$  is exempted from the effects of temperature, light and community composition.  
326 | The  $K_s$  and  $\mu_{com\_rel\_max}$  were quite similar between the in situ ( $K_s = 0.16 \pm 0.02$  and  
327 |  $\mu_{com\_rel\_max} = 0.99 \pm 0.02$ ) and predicted ( $K_s = 0.11 \pm 0.01$  and  $\mu_{com\_rel\_max} = 0.98 \pm 0.01$ )  
328 |  $\mu_{com\_rel}$ . So when the community growth rate depends only on nutrient concentration, the  
329 | response of the community growth rate to nutrient variation follows the predicted  
330 | Monod kinetic.

331 |       In summary, our study demonstrates that the lack of relationship between  
332 | community growth rates and nutrients can be explained even if we disregard the effects  
333 | of temperature, light or community composition. We could expect that such factors  
334 | might further distort the observed relationship between the community growth rate and  
335 | nutrient concentration.

336 |

### 337 | **Acknowledgment**

338 |       This work was supported by Metabolic Ocean Analysis (METOCA) funded by  
339 | Spanish National Investigation+Development+Innovation (I+D+I) Plan. We thank E.  
340 | Marañon for sharing his phytoplankton size structure data and Ángel Segura for his  
341 | useful comments and corrections. This is a contribution to times series project  
342 | RADIALES from the Instituto Español de Oceanografía (IEO).

343 **References**

344 Agustí, S., Duarte, C .M., and Kalff, J.: Algal cell size and the maximum density and  
345 biomass of phytoplankton, *Limnol. Oceanogr.*, 32, 983-986, 1987.

346 Aksnes, D. L., and Egge, J. K.: A theoretical model for nutrient uptake in  
347 phytoplankton, *Mar. Ecol. Prog. Ser.*, 70, 65-72, 1991.

348 Anderson, T. R.: Plankton functional type modeling: running before we can walk?, *J.*  
349 *Plankton Res.*, 27, 1073– 1081, doi:10.1093/plankt/fbi076, 2005.

350 Bec, B., Collos, Y., Vaquer, A., Mouillot, D., and Souchu, P.: Growth rate peaks at  
351 intermediate cell size in marine photosynthetic picoeukaryotes, *Limnol.*  
352 *Oceanogr.*, 53, 863-867, 2008.

353 Brown, S. L., Landry, M. R., Christensen, S., Garrison, D., Gowing, M. M., Bidigare,  
354 R. R., and Campbell, L.: Microbial community dynamics and taxon-specific  
355 phytoplankton production in the Arabian Sea during the 1995 monsoon seasons,  
356 *Deep-Sea Res.*, 49, 2345-2376, 2002.

357 Cermeño, P., Lee, J.-B., Wyman, K., Schofield, O., and Falkowski, P. G.: Competitive  
358 dynamics in two species of marine phytoplankton under non-equilibrium  
359 conditions, *Mar. Ecol. Prog. Ser.*, 429, 19-28, 2011.

360 Chen, B. Z., and Liu, H. B.: Relationships between phytoplankton growth and cell size  
361 in surface oceans: Interactive effects of temperature, nutrients, and grazing,  
362 *Limnol. Oceanogr.*, 55, 965-972, 2010.

363 Chen, B. Z., and Liu, H. B.: Comment: Unimodal relationship between phytoplankton-  
364 mass-specific growth rate and size: A reply to the comment by Sal and López-  
365 Urrutia (2011), *Limnol. Oceanogr.*, 56, 1956-1958 2011.

366 Chisholm, S. W.: Phytoplankton size, in: Primary productivity and biogeochemical  
367 cycles in the sea, Plenum Press, Falkowski, P. G. and Woodhead, A. D., 213-237,  
368 1992.

369 Dugdale, R. C.: Nutrient limitation in the sea: dynamics, identification, and  
370 significance, *Limnol. Oceanogr.*, 12, 685-695, 1967.

371 Edwards, K. F., Thomas, M. K., Klausmeier, C. A., and Litchman, E.: Allometric  
372 scaling and taxonomic variation in nutrient utilization traits and maximum growth  
373 rate of phytoplankton, *Limnol. Oceanogr.*, 57, 554-566, 2012.

374 Eppley, R. W., Rogers, J. N., and McCarthy, J. J.: Half-saturation constants for uptake  
375 of nitrate and ammonium by marine phytoplankton, *Limnol. Oceanogr.*, 14, 912-  
376 920, 1969.

377 Follows, M. J., S., Dutkiewicz, S., Grant, and S. W. Chisholm. 2007. Emergent  
378 biogeography of microbial communities in a model ocean. *Science* 315: 1843-  
379 1846.

380 Franks, P. J.: Planktonic ecosystem models: Perplexing parameterizations and a failure  
381 to fail, *J. Plankton Res.*, 31, 1299-1306, 2009.

382 Friedrichs, M. A. M., Hood, R., and Wiggert, J.: Ecosystem model complexity versus  
383 physical forcing: Quantification of their relative impact with assimilated Arabian  
384 Sea data, *Deep Sea Res. II*, 53, 576– 600, 2006.

385 Friedrichs, M. A. M., Dusenberry, J. A., Anderson, L. A., Armstrong, R. A. A., and  
386 Chai, F.: Assessment of skill and portability in regional marine biogeochemical  
387 models: Role of multiple planktonic groups, *J. Geophys. Res.*, 112, doi:  
388 10.1029/2006JC003852, 2007.

389 Grover, J. P.: Influence of cell shape and size on algal competitive ability, *Am. Nat.*,  
390 138, 811-835, 1989.

391 Hein, M., Pedersen, M. F., and Sand-Jensen, K.: Size-dependent nitrogen uptake in  
392 micro- and macroalgae, *Mar. Ecol. Prog. Ser.*, 118, 247-253, 1995.

393 Hillebrand, H., Dürselen, C.-D., Kirschtel, D., Pollinger, U., and Zohary, R.: Biovolume  
394 calculation for pelagic and benthic microalgae, *J. Phycol.*, 35, 403-424, 1999.

395 Hood, R. R., Kohler, K. E., McCreary, J. P., and Smith, S. L.: A fourdimensional  
396 validation of a coupled physical-biological model of the Arabian Sea, *Deep Sea*  
397 *Res. II*, 50, 2917– 2945, 2003.

398 Irigoien, X., Huisman, J., and Harris. R. P.: Global biodiversity patterns of marine  
399 phytoplankton and zooplankton, *Nature*, 429, 863-867, 2004.

400 Irigoien, X., Flynn, K. J., and Harris, R. P.: Phytoplankton blooms: A ‘loophole’ in  
401 microzooplankton grazing impact?, *J. Plankton Res.*, 27, 313-321, 2005.

402 Irwin, A. J., Finkel, Z. V., Schofield, O. M. E., and Falkowski, P. G.: Scaling-up from  
403 nutrient physiology to the size-structure of phytoplankton communities, *J.*  
404 *Plankton Res.*, 28, 459-471, 2006.

405 Kantha, L. H.: A general ecosystem model for applications to studies of carbon cycling  
406 and primary productivity in the global oceans. *Ocean Modell.*, 6, 285– 334, 2004.

407 Lancelot, C., Spitz, Y., Gypens, N., Ruddick, K., Becquevort, S., Rousseau, V., Lacroix,  
408 G., and Billen, G.: Modelling diatom-*Phaeocystis* blooms and nutrient cycles in  
409 the Southern Bight of the North Sea: The MIRO model, *Mar. Ecol. Prog. Ser.*,  
410 289, 63–78, 2005.

411 Landry, M. R., and Hassett, R. P.: Estimating the grazing impact of marine micro-  
412 zooplankton, *Mar. Biol.*, 67, 283-288, 1982.

413 Le Quéré, C., Harrison, S. P., Prentice, I. C., Buitenhuis, E. T., Aumont, O., Bopp, L.,  
414 Claustre, H., Cotrim Da Cunha, L., Geider, R., Giraud, X., Klaas, C., Kohfeld, K.  
415 E., Legendre, L., Manizza, M., Platt, T., Rivkin, R. B., Sathyendranath, S., Uitz,  
416 J., Watson, A. J., and Wolf-Gladrow, D.: Ecosystem dynamics based on plankton  
417 functional types for global ocean biogeochemistry models. *Global Change Biol.*,  
418 11, 2016–2040, 2005.

419 Li, W. K. W.: Macroecological patterns of phytoplankton in the northwestern North  
420 Atlantic Ocean, *Nature*, 419, 154-157, 2002.

421 Litchman, E., Klausmeier, C. A., Miller, J. R., Schofield, O. M., and Falkowski, P. G.:  
422 Multi-nutrient, multi-group model of present and future oceanic phytoplankton  
423 communities, *Biogeosciences*, 3, 607-663, 2006.

424 Litchman, E., Klausmeier, C. A., Scholfield, O. M., and Falkowski, P. G.: The role of  
425 functional traits and trade-offs in structuring phytoplankton communities: scaling  
426 from cellular to ecosystem level, *Ecol. Lett.*, 10, 1-12, 2007.

427 Litchman, E., Klausmeier, C. A., and Yoshiyama, K.: Contrasting size evolution in  
428 marine and freshwater diatoms, *P. Natl. Acad. Sci.*, 106, 2665-2670, 2009.

429 López-Urrutia, A., San Martin, E., Harris, R. P., and Irigoien, X.: Scaling the metabolic  
430 balance of the oceans, *P. Natl. Acad. Sci. USA.*, 103, 8739-8744, 2006.

431 Marañón, E., Cermeño, P., Latasa, M., and Tadonléké, R. D.: Temperature, resources,  
432 and phytoplankton size structure in the ocean, *Limnol. Oceanogr.*, 57, 1266-1278,  
433 2012.

434 Marañón, E., Cermeño, P., López-Sandoval, D. C., Rodríguez-Ramos, T., Sobrino, C.,  
435 Huete-Ortega, M., Blanco, J. M., and Rodríguez, J.: Unimodal size scaling of  
436 phytoplankton growth and the size dependence of nutrient uptake and use, *Ecol.*  
437 *Lett.*, 16, 371-379, 2013.

438 McCreary, J. P., Kohler, K. E., Hood, R. R., Smith, S., Kindle, J., Fischer, A. S., and  
439 Weller, R. A.: Influences of diurnal and intraseasonal forcing on mixed-layer and  
440 biological variability in the central Arabian Sea, *J. Geophys. Res.*, 106, 7139–  
441 7155, 2001.

442 Partensky, F., Hess, W. R., and Vaulot, D.: Prochlorococcus, a marine photosynthetic  
443 prokaryote of global significance, *Microbiol. Mol. Biol. R.*, 63, 106-127, 1999.

444 Rodríguez, J., Tintoré, J., Allen, J. T., Blanco, J. M., Gomis, D., Reul, A., Ruiz, J.,

445 Rodríguez, V., Echevarría, F., and Jiménez-Gómez, F.: Mesoscale vertical motion  
446 and the size structure of phytoplankton in the ocean, *Nature*, 410, 360-363, 2001.

447 Sal, S., and López-Urrutia, Á.: Comment: Temperature, nutrients, and the size-scaling  
448 of phytoplankton growth in the sea, *Limnol. Oceanogr.*, 56, 1952-1955, 2011.

449 Sommer, U.: A comparison of the Droop and the Monod models of nutrient limited  
450 growth applied to natural populations of phytoplankton, *Funct. Ecol.*, 5, 535-544,  
451 1991.

452 Sprules, W. G., and Munawar, M.: Plankton size spectra in relation to ecosystem  
453 productivity, size, and perturbation, *Can. J. Fish. Aquat. Sci.*, 43, 1789-1794,  
454 1986.

455 Tremblay, J.-E., and Legendre, L.: A model for the size-fractionated biomass and  
456 production of marine phytoplankton, *Limnol. Oceanogr.*, 39, 2004-2014, 1994.

457 **Figure Legends**

458 **Figure 1.** Conceptual diagram representing phytoplankton communities composed by  
459 small and large phytoplankton species (small grey and large black circles, respectively)  
460 in nutrient-limited and productive ecosystems. Each phytoplankton species composing  
461 their respective communities had its own growth rate response to nutrient concentration  
462 following a Monod kinetic. The growth rates for the whole community in both  
463 ecosystems have been evaluated by the mean of the cell-specific growth rates of each  
464 phytoplankton species composing their respective communities. At the bottom of the  
465 diagram, community growth rates for both ecosystems are represented at specific  
466 nutrient concentrations.

467

468 **Figure 2.** Functional forms of (A) normalized biomass spectrum (NBSS) and (B)  
469 phytoplankton species growth rate to nutrient concentration. (B) Simple allometric  
470 equations are indicated by the size range from small (thinnest lines) to large (thickest  
471 lines) size species. (A) The solid line represents the linear regression.

472

473 **Figure 3.** Relationships between in situ community growth rate ( $\mu_{\text{com}}$ ,  $\text{d}^{-1}$ ) and nutrient  
474 concentration (A) from 0 to 40  $\text{mmol m}^{-3}$  and (B) from 0 to 1  $\text{mmol m}^{-3}$ . Relationships  
475 between in situ  $\mu_{\text{com}}:\mu_{\text{com\_max}}$  ratio and nutrient concentration (C) from 0 to 40  $\text{mmol m}^{-3}$   
476 and (D) from 0 to 1  $\text{mmol m}^{-3}$ . Crosses represent phytoplankton communities of Table  
477 A1 sampled in HNLC regions (High-Nutrient, Low-Chlorophyll) and circles represent  
478 the rest of the phytoplankton communities from Table A1 dataset. (C, D) The solid lines  
479 represent the nonlinear least square fits for the global dataset (HNLC included).

480

481 **Figure 4.** Relationship between in situ community growth rates ( $\mu_{\text{com}}e^{\frac{E_a}{KT}}$ ,  $\text{d}^{-1}$ )  
482 corrected by temperature using the average activation energy for autotrophic respiration  
483 ( $E_a = -0.33$  eV, López-Urrutia et al. (2006)) and nitrate concentration ( $\text{mmol m}^{-3}$ ).  
484 Crosses represent phytoplankton communities of Table A1 sampled in HNLC regions  
485 (High-Nutrient, Low-Chlorophyll) and circles represent the rest of the phytoplankton  
486 communities from Table A1 dataset.

487

488 **Figure 5.** Relationships between (A) predicted community growth rate ( $\mu_{\text{com\_predicted}}$ ,  $\text{d}^{-1}$ )  
489 and (B) predicted  $\mu_{\text{com}}:\mu_{\text{com\_max}}$  ratio, and nutrient concentration ( $\text{mmol m}^{-3}$ ). The solid

490 lines represent the nonlinear least square fits.

491

492 **Figure 6.** Relationships between in situ community growth rates ( $\mu_{PP}$ ,  $d^{-1}$ ) estimated  
493 from primary production and standing stocks and nitrate concentration (A) from 0 to 40  
494  $mmol\ m^{-3}$  and (B) from 0 to 1  $mmol\ m^{-3}$  from Chen and Liu (2) Table A2 dataset.  
495 Crosses represent phytoplankton communities of Table A2 sampled in HNLC regions  
496 (High-Nutrient, Low-Chlorophyll) and circles represent the rest of the phytoplankton  
497 communities from Table A2 dataset.

498

499 **Figure 7.** Relationships between the predicted community growth rates ( $\mu_{com\_predicted}$ ,  $d^{-1}$ )  
500 and nitrate concentration ( $mmol\ m^{-3}$ ) with (A) unimodal and (B) positive  
501 relationships between  $\mu_{com\_max}$  and cell size.

502 **Figure 1.**



503

504 **Figure 2.**



505 **Figure 3.**

506



507

508 **Figure 4.**



509 **Figure 5.**

510



511 **Figure 6.**

512



513

514 **Figure 7.**

515

516

