

We thank anonymous Referee #1 for his/her constructive criticism and valuable comments. In the following we address the points brought up, with referee comments in boldface and author responses in normal typeface.

The main comment I have is that whereas some limitations of lab experiments are acknowledged (age of cultures, lack of evolution), other major ones are not, and need to be. In particular, the experience with OA impacts on N2-fixation suggests that meta-analysis is not always the best way of elucidating the right answer. The large majority of experiments conducted have found that OA stimulates an increase in N2-fixation. However, they were all carried out at elevated iron concentrations compared to the open ocean. The study of Shi et al (2012), at more realistic iron, found the opposite effect. This should ring alarm bells for meta-analysis studies because even if an infinite number of lab studies were to be carried out then the overriding majority conclusion could still be completely wrong if they were mostly carried out under unrealistic environmental conditions, and if that difference alters the response obtained. This doesn't mean that the results of this study are not valuable (no single approach to studying OA is perfect), but it is helpful in the interpretation to consider the possibility of this sort of error. Another potential source of error is that lab experiments are carried out on monocultures isolated from the ecosystem with which they normally closely interact. However, this does not hold for the mesocosm experiments.

We agree with the referee. We will extent the paragraph about limitations of the single lab-experiments used in our meta-analysis and highlight the points mentioned above.

One should note, however, that the field of carbonate chemistry research has evolved over more than a decade and that many of the experiments used in our meta-analysis were conducted after standardized procedures, following the "Guide to Best Practices for Ocean Acidification Research and Data Reporting" (Riebesell et al. 2010).

14858/23: the other limitations should also be acknowledged.

The sentence will be changed to: "As the data sets used in this meta-analysis do not account for adaptive responses, ecological fitness and ecosystem interactions, the questions remains how these physiological responses play out in the natural environment."

In order to keep the abstract short and straightforward, we will address limitations of the single carbonate chemistry experiments in the discussion section.

14859/13: the impacts are not likely to be large on a centennial scale, see for instance the work of Christoph Heinze. The word "Thus" is any case not justified, because showing that there is an effect is very different from showing that the effect is significant.

The sentence will be rephrased.

14859-14860: it would be helpful if at this point it could also be explained how this paper differs from previous studies by Findlay et al and Ridgwell et al.

We will also refer to differences between meta-analyses by Findlay et al. and Ridgwell et al.

14860/15: how many studies?

The number of studies included in our meta-analysis is specified in the result section.

14862/15: how many experiments were excluded on this basis?

The number of experiments excluded on this basis will be added.

14863-14864: the precise equation/method for allocating weights should be provided, and the weights listed as an extra column in table 1.

We agree and will rewrite the paragraph as follows: "Using the variance v_i and the mean of the response ratio L_i for each experiment i , Cochran's Q (Cochran, 1954) was computed. With the help of Q an estimate of the between experiment variance (σ^2_λ) was obtained (Hedges et al., 1999). The weighted mean of the log response ratio \bar{L}^* is given by:

$$\bar{L}^* = \frac{\sum_{i=1}^k w_i^* L_i}{\sum_{i=1}^k w_i^*} \quad (2)$$

where k is the number of studies and $w_i = 1/(v_i + \sigma^2_\lambda)$.

Subsequently, the standard error of the weighted mean was estimated (see Eq. 7 in Hedges et al., 1999) and the confidence intervals were calculated.

Including weights in table 1 would seriously impair the clarity of the chart, as all the studies needed to be separated by experiment and CO₂ manipulation level. As the table is supposed to focus on the overall responses of coccolithophores within the studies, we would like to keep it as lucid as possible.

table 1: the criterion for distinguishing "some response" from "no response" should be described in the caption or the main text.

To clarify this, we will change the caption of the table to: "Summary of the available carbonate chemistry manipulation experiments and the responses of *Emiliana huxleyi* as reported by the authors of those studies. Symbols indicate: — no significant response, / increased response, ∩ non-linear response and \ decreased response."

14870/2: "Another proposed explanation for the high difference in variance between..."

This will be changed as suggested.

14871/3: "2009), overall there is nevertheless a generally negative..." (these results do not say anything about how large the strain-specific variations are)

This sentence will be rephrased: "Although some strains of *E. huxleyi* appear to be less sensitive to ocean acidification (Langer et al., 2009), the species shows a negative response towards reduced pCO₂ levels in our meta-analysis, suggesting that strain-specific variations are small compared to the generally negative effect of ocean acidification on this species."

14871/11: "lead to a reduction in" rather than "minimize"

Will be changed to "decrease the confidence interval"

14871/21: although it should be noted that this effect is not observed in *E. huxleyi*, which has been most intensively studied.

We agree with the referee. For this reason, we already draw a distinction by saying: "[...] – at least for *Gephyrocapsa oceanica* – [...]"

14872/5: an increase in calcification rate at high CO₂ does not necessarily mean that the species is benefitting from the high CO₂ (resources can be reallocated, e.g. at the expense of reproduction rate).

This will be clarified.

14872/21-25: I think there are insufficient data (N=3) to conclude that the most prevalent species are the ones most affected.

We agree with this comment and will accommodate this in the revised version.

14874/17-19: but this would imply that they calcify to no purpose, which is hardly likely.

We will revise this section.

table 1: add extra colum for weightings. spelling mistakes in specifics column. "- no response" in caption.

The mistakes will be corrected. Concerning the weightings please see the reply above.

figs 1-3: remind readers in the captions that these are responses relative to 280 ppmv.
This will be changed.

References:

Riebesell U., Fabry V. J., Hansson L. & Gattuso J.-P. (Eds.), 2010. Guide to best practices for ocean acidification research and data reporting, 260 p. Luxembourg: Publications Office of the European Union.

We thank anonymous Referee #2 for his/her constructive criticism and valuable comments. In the following we address the points brought up, with referee comments in boldface and author responses in normal typeface.

A main critical question that the authors should clarify is about the need and innovative aspects of this work since there are other meta-analyses exercises performed and published on this topic; for examples see Findlay et al. (2011). The authors mentioned the accordance with the Findlay et al., 2011 meta-analyses results. The general negative effects of OA on *Ehux* calcification and PIC/POC has already been shown. What can we learn more on the coccolithophore response to OA mainly from the meta-analyses of monoclonal culture experimental results that haven't already been published? In addition, the large majority of data available and presented here are from *Ehux* and for all other tested species there are not enough data to do a meaningful meta-analysis.

As mentioned in our manuscript, other meta-analyses did not specifically focus on coccolithophores, except for the work by Findlay et al. (2011). However, these authors only analyzed how ocean acidification influences the ratio of PIC to POC in *E. huxleyi* and only included 15 single experiments in their meta-analysis. Besides PIC/POC, we also included calcification and photosynthesis responses in our analysis and used 48 single experiments to do so. The meta-analyses by Hendriks et al. (2010) and Kroeker et al. (2010, 2013) also analyzed calcification and photosynthesis responses of coccolithophores but included only 2-19 single experiments in their analyses (see manuscript for a detailed listing of experiments used in their studies). We are confident that the much larger dataset used in our meta-analysis justifies the publication of our work.

Although the majority of data dealing with coccolithophore responses to ocean acidification examined *E. huxleyi*, we found it important to make a distinction between the single species, as their responses to OA is quite diverse. This difference can clearly be identified with the help of our analysis, although the available datasets for *C. braarudii* and *G. oceanica* are rather limited.

Since a main justification for having this article published is to use a larger set of experiments to allow a more robust prediction of the impacts of OA on coccolithophores, it is key that the authors clearly make a comparison with the number of data previously used and the benefit of having this new meta-analysis.

This has been done in the last paragraph of the introduction, where the number of data used in the meta-analyses by Hendriks et al. (2010) and Kroeker et al. (2010, 2013) are listed. The number of data used in the meta-analysis by Findlay et al. (2011) and differences between their and our analysis will also be added.

I found the title -Responses of coccolithophores to ocean acidification: a meta-analysis- misleading, since the number of living coccolithophore species is >200 and having the responses of 4 tested heterococcolithophore species mainly from culture experiments doesn't resolve the response of coccolithophores to OA.

We believe that using the plural „coccolithophores“ does not imply that we are resolving responses of all living coccolithophore species to OA. It rather refers to coccolithophores that have been the subject of ocean acidification research, which also becomes apparent in the abstract. If possible we would prefer not to change the title.

It is mentioned that "The perturbation method appears to affect photosynthesis, as responses varied significantly between total alkalinity (TA) and dissolved inorganic carbon (DIC) manipulations". This needs to be clarified since it is hard to conclude this on the basis of a meta-analysis. This hypothesis should be probably tested in a controlled experiment for example as, shown in Hoppe et al. (2011).

We agree that it is prematurely to firmly conclude that the perturbation method affects photosynthesis. That is why we discuss the topic with great care and conclude that the subject needs to be further clarified. However, we will revise the paragraph and highlight the points mentioned by the referee.

The results shown in Table 2 should be checked carefully since it is suggested that the *C. braarudii* results in Krug et al. (2011) and Langer et al. (2006) are completely different when instead they are very similar.

It is not clear to us why the reviewer comes to the conclusion that responses of *C. braarudii* are very similar in the studies mentioned. Responses depicted in table 2 are directly taken from the respective papers.

Langer et al. (2006) state: "In the *Coccolithus pelagicus* [n.b. presently referred to as *Coccolithus braarudii*] cultures neither PIC nor POC content per cell changes significantly over the CO₂ range tested [...], yielding a stable PIC/POC ratio."

Krug et a. (2011) state: "POC production rates of *Coccolithus braarudii* were highest at intermediate pCO₂ [...] and declined towards lower and higher levels [...], although more pronounced in case of the latter [...]. Calcification rates, although quite noisy, clearly decreased towards higher pCO₂ levels [...]. The considerably stronger decrease in PIC compared to POC production led to a pronounced drop in PIC/POC [...]."

It would be important to add the Conclusions section to summarize the main findings and the differences with previous similar meta-analysis exercises.

We feel that this is dealt with in the discussion section and that it is redundant to add a conclusion.

Findlay et al., 2011 is not listed in the references.

The reference his will be added.

'PIC/POC ratio' should be changed to 'PIC/POC'; 'ratio' is redundant.

This will be changed.

In the introduction when mentioning the ballasting properties of coccolithophores the paper by Ziveri et al., 2007 could be mentioned.

Good remark, this will be added.

Responses of coccolithophores to ocean acidification: a meta-analysis

J. Meyer* and U. Riebesell

(GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany)

*Judith Meyer, e-mail: jumeyer@geomar.de

1 **Abstract**

2 Concerning their sensitivity to ocean acidification, coccolithophores, a group of calcifying
3 single-celled phytoplankton, are one of the best-studied groups of marine organisms.
4 However, in spite of the large number of studies investigating coccolithophore physiological
5 responses to ocean acidification, uncertainties still remain due to variable and partly
6 contradictory results. In the present study we have used all existing data in a meta-analysis to
7 estimate the effect size of future $p\text{CO}_2$ changes on the rates of calcification and
8 photosynthesis and the ratio of particulate inorganic to organic carbon (PIC/POC) in different
9 coccolithophore species. Our results indicate that ocean acidification has a negative effect on
10 calcification and the cellular PIC/POC ratio in the most abundant coccolithophore species
11 *Emiliania huxleyi* and *Gephyrocapsa oceanica*. In contrast the more heavily calcified species
12 *Coccolithus braarudii* did not show a distinct response when exposed to elevated
13 $p\text{CO}_2$ /reduced pH. Photosynthesis in *Gephyrocapsa oceanica* was positively affected by high
14 CO_2 , while no effect was observed for the other coccolithophore species. There was no
15 indication that the method of carbonate chemistry manipulation was responsible for the
16 inconsistent results regarding observed responses in calcification and the PIC/POC ratio. The
17 perturbation method, however, appears to affect photosynthesis, as responses varied
18 significantly between total alkalinity (TA) and dissolved inorganic carbon (DIC)
19 manipulations. These results emphasize that coccolithophore species respond differently to
20 ocean acidification, both in terms of calcification and photosynthesis. Where negative effects
21 occur, they become evident at CO_2 levels in the range projected for this century in case of
22 unabated CO_2 emissions. As the data sets used in this meta-analysis do not account for
23 adaptive responses, ~~and~~ ecological fitness and ecosystem interactions, the questions remains
24 how these physiological responses play out in the natural environment.

26 **1. Introduction**

27 Coccolithophores, a globally distributed group of marine haptophytes, are major primary
28 producers in the ocean and the most prolific calcifying organisms on our planet (Brownlee &
29 Taylor, 2004; Shutler et al., 2010). By performing photosynthesis and calcification, they
30 contribute to both biological carbon pumps, the soft tissue pump and the carbonate counter
31 pump. While the former supports carbon sequestration in the ocean through production and
32 sinking of organic matter to depth, the latter decreases the ocean's capacity to take up CO₂
33 due to the reduction of surface layer alkalinity. Moreover, by providing ballast material,
34 which accelerates sinking velocities of organic particles to depth, coccolithophore-derived
35 calcite contributes to enhancing carbon sequestration to depth (Klaas & Archer, 2002;
36 Armstrong et al., 2002; [Ziveri et al., 2007](#)). Thus, changes in the contribution of
37 coccolithophores to ocean primary production [could](#) [significantly](#) [potentially](#) impact global
38 carbon cycling (Riebesell et al., 2009).

39

40 In the face of global change phytoplankton are subjected to rapid alterations in their
41 environmental conditions. Due to the sensitivity of calcification to ocean acidification,
42 coccolithophores are considered to be among those, which may be adversely affected in a
43 high CO₂ future ocean. While impacts of ocean acidification on coccolithophores have been
44 studied extensively (for review see e.g. Riebesell & Tortell, 2011), variable and partly
45 conflicting responses were observed in different perturbation studies (for a summary see
46 Tables 1 and 2). Differences in experimental conditions, such as in light intensity,
47 temperature, salinity, nutrient concentration and *p*CO₂ levels have been attributed as possible
48 causes for those variations. But even studies with comparable experimental conditions
49 provided deviating responses of coccolithophores. Some of this divergence was shown to be
50 related to species- and strain-specific differences (Langer et al., 2006, 2009). But also the

51 method of carbonate chemistry manipulation, whether through changes in total alkalinity
52 (TA) or dissolved inorganic carbon (DIC), was discussed as possible cause for some of the
53 observed discrepancies (Iglesias-Rodriguez et al., 2008; Shi et al., 2009).

54

55 Building on the extensive literature on coccolithophore responses to ocean acidification, the
56 present study aims to provide statistically and methodologically robust estimates for those
57 responses. In particular, we intend to answer the question whether increasing seawater acidity
58 alters calcification, photosynthesis and the PIC to POC ratio in acclimated cultures of
59 coccolithophores. We further assess whether the observed responses are affected by the
60 carbonate chemistry manipulation method and if they differ between coccolithophore species,
61 thus trying to address some of the inconsistencies in the existing studies. Recent meta-
62 analyses conducted by Kroeker et al. (2010, 2013) and Hendriks et al. (2010) did not
63 specifically focus on coccolithophores but analyzed responses of many different taxa to ocean
64 acidification. Although coccolithophores were included in those meta-analyses, only a few
65 experiments (Kroeker et al., 2010: 13 experiments, Hendriks et al., 2010: 2 experiments for
66 calcification responses, 12 experiments for photosynthetic responses, Kroeker et al., 2013: 19
67 experiments) were considered and no distinction was made between different coccolithophore
68 species. The meta-analysis by Findlay et al. (2011) focused on *Emiliania, huxleyi*, but only
69 investigated the species' PIC/POC response to ocean acidification (15 experiments were
70 included in the analysis). Hence, in our approach a larger set of experiments and response
71 variables was analyzed, allowing for a more robust prediction of the impact of ocean
72 acidification and the related changes in seawater chemistry on coccolithophore physiological
73 performance.

74

75

76 **2. Materials and Methods**

77 **2.1 Literature search**

78 A literature search was conducted to assemble all published data sets on CO₂/pH sensitivities
79 of coccolithophore calcification and photosynthesis. As a first step the ISI database Web of
80 Science (www.webofknowledge.com) was scanned for appropriate studies. Additional
81 literature was obtained from the EPOCA (European Project on OCean Acidification) database
82 (www.epoca-project.eu) and from the associated blog
83 (www.oceanacidification.wordpress.com). Subsequently, the reference lists of all studies
84 identified by this approach were scanned for other relevant literature.

85 Experimental data were extracted directly from the published papers or, if not reported
86 therein, from the PANGEA® archive (www.pangaea.de). If the information could not be
87 retrieved from either source, the first author of the study was contacted directly.

88

89 **2.2 Data selection**

90 All studies in which the carbonate system was altered and the effect on coccolithophores
91 reported, comprising both laboratory and field experiments, were selected for this meta-
92 analysis. Studies that varied other environmental factors in addition to seawater carbonate
93 chemistry, such as light intensity, day length, temperature or nutrient availability, were also
94 incorporated. Data of particulate inorganic (PIC) and organic carbon (POC) production rates,
95 pH values, carbonate system parameters and experimental conditions (light level, day length,
96 temperature, nutrients) were obtained for the control (ambient or pre-industrial pCO₂ level)
97 and the experimental treatments (elevated pCO₂ level). If PIC and POC were provided as
98 quota values on a per-cell basis, production rates were calculated by multiplying the growth
99 rates (μ) with the cell quota of organic or inorganic carbon.

100 The following $p\text{CO}_2$ levels were chosen to compare the responses of *Emiliania huxleyi* to pre-
101 industrial carbon dioxide concentrations of ~ 280 parts per million (ppm):

- 102 (1) ~ 380 ppm – reflecting the present day $p\text{CO}_2$ level,
103 (2) ~ 780 ppm – the $p\text{CO}_2$ level projected for the end of this century under the SRES A1B
104 scenario, IPCC Report 2000 (Nakicenovic et al., 2000), and
105 (3) ~ 1000 ppm – the $p\text{CO}_2$ level projected for the end of the century under the ‘worst case’
106 emission scenario A1FI, IPCC Report 2000 (Nakicenovic et al., 2000).

107 Since there was not a sufficient number of studies investigating the responses of *Coccolithus*
108 *braarudii* and *Gephyrocapsa oceanica* at $p\text{CO}_2$ levels around 780 ppm, only concentrations
109 of ~ 380 ppm and ~ 1000 ppm were used to compare the responses of these species. All
110 experiments where the $p\text{CO}_2$ levels deviated no more than ± 50 ppm from the targeted 380
111 ppm and no more than ± 100 ppm from the targeted 780 ppm and 1000 ppm were included in
112 the analysis. Since the studies by Lefebvre et al. (2012) and Jones et al. (2013) did not meet
113 these specifications, they were excluded from the meta-analysis.

114

115 Manipulation of the seawater carbonate chemistry can be achieved in various ways. First, the
116 carbonate system can be adjusted by bubbling with CO_2 . This approach increases $[\text{CO}_2]$,
117 $[\text{HCO}_3^-]$ and DIC, decreases $p\text{H}$ and $[\text{CO}_3^{2-}]$ and does not change the alkalinity. Second, acid
118 can be added, which increases $[\text{CO}_2]$ and $[\text{HCO}_3^-]$, decreases the alkalinity and $[\text{CO}_3^{2-}]$ and
119 does not change DIC. In both manipulations the saturation state (Ω) decreases as well.
120 Although there are other ways to adjust the carbonate system, the above-mentioned methods
121 are the ones most commonly used. It was noted which manipulation method was applied to
122 decrease the $p\text{H}$ in each study. Subsequently, a separate meta-analysis was conducted in order
123 to analyse whether responses of coccolithophores varied between the methods. Here, only

124 responses to a $p\text{CO}_2$ elevation from pre-industrial levels to 780 ppm and 1000 ppm were
125 included in the analysis. On this basis 22 experiments were excluded.

126 When studies reported results from multiple carbonate system perturbation experiments, all
127 individual experiments were included in the analysis. The same applied when there were
128 different experiments with various species or strains.

129 If not only the carbonate system, but also other factors such as light intensity or day length
130 were changed in a study, the approach of Kroeker et al. (2010) was adopted and the ambient
131 level of the factor, defined by the authors of the primary study, was used to ensure the
132 comparability between the experiments. If the observed responses of a study did not differ
133 significantly for the ambient and non-ambient levels of a given environmental factor (always
134 regarding the same $p\text{CO}_2$ value), both experiments were included.

135 The data on PIC and POC production obtained by Iglesias-Rodriguez et al. (2008) were
136 normalized to POC biomass, following the approach suggested by Riebesell et al. (2008).
137 Data shown in Table 1 represent the original measurements reported by Iglesias-Rodriguez et
138 al. (2008) prior to normalization. Müller et al. (2010) did not report PIC and POC production
139 rates in their study, since the sampling time for those data varied and created a bias in the
140 data. By averaging the PIC and POC production rates over time, the bias was minimized and
141 the data were suitable to be included in this meta-analysis.

142

143 **2.3 Data analysis**

144 Determining differences between the control and treatment groups in response to changes in
145 carbonate chemistry was the first step in our analysis. For this purpose the logarithmically
146 transformed response ratio (L) was calculated for each experiment and response variable
147 (PIC, POC and PIC/POC) as:

148

149
$$L = \ln(RR) = \ln(\bar{X}_E) - \ln(\bar{X}_C) \quad (1)$$

150

151 where \bar{X} is the mean of a treatment (E) and a control (C) group. The response ratio is
152 logarithmically transformed and unit-less, thus allowing a comparison of data between
153 experiments, which report responses in different units. The effect size is an easy measure of
154 relative change between the control and the treatment group. When $L < 0$, the effect of
155 acidification in the treatment group is negative and when $L > 0$, the effect is positive. A
156 response ratio of zero indicates that there is no effect and that the responses in the control and
157 treatment group are the same. Since not all studies are equally precise, meaning that they are
158 based on different numbers of replicates and variable standard deviations, the simple
159 computation of the mean effect sizes is not to be recommended. Instead, a weighted mean is
160 computed where more precise studies are given more weight.

161 This meta-analysis of the response ratios follows the approach of Hedges et al. (1999) with a
162 few variations when weighting the effect sizes. A random effects model was used where the
163 assumption is made that the effect of ocean acidification varies between studies (Borenstein et
164 al., 2010). For example, the effect size might differ between strains or it might turn out
165 significant if the response was measured more reliably or if the incubation time was longer.
166 The random effects model accounts for this variation and includes the within-study variance
167 (v_i) as well as the between study variance (σ^2_λ) when calculating the mean effect for the
168 response variables. Statistical significance for all effect sizes is displayed by the 95%
169 confidence interval. The effect size is considered to be significant ($\alpha = 0.05$), when the
170 confidence intervals do not overlap zero.

171 Traditionally, when studies report means, standard deviation, and sample size for both the
172 control and treatment groups, a weighted meta-analysis is possible and the variance (v_i) within
173 the experiment ~~i can be calculated~~ ~~v can be calculated~~. Consequently, studies with a higher

174 number of replicates and lower variance are weighted more heavily, which results in a more
175 robust meta-analysis where the estimate of the effect size is more precise than in unweighted
176 meta-analyses (Hedges & Olkin, 1985). Some of the data required for a weighted meta-

177 analysis, however, were not available for some studies. In those cases v_i was estimated as the
178 average of the computed variances from those experiments where v_i was calculable. In this
179 way it was possible to include all studies in the meta-analysis. Using the variance v_i and the
180 mean of the response ratio L_i , for each experiment i , Cochran's Q (Cochran, 1954) was
181 computed. With the help of Q an estimate of the between experiment variance (σ^2_λ) was
182 obtained (Hedges et al., 1999). The weighted mean of the log response ratio \bar{L}^* is given by:

$$183 \bar{L}^* = \frac{\sum_{i=1}^k w_i^* L_i}{\sum_{i=1}^k w_i^*} \quad (2)$$

184 where k is the number of studies and $w_i = 1/(v_i + \sigma^2_\lambda)$. With the help of Q an estimate of the
185 between experiment variance (σ^2_λ) was obtained (Hedges et al., 1999).

186 Subsequently, the standard error of the weighted mean was estimated (see Eq. 7 in Hedges et
187 al., 1999) and the confidence intervals were calculated. For all calculations Microsoft Excel ®
188 2008 was used.

189 A normal distribution of the mean response ratio was assumed. As described in Hedges
190 et al. (1999), this assumption can be made, because the single response ratios are normally
191 distributed as well.

192

193 2.3.1 Identifying heterogeneity

194 A test for heterogeneity in effect sizes was performed based on the Q-statistic.
195 Q approximately follows the chi-squared distribution with k degrees of freedom. The Null
196 hypothesis of homogeneity among the effects of different experiments is rejected if Q exceeds
197 the 95 % quantile of the distribution. Heterogeneity results in a positive estimate for the

198 between experiments variance σ^2_λ , which leads to a larger total variation, that is the sum of
199 the within and between experiment variance. Consequently, larger standard errors as well as
200 wider confidence intervals for the effect size are computed from the weighted variances.

201

202 **3. Results**

203 23 studies were obtained from the literature, summarized in Tables 1 and 2. A total of 48
204 single experiments, which met the above-mentioned criteria, were extracted from these
205 studies to be included in this meta-analysis.

206 The carbonate chemistry perturbation experiments examining responses of *Emiliania huxleyi*
207 are depicted in Table 1. A total of 19 studies dealt with the responses of 14 different strains to
208 ocean acidification. In most experiments, strains of *Emiliania huxleyi* showed reduced
209 calcification rates with increased $p\text{CO}_2$ concentrations (Barcelos e Ramos et al., 2010; De
210 Bodt et al., 2010; Delille et al., 2005; Engel et al., 2005; Feng et al., 2008; Gao et al., 2009;
211 Hoppe et al., 2011; Langer et al., 2009; Müller et al., 2010; Riebesell et al., 2000; Rokitta &
212 Rost, 2012; Sciandra et al., 2003; Shi et al., 2009; Wuori, 2012; Zondervan et al., 2002). In
213 other experiments some strains showed an optimum curve in response to increasing $p\text{CO}_2$
214 (Bach et al., 2011; Langer et al., 2009), no significant response (Langer et al., 2009; Richier et
215 al., 2011) or increased calcification rates (Fiorini et al., 2011; Iglesias-Rodriguez et al., 2008;
216 Shi et al., 2009).

217 Photosynthetic responses were more diverse. In six experiments no response was observed
218 (De Bodt et al., 2010; Delille et al., 2005; Engel et al., 2005; Feng et al., 2008; Fiorini et
219 al., 2011; Hoppe et al., 2011; Müller et al., 2010; Richier et al., 2011), while in another six
220 experiments the POC production increased in response to elevated $p\text{CO}_2$ (Barcelos e Ramos
221 et al., 2010; Hoppe et al., 2011; Iglesias-Rodriguez et al., 2008; Riebesell et al., 2000; Rokitta
222 & Rost, 2012; Shi et al., 2009; Wuori, 2012; Zondervan et al., 2002). Five experiments

223 showed decreasing photosynthesis rates (Bach et al., 2011; Langer et al., 2009; Sciandra et al.,
224 2003; Shi et al., 2009), whereas in three experiments an optimum curve was obtained (Gao et
225 al., 2009, Langer et al., 2009).

226 The observed PIC/POC ratios are more homogeneous across experiments with most of them
227 decreasing with increased $p\text{CO}_2$ (Bach et al., 2011; Barcelos e Ramos et al., 2010; De Bodt et
228 al., 2010; Delille et al., 2005; Engel et al., 2005; Feng et al., 2008; Gao et al., 2009; Hoppe et
229 al., 2011; Langer et al., 2009; Müller et al., 2010; Riebesell et al., 2000; Rokitta & Rost et al.,
230 2012; Shi et al., 2009; Wuori, 2012; Zondervan et al., 2002). Only in four experiments the
231 PIC/POC ratio did not change with increasing $p\text{CO}_2$ (Iglesias-Rodriguez et al., 2008; Langer
232 et al., 2009; Richier et al., 2011; Sciandra et al., 2003) and in one an increase was observed
233 (Fiorini et al., 2011)

234 Experiments with other coccolithophore species also revealed varying responses (Table 2). Of
235 the four experiments with *Coccolithus braarudii*, two observed a decrease in PIC production
236 with increased CO_2 levels (Krug et al., 2011; Müller et al., 2010), whereas one observed no
237 response (Langer et al., 2006) and the other a slight increase in the calcification rate (Rickaby
238 et al., 2010). The POC production rates varied just as much and increased in two experiments
239 (Rickaby et al., 2010; Müller et al., 2010), while they did not change significantly in another
240 experiment (Langer et al., 2006). In a fourth experiment a non-linear response was observed
241 (Krug et al., 2011).

242 In two experiments conducted with *Gephyrocapsa oceanica*, the calcification rates decreased
243 (Riebesell et al., 2000) or did not change significantly (Rickaby et al., 2010) with increasing
244 $p\text{CO}_2$, whereas photosynthetic carbon fixation increased in one experiment (Riebesell
245 et al., 2000) and showed an optimum curve in the other one (Rickaby et al., 2010). The
246 PIC/POC ratio declined in both experiments.

247 In a fourth coccolithophore species, *Calcidiscus leptoporus*, the calcification response was
248 non-linear, while the photosynthesis rate remained constant over the tested CO₂ range (Langer
249 et al., 2006, Langer & Bode, 2011).

250

251 **3.1 Effect of ocean acidification on calcification responses**

252 The meta-analysis of calcification responses to elevated CO₂ concentrations revealed different
253 results between the examined species (Figure 1). Increasing CO₂ concentrations from pre-
254 industrial to present day levels had no significant effect on calcification in *Emiliania huxleyi*
255 (lnRR = -0.004). In contrast, the effect of near future CO₂ concentrations under both the
256 ‘business as usual’ and the ‘worst case’ scenario had significant negative effects on
257 calcification in this species. This negative effect was more pronounced at 1000 ppm compared
258 to 780 ppm (780 ppm: lnRR = -0.19, confidence interval = -0.07 to -0.30; 1000 ppm: lnRR = -
259 0.38, confidence interval = -0.08 to -0.67).

260 In *Gephyrocapsa oceanica* an increase from preindustrial to present day CO₂ concentrations
261 had a slightly negative but non-significant effect on calcification. Projected future ocean
262 acidification had a negative mean effect on calcification greater than in *Emiliania huxleyi*, but
263 it was not significant (lnRR = -0.79, confidence interval = 0.61 to -2.19). In contrast, no
264 significant effect of ocean acidification was detected in *Coccolithus braarudii*, where the
265 mean effect sizes were slightly positive at both pCO₂ concentrations. Significant
266 heterogeneity was detected for all calcification responses.

267

268 **3.2 Effect of ocean acidification on photosynthetic responses**

269 A significant effect of ocean acidification on photosynthesis was observed in *Gephyrocapsa*
270 *oceanica* for the present-day as well as the high CO₂ concentration, with the mean response at
271 1000 ppm being more than twice as high (lnRR = 0.57) as the mean response at 380 ppm

272 (lnRR = 0.24; Figure 2). For *Coccolithus braarudii*, a significant positive effect was observed
273 at 380 ppm and a similar but non-significant positive effect at 1000 ppm. No effect of ocean
274 acidification on photosynthesis was observed for *Emiliania huxleyi* at 380 ppm and 1000
275 ppm. Only at 780 ppm was the mean effect size slightly positive (lnRR = 0.044), but this
276 effect was non-significant. A significant Q-statistic was calculated for all effect sizes.

277

278 **3.3 Effect of ocean acidification on PIC/POC responses**

279 The observed PIC/POC responses to an increased CO₂ concentration are similar to those
280 observed for the calcification responses (Figure 3). For *Emiliania huxleyi*, there was a larger
281 negative effect on PIC/POC at 1000 ppm (lnRR = -0.39) than at 780 ppm (lnRR = -0.22), but
282 both responses were significantly negative. No effect was observed at present day CO₂
283 concentrations.

284 At both CO₂ concentrations a small, non-significant negative effect of a similar magnitude
285 (380 ppm: lnRR = 0.05, 1000 ppm: lnRR = 0.07) was observed for *Coccolithus braarudii*.
286 The strongest effect of ocean acidification on the PIC/POC ratio was observed for
287 *Gephyrocapsa oceanica*. The mean effect size was significantly negative at both pCO₂ levels,
288 with the negative mean effect size at 1000 ppm (lnRR = 1.37) being more than three times
289 lower than at 380 ppm (lnRR = 0.36). There was significant heterogeneity in all PIC/POC
290 responses.

291

292 **3.4 Relationship between effect sizes and methodological factors**

293 For the three response variables (PIC, POC and PIC/POC) a further meta-analysis was
294 conducted in order to test whether they varied between the two different carbonate chemistry
295 manipulation methods (constant TA vs. constant DIC) used in the experiments.

296 This meta-analysis revealed that the mean effects of ocean acidification were not consistent
297 between the two methods (Figure 4). Keeping TA constant and changing DIC resulted in a
298 more negative mean effect size for calcification and photosynthesis as compared to constant
299 DIC and variable TA. However, the observed difference between the mean effect sizes for
300 calcification was not significant ($p = 0.07$) and the overall effect of ocean acidification on
301 calcification was negative, regardless of the manipulation method. In contrast, the mean effect
302 sizes for photosynthesis differed substantially. While no significant effect was observed at
303 constant TA, the effect size at constant DIC was significantly positive. There was significant
304 difference between the mean effect sizes ($p = 0.0001$). The difference between the effect sizes
305 for PIC/POC was only small. Here, ocean acidification had a slightly more negative effect
306 when keeping DIC constant and changing TA. Both effect sizes were, however, significantly
307 negative.

308 Interestingly, all experiments using *Coccolithus braarudii* and *Gephyrocapsa oceanica*
309 manipulated the $p\text{CO}_2$ in the culture medium by adding acid, i.e. changing TA while keeping
310 DIC constant. Thus, all these experiments were included in the constant DIC treatments,
311 while only experiments with *Emiliania huxleyi* were included in the constant TA treatments.
312 In order to eliminate a possible bias due to the unequal distribution of coccolithophore species
313 across carbonate chemistry manipulation methods, a separate meta-analysis was conducted.
314 This analysis only included experiments of *Emiliania huxleyi* and determined the variation of
315 effect sizes between carbonate chemistry manipulations (Figure S1, supplement). The results
316 of this analysis were not significantly different from those obtained from the analysis
317 performed on the full data set. A bias due to the unequal distribution of species between
318 treatments can therefore be ruled out.

319

320

321 **4. Discussion**

322 The difference in variance between single studies is statistically described as heterogeneity.
323 The term indicates that there is more variability in results than would be expected from the
324 sampling distribution. Differences in the experimental setup, deviations in the measuring
325 method and biological differences between the examined organisms can generally explain the
326 existence of heterogeneity.

327 Heterogeneity in effect size was detected in all analyses in the present study. In retrospect,
328 this finding justifies the use of a random-effect model in this meta-analysis. In contrast to the
329 fixed effect model that only includes variance within the studies, the random effects model
330 accounts for the variance between and within single studies.

331 Our study revealed that heterogeneity in mean effect sizes is not due to different carbonate
332 chemistry perturbation methods. The differences between TA and DIC manipulations in the
333 carbonate chemistry were shown not to cause strong variations in biological responses in
334 coccolithophores - with a possible exception in photosynthetic responses. Another proposed
335 explanation for the high difference in variance between studies could be the morphological
336 and genetic differences of single coccolithophore strains. A high physiological variability was
337 already shown to exist in the coccolithophore *Emiliania huxleyi* (Iglesias-Rodriguez et al.,
338 2006; Cubillos et al., 2007), with different strains and ecotypes exhibiting diverse responses
339 to ocean acidification (Langer et al., 2009; Hoppe et al., 2011). Moreover, adaption processes
340 of clones that are kept in culture over years could further result in variable responses in CO₂
341 perturbation experiments (Ridgwell et al., 2009). Thus, a large part of the variance between
342 the analyzed studies is most likely due to intra-species variability of coccolithophore species,
343 especially in *Emiliania huxleyi*. A further reason for heterogeneity in mean effect size could
344 be discrepancies in calculating the carbonate system from measured parameters. As
345 mentioned earlier in this study, all components of the carbonate system can be calculated if

346 two variables, e.g. pH and DIC, are known. A recently published study suggests, that the
347 $p\text{CO}_2$ concentration measured in CO_2 perturbation experiments differs strongly between
348 calculations (up to 30%), when the input parameters for these calculations were different
349 (Hoppe et al., 2012). The authors state that some publications may not be comparable with
350 each other, as $p\text{CO}_2$ values might have been underestimated when they were calculated from
351 TA and DIC, influencing the interpretation of coccolithophore responses. This finding also
352 has implications for the present study, as some heterogeneity in mean effect size might be due
353 to inconsistencies in calculating $p\text{CO}_2$.

354 The aim of this study was to synthesize the available data of coccolithophores biological
355 responses to ocean acidification in order to more robustly estimate the actual effect of a
356 lowered seawater pH on those calcifying organism. Despite known intra-specific variability, a
357 negative effect of ocean acidification on calcification as well as on the cellular PIC/POC ratio
358 was observed for the dominant and cosmopolitan species *Emiliania huxleyi*. Our results are in
359 accordance with findings from a meta-analysis conducted by Findlay et al. (2011), who also
360 identified a negative correlation between the cellular PIC/POC ratio in *Emiliania huxleyi* and
361 the $p\text{CO}_2$ concentration in the culture medium. ~~The observations from the present study~~
362 ~~suggest that although some strains of *Emiliania E. huxleyi* might be appear to be less~~
363 ~~sensitive to ocean acidification (Langer et al., 2009), the species shows a negative response~~
364 ~~towards reduced $p\text{CO}_2$ levels in our meta-analysis, suggesting that~~ strain-specific variations
365 ~~are small compared to will be the generally negative effect of ocean acidification on this~~
366 ~~species small compared to the generally negative effect of ocean acidification on this species,~~
367 ~~which results in decreased calcification rates.~~

368 Calcification and PIC/POC in the coccolithophore *Gephyrocapsa oceanica* was even more
369 negatively affected by future ocean acidification than in *Emiliania huxleyi*, indicating that *G.*
370 *oceanica* is even more sensitive to changes in $p\text{CO}_2$ and pH. Although the meta-analysis with

371 this species was based on only two studies and a significant effect on the calcification
372 response was not observed, the mean effect sizes were even more negative than those
373 observed for *Emiliania huxleyi* at 1000 ppm. We assume that the inclusion of more studies to
374 the meta-analysis would likely ~~minimize decrease~~ the confidence interval of the mean effect
375 size, resulting in a significantly negative effect of ocean acidification on calcification in
376 *Gephyrocapsa oceanica*. The strong negative effect of ocean acidification on the PIC/POC
377 ratio in this species was not only due to the strong decrease in calcification, but also a
378 consequence of an increase in the photosynthesis rate with increasing $p\text{CO}_2$. Apparently, this
379 species profits more from high $p\text{CO}_2$ levels during photosynthesis than the others. This might
380 - at least for *Gephyrocapsa oceanica* - confirm the hypothesis that some coccolithophores
381 might benefit from higher CO_2 concentrations, since their rate of carbon fixation is below
382 CO_2 saturation at pre-industrial CO_2 levels (Riebesell et al., 2000, 2004; Rost et al., 2003;
383 Nimer & Merrett, 1996). Higher CO_2 concentrations in the water would thus allow them to
384 more efficiently assimilate and fix carbon during photosynthesis and thus increase their
385 photosynthesis rate (Rost et al., 2008). It is further suggested that an increase in the
386 photosynthesis rate might buffer a possible negative effect of ocean acidification on
387 calcification (Ries et al., 2009). When photosynthesis becomes more efficient and additional
388 energy is provided due to enhanced photosynthetic activity, the building and maintenance of
389 coccoliths could be facilitated. This hypothesis, however, was not confirmed by the present
390 analysis, since the species that showed the most positive effect on photosynthesis,
391 *Gephyrocapsa oceanica*, was also the one where the effect of ocean acidification on
392 calcification was most negative.

393 For *Coccolithus braarudii* the results from the present study confirm the hypothesis that this
394 species is insensitive to elevated $p\text{CO}_2$ levels within the tested range (Langer et al., 2006). To

395 ~~some extent, it might even seem to benefit to some extent~~ from higher CO₂ concentrations.

396 ~~as it by exhibit showing~~ a slightly positive photosynthesis response.

397 The results for the effect of ocean acidification on calcification gained by the present study

398 are consistent with the observations by Kroeker et al. (2010, 2013) (Figure 5). These authors

399 included responses of all coccolithophore species in one meta-analysis without distinguishing

400 between species, and found a negative but non-significant effect of ocean acidification on

401 calcification. They state that the absence of a significantly negative result might be due to the

402 species-specific responses of coccolithophores, which can be confirmed by our study.

403 With some coccolithophore species being generally more sensitive with regard to ocean

404 acidification than others, a replacement of sensitive strains by more tolerant strains of the

405 same species or a shift in species composition is probable. It cannot be assessed if a general

406 decline in the abundance of coccolithophores with a replacement by other photoautotrophic

407 organism is possible, as long as the role of calcification in coccolithophores is not completely

408 understood. What implications a reduced calcium carbonate production has on the

409 physiological performance and ecological fitness of coccolithophores therefore needs to be

410 further evaluated. Considering that the more prevalent coccolithophore species appear to be

411 ~~most~~vulnerable to ocean acidification, a local or global shift in the species composition or a

412 replacement by other photoautotrophic organisms may occur and could affect higher trophic

413 levels and ocean biogeochemical cycling.

414

415 Differences between TA and DIC manipulations were not the cause of variable calcification

416 and PIC/POC responses between experiments, confirming earlier results by Kroeker et

417 al. (2009), Findlay et al. (2011) and Hoppe et al. (2011) and following the reviews of Schulz

418 et al. (2009) and Ridgwell et al. (2009). In contrast, mean effect sizes on photosynthetic rates

419 were significantly different between the two manipulation methods. Whereas no effect of

420 ocean acidification on photosynthesis was observed for the constant TA manipulations, the
421 effect in the constant DIC manipulations was significantly positive. This finding is surprising,
422 as the modifications of the carbonate system induced by the different manipulation methods
423 are very similar, particularly in the range of carbonate chemistry changes projected to occur
424 until the end of this century (Schulz et al., 2009). Although bubbling with CO₂ more closely
425 resembles predicted changes in the oceans carbonate chemistry, because dissolved inorganic
426 carbon increases while total alkalinity remains unchanged, the modification of each carbonate
427 system parameter (pH , [CO₂], [CO₃²⁻] and Ω_{Ca}) is rather similar. An exception is the
428 concentration of HCO₃⁻, which increases slightly more in experiments where the pCO_2
429 concentration is altered by CO₂ bubbling (constant TA manipulation). As not only CO₂, but
430 also HCO₃⁻ is known to be a carbon source for photosynthesis in most phytoplankton species
431 (Riebesell, 2004), one could assume that the higher HCO₃⁻ concentration in the constant TA
432 manipulations was responsible for the observed difference in photosynthetic responses
433 between manipulation methods. However, a higher rather than a lower photosynthesis rate
434 would be expected in the constant TA manipulations compared to the constant DIC
435 manipulations, as more inorganic carbon in the form of HCO₃⁻ would be available for
436 photosynthesis. Thus, it does not seem likely that the slight deviation in the HCO₃⁻
437 concentration is responsible for the difference in mean effect sizes between manipulation
438 methods. Nevertheless, ~~the~~ discrepancies between the two methods of CO₂ manipulation
439 observed in the present study are consistent with findings of Kroeker et al. (2010). In their
440 meta-analysis a comparison of photosynthetic responses between manipulation methods also
441 showed that keeping TA constant while increasing DIC caused a more negative effect. The
442 deviation between the mean effect sizes was also significant in their study.

443 ~~Despite deviating Although variable~~ photosynthetic responses ~~observed have been observed~~ in
444 different carbonate chemistry perturbation experiments, it remains to be clarified what causes

445 ~~these differences. To date, studies and reviews have mainly focused on revealing the reason~~
446 for diverse calcification responses in coccolithophores (Ridgwell et al., 2009; Schulz et al.,
447 2009). This is probably because ocean acidification is regarded to have a greater impact on
448 calcification in those species than on photosynthesis. While the present study shows that this
449 assumption holds true, a clear understanding of all physiological processes and their relevance
450 for coccolithophore ecological fitness is necessary to realistically assess the influence of
451 future ocean acidification on these organisms.

452 A limitation of the carbonate chemistry manipulation experiments included in this meta-
453 analysis is the short duration of the experiments. As a result, they do not account for possible
454 adaptation processes of coccolithophores that might occur over a longer time-period, and only
455 test for non-adaptive responses. A recent study investigated evolutionary adaptation in
456 *E. huxleyi* in a long-term experiment (Lohbeck et al., 2012). In this study a population
457 adapted to higher $p\text{CO}_2$ levels showed significantly higher calcification rates than the control
458 population. Although adaptation did not restore calcification rates under elevated $p\text{CO}_2$ to
459 those measured under ambient $p\text{CO}_2$ levels, this observation highlights the possibility of
460 adaptive evolution in coccolithophores. ~~It remains speculative, however, whether those results~~
461 ~~can be extrapolated from culture experiment to the natural environment (Lohbeck et al.,~~
462 ~~2012).~~ If species like *Emiliania huxleyi* and *Gephyrocapsa oceanica* ~~remain competitive~~
463 ~~despite being less calcified~~~~can adapt to decreased pH levels~~, consequences for the whole
464 ecosystem might be averted. ~~It remains speculative, however, whether results from~~
465 ~~monocultural experiments can be extrapolated to the natural environment. This also has to be~~
466 ~~acknowledged when interpreting results of the present study. Generalizations from laboratory~~
467 ~~observations must be drawn with great care and it has~~ ~~Nevertheless, the strength of the~~
468 ~~carbonate pump could decline, thereby reducing its ballasting potential and diminishing the~~
469 ~~ability of the ocean to sequester inorganic carbon. Whether this effect can be counteracted by~~

470 | ~~an increased CO₂ sequestration owing to a decreased strength of the carbonate counter pump,~~
471 | ~~remains to be ascertained.~~

472 | It ~~has~~ to be kept in mind that ocean acidification is not the only consequence of anthropogenic
473 | carbon emissions. Global warming and increased surface ocean stratification as well as
474 | changes in nutrient availability will further affect the physiological responses of marine
475 | organisms, including coccolithophores. Therefore, the effects of ocean acidification might
476 | differ when other potential stressors are included. Some studies have already examined the
477 | interactive effects of multiple stress factors on coccolithophore responses (e.g. Zondervan et
478 | al., 2002; Feng et al., 2008; De Bodt et al., 2010; Sett et al., 2014). However, more studies are
479 | required that analyze responses of coccolithophores to multiple stressor within the marine
480 | ecosystem in order to better quantify community and ecosystem responses to ocean
481 | acidification and global warming.

482 **References**

- 483 Armstrong RA, Lee C, Hedges JI, Honjo S, Wakeham SG (2002) A new, mechanistic model
484 for organic carbon fluxes in the ocean based on the quantitative association of POC with
485 ballast minerals. Deep Sea Research Part II, **49**, 219–236.
- 486
- 487 Bach LT, Riebesell U, Schulz K (2011) Distinguishing between the effects of ocean
488 acidification and ocean carbonation in the coccolithophore *Emiliania huxleyi*. Limnology and
489 Oceanography, **56**, 2040–2050.
- 490
- 491 Barcelos e Ramos J, Müller MN, Riebesell U (2010) Short-term response of the
492 coccolithophore *Emiliania huxleyi* to an abrupt change in seawater carbon dioxide
493 concentrations. Biogeosciences, **7**, 177–186.
- 494
- 495 Borenstein M, Hedges LV, Higgins J, Rothstein HR (2010) A basic introduction to fixed-
496 effect and random-effects models for meta-analysis. Research Synthesis Methods, **1**, 97–111.
- 497
- 498 Brownlee C, Taylor A (2004) Calcification in coccolithophores: A cellular perspective. In:
499 Coccolithophores – From Molecular Processes to Global Impact (eds Thierstein HR, Young
500 JR), pp- 99 – 125, Springer, Berlin, Germany.
- 501
- 502 Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature, **425**, 365.
- 503
- 504 Klaas C, Archer DE (2002) Association of sinking organic matter with various types of
505 mineral ballast in the deep sea: Implications for the rain ratio. Global Biogeochemical Cycles.
506 **16**, 63-1–63-14.

- 507 Cochran W (1954) The contribution of estimates from different experiments. *Biometrics*, **10**,
508 101–129.
- 509
- 510 Conway T, Tans P, NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/).
- 511
- 512 Cubillos JC, Wright SW, Nash G, de Salas MF, Griffiths B, Tilbrook B, Poisson A,
513 Hallegraeff GM (2007) Calcification morphotypes of the coccolithophorid *Emiliania huxleyi*
514 in the Southern Ocean: changes in 2001 to 2006 compared to historical data. *Marine Ecology
515 Progress Series*, **348**, 47–54.
- 516
- 517 De Bodt C, Van Oostende N, Harlay J, Sabbe K, Chou L (2010) Individual and interacting
518 effects of $p\text{CO}_2$ and temperature on *Emiliania huxleyi* calcification: study of the calcite
519 production, the coccolith morphology and the coccospHERE size. *Biogeosciences*, **7**, 1401–
520 1412.
- 521
- 522 Delille B, Harlay J, Zondervan I, Jacquet S, Chou L, Wollast R, Bellerby RGJ, Frankignoulle
523 M, Borges AV, Riebesell U, Gattuso JP (2005) Response of primary production and
524 calcification to changes of $p\text{CO}_2$ during experimental blooms of the coccolithophorid
525 *Emiliania huxleyi*. *Global Biogeochemical Cycles*, **19**, 1–14.
- 526
- 527 Engel A, Zondervan I, Aerts K et al. (2005) Testing the direct effect of CO_2 concentration on
528 a bloom of the coccolithophorid *Emiliania huxleyi* in mesocosm experiments. *Limnology and
529 Oceanography*, **50**, 493–507.
- 530

- 531 Feng Y, Warner ME, Zhang Y, Sun J, Fu FX, Rose JM, Hutchins DA (2008) Interactive
532 effects of increased $p\text{CO}_2$, temperature and irradiance on the marine coccolithophore
533 *Emiliania huxleyi* (Prymnesiophyceae). European Journal of Phycology, **43**, 87–98.
- 534
- 535 [Findlay HS, Calosi P, Crawfurd, K \(2011\) Determinants of the PIC:POC response in the](#)
536 [coccolithophore *Emiliania huxleyi* under future ocean acidification scenarios. Limnology and](#)
537 [Oceanography, 56, 1168–1178.](#)
- 538
- 539 Fiorini S, Middelburg JJ, Gattuso JP (2011) Testing the effects of elevated $p\text{CO}_2$ on
540 coccolithophores (Prymnesiophyceae): comparison between haploid and diploid life stages.
541 Journal of Phycology, **47**, 1281–1291.
- 542
- 543 Gao K, Ruan Z, Villafañe VE, Gattuso JP, Helbling EW (2009) Ocean acidification
544 exacerbates the effect of UV radiation on the calcifying phytoplankton *Emiliania huxleyi*.
545 Limnology and Oceanography, **54**, 1855–1862.
- 546
- 547 Hedges LV, Olkin I (1985) Statistical Methods for Meta-Analysis. Academic Press, London,
548 New York
- 549
- 550 Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in
551 experimental ecology. Ecology, **80**, 1150–1156.
- 552
- 553 Hendriks IE, Duarte CM, Álvarez M (2010) Vulnerability of marine biodiversity to ocean
554 acidification: A meta-analysis. Estuarine, Coastal and Shelf Science, **86**, 157–164.
- 555

- 556 Hoppe CJM, Langer G, Rost B (2011) *Emiliania huxleyi* shows identical responses to
557 elevated $p\text{CO}_2$ in TA and DIC manipulations. *Journal of Experimental Marine Biology and*
558 *Ecology*, **406**, 54–62.
- 559
- 560 Hoppe CJM, Langer G, Rokitta SD, Wolf-Gladrow DA, Rost B (2012) Implications of
561 observed inconsistencies in carbonate chemistry measurements for ocean acidification studies.
562 *Biogeosciences*, **9**, 2401–2405.
- 563
- 564 Iglesias-Rodriguez MD, Schofield OM, Batley J, Medlin LK, Hayes PK (2006) Intraspecific
565 genetic diversity in the marine coccolithophore *Emiliania huxleyi* (Prymnesiophyceae): the
566 use of microsatellite analysis in marine phytoplankton population studies. *Journal of*
567 *Phycology*, **42**, 526–536.
- 568
- 569 Iglesias-Rodriguez MD, Halloran PR, Rickaby RE et al. (2008) Phytoplankton Calcification
570 in a High- CO_2 World. *Science*, **320**, 336–340.
- 571
- 572 Jones BM, Iglesias-Rodriguez MD, Skipp PJ et al. (2013) Responses of the *Emiliania huxleyi*
573 Proteome to Ocean Acidification. *PLoS ONE*, **8**, e61868, 1–13.
- 574
- 575 Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet
576 variable effects of ocean acidification on marine organisms. *Ecology Letters*, **13**, 1419–1434.
- 577
- 578 Kroeker KJ, Kordas RL, Crim R et al. (2013) Impacts of ocean acidification on marine
579 organisms: quantifying sensitivities and interaction with warming. *Global Change Biology*,
580 | **19**, 1884–1896.

- 581 Krug S, Schulz K, Riebesell U (2011) Effects of changes in carbonate chemistry speciation on
582 *Coccolithus braarudii*: a discussion of coccolithophorid sensitivities. *Biogeosciences*, **8**, 771–
583 777.
- 584
- 585 Langer G, Geisen M, Baumann KH, Kläs J, Riebesell U, Thoms S, Young JR (2006) Species-
586 specific responses of calcifying algae to changing seawater carbonate chemistry.
587 *Geochemistry, Geophysics, Geosystems*, **7**, 1–12.
- 588
- 589 Langer G, Nehrke G, Probert I, Ly J, Ziveri P (2009) Strain-specific responses of *Emiliania*
590 *huxleyi* to changing seawater carbonate chemistry. *Biogeosciences*, **6**, 2637–2646.
- 591
- 592 Langer G, Bode M (2011) CO₂ mediation of adverse effects of seawater acidification in
593 *Calcidiscus leptoporus*. *Geochemistry, Geophysics, Geosystems*, **12**, 1–8.
- 594
- 595 Lefebvre SC, Benner I, Stillman JH et al. (2012) Nitrogen source and *p*CO₂ synergistically
596 affect carbon allocation, growth and morphology of the coccolithophore *Emiliania huxleyi*:
597 potential implications of ocean acidification for the carbon cycle. *Global Change Biology*, **18**,
598 493–503.
- 599
- 600 Lohbeck KT, Riebesell U, Reusch TB (2012) Adaptive evolution of a key phytoplankton
601 species to ocean acidification. *Nature Geosciences*, **5**, 346–351.
- 602
- 603 Müller MN, Schulz KG, Riebesell U (2010) Effects of long-term high CO₂ exposure on two
604 species of coccolithophores. *Biogeosciences*, **7**, 1109–1116.
- 605

- 606 Nakicenovic N, Alcamo J, Davis G et al. (2000) IPCC 2000: Special Report on Emissions
607 Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate
608 Change (eds Nakicenovic N, Swart R) Cambridge University Press, Cambridge, UK and New
609 York, NY, USA.
- 610
- 611 Nimer NA, Merrett MJ (1996) The development of a CO₂-concentrating mechanism in
612 *Emiliania huxleyi*. *New Phytologist*, **133**, 383–389.
- 613
- 614 Richier S, Fiorini S, Kerros ME, Von Dassow P, Gattuso JP (2011) Response of the
615 calcifying coccolithophore *Emiliania huxleyi* to low pH/high pCO₂: from physiology to
616 molecular level. *Marine Biology*, **158**, 551–560.
- 617
- 618 Rickaby RE, Henderiks J, Young JN (2010) Perturbing phytoplankton: response and isotopic
619 fractionation with changing carbonate chemistry in two coccolithophore species. *Climate of
620 the Past*, **6**, 771–785.
- 621
- 622 Ridgwell A, Schmidt DN, Turley C, Brownlee C, Maldonado MT, Tortell P, Young JR
623 (2009) From laboratory manipulations to Earth system models: scaling calcification impacts
624 of ocean acidification. *Biogeosciences*, **6**, 2611–2623.
- 625
- 626 Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FM (2000) Reduced
627 calcification of marine plankton in response to increased atmospheric CO₂. *Nature*, **407**, 364–
628 | 367 -
- 629

- 630 Riebesell U (2004) Effects of CO₂ Enrichment on Marine Phytoplankton. *Journal of*
631 *Oceanography*, **60**, 719–729.
- 632
- 633 Riebesell U, Bellerby RG, Engel A et al. (2008) Comment on "Phytoplankton Calcification in
634 a High-CO₂ World". *Science*, **322**, 1466b .
- 635
- 636 Riebesell U, Körtzinger A, Oschlies A (2009) Sensitivities of marine carbon fluxes to ocean
637 change. *Proceedings of the National Academy of Sciences USA*, **106**, 20602–20609.
- 638
- 639 Riebesell U, Tortell PD (2011) Effects of ocean acidification on pelagic organisms and
640 ecosystems. In: *Ocean Acidification*. (eds Gattuso JP, Hansson L), pp. 99–121, Oxford
641 University Press, Oxford, UK.
- 642
- 643 Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO₂-
644 induced ocean acidification. *Geology*, **37**, 1131–1134.
- 645
- 646 Rokitta SD, Rost B (2012) Effects of CO₂ and their modulation by light in the life-cycle
647 stages of the coccolithophore *Emiliania huxleyi*. *Limnology and Oceanography*, **57**, 607–618.
- 648
- 649 Rost B, Riebesell U, Burkhardt S, Sültemeyer D (2003) Carbon acquisition of bloom-forming
650 marine phytoplankton. *Limnology and Oceanography*, **48**, 55–67.
- 651
- 652 Rost B, Riebesell U (2004) Coccolithophores and the biological pump: responses to
653 environmental changes. In: *Coccolithophores — From Molecular Processes to Global Impact*
654 (eds Thierstein HR, Young, JR), pp. 99-125, Springer, Berlin, Germany.

- 655 Rost B, Zondervan I, Wolf-Gladrow D (2008) Sensitivity of phytoplankton to future changes
656 in ocean carbonate chemistry: current knowledge, contradictions and research directions.
657 *Marine Ecology Progress Series*, **373**, 227–237.
- 658
- 659 Sabine CL, Feely RA, Gruber N et al. (2004) The oceanic sink for anthropogenic CO₂.
660 *Science*, **305**, 367–371.
- 661
- 662 Sciandra A, Harlay J, Lefèvre D, Lemée R, Rimmelin P, Denis M, Gattuso JP (2003)
663 Response of coccolithophorid *Emiliania huxleyi* to elevated partial pressure of CO₂ under
664 nitrogen limitation. *Marine Ecology Progress Series*, **261**, 111–122.
- 665
- 666 Sett S, Bach LT, Schulz KG, Koch-Klavsen S, Lebrato M, Riebesell U (2014) Temperature
667 modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to
668 increasing seawater pCO₂. *PLoS ONE*, **9**, e88308.
- 669
- 670 Shi D, Xu Y, Morel FMM (2009) Effects of the pH/pCO₂ control method on medium
671 chemistry and phytoplankton growth. *Biogeosciences*, **6**, 1199–1207.
- 672
- 673 Shutler JD, Grant MG, Miller PI, Rushton E, Anderson K (2010) Coccolithophore bloom
674 detection in the northeast Atlantic using SeaWiFS: Algorithm description, application and
675 sensitivity analysis. *Remote Sensing of Environment*, **114**, 1008–1016.
- 676
- 677 Wolf-Gladrow D, Riebesell U, Burkhardt S, Bijma J (1999) Direct effects of CO₂
678 concentration on growth and isotopic composition of marine plankton. *Tellus B*, **51**, 461–476.
- 679

680 Wuori T (2012) Effects of elevated $p\text{CO}_2$ on the physiology of *Emiliania huxleyi*. M.Sc.
681 Thesis, Western Washington University, USA.

682

683 Ziveri P, de Bernardi B, Baumann KH, Stoll HM, Mortyn PG (2007) Sinking of coccolith
684 carbonate and potential contribution to organic carbon ballasting in the deep ocean. Deep Sea
685 Research Part II, 54, 659–675.

686

687 Zondervan I, Rost B, Riebesell U (2002) Effect of CO_2 concentration on the PIC/POC ratio in
688 the coccolithophore *Emiliania huxleyi* grown under light-limiting conditions and different
689 daylengths. Journal of Experimental Marine Biology and Ecology, **272**, 55–70.

Table 1. Summary of the available carbonate chemistry manipulation experiments and the responses of *Emiliana huxleyi* as reported by the authors of those studies found in those studies.

Symbols indicate: — no response, \diagup increased response, \cap non-linear response, \diagdown decreased response

Reference	<i>E.huxleyi</i> strain	Experiment type	CO ₂ manipulation	PIC production	POC production	PIC/POC	Specifics
Bach et al. (2011)	PML B92/11A	laboratory	constant DIC	\cap	\diagdown	\diagdown	large $p\text{CO}_2$ range
Barcelos e Ramos et al. (2010)	Raune Fjord, Norway 2005	laboratory	constant DIC	\diagup	\diagdown	\diagup	short-term incubation
De Bodt et al. (2010)	AC481	laboratory	constant TA	\diagup	\cap	\diagup	variable temperatures
Delille et al. (2005)	Raune Fjord, Norway 2001	mesocosm	constant TA	\diagup	\cap	\diagup	
Engel et al. (2005)	Raune Fjord, Norway 2001	mesocosm	constant TA	\diagup	\cap	\diagup	
Feng et al. (2008)	CCMP 371	laboratory	constant TA	\diagup	\cap	\diagup	variable pCO_2 & light & temperature
Fiorini et al. (2011)	AC472	laboratory	constant TA	\diagup	\cap	\diagup	
Gao et al. (2009)	CS369	laboratory	constant TA	\diagup	\cap	\diagup	PAR & UVR
Hoppe et al. (2011)	RCC1256	laboratory	constant DIC and constant TA	\diagup	\cap	\diagup	
Hoppe et al. (2011)	NZEH	laboratory	constant DIC and constant TA	\diagup	\cap	\diagup	
Iglesias-Rodriguez et al. (2008)	NZEH	laboratory	constant TA	\diagup	\cap	\diagup	
Langer et al. (2009)	RCC1212	laboratory	constant TA	\diagup	\cap	\diagup	
Langer et al. (2009)	RCC1216	laboratory	constant TA	\diagup	\cap	\diagup	
Langer et al. (2009)	RCC1238	laboratory	constant TA	\cap	\cap	\cap	
Langer et al. (2009)	RCC1256	laboratory	constant TA	\cap	\cap	\cap	
Müller et al. (2010)	Raune Fjord, Norway 2005	laboratory	constant DIC	\diagup	\cap	\diagup	long-term incubation
Riebesell et al. (2000)	PML B92/11A	laboratory	constant DIC	\diagup	\cap	\diagup	variable day-length & light intensity
Richier et al. (2011)	RCC1216	laboratory	constant TA	\cap	\cap	\cap	light intensity
Rokitta and Rost et al. (2012)	RCC1216	laboratory	constant TA	\diagup	\cap	\diagup	low and high light conditions
Sciandra et al. (2003)	TW1	laboratory	constant TA	\diagup	\cap	\diagup	chemostat
Shi et al. (2009)	NZEH	laboratory	constant TA	\diagup	\cap	\diagup	
Shi et al. (2009)	NZEH	laboratory	constant DIC	\diagup	\cap	\diagup	
Zondervan et al. (2002)	PML B92/11A	laboratory	constant DIC	\diagup	\cap	\diagup	variable day-length & light intensity
Wuori et al. (2012)	CCMP 2668	laboratory	constant TA	\diagup	\cap	\diagup	light intensity

Table 2. Summary of the available carbonate chemistry manipulation experiments and the responses of *Coccolithus braarudii*, *Gephyrocapsa oceanica* and *Calcidiscus leptoporus* found in those studies.

Reference	Species	Strain	Experiment type	CO ₂ manipulation	PIC production	POC production	PIC/POC
Krug et al. (2011)	<i>Coccolithus braarudii</i>	RCC 1200	laboratory	constant DIC	/	/	/
Langer et al. (2006)		AC400	laboratory	constant DIC	—	—	—
Müller et al. (2010)		RCC 1200	laboratory	constant DIC	/	/	/
Rickaby et al. (2010)		4762	laboratory	constant DIC	/	/	—
Riebesell et al. (2000)	<i>Gephyrocapsa oceanica</i>	PC7/1	laboratory	constant DIC	/	/	/
Rickaby et al. (2010)		PZ 3.1	laboratory	constant DIC	—	/	/
Langer et al. (2006)	<i>Calcidiscus leptoporus</i>	AC365	laboratory	constant DIC	/	—	/
Langer and Bode (2011)		AC365	laboratory	constant DIC	/	—	/

1 | **Figure 1.** The effect of elevated CO₂ concentrations on the calcification rates of the three
2 | cocolithophore species *Emiliania huxleyi*, *Coccolithus braarudii* and *Gephyrocapsa*
3 | *oceanica* [mean effect size and 95% confidence interval]. [Responses are relative to 280 ppm](#).

4 | * indicates a significant response, which is given when the confidence interval does not
5 | overlap zero. The number of experiments used to calculate mean effect sizes are shown in
6 | parentheses. The zero line indicates no effect.

7 |
8 | **Figure 2.** Mean effect of elevated CO₂ concentrations [\(relative to 280 ppm\)](#) on the
9 | photosynthesis rates of three cocolithophore species, *Emiliania huxleyi*, *Coccolithus*
10 | *braarudii* and *Gephyrocapsa oceanica*. Error bars denote the 95% confidence intervals. *
11 | indicates a significant response, which is given when the confidence interval does not overlap
12 | zero. The number of experiments included in the meta-analysis is shown in parentheses. The
13 | zero line indicates no effect.

14 |
15 | **Figure 3.** The effect of elevated CO₂ concentrations on the inorganic to organic carbon ratio
16 | of three cocolithophore species: *Emiliania huxleyi*, *Coccolithus braarudii* and *Gephyrocapsa*
17 | *oceanica* [mean effect size and 95% confidence interval]. [Responses are relative to 280 ppm](#).

18 | * indicates a significant response, which is given when the confidence interval does not
19 | overlap zero. The number of experiments included in the meta-analysis is shown in
20 | parentheses. The zero line indicates no effect.

21 |
22 | **Figure 4.** Comparison of effect sizes between the methods [s](#) of carbonate chemistry
23 | manipulation. White diamonds symbolize treatments where total alkalinity [TA] was kept
24 | constant while dissolved inorganic carbon [DIC] changed. Black diamonds symbolize
25 | treatments where DIC was kept constant and TA varied. The number of experiments included

26 in the meta-analysis are shown in parentheses. The mean effect size is significant when the
27 95% confidence interval does not overlap zero [*].

28

29 **Figure 5.** Comparison of effect sizes from PIC and POC analyses derived from the study by
30 Kroeker et al. (2010) [circles], Kroeker et al. (2013) [triangles] and the present study
31 [diamonds]. Data from Kroeker et al. (2010 and 2013) were extracted directly out of the study
32 with the help of the Web Plot Digitizer Software [www.arohatgi.info/WebPlotDigitizer/]. The
33 meta-analysis from the present study contains experiments of all coccolithophore species,
34 including those of *Calcidiscus leptoporus* [see Table 2]. Error bars denote the 95%
35 confidence intervals. * indicates a significant response, which is given when the confidence
36 interval does not overlap zero. The number of experiments included in the meta-analysis is
37 shown in parentheses. The zero line indicates no effect.

38

39 **Figure S1.** Comparison of effect sizes between the methods~~s~~ of carbonate chemistry
40 manipulation ~~infor~~ experiments with *Emiliania huxleyi*. White diamonds symbolize
41 treatments where total alkalinity [TA] was kept constant while dissolved inorganic carbon
42 [DIC] changed. Black diamonds symbolize treatments where DIC was kept constant and TA
43 varied. The ~~number of experiments included in the meta-analysis are~~
~~number of experiments included in the meta-analysis is~~ shown in parentheses. The mean effect size is significant
44 when the 95% confidence interval does not overlap zero [*].

45

