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Dear Dr. Peters, 

Thank you for your careful and critical review.  While we agree that this paper is a bit of a synthesis, it 

attempts to quantify known errors and uncertainties in the global C budget while providing a framework 

for incorporating unknown errors that may be identified down the road.  Although this paper may not 

provide the most sensational results, an appraisal of errors within any scientific discipline is always 

necessary, especially in the study of the global C budget, where errors are often not reported or are 

reported in an unsystematic manner. 

Please find below our responses to your specific questions in italics. 

1. Abstract, line 3. In the first instance write out carbon (C) 

This has been changed 

2. The abstract has a feel that fossil fuel emission uncertainty has “come to dominate”, but this seems to 

contradict Figure 11? It seems LUC still dominates, but FF will dominate soon?  

The abstract has been revised to first focus on how the errors have changed in the various terms in the 

carbon budget and then how this affects uptake uncertainty.  One critical point that we would like to 

make is that the errors associated with fossil fuel emissions are greater than the total emissions from 

land-use.  We think that the re-worked abstract makes this point more clear. 

3. Page 14934, line 19. What about process emissions (other than cement) 

We do consider other processes in fossil fuel emissions, such as gas flaring, bunker fuels, and 

international transport. P14937 L2 

4. Section 1.2 discusses atmospheric and ocean, and a paragraph for each. Wouldn’t it make sense to 

split to a section on atmospheric and a section on ocean? 

Good point this has been changed 

5. A sentence which is mentioned a few times “Because fossil fuel emissions are often estimated from 

energy consumption or production statistics, they are a fairly well constrained economic variable”. I 

don’t understand this. Are FF an economic variable? What is a constrained economic variable? And why 

is something estimated from production statistics well constrained (is that a casual statement, is there a 

reference?). I think the energy statistics have quite some uncertainty, and may be less bound then 

differences in emission factors (or perhaps even energy contents in some cases/countries). I think this 

statement needs to be reconsidered (also in other places in the paper). 

This sentence has been changed to read: 

‘Because fossil fuel emission estimates are derived from economically-constrained energy consumption 

statistics, the relative errors in fossil fuel emission estimates are fairly small and thought to be between 5 

and 10%  (Andres et al., 2014).  However, because fossil fuel emissions currently account for > 90% of 
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total emissions, even relatively small errors can result in potentially large uncertainties in absolute C 

uptake calculated at the global scale (Francey et al., 2013)’ L258 in revised text. 

Essentially we are saying that of all the terms in the global C budget fossil fuel emission estimate errors 

are relatively small because they are estimated from energy statistics which are a variable of economic 

concern and often related to a nation’s gross domestic productivity.  However, fossil fuel emissions are 

the largest emission flux into the atmosphere, so these absolute error numbers are considerable- in this 

case a small percentage of a big number (e.g. fossil fuel absolute errors) is still bigger than a large 

percent of a small number (e.g. land use absolute errors)! 

6.  Section 2.2.1. Since this is talking about atmospheric concentrations, it would be useful to give 

numbers here in both ppm and PgC. 

For the sake of consistency we decided to use the same currency of PgC yr-1 for all the terms in the global 

carbon budget.  However, we do offer the conversion to allow the reader to go from ppm to PgC .  L223 

of revised text: 

‘For direct comparison with other terms in the global C budget, molar mixing ratios of atmospheric CO2 

are converted to a mass of petagrams (Pg= 1015g) C using the conversion factor 2.124 PgC ppm-1’ 

It would become too confusing if the units were switched for each component of the global C cycle and 

thus each section of the paper. 

7. Section 2.2: “Because fossil fuel emission estimates are derived from economically constrained energy 

consumption statistics, errors in these emission estimates are relatively small”. As before, how is this 

economically constrained and how big is small (5%, 10%, 20%)? This also seems to contradict other parts 

of the text saying that emission uncertainty now dominates. 

See response to comment 5 above. 

8. Page 14941, line 10: Ok to reference Francey et al, but it may be worth also referencing the comment 

and response to that paper. 

The comment to the Francey paper has been added. 

9. Section 2.2.1. The word “error” is used here a lot. Some of the uses are not really “error”? As an 

example (“accounting practices”) if one country uses a sector approach and another reference 

approach, is one of them in “error”, which this is just a different method to estimate emissions? If 

cement production is not included then I would only call it an “error” if they wanted to include it, but 

didn’t. Really, not including it is a system boundary question and hence a structural uncertainty? 

Although we have tried to use the term ‘error’ strictly in a statistical sense to describe estimate errors (ie. 

ε)  and distinguish them from our calculated ‘uncertainty’ in uptake, we have probably misused the term 

‘error’ in practical speak.  This section has been revised to reflect how different reporting practices by 

different countries can lead to uncertainties in global emission inventories.  L270to 281   
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10. Page 14942, line 1-2: “due to social and political pressures”. I don’t think Guan et al were that 

strong, but suggested it as a possible reason. 

This has been removed L278 

11. * Page 14942, line 6+: I am not sure I completely followed this. Countries are grouped to regions, 

and each region has a specific uncertainty. Ok (though, it would be good to give a table of the 

uncertainties for each region, helps for reproducibility). I didn’t understand the weighting bit. This is 

since you take random subset of countries from the region in the bootstrap, and then you need to 

rescale to replicate the regional total? What is the link to the errors of the largest emitters? I see you 

reference Andres et al, but I think adding an extra sentence of clarification may help [Incidentally, I have 

read Andres, and I searched for “Monte Carlo”, “bootstrap”, “weight”, and none of these words came 

up]. On the constant error “factors” are constant over time, is this the relative error? 

We have added a table of country-level uncertainties (from Andres et al. 2014) for the supplementary 

materials and section 2.2.1 has been revised to clearly explain the bootstrap error estimates and how 

they were weighted based on emission estimates.  

12. * I am not an expert on bootstrap methods, but perhaps you need to give a few words on why you 

are using bootstrapping in this case (or paper). One way to generate samples would be to assume that 

you would have a relative error for each region (say 10%, specifying a standard deviation) and then 

assume a distribution (say log normal) and apply a random distribution to generate different samples. 

Are you doing this, and then resampling? I did not really see how you came up with a distribution. 

For this paper, we created distributions by sampling from the country errors based on the weighted 

probabilities (see text). This was done 1000 times for each region, with the mean error of all countries 

being taken each time. The 1000 iterations formed the final regional joint distributions. This method 

resulted in smoothed distributions when the regions contained countries with different error 

measurements. Since the smoothed distributions were weighted towards the higher emitters, sampling 

from the distributions ensured that the region-wide errors were more accurate than simply sampling 

from the errors for countries within the region. 

13. Page 14943, line 1. Ok, I am perhaps a little slow. But what is El Camino? Google came up with some 

interesting results, so I guess this is not a standard term? Why did you use it? 

We introduce this term to describe our novel approach to error estimation, whereby errors in the current 

year are not independent from errors in previous years, thus the temporally correlated errors follow a 

‘path’ or ‘camino’.  We use this term to distinguish our approach from a conventional monte carlo type 

approach where the errors are independent in any given year.  This has been better explained in the text 

L 302 

14. Equation 4. I think it is great to include the temporal correlation. But why 0.95? Ok 20 years, but why 

20 years as opposed to 10 or 30? I realise there is no data, but some explanation may help. The 
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correlation will basically give a decaying correlation over time. The correlation with the adjacent year 

will be 0.95ˆ2, with an inventory 20 years ago 0.95ˆ20=0.35? Is that how I should interpret? 

We acknowledge that the 20 years of autocorrelation is rather arbitrary, but that it is highly unlikely that 

nations, especially large emitters are going to retroactively correct their emissions after 2 decades and 

this has been shown in the literature.  The main contribution here is the autocorrelation function and not 

the 20 years.  This has been revised to read (L311to 317): 

‘We note that our selection of ~20 years for the persistence of autocorrelation in emission error 

estimates is somewhat arbitrary; it assumes that errors are not corrected retroactively after 20 years.  

While it is conceivable that emission errors could be corrected going back even further in time, it has 

been shown that estimates tend to converge after a decade (Marland et al., 2009) therefore 2 decades is 

a fairly conservative estimate of the time-dependence of errors.  ‘ 

15. * Page 14943, line 9+. Ok to include CDIAC and EDGAR. But why BP. BP has crude estimates with no 

methodological description. The estimates can sometimes differ substantially at a national level. I would 

suggest it is better to use IEA, and better still, use IEA sectoral and IEA reference to make a subset of 4 

emission estimates. Did you include cement with BP? If not, you will introduce a bias to the results. 

We simply wanted to include 3 independent estimates of fossil fuel emissions, so I think that the BP 

estimates actually serve as a pretty good independent estimate because they are not estimated by 

academics but rather from industry, with a whole different set of assumptions and biases.  Many of the 

academic estimates have similar assumptions and conversion factors and accounting practices, so they 

are not necessarily ‘independent’.  In fact, while the BP estimates appear to be biased high since 1990, 

they were biased low during the 70s and 80s.  This is perhaps indicative of another important point from 

this analysis- that the emission errors are time dependent on decadal timescales.  It remains to be seen 

whether BP will adjust their estimate so that they correspond better with CDIAC and EDGAR.  We could 

replace the BP estimates with the IEA estimates (and probably will for future analyses), but replacing 

these estimates will not change the fundamental conclusion of our paper that fossil fuel emission errors 

now dominate global C uptake uncertainty.  It does not matter if we are considering 5% or 7% of a very 

large emission estimate the resulting number is still the largest error term in the budget.  All of our fossil 

fuel emission estimates including the BP estimates take into account emissions from cement production. 

This has been mentioned in the revised methods (L320). 

16. * Equation 6. I will echo my point equation 4, but why 0.05. That is a tiny correlation. It is basically 

no correlated, and that correlation diminishes over time. Surely the correlation should be larger, even 

0.95 as for FF. And how does 0.05 translate to 5 years? From the Global Carbon Project work a change in 

method can result in a complete change in the time series from 1959. I would expect the uncertainty in 

LUC to persist much longer than 5 years and certainly no less than the FF. 

Once again the value of persistence is arbitrary here and it is rather the approach that is important.  We 

selected this value based on the benchmark estimates of land use change emissions from Houghton 

which are updated every 5 years.  This has been better explained in the text (L 354to 357). 
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17. Page 14946, line 1+. The AF is introduced here, and mentioned a few times throughout. But, there 

seems to be no reference to the detailed analysis of AF in the literature. In the last 5 years so, several 

papers have been discussed on this topic, and I think it is worth linking to that literature here. 

Good point!  We overlooked that we presented this result and failed to discuss it in the context of the 

literature.  We have added an entire paragraph on AF to the revised discussion (L 656 to 673).  

18. Equation 9. My first reaction was that this was a correlation matrix (use of Sigma), but this just 

represents combinations of different datasets? (3 FF and 3 LUC leads to 9 combinations?) For each cell 

in the matrix you have 500 samples (it is like a 3D matrix) and you have 52 years? I guess I am repeating 

what you are writing, but this suggests the explanation needs a slight tweak. . . 

Equation 9 has been clarified based on these comments and the comments from Reviewer 2. 

19. Page 14949, line 5+. “difficult to determine dC/dt was in fact increasing”. This is a little confusing, 

and I think a bit of care is needed. It is not that you have written anything C7218wrong, but you are 

talking about the rate of change of a rate of change (dC/dt). C is clearly increasing (dC/dt is positive), but 

it is unclear if dC/dt is increasing (d2C/dt2). In other words, it is unclear whether the growth in C is 

accelerating over time? I would just be a little more explicit on some of these distinctions. 

Good point, it is always tricky discussing the derivative of a derivative.  This discussion has been 

simplified and hopefully clarified (L 436 to 443). 

20. Section 3.2. There is again the term “error” used here, and am not sure it is correct. Is “uncertainty” 

better? 

We think that this is in fact the appropriate term because it reflects the increasing contribution of fossil 

fuel emissions from developing countries which have a higher relative error as well as an apparent 

divergence in the individual emission inventories.  Striclty from a statistical perspective this represents an 

increase in the error of the estimate in question (i.e. εF ).   I suppose that we could call it ‘decreased 

precision’ instead but this is largely semantics.  

21. Page 14951, line 24+. There is improved detection of changes in C update, but a recent change in 

that trend. Is this just a trade-off between the constantly reducing uncertainty in dC/dt but the growing 

uncertainty in E? This “trough” in the last decade may be more a coincidently combination of the 

uncertainties, rather than anything more physical in the climate system? 

Your assessment of the competing effects of decreased error in dC/dt and increasing errors in E is correct.  

The text has been modified to reflect this (L 504 to 506). 

22. Page 14952, line 24. Ok, 122 simulations had a decreasing trend in N? That would mean that 

atmospheric growth (dC/dt) grew faster than emissions? This sounds unphysical, or I misinterpreted. It 

would be quite interesting to see a plot of the 122 sets of emissions and dC/dt to see if they look 

physical in any way! 
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This statement in the text only applies to net ocean uptake (NO) and suggests that there is a 3% chance 

that net ocean uptake has not increased.  This probably indicates that we have added to much error to 

the uptake estimates from ocean biogeochemical models, rather than some physical impossibility. 

23. * Discussion. It is ok to have a discussion, but I must admit I had a feeling of deja vu. I think I read 

some of this before! Perhaps one weakness of the paper is that it does not link to the existing literature. 

The Global Carbon Project also does quite some work on understanding the global carbon cycle, yet this 

work is barely mentioned (only mention is to the ocean data?). I think the discussion would be a good 

place to compare with the work of the GCP. What new is added with your analysis? E.g., “others have 

underestimated X”, “we find that there has been insufficient emphasis on Y”, etc. That would greatly 

improve the discussion 

The discussion has been revised extensively, including an additional paragraph on the airborne fraction 

and the inclusion of references that place our results in a broader research context.   

24. “The greatest source of error in fossil fuel emission estimates is derived from national energy 

consumption statistics that can be as high as 20% of total emissions for some nations”. But earlier this 

was not uncertain as it was economically constrained? 

On a relative scale these errors are still much smaller than errors in land use emissions which are on the 

order of 50% because more people care about fossil fuel consumption than land consumption. 

25. Figure 3. There is a missing something “All inventories also include cement production as”? What did 

you do for BP? 

This has been revised in figure caption 3 all inventories included cement production. 

26. * Figure 4-6. The figures are generally nice, but these ones make it difficult to get an idea of the 

distribution. For example, in Figure 4 it looks like a value between 0 and 2.5 is equally likely. Is it possible 

to plot with shading to give some idea of the distributions? Where is the median? Where are the 1 sigma 

values, 2 sigma, etc. Alternatively, a set of histograms could be placed under Figures 4-6 to show the 

distributions. 

We decided to show all of the simulations, instead of obscuring the data by showing the statistics.  It is 

informative for the reader to realize that while it is not likely (in a probabilistic sense) that land-use 

emissions were negative, which would actually indicate a net uptake of C, based on our simulations it is 

possible to get negative values.  We do show levels of uncertainty once we arrive at our C uptake 

estimates; however, it is more revealing to show all of the simulations and let the reader decide which 

simulations are more likely. 

27. * Figure 4-6 (4,6 in particular). This figures show large “spikes” every year. This I imagine is a lack of 

temporal correlation. If you put in a strong temporal correlation (0.95) then those spikes will disappear. 

This means that if I plotted an individual realisation in these figures, they would be rather random (the 

emissions in year t+1 will have no link to the emission in year t). This effect should be much smaller in 

the fossil emissions. I think it is worth exploring individual realisations a little to see if they make sense. 
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Ultimately, I would consider increasing correlations in the LUC data (as mentioned earlier). One would 

also expect correlations in the ocean data. Each measurement or model run is not independent of the 

previous value, in which case I would expect some temporal structure in that data. 

This is true because we have plotted the simulations as lines the degree of apparent ‘spikeyness’ is in fact 

a function of the temporal correlation of errors in the estimates.  For instance, the fossil fuel emission 

estimates appear the least spikey because we have arbitrarily assigned a 20 year autocorrelation 

function based on observations in the literature (see Marland et al.) compared to the land-use emission 

errors which only have a 5 year autocorrelation based on forestry statistics that are updated and 

released every 5 years (see Friedlingstein et al.).  However, for the ocean uptake estimates we assigned 

errors independently for every year because we have no idea how often these models are revised.  One 

could include time dependent errors in the ocean C uptake, but it would entail redoing our entire analysis 

and while it would result in much smoother error distributions it probably would not change our results 

substantively because there is very little inter-annual variability in the ocean C uptake estimates to begin 

with. 

28. Figure 8B, why is it so skewed? 

This is a good question and I am not certain.  However, it could be due to the change in variability in 

global C uptake that is enhanced when we remove the land use emissions that show very little trend over 

the last 50 years.   

29. Figure 8C, D. It would be good to show the 0 value on these figures. 

Not all of the figures have zeros on the axes, so this is not possible.  This is why we color coded the bars , 

such that negative values indicating increased C uptake from the atmosphere are filled grey. 

30. Figure 9. I like this, it would be good to have colours that contrast more than blue and green (though 

I see why you chose those colours). 

I think that the blue for ocean and green for land are pretty intuitive to the reader. 

31. Figure 11. Nice summary of the paper. These seems to contradict the finding in the abstract? LUC is 

still the largest source of uncertainty, but FF is growing very fast. 

Thanks!  The abstract has been changed to highlight this point. 

 

 

 

 

  



 

8 
 

Dear Referree #2, 

Thank you for your evaluation of our work.  Please find your comments below followed by our responses 

in italics including line numbers in the revised manuscript where appropriate: 

This was a really clear and well written paper. It is really handy to have all the carbon budget terms laid 

out in all their glory alongside all their uncertainty in this manner. I know I will often refer back to the 

paper. I did think the paper could improve by having a clever figure showing the magnitude of the errors 

side by side as well as a figure/table showing the error contributions – or perhaps a schematic of the 

study. But none of this is critical, as on second read I understood what the authors did. However, should 

the authors wish make to make their paper accessible right off the bat an explanatory figure or two 

would increase the usefulness of your paper.   Below are a couple small points and a question. 

Figure 1 is a conceptual figure illustrating the main process controlling the modern carbon cycle and their 

2 σ errors.  Similar figures are often presented; however, our contribution to this figure is really the error 

estimates for the major terms in the C budget. 

The only place where I got lost was in the explanation of the suite of simulations run P 14946 1. 

Equation 9, why is the matrix shown as products of EF and EL when it seems to me it should be sum? 2. 

“we include 500” 500 what, permutations? 500 samples of the error space? Wouldn’t this then lead to 9 

x (500 x 500) simulations? What is the 52? 3. Again lost with the number of simulations in the last 

sentence . . . “randomly drew from our 100 simulations of dC/dt to perform 4500 calculations of sumN 

and AF” 

The emission matrix (Eqn. 9) has been clarified and ‘Σ’ has been replaced with ‘+’ to explicitly show the 

sum of the terms in the matrix.  The text following Eqn. 9 has also been revised to explain this more 

clearly. 

Aren’t you artificially enlarging the error by taking random simulations from across 1959 to 2010? This 

means 2006 flux estimates contribute to the same pool as 1964 estimates and yet the trend 

contributes? You comment on the different 2 sigma error in dC/dt for 1959-1980 versus 1980-present 

day, would such a breakdown of decades have a different error budget for dC/dt and dNL/dt? 

I am not certain which error the reviewer is referring to here.  However, we can assume that they are 

referring to the fossil fuel emission errors which are the most important flux to the atmosphere.   In our 

analysis, we have assumed that national error estimates are static through time according to Andres et 

al. (2014) and these errors have been reported in supplemental table 1.  Therefore the increase in the 

global error of emissions is driven by the increased emissions from nations with higher error estimates 

(e.g. China, India) rather than changes in national level error estimates.  The decrease in error in 

calculating dC/dt since 1980 is due to the expansion of the global observation network and it has 

resulted in a decrease in dNL/dt as well. 

It would be really useful if you would tabulate N per year with errors. In fact, I expect many of the 

figures could be tabulated which may expand the usefulness of your paper.  
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The decadal estimates of uptake (assuming that’s what the reviewer is referring to here by ‘N’?) are 

included in Table 1 and we have added a supplemental table 2 of global, ocean, and terrestrial C uptake 

and associated errors as per the reviewers suggestion. 

 You seem to have avoided comparison with other estimates of AF in literature (e.g. le Quere et al vs 

Knorr in 2009). 

This was pointed out by both reviewers, so this was clearly an oversight on our part.  A new paragraph 

has been added to the discussion focusing on recent papers focusing on the AF. 

Twice (in the abstract and in the discussion) you make statements about carbon sequestration/climate 

change possible being the greatest ecosystem service /challenge. Rather than making a claim like this I 

would advise saying it is one of the greatest ecosystem services, or one of the greatest challenges. For 

although it is a huge important challenge there are many other issues which would contend for primacy. 

For instance, air production is an even greater ecosystem service than CO2 sequestration and not driving 

the 6th mass extinction or avoiding large scale genocide via hunger, disease or war I would consider as 

greater challenges . . .. 

These statements have been changed and a statement has been added to the land use emission 

discussion section explicitly stating: 

‘Although C uptake is one of the most important ecosystem services currently provided by the terrestrial 

biosphere at the global scale, it is certainly not the only ecosystem service provided by the terrestrial 

biosphere.’ 

I would adjust the statement that stabilizing the growth rate must be achieved before stabilizing 

concentrations can be achieved – this could be misleading. For although stabilizing the growth rate is a 

mathematical imperative on the path to stabilizing concentrations stabilizing the growth is not a target I 

would advise we strive towards, rather strive towards the goal of reducing concentrations. . . 

This statement has been revised to read: 

‘The stabilization of atmospheric CO2 concentrations is one of the greatest challenges to humanity; 

however, it is worth pointing out that in order to stabilize atmospheric CO2 concentrations we must first 

stabilize the atmospheric CO2 growth rate.  Unfortunately, there is no indication that the atmospheric 

CO2 growth rate is stabilizing; in fact, it has accelerated over the last 50 years (0.05 PgC yr-2; P-value= 7.5 

x 10-7), such that every decade the growth rate has increased by half a petagram of C per year.  ‘ 

Thus highlighting the mathematical requirement of stabilizing the growth rate before we can even 

dream of stabilizing the concentration. 
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Abstract: 26 

Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation 27 
of carbon (C) in the atmosphere, and ocean, and land; however, our ability to detect changes in the 28 
behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a 29 
rigorous and flexible framework for assessing the temporal and spatial components of estimate error 30 
and their impact on uncertainty in net C uptake by the biosphere.  We present a novel approach for 31 
incorporating temporally correlated random error into the error structure of emission estimates.  Based 32 
on this approach, we conclude that the 2 σ errorerrors of the atmospheric growth rate hashave 33 
decreased from 1.2 PgC yr-1 in the 1960s to 0.3 PgC yr-1 in the 2000s, leading to a ~20% reduction in the 34 
over-all uncertainty of net global C uptake by the biosphere.  While fossil fuel emissions have increased 35 
by a factor of 4 over the last 5 decades, due to an expansion of the atmospheric observation network.  36 
The 2 σ errors in fossil fuel emissions due to national reporting errors and differences in energy 37 
reporting practices have increased from 0.3 PgC yr-1 in the 1960s to almost 1.0 PgC yr-1

 during the 2000s.  38 
At the same time due to differences in national reporting errors and differences in energy inventories. 39 
Lastly, while land use emissions have declined slightly over the last 5 decades, butremained fairly 40 
constant, their relative errors remain high.  Notably, errors associated with fossil fuel emissions have 41 
comestill contribute substantially to dominateglobal C uptake uncertainty.  Currently, the absolute 42 
errors in the global C budget and are now comparable tofossil fuel emissions rival the total emissions 43 
from land use, thus efforts to reduce errors in fossil fuel emissions are necessary. highlighting the extent 44 
to which fossil fuels dominate the global C budget.   Because errors in the atmospheric growth rate have 45 
decreased faster than errors in total emissions have increased, a ~20% reduction in the over-all 46 
uncertainty of net C global uptake has occurred.  Given all the major sources of error in the global C 47 
budget that we could identify, we are 93% confident that terrestrial C uptake has increased and 97% 48 
confident that ocean C uptake has increased over the last 5 decades.  Although the persistence of future 49 
C sinks remains unknown and some ecosystem services may be compromised by this continued C uptake 50 
(e.g. ocean acidification), it is clear that arguably the greatest ecosystem serviceThus it is clear that 51 
arguably one of the most vital ecosystem services currently provided by the biosphere is the continued 52 
removal of approximately half of atmospheric CO2 emissions from the atmosphere; although, there are 53 
certain environmental costs associated with this service, such as the acidification of ocean waters. 54 
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1.0 Introduction: incorporating error into the global carbon budget 56 

Remarkable progress has been made in the study of the global carbon (C) budget over the last 50 years; 57 

however, errors associated with CO2 measurements and emission estimates still limit our confidence in 58 

calculating net C uptake from the atmosphere by the land and ocean.  Since the first continuous 59 

measurements of atmospheric CO2 at Mauna Loa were started in 1959 (Keeling et al., 2011), the global 60 

network of continuous monitoring sites has expanded to over 300 sites and continues to grow (Global 61 

View-CO2, 2013).  This expansion of the monitoring network allows us to resolve spatial patterns 62 

associated with the seasonal uptake and release of CO2 from and to the atmosphere at an 63 

unprecedented scale.  Similarly nearly 10 million measurements of partial pressure of CO2 (pCO2) have 64 

been made in the world’s oceans since 1957 (Bakker et al., 2014; Takahashi et al., 2014) allowing us to 65 

estimate CO2 uptake by the oceans.  From global measurements of CO2 and its isotopic composition, it is 66 

clear that C emitted from industrial activities (Boden et al., 2009) and human land use (Houghton, 1995) 67 

have led to the accumulation of CO2 in the atmosphere and pCO2 in the oceans.   68 

Even though our understanding of the global C cycle has benefited tremendously from this 69 

unprecedented global C monitoring network, we continue to struggle with errors in our measurements 70 

and estimates of terms in the global C budget that limit our ability to draw confident conclusions 71 

regarding changes in net C uptake by the biosphere.  As we enter into an era in which scientists are 72 

expected to provide an increasingly more detailed assessment of carbon uptake at increasingly higher 73 

spatial and temporal resolutions (Canadell et al., 2011), it is critical that we develop a framework for the 74 

incorporation and propagation of spatial and temporal errors into our calculations to prioritize future 75 

research efforts.  Furthermore, it is imperative that explicit uncertainties in the global carbon budget be 76 

made available to policy makers so that our best estimates can be weighted by levels of uncertainty 77 

such that the most informed policy decisions can be made. 78 

The objective of this synthesis is to identify the major sources of error in the important terms of the 79 

global C budget and to assess how these errors affect calculations of net global C uptake by the 80 

biosphere and partitioning of uptake between land and ocean sinks.  Although this is an attempt to fully 81 

incorporate errors into global C cycle analyses, we acknowledge that there are latent sources of error 82 

that remain unknown and are difficult to incorporate into our analysis at this time.  However, the 83 

framework that we develop here for incorporating both the spatial and temporal error structure is 84 

flexible and can be used to incorporate additional sources of error as our knowledge of the global C 85 

budget progresses.  The ultimate goal of this analysis is to identify and incorporate all known sources of 86 

error into the global C budget and provide conclusions with confidence intervals of changes in C uptake 87 

over the observational period from 1959 to 2010. 88 

1.1 Important terms of the global carbon budget  89 

Prior to identifying the main sources of error in the global carbon budget, it is necessary to describe the 90 

key processes controlling changes in atmospheric CO2 concentrations.  According to the mass balance of 91 

the atmosphere: 92 



 
 

4 
 
 

Formatted: Header

Formatted: Footer

𝑑𝐶

𝑑𝑡  = EF + EL + NO + NL   .   (1) 93 

Where 
𝑑𝐶

𝑑𝑡
 represents the annual growth rate of atmospheric CO2, EF represents the one-way flux of fossil 94 

fuel emissions, including cement production, to the atmosphere (Andres et al., 2012), and EL represents 95 

land use emissions to the atmosphere (Houghton et al., 2012).  Atmospheric CO2 is constantly being 96 

exchanged between the atmosphere and the biosphere, where NL represents net C exchange by the land 97 

through photosynthesis and respiration and NO represents net C exchange by the ocean through air-sea 98 

gas exchange.  Although land use emission estimates were originally derived to capture C emissions as a 99 

result of clearing primary forest, the operational definition of EL has expanded to include deforestation 100 

and processes affecting forest regrowth, such as CO2 fertilization and N deposition (Houghton et al., 101 

2012).  These different processes incorporated into the EL term are difficult to disentangle and quantify 102 

at the global scale and thus their combined uncertainty is considered in our error analysis.  Because we 103 

have defined the global C budget with respect to the atmosphere, all emission terms (E) add C to the 104 

atmosphere and thus have a positive sign, whereas the net exchange terms (N) can have a negative sign 105 

indicating net C uptake from the atmosphere or a positive sign indicating net C release to the 106 

atmosphere.  All of the terms in the budget can be measured directly or estimated on an annual time 107 

step, except the net land uptake term (i.e. NL) that is inferred as the residual land C sink.  Thus here we 108 

consider the statistical error associated with the measurement (e.g. CO2) or estimates (e.g. EF and EL) of 109 

each term in the global C budget (see Eq1 and Fig. 1). 110 

Below, we provide a brief overview of the sources of error in measurement of growth of atmospheric 111 

CO2 and each of the terms in the carbon budget. We then construct a global carbon budget with a full 112 

accounting and propagation of error using a Monte Carlo type approach.  To separate ocean and land 113 

uptake we rely on ocean models constrained by observations.  We conclude with a discussion of the 114 

important sources of error and their impact on uncertainties in calculating land and ocean C uptake.  115 

1.2 Sources of error in atmospheric and oceanic CO2 measurements 116 

Most of the error associated with measuring annual changes in atmospheric CO2 (i.e. 
𝑑𝐶

𝑑𝑡
) at the global 117 

scale is not due to instrumental accuracy or precision, but rather due to the location and number of 118 

sampling sites at which atmospheric CO2 measurements are made (Conway et al., 1994).  Until recently, 119 

measurements of atmospheric CO2 have been made primarily using infrared gas analyzers that have a 120 

reported accuracy of 0.3 ppm, reproducibility of 0.5 ppm, and precision of approximately 0.05 ppm 121 

(Conway et al., 1994; Keeling, 1960).  However, because measurements of atmospheric CO2 are made 122 

across a spatially heterogeneous network of sites, errors in quantifying changes in atmospheric 123 

concentration of CO2 may occur.  Although it is possible to control for local contamination by only using 124 

background sites located within the marine boundary layer, errors still arise as a result of where 125 

atmospheric CO2 measurements are made.  As the atmospheric growth rate of CO2 has increased, the 126 

uncertainty in the growth rate has gone down due to the addition of sampling sites to the global CO2 127 

observing network.  Although recent advances in laser technology have greatly increased the precision 128 

and frequency of gas phase CO2 measurements, ultimately our ability to resolve changes in atmospheric 129 
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CO2 concentration and attribute them to regional fluxes may still be limited by the spatial distribution of 130 

sites in the global CO2 observatory.  131 

1.3 Sources of error in oceanic pCO2 measurements 132 

Just as there are errors associated with CO2 measurements made in the atmosphere, there are also 133 

errors associated with pCO2 measurements made in the ocean.  Ocean C uptake is estimated as a 134 

function of the gradient in partial pressure between the atmosphere and the ocean (Δ pCO2), as well as 135 

the kinetics of CO2 gas transfer and solubility.  Uncertainty in net ocean C uptake is most sensitive to 136 

errors in the long term pCO2 trend, but other factors such as wind speed and sea surface temperature 137 

that affect the kinetics of air-sea gas exchange may also be important (Wanninkhof et al., 2013).  The 138 

partial pressure of CO2 in the ocean is much more variable than in the overlying atmosphere.  Because 139 

pCO2 values vary by as much as 100 μatm on seasonal to interannual timescales and become spatially 140 

uncorrelated at 102 km, extrapolating pCO2 values is statistically challenging (Li et al., 2005).  Although 141 

statistical techniques for extrapolating pCO2 and estimating C uptake by the oceans are improving (e.g. 142 

Landschützer et al., 2013; Rödenbeck et al., 2013), researchers often rely on ocean biogeochemical 143 

models to expand inference to the global scale (Le Quéré et al., 2013; Le Quéré et al., 2010).  The largest 144 

uncertainty in estimating net global exchange of CO2 between the ocean and the atmosphere is due to 145 

the assumption that pCO2 in the ocean changes at the same rate as pCO2 in the atmosphere, leading to a 146 

time invariant Δ pCO2.  However, studies suggest that Δ pCO2 is not constant and may have decreased in 147 

recent decades in the North Atlantic resulting in decreased C uptake (Schuster and Watson, 2007) and 148 

may have increased recently in the Pacific resulting in increased C uptake (Le Quéré et al., 2010).  149 

Difficulties also arise in extrapolating estimates of ocean C uptake to the Southern Hemisphere where 150 

observational constraints on simulations are sparse (Lenton et al., 2013) and in coastal regions that may 151 

be affected by continental delivery of dissolved inorganic C or complex upwelling patterns (Dai et al., 152 

2013). The overall 2 σ uncertainty in C uptake by the ocean has been estimated empirically from  153 

atmospheric O2 to be between 1.2 and 1.4 PgC yr-1
 (Ishidoya et al., 2012; Manning and Keeling, 2006) 154 

which is slightly higher than the 2 σ uncertainty of 1.0 PgC yr-1 based on estimates from ocean 155 

biogeochemical models (Le Quéré et al., 2013).     156 

1.34 Sources of error in estimating fossil fuel emissions  157 

The greatest contributor to the increase in atmospheric CO2 over the last 50 years is emissions from the 158 

combustion of fossil fuels and cement production (EF) and therefore errors associated with these 159 

emissions have the potential to result in large uncertainties in the global C budget.  Global emissions of 160 

fossil fuels have increased significantly during the last 5 decades, but relative errors of fossil fuel 161 

emission estimates have also increased leading to a substantial increase in absolute errors in fossil fuel 162 

emissions (Ballantyne et al. 2012).  Although our understanding of sources of error in fossil fuel emission 163 

estimates has greatly improved, emissions are increasing faster in nations with less accurate emission 164 

estimates thus leading to an increase in both relative and absolute errors of global fossil fuel emissions 165 

(Andres et al., 2014; Andres et al., 2012)(Andres et al., 2014b; Andres et al., 2012).  Because fossil fuel 166 

emissions are often estimated from energy consumption or production statistics, they are a fairly well 167 
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constrained economic variable.  Nonetheless, there are two primary sources of error that lead to 168 

uncertainties among and within fossil fuel emission inventories.   169 

First, methodological differences in how energy consumption statistics are converted to CO2 emissions 170 

may lead to different fossil fuel emission estimates among different inventories.    Most global fossil fuel 171 

inventories include emission estimates from solid, liquid, and gas fossil fuels, but the emission 172 

coefficients used to convert fossil fuel consumption to CO2 emissions may vary among inventories 173 

(Andres et al., 2012).  Furthermore, fossil fuel inventories may also differ in their inclusion or treatment 174 

of estimated emissions from cement production, gas flaring, and bunker fuels used for international 175 

transport.  These slight differences in how inventories treat industrial emissions can lead to significant 176 

differences in estimates among inventories.   While the slightly different methodological approaches 177 

employed by different inventories provide useful independent estimates of fossil fuel emissions, these 178 

independent estimates contribute to the global fossil fuel emission uncertainty.  179 

The second major source of error in fossil fuel emission estimates is due to emission accounting 180 

practices of individual countries.  It has long been suspected that emission reporting practices of 181 

developing nations are less reliable than reporting practices from developed nations (Marland et al., 182 

2009).  Another important characteristic of the error structure in emission estimates is that some 183 

components of the emission errors may be temporally correlated from year to year (Ballantyne et al., 184 

2012; Marland et al., 2009).  The global 2σ relative error on the flux weighted fossil fuel emission 185 

estimates is thought to range between 5 and 10%. Thus it is clear that slight discrepancies in fossil fuel 186 

emission estimates may lead to potentially large impacts on inferred global C uptake (Francey et al., 187 

2013).  188 

1.45 Sources of error in estimating land use change emissions  189 

Although emissions from changes in land use and land cover (i.e. EL) contribute a smaller fraction to 190 

total emissions of atmospheric CO2, there are considerable errors in estimating CO2 emissions from land 191 

use change and thus errors in land use emission estimates can result in large uncertainties in carbon 192 

uptake estimates.  In the 1950s approximately 30% of total CO2 emissions to the atmosphere were from 193 

land use change compared to the last decade in which only 10% of the total emissions were from land 194 

use change.  This reduction in the fraction of emissions due to land use change is largely the result of 195 

significant increases in fossil fuel emissions combined with nearly constant land-use emissions over the 196 

last 50 years (Houghton et al., 2012).  There are two different approaches to estimating emissions from 197 

changing patterns in land-use and land-cover change (LULCC): bookkeeping and process-based models. 198 

Bookkeeping techniques involve integrating either census or satellite data on forestry and agriculture 199 

with data on carbon densities to calculate sources and sinks of carbon based on empirical models  200 

(DeFries et al., 1999; Houghton, 1995). The second approach uses process-based ecosystem models to 201 

estimate carbon densities and rates of change in these densities as a result of the same drivers of LULCC 202 

(i.e, forestry and agriculture) (Stocker et al., 2011; Yang et al., 2010). The major difference between 203 

these two approaches is that process-based models include the effects of environmental change (e.g., 204 

CO2, climate, N deposition) on rates of decomposition and growth, while in the bookkeeping approach 205 
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these rates are constant through time. Each of these approaches attempts to capture the net effect of C 206 

release from deforestation and C uptake in forest regrowth.  Based on this broader definition of LULCC 207 

emissions it is clear that LULCC processes can be treated as emissions (i.e. EL) or they could be included 208 

in the net land exchange term (i.e. NL).  Here we consider LULCC emissions explicitly in the EL term, but 209 

this algebraic arrangement does not affect our error analysis. Factors contributing to errors in LULCC 210 

emission estimates can be separated into uncertainty in agricultural areas and rate of change in 211 

agricultural and forested areas, C density of natural and agricultural lands undergoing change, and 212 

uncertainty stemming from the definition of LULCC emissions (Gasser and Ciais, 2013; Pongratz et al., 213 

2014). Emission estimates derived from these different approaches may differ by as much as 30% and 214 

over-all relative 2 σ errors on these individual approaches may be as high as 50% (Houghton et al., 215 

2012). Therefore, even though CO2 emissions associated with land-use change contribute a decreasingly 216 

smaller fraction of total CO2 emissions, land use emission errors remain relatively high. 217 

2.0 Methods: Identifying sources of error for terms in the global carbon budget 218 

2.1 Errors in calculating the atmospheric growth rate 219 

Documenting changes in CO2 concentration based on atmospheric observations is not trivial, but 220 

fortunately the global observation network has expanded over the last 50 years allowing us to estimate 221 

changes in 
𝜕𝐶

𝜕𝑡
 with greater confidence.  Thus the error in estimating the atmospheric growth rate can be 222 

described as follows: 223 

    
𝑑𝐶

𝑑𝑡

̂
=  

𝑑𝐶

𝑑𝑡
 × (1 + 𝜀𝑐)       (2) 224 

Where  
𝑑𝐶

𝑑𝑡

̂
  represents our estimate of the true annual growth rate of atmospheric CO2 (

𝑑𝐶

𝑑𝑡
) and is 225 

calculated as the mean December and January (MDJ) concentrations of atmospheric CO2 minus the MDJ 226 

values from the previous year (Thoning et al., 1989).  Although atmospheric CO2 is relatively well mixed 227 

on timescales greater than one year (Conway et al., 1994), there is considerable spatial and temporal 228 

error (εc) associated with estimating  
𝑑𝐶

𝑑𝑡

̂
 on annual timescales. For direct comparison with other terms in 229 

the global C budget, molar mixing ratios of atmospheric CO2 are converted to a mass of petagrams (Pg= 230 

1015g) C using the conversion factor 2.124 PgC ppm-1 (Sarmiento et al., 2010).   231 

2.1.1 Spatial Error Component of the Atmospheric CO2 Growth Rate 232 

Most of the error associated with calculating the changes in atmospheric CO2 concentration from year to 233 

year is due to seasonal heterogeneities in the atmospheric mixing of atmospheric CO2 and the spatial 234 

unevenness of the global observing network (http://www.esrl.noaa.gov/gmd/ccgg/).  In fact, errors 235 

associated with the sampling network have been estimated to be about 1.2 PgC through cross-validation 236 

of individual sites using the entire global network (Masarie and Tans, 1995), which makes it challenging 237 

to substantiate annual growth rates that may only vary between 1 and 2 PgC yr-1 during early parts of 238 

the observational record (Ballantyne et al., 2012; Conway et al., 1994; Keeling et al., 1995). 239 

http://www.esrl.noaa.gov/gmd/ccgg/
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To assess how much εC varies as a function of the non-random spatial distribution of the global 240 

observation network, we first subset the global network for ‘background’ sites in the marine boundary 241 

layer (MBL see Fig. 2) that are less affected by local anomalies in fossil fuel emissions and uptake 242 

(Masarie and Tans, 1995).  To assess how biases in the MBL network may affect εC, bootstrap 243 

simulations were performed by simulating 100 alternative observation networks consisting of 40 sites 244 

that are resampled with replacement from sites located in the MBL.  The only geographic constraint on 245 

resampling is that at least one site from the tropics, Arctic, Antarctic, North Pacific, and North Atlantic 246 

must be included in each simulated network.  Since 1980, 
𝑑𝐶

𝑑𝑡

̂
 was estimated from all 100 simulated 247 

observation networks drawn from the MBL sites.   248 

2.1.2 Temporal Error Component of the Atmospheric CO2 Growth Rate 249 

Because complete mixing of atmospheric CO2 may take more than a year, errors in 
𝑑𝐶

𝑑𝑡
 are not 250 

independent from year to year.  In fact, errors in MDJ (εMDJ) values show considerable inter-annual 251 

positive autocorrelation, such that εMDJ (t) = 0.244 εMDJ (t-1) + 0.086 εMDJ (t-2) + ε(t), where ε(t) represents 252 

random error in the current year (Ballantyne et al., 2012). Because MDJ values that are biased high lead 253 

to 
𝑑𝐶

𝑑𝑡
 estimates that are biased high in the previous year and biased low in the subsequent year, this 254 

leads to a negative autocorrelation, such that εC (t) = -0.413 εC (t-1) - 0.166 εC (t-2) - 0.085 εC (t-3) + ε(t).  Over 255 

the period prior to 1980, 
𝑑𝐶

𝑑𝑡

̂
  was calculated from atmospheric CO2 observations at Mauna Loa and South 256 

Pole (MLOSPO) and εC was estimated from the εMDJ autocorrelated noise, as described above, 257 

normalized to a standard deviation of 0.24 ppm based on the period of observational overlap between 258 

MLOSPO and the MBL.  Monthly mean MLOSPO values prior to 1974 were calculated from Scripps 259 

Institution of Oceanography Data (Keeling et al., 2005) and monthly mean MBL values were calculated 260 

from data collected by the National Oceanic and Atmospheric Administration’s Earth System Research 261 

Laboratory (http://www.esrl.noaa.gov/).   262 

2.2 Fossil Fuel Emissions  263 

The process that currently accounts for the greatest flux of CO2 to the atmosphere is the combustion of 264 

fossil fuels and cement production (i.e. EF).  Because fossil fuel emission estimates are derived from 265 

economically-constrained energy consumption statistics, errors in these emission estimates are 266 

relatively small.Because fossil fuel emission estimates are derived from economically-constrained 267 

statistics of energy production and consumption, the relative errors in fossil fuel emission estimates are 268 

fairly small and typically between 5 and 10%  (Andres et al., 2014).  However, because fossil fuel 269 

emissions currently account for > 90% of total emissions, even relatively small errors can result in 270 

potentially large uncertainties in absolute C uptake calculated at the global scale (Francey et al., 271 

2013)(Francey et al., 2013;  although see Raupach et al., 2013). Therefore identifying the sources of 272 

error in fossil fuel emission estimates 𝐸�̂� is critical to constraining uncertainty in the global carbon 273 

budget: 274 

𝐸�̂� =  𝐸𝐹  × (1 + 𝜀𝐹)      (3)  275 

http://www.esrl.noaa.gov/
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where εF , the error factor in estimating fossil fuel emissions, has both a spatial and temporal 276 

component. 277 

2.2.1 Spatial Error Component of Fossil Fuel Emissions 278 

There are many sources of error in estimating fossil fuel emissions.  In particular, fossil fuel emission 279 

inventories differ in their inclusion of CO2 emissions from cement production and international 280 

transport, as well as their treatment of gas flaring (Andres et al., 2012).  These subtle differences can 281 

equate to considerable discrepancies between different inventories (Fig. 3).  Another significant source 282 

of error in global emission inventories is due to the different accounting practices of individualdifferent 283 

nations.  Although emission inventories are often based on standardized surveys of energy 284 

consumption, different institutions have different protocols for missing data and how units of energy are 285 

converted into CO2 emissions (Andres et al. 2012).  In some instances there may even be large 286 

discrepancies between the sum of provincial emission estimates and national emission estimates, due to 287 

social and political pressures (Guan et al., 2012).  All of these factors lead to errorsuncertainties in 288 

emission estimates.  ThereWhile there is a general consensus that emission errors in developed nations 289 

are much lower; however, fossil fuel than in developing nations, emissions are increasing fastest in 290 

developing nations where relative emission errorsat a faster rate simply because these nations are less 291 

constrained.  ‘developing’ rapidly. 292 

For ourthis analysis, countries were grouped into geographic regions as specified by the United Nations 293 

Statistics Division (http://unstats.un.org/unsd/methods/m49/m49regin.htm). For each UN region, 294 

bootstrapped distributions were created using country-level error estimates, with sampling weighted by 295 

each country’s contribution to regional emissions in 2008 (Andres et al. 2014). The weights were used to 296 

ensure that the uncertainty distributions reflected emission errors of the largest emitters. Once regional 297 

error distributions were created, ten random samples were drawn from the corresponding regional 298 

error distribution for each individual country and these errors were used to constrain the temporal 299 

component of the emission error structure (see section 2.2.2). Although the absolute error factors for 300 

emissions from individual countries may decrease or increase over time, for this analysis we assumed 301 

that country-level error factors that bound emission uncertainties remained constant from 1959 to 302 

2010. Error time series were created using the sampled maximum error as bounds.Uncertainties for 303 

each country (see supplemental table 1; Andres et al. 2014) were used to create regional maximum 304 

error distributions for each emission inventory using a bootstrapping method, with the highest emitters 305 

within the region contributing the most to the error distributions. This effect was achieved by weighting 306 

the sampling probability (𝑃(𝑠)) by the relative contribution of each country’s emissions ( 𝐸𝐶) to the 307 

total emissions within that region (𝐸𝑅): 𝑃(𝑠) =  𝐸𝐶/𝐸𝑅. 308 

The bootstrapping method used 1000 iterations of the mean of sampled errors to produce a smoothed 309 

distribution for regional maximum errors. This method allows for bounded fluctuations in country-level 310 

annual errors that relate directly to regional errors. To constrain the temporal component of the 311 

emission errors (section 2.2.2), ten random samples were drawn from the corresponding error 312 

distribution for each country for each year from 1959–2010, producing ten random relative error time 313 

http://unstats.un.org/unsd/methods/m49/m49regin.htm
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series for each country. These time series were used to produce the autocorrelated time series as 314 

described in section 2.2.2. 315 

2.2.2 Temporal Error Component of Fossil Fuel Emissions 316 

Fossil fuel accounting practices differ by individual nations, but these accounting practices often change 317 

over time as well.  The errors in annual emission estimates are not independent from year to year.  For 318 

instance, if an error is identified in annual emission calculations of a given country, then this error is 319 

corrected for the current year and all previous years emission estimates maybe retroactively corrected 320 

(Marland et al., 2009).  Thus the errors in annual emission estimates are not necessarily independent 321 

over time.  To account for this potential time-dependent error, we devised a slightly revised Monte-322 

Carlo type approach.  In amodified the conventional Monte-Carlo approach in which errors are 323 

randomly drawn for each year of the simulation.  Here we devise a method  to account for the known 324 

autocorrelation of errors in emission inventories.  To distinguish this approach from the conventional 325 

Monte-Carlo approach, we refer to it as an El Camino approach ‘el camino’ method in which errors in 326 

the current year are dependent upon errors in previous years.  The El Camino and thus the temporally 327 

correlated errors follow a ‘path’ from year to year.  This el camino approach allows for the incorporation 328 

of auto-correlated random noise into our fossil fuel emissions, such that: 329 

εF (t) = 0.95 x εF (t-1) + ε(t) ,         (4) 330 

where emission error factors for any given year εF (t) are correlated with emission estimates from the 331 

previous year εF (t-1) by an autoregressive coefficient of 0.95 with ε(t) as random error.  Based on this 332 

formulation, the persistence of autocorrelation among errors in successive years is ~ 20 years.  For our 333 

analysisWe note that our selection of ~20 years for the persistence of autocorrelation in emission error 334 

estimates is somewhat arbitrary; it assumes that errors are not corrected retroactively after 20 years.  335 

While it is conceivable that emission errors could be corrected going back even further in time, it has 336 

been shown that estimates tend to converge after a decade (Marland et al., 2009) therefore 2 decades 337 

is a fairly conservative estimate of the time-dependence of errors.  For our analysis, we relied on three 338 

independent fossil fuel emission inventories (Fig. 3)- BP (previously known as British Petroleum), the 339 

Carbon Dioxide Information and Analysis Center (CDIAC), and the Emission Database for Global 340 

Atmospheric Research (EDGAR).)- all of which included cement production as source of emissions.   341 

2.3 Land Use Emissions  342 

Among the variables in the global carbon budget (Eq 1), CO2 emissions from land use and land change 343 

(EL) are probably the most difficult to quantify and have the greatest error.  This is because the net flux 344 

from EL encompasses emissions resulting from the conversion of land from primary forest to agricultural 345 

production, in addition to C uptake associated with the abandonment of agricultural lands and the 346 

regrowth of secondary forest (Houghton, 1995).  Many of these processes occur at local to regional 347 

scales; thus, there errors are difficult to propagate to the global scale.  However, rates of deforestation 348 

and regrowth have changed over time and other environmental processes, such as N-deposition, climate 349 

variability and CO2 fertilization may alter these rates (Jain et al., 2013).  Here we consider the main 350 

factors contributing to the spatial and temporal components of EL, such that: 351 
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𝐸�̂� =  𝐸𝐿  × (1 + 𝜀𝐿)    .   (5) 352 

2.3.1 Spatial Error Component of Land Use Emissions 353 

Land use emissions have remained fairly constant, or may have diminished, over the past 20 years, but 354 

patterns of deforestation associated with these emissions have clearly changed (Hansen et al., 2013; 355 

Houghton et al., 2012).  Although recent estimates from Landsat imagery indicate that deforestation in 356 

Brazil have indeed gone down by approximately 1,300 km2/yr in Brazil from 2000 to 2010 the last 357 

decade, this has almost been compensated by 1,000 km2/yr increase in deforestation rates in Indonesia 358 

over the same period (Hansen et al. 2013), suggesting a regional shift in land use emissions but very 359 

little net change in land use change emissions over the last decade (Houghton et al. 2012).  However, 360 

there are errors and assumptions associated with the conversion of forest area into CO2 emission 361 

equivalents and the 2 σ relative error on emission estimates from land use change are thought to be on 362 

the order of 50% (Houghton Pers. Comm). 363 

2.3.2 Temporal Error Component 364 

Similar to errors in fossil fuel emission estimates, errors in CO2 emissions from land use are also serially 365 

correlated.  The benchmark method for estimating emissions from land use emissions is the 366 

bookkeeping approach developed by Houghton (1983) starts with global forestry statistics that are only 367 

released every five years (FAO, 2010).  Thus net land-use emissions must be extrapolated for intervening 368 

years with no forestry statistics.  Although this interpolation approach works fairly well when rates of 369 

deforestation and regrowth are not changing, this approach can lead to errors in estimating land-use 370 

emissions that once again are corrected retroactively.  Therefore we apply a similar El Camino approach 371 

to simulating the auto-correlated errors in land use emissions by using the following relationship:    372 

εL (t) = 0.05 x εL (t-1) + ε(t) ,          (6) 373 

where the persistence of temporally correlated errors in land use emission is reduced to ~ 5  years,.  This 374 

time persistence value is arbitrary; however, it was selected based on the Food and Agricultural 375 

Organization’s forestry statistics that are updated every five years.  Therefore land-use emission 376 

estimates are predicted into the future four years and then corrected retroactively in the fifth year 377 

(Friedlingstein et al., 2010).  Here we consider three independent estimates of EL derived from three 378 

different approaches: 1.) The bookkeeping method based on forestry statistics (Houghton, 1995), 2.) a 379 

model derived estimate based on historical land use maps (Stocker et al., 2011), and 3.) a model derived 380 

estimate including historical land use as well as nitrogen cycling (Yang et al., 2010).  Although more EL 381 

estimates exist, we have selected three representative estimates of EL covering a range of possible 382 

approaches for inclusion in our error analysis framework (Fig. 4).   383 

2.4 Estimating net ocean and land uptake with uncertainty 384 

2.4.1 Estimating net global C uptake  385 
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In order to estimate changes in the net global carbon uptake we focused on two diagnostic variables of 386 

the global carbon cycle.  First we calculated net global carbon uptake by simply re-arranging equation 1 387 

to solve for: 388 

𝛴𝑁 =  
𝑑𝐶

𝑑𝑡

̂
−  𝛴𝐸   ,   (7) 389 

where we calculate net global uptake simply as the difference between the annual atmospheric growth 390 

rate and the sum of net emission fluxes to the atmosphere.  Because we have defined the carbon mass 391 

balance with respect to the atmosphere a net loss from the atmosphere corresponds with negative ΣN 392 

as a result of increased carbon uptake by the biosphere.  In order to calculate relative changes in global 393 

C uptake efficiency we also calculated the airborne fraction (AF), according to: 394 

𝐴𝐹 =  
𝑑𝐶

𝑑𝑡

̂
/𝛴𝐸               ,   (8) 395 

where an increase in AF would indicate an increase in the proportion of emissions remaining in the 396 

atmosphere and perhaps diminished C uptake efficiency by the biosphere.  We calculated ΣN and AF 397 

using two approaches.  One, using the sum of all emissions (i.e.  ΣE= EF + EL) and the other using just EF to 398 

assess how sensitive global C uptake is to these two different CO2 emission scenarios.  To propagate 399 

error across the fluxes, this El Camino approach considers a matrix of potential combinations of 400 

emission estimates along with their error estimates, such that: 401 

To incorporate the error from different combinations of our fossil fuel emission simulations (EFX ) and 402 

our land-use emission simulations (ELX), we devised an emission scenario matrix: 403 

𝛴𝐸(𝐹𝑋,𝐿𝑋) =  [

𝛴𝐸𝐹1𝐸𝐿1 𝛴𝐸𝐹1𝐸𝐿2 𝛴𝐸𝐹1𝐸𝐿3

𝛴𝐸𝐹2𝐸𝐿1 𝛴𝐸𝐹2𝐸𝐿2 𝛴𝐸𝐹2𝐸𝐿3

𝛴𝐸𝐹3𝐸𝐿1 𝛴𝐸𝐹3𝐸𝐿2 𝛴𝐸𝐹3𝐸𝐿3

] [

𝐸𝐹1+ 𝐸𝐿1 𝐸𝐹1 + 𝐸𝐿2 𝐸𝐹1+ 𝐸𝐿3

𝐸𝐹2+ 𝐸𝐿1 𝐸𝐹2 + 𝐸𝐿2 𝐸𝐹2 + 𝐸𝐿3

𝐸𝐹3+ 𝐸𝐿1 𝐸𝐹3 + 𝐸𝐿2 𝐸𝐹3 +  𝐸𝐿3

],     (9) 404 

where 𝛴𝐸(𝐹𝑋,𝐿𝑋) is a flexible framework that can accommodate any number of combinations of fossil 405 

fuel emission estimates (EFX ) and land use emission estimates (ELX).emission simulations.  In our analysis 406 

we only consider three EFX estimates and three ELX estimates in our 3x3 matrix for a total of 9 different 407 

combinations of total fossil fuel and land use emissions.  For each emission estimate we 408 

includecombinations.  Each combination consists of the sum of  500 fossil fuel emission simulations and 409 

500 land use emission simulations with itstheir associated spatial and temporal error spanning the52 410 

years from(ie. 1959 to 2010) for a grand total of 4500 x 52 simulations of ΣE(FX,LX)  (Fig. 5).  In order to 411 

calculate ΣN and AF we randomly drew from our 100 simulations of 
𝜕𝐶

𝜕𝑡
  simulations to perform 4500 412 

calculations of ΣN and AF spanning from 1959 to 2010.  We calculated ΣN and AF using two approaches, 413 

one, using the sum of all emissions as shown in the emission scenario matrix (eq. 9) and the other using 414 

just EF simulations to assess how sensitive global C uptake is to these two different CO2 emission 415 

scenarios.   416 

2.4.2 Partitioning C uptake between the land and the ocean 417 
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In order to partition the global net C uptake flux between net land (i.e. NL) and net ocean (i.e. NO) 418 

uptake, we relied on ocean biogeochemical models that have been constrained by observations(Le 419 

Quéré et al., 2013) . In particular, these ocean biogeochemical models have been normalized to changes 420 

in atmospheric O2/N2 which provide an independent estimate of ocean C uptake mostly expressed on 421 

decadal time scales.  We extended this logic, by using O2/N2 measurements to estimate the error in 422 

estimates of ocean C uptake in these ocean biogeochemical models: 423 

𝑁�̂� =  𝑁𝑂  × (1 + 𝜀𝑂)    ,                               (10) 424 

where εO is the error in ocean C uptake and it is estimated from the atmospheric potential oxygen to be 425 

approximately 1.3 PgC yr-1 as the average 2σ error reported from Ishidoya et al. (2012) and (Manning 426 

and Keeling, 2006).  Thus time invariant random normally distributed error (± εO) is added to each year 427 

of C uptake in each of the ocean biogeochemical models included in our analysis.  For our analysis we 428 

considered ocean C uptake estimates from 5 independent ocean biogeochemical models- 1.) Nucleus for 429 

European Modeling of the Ocean (NEMO), 2.) Laboratory of Science and Climate of the Environment 430 

(LSCE), 3.) Community Climate System Model (CCSM-BEC), 4.) Norwegian Ocean Biogeochemical Model 431 

(MICOM-HAMOCC ), 5.) Max Planck Institute (MPI-MET), that have all been included in the Global 432 

Carbon Projects 2013 assessment (Le Quéré et al., 2013).  For each model, the random error term (εO) 433 

was added at each time step for a total of 900 realization of C uptake with error for each model for a 434 

grand total of 4500 realizations across models (Fig. 6).  It should be noted that in order to calculate the 435 

ocean C uptake and its uncertainty from atmospheric measurements of O2/N2 fossil fuel emission 436 

estimates are required to constraint the ‘atmospheric potential oxygen’, thus the εO and the εF terms are 437 

not entirely independent.  Nonetheless, O2/N2 measurements provide a measure of error which can be 438 

applied to individual climate model simulations.  These ocean C uptake realizations were then 439 

subtracted from our global uptake to infer net land uptake, according to: 440 

𝑁�̂� =  𝛴𝑁 − 𝑁�̂� .        (11) 441 

Thus yielding a distribution of 4500 simulations of ΣN, NO, and NL spanning the 1959 to 2010 442 

observational period.  From these simulations we estimate the significance of observed trends in ΣN, NO, 443 

NL, and AF over the last 5 decades as well as decadal changes in the mean value as well as the variance. 444 

3 Results: sources of error and their impact on uptake uncertainty 445 

3.1  Increasing precision and increasing variability in the atmospheric CO2  growth rate 446 

The error in calculating the annual atmospheric CO2 growth rate has decreased considerably over the 447 

last 5 decades (Fig. 2).   The mean overall 2σ error for 
𝑑𝐶

𝑑𝑡

̂
 was 0.71Pg C yr-1 , with a much higher 2σ error 448 

of 1.11  Pg C yr-1  from 1959 to 1980 and a much lower  2σ error from 1980 to the present of 0.36Pg C yr-449 

1. At the same time the variability in 
𝑑𝐶

𝑑𝑡

̂
 appears to have increased over the last 50 years.  This is most 450 

clearly evident by inspecting decadal changes in the standard deviations of the annual mean values of 
𝑑𝐶

𝑑𝑡

̂
 451 

(Table 1).  During the 1960s 
𝑑𝐶

𝑑𝑡

̂
  values were much less variable (σ = 0.61 PgC yr-1) than values of 

𝑑𝐶

𝑑𝑡

̂
  that 452 
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peaked during the 1990s (σ = 1.40 PgC yr-1) and have subsequently become slightly less variable since 453 

2000 (σ = 0.82 PgC yr-1).  It is intriguing that variability in 
𝑑𝐶

𝑑𝑡

̂
 appears to be increasing while our precision 454 

in estimating 
𝑑𝐶

𝑑𝑡

̂
 has also increased.  To test whether this increase in 

𝑑𝐶

𝑑𝑡

̂
 is simply due to adding sites to 455 

the global atmospheric CO2 monitoring network, we examined the standard deviation in the 456 

atmospheric growth rate calculated from only the Mauna Loa and the South Pole monitoring sites.  457 

Although the over-all variance in 
𝑑𝐶

𝑑𝑡

̂
 was slightly reduced when calculated from only two sites, 

𝑑𝐶

𝑑𝑡

̂
 458 

estimates show a similar increase in standard deviation from the 1960s (σ = 0.58 PgC yr-1) through the 459 

1990s (σ = 1.26 PgC yr-1). Thus the apparent increase in carbon cycle variability over the last 50 years 460 

seems to be robust and not an artifact of the expanding global atmospheric CO2 observation network.    461 

 462 

In the early part of the observation record errors associated with estimating  
𝑑𝐶

𝑑𝑡

̂
 were one of the main 463 

contributors to uncertainty in calculating global C uptake; however, as the precision of 
𝑑𝐶

𝑑𝑡

̂
 estimates has 464 

increased, their contribution to global C uptake uncertainty has been reduced.  In fact, in the 1960s 465 

errors in the atmospheric CO2 growth rate accounted for roughly 40% of the uncertainty in global C 466 

uptake; in contrast, in the 2000s errors in the atmospheric CO2 growth rate accounted for only about 467 

10% of the uncertainty in global C uptake (Fig. 11).  Thus errors in estimating the annual growth rate at 468 

the beginning of the period of observation (e.g. 1960s) made it difficult to determine that 
𝑑𝐶

𝑑𝑡

̂
 was in fact 469 

increasing (Fig. 2) and that net global C uptake was occurring at all much less increasing over time (Fig. 470 

7).if  
𝑑𝐶

𝑑𝑡

̂
 was in fact statistically distinguishable from zero (Fig. 2); however, continued measurements 471 

have revealed that not only is  
𝑑𝐶

𝑑𝑡

̂
 positive but it is clearly accelerating as a result of increased emissions.   472 

3.2 3.2 Increasing erroruncertainty in fossil fuel emission estimates 473 

As of 2010, more than 90% of the total CO2 emissions to the atmosphere were derived from fossil fuel 474 

combustion or cement production (Fig. 1), therefore slight errors in EF can have significant impacts on C 475 

uptake estimates by the land and ocean.  While fossil fuel emissions have increased by a factor of 3.6 476 

over the past 50 years the absolute errors in fossil fuel emissions have increased by a factor 4.5 over the 477 

same period of time (Fig. 3), suggesting that fossil fuels account for an increasing proportion of the 478 

atmospheric CO2 burden but that the precision of our EF estimates is actually decreasing over time.  This 479 

result is supported by the decadal statistics showing that the mean of the standard deviations has 480 

increased from the 1960s to present, while the standard deviation of the means has not changed 481 

appreciably (Table 1). This increase in EF errors is due to the divergence in independent EF inventories 482 

compounded by a greater contribution of emissions from emerging economies.  Estimates of EF from BP 483 

appear to be slightly higher than EF estimates from CDIAC and EDGAR which are more similar to each 484 

other but slightly lower over the last 2 decades (Fig. 3).  It is not quite clear what differences in 485 

accounting practices may cause these slight discrepancies between inventories, because they often rely 486 

on the same energy consumption statistics (Andres et al., 2012). 487 
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The other major source of error in fossil fuel emission estimates is from national reporting statistics that 488 

vary considerably based on the degree of development in energy infrastructure.  While EF errors are 489 

relatively low for North America, Europe, Australia, and parts of Asia, they are noticeably higher for 490 

some countries that emit a large portion of the global fossil fuel emissions, such as India, China and 491 

Russia.  Lastly, the highest emission errors are for countries in South and Central America as well as 492 

some countries in Africa and the Middle East.  These geographical regions with higher error are also 493 

located in regions with very few observations of atmospheric CO2 making our ability to detect changes in 494 

net C uptake for these regions exceedingly difficult.   495 

Lastly, errors in fossil fuel emissions are contributing a larger proportion to global C uptake uncertainty 496 

today than they were 50 years ago (Fig. 11).  In the 1960s approximately 10% of the uncertainty in global 497 

C uptake could be attributed to errors in fossil fuel emission estimates, whereas approximately 30% of 498 

the global C uptake uncertainty is due fossil fuel emission errors since 2000.  Furthermore, increasing 499 

trends in the errors of fossil fuel emissions are quickly becoming the dominant factor contributing to 500 

global C uptake uncertainty, with 38% of the total uncertainty due to emission errors in fossil fuels by 501 

the year 2010. 502 

3.3 3.3   Land-Use emission errors remain high 503 

Although emissions from land use land cover change (i.e. EL) contribute much less to the total emissions 504 

to the atmosphere today than they did 5 decades ago, emission errors (i.e. εL) remain quite high (Fig. 4).  505 

Emissions from LULCC have remained fairly constant over the last 50 years, with an apparent decline 506 

over the last 20 years (Table 1).  Because EL has remained fairly constant while EF has risen steadily over 507 

the last 50 years, the fraction of total emissions comprised of EL has declined to 10% since the year 2000, 508 

whereas EL comprised almost 30% of the total emissions to the atmosphere during the 1960s.   509 

Because errors in EL are often reported as relative errors, they have gone down slightly in recent years as 510 

a function of decreasing emissions for independent estimates of EL.  However, these slight decreases in 511 

errors (εL) for independent land use emission estimates have been largely offset by the disagreement 512 

among independent estimates (Fig. 4).  The combination of these factors has resulted in very little 513 

change in the overall error structure of EL over the last 50 years (Table 1).  Because EL and εL have 514 

remained fairly constant over the last 5 decades the proportion of error contributed to global 515 

uncertainty in C uptake has remained at approximately 0.4 (Fig. 11). 516 

3.4 3.4  Changes in net global C uptake and the airborne fraction 517 

A clear and significant acceleration in net global C uptake has been observed from 1959 to 2010, with 518 

net rates of annual ΣN nearly doubling from 2.2 ± 1.8 PgC yr-1 in 1959 to 4.3 ± 1.6 PgC yr-1 in 2010 (± 2σ).  519 

This acceleration in ΣN corresponds to a 0.5 PgC decade-1 increase in the amount of C taken up by Earth 520 

over the past 50 years (Fig. 7).  Furthermore this increasing trend in net global C uptake, as evidenced by 521 

progressively more negative ΣN values appears to be insensitive to whether land-use emissions are 522 

included in our global C budget (Figs. 8A and 8B).  For both emission scenarios with and without land use 523 

emissions ΣN trends were all negative.  In fact, when EL emissions are removed from our calculations of 524 
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ΣN we see that the trend in ΣN actually increases from -0.05 PgC yr-1 to -0.06 PgC yr-1 (see median values 525 

in Figs. 8A and 8B).  Although a clear and significant increase in ΣN is evident over the last 50 years, 526 

there is considerable decadal variability as well.  We see that ΣN increased by ~30% from the 1960s to 527 

the 1970s, but only a ~5% increase in ΣN was observed from the 1990s to the 2000s (Table 1).  This 528 

suggests that the increase in global C uptake has not been a steady increase, but can be characterized by 529 

periods of rapid acceleration and periods of slow or no acceleration (Table 1).  The decadal means of the 530 

standard deviations of ΣN have steadily gone down over the last 50 years, indicating that our ability to 531 

detect changes in global C uptake has improved (Table 1).  However, a this increased detection ability of 532 

ΣN over time has been somewhat undermined by the recent uptick in global C uptake uncertainty has 533 

been observed over the last 10 years, probably in responsedue to increasing errors in fossil fuel emission 534 

estimates (Fig. 11).  In contrast, the decadal standard deviation of the mean values of ΣN have increased 535 

over the last 50 years, indicating an increase in the observed variability of global C uptake that appears 536 

to have peaked at 1.37 PgC yr-1 during the 1990s (Table 1).   537 

The airborne fraction of atmospheric CO2 has only increased slightly over the last 5 decades, but this 538 

increase is not significant (Fig. 7).  Furthermore, the airborne fraction appears to be highly sensitive to 539 

whether land-use emissions are included in our emission scenario.  For instance, mostly positive trends 540 

were observed in AF when both land-use and fossil-fuels were included in our emission scenario, 541 

indicating a possible increase in AF and a possible decrease in relative global C uptake efficiency (Fig. 542 

8C).  However, if we consider the fossil fuel only scenario, we see that the sign of AF trends become 543 

almost exclusively negative indicating a possible increase in relative global C uptake efficiency (Fig. 8D).  544 

Although no significant trend in AF was observed within the bounds of uncertainty of our analysis, a 545 

considerable decrease in annual AF variance was observed over the 50 year record of observations (Fig. 546 

7).  The decadal mean of the standard deviations has gone down from 0.16 in the 1960s to 0.03 in the 547 

2000s; such a decrease indicates that our ability to detect changes in AF has increased by a factor of 548 

four.  Similar to our ΣN statistics, the standard deviation of the decadal means in AF has climbed steadily 549 

until the 1990s suggesting that variability in the global C cycle peaked in the 1990s and has remained 550 

strong.   551 

3.5 3.5  Changes in the partitioning of C uptake between the ocean and land 552 

Both land and ocean C uptake have increased over the last 50 years; however, variability in this C uptake 553 

is quite different for these two components of the global C cycle (Fig. 9).  The median value of our 4500 554 

simulated NO trends was -0.031 PgC yr-2 and 97% of these simulated trends were negative (4378/4500), 555 

providing strong evidence that ocean C uptake as simulated by ocean biogeochemical models has 556 

increased over the last 50 years.  Similarly, the median value for our inferred trends of NL was -0.024 PgC 557 

yr-2, with 93% of our simulations showing negative NL trends (4185/4500).  Therefore given the full range 558 

of errors considered in our analysis of atmospheric CO2 observations and emission estimates, we can say 559 

with an extremely high level of confidence that ocean C uptake has increased steadily and with a high 560 

level of confidence that land C uptake has increased but with greater variability over the last 50 years.   561 

Although empirical evidence clearly shows that rates of ocean and land C uptake have increased, 562 

decadal variability of NO and NL show quite different patterns over the last 50 years.  Rates of NO have 563 
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increased from 1.11 ± 1.31 PgC yr-1 during the 1960s to 2.21 ± 1.39 PgC yr-1 during the 2000s (Table 1).  564 

Even though NO rates have increased in every decade over which we have observationally constrained 565 

estimates, the percentage of increase in NO has gone down from a 29% increase from the 1960s to 1970s 566 

to only an 8% increase from the 1990s to 2000s.  Over the past five decades,  the mean of the standard 567 

deviations in NO has remained fairly constant, but increased slightly since 2000 possibly due to a 568 

divergence in model predictions (Fig. 6).  An alternative perspective is provided by the coefficient of 569 

variation of NO which has gone down steadily over the last 50 years from ~ 1.5 to ~0.6, suggesting that 570 

our ability to detect changes in NO has increased considerably (Fig. 10).   571 

Much more variability in net land C uptake was observed from annual to decadal scales over the last 50 572 

years.  Rates of NL have increased from 1.39 ± 1.56 PgC yr-1 during the 1960s to 2.46 ± 1.43 PgC yr-1 573 

during the 2000s (Table 1); however considerable variability in NL was also observed (Fig. 8).  For 574 

instance, in 1987 (NL = 0.31 ± 1.40 PgC yr-1) and 1998 (NL = 0.82 ± 1.58 PgC yr-1) a net release of CO2 from 575 

the terrestrial biosphere to the atmosphere is inferred.  Decadal variability in NL also appears to be 576 

increasing as evidenced by the increase in the standard deviation of the annual mean NL values from 577 

0.56 PgC yr-1 in the 1960s to 1.06 PgC yr-1 in the 2000s, with a peak in variance occurring during the 578 

decade of the 1990s (Table 1).  Although net land C uptake appears to have become increasingly variable 579 

on decadal scales over the last 5 decades, our ability to detect changes in land C uptake and its inter-580 

annual variability has improved.  The mean of standard deviations of NL has decreased from 1.56 PgC yr-1 581 

in the 1960s to 1.43 PgC yr-1 in the 2000s, suggesting that our annual estimates of NL are becoming more 582 

constrained over time (Table 1).  This is also reflected in a slight decrease in the coefficient of variation 583 

of NL from ~ 1.0 in the 1960s to ~0.5 in the 2000s, albeit with much greater inter-annual differences (Fig. 584 

10).  Incidentally, both years that showed a net release of CO2 from the terrestrial biosphere to the 585 

atmosphere also showed relatively high coefficients of variation as the mean of NL approached zero in 586 

our simulations.   587 

4.0 Discussion 588 

4.1 Atmospheric Growth Rate 589 

The stabilization of atmospheric CO2 concentrations is perhapsone of the greatest challengechallenges 590 

to humanithumanity; however, it is worth pointing out that in order to stabilize atmospheric CO2 591 

concentrations we must first stabilize the atmospheric CO2 growth rate before we can even consider 592 

stabilizing atmospheric CO2 concentrations.  Unfortunately, there is no indication that the atmospheric 593 

CO2 growth rate is stabilizing; in fact, it has accelerated over the last 50 years (0.05 PgC yr-2; P-value= 7.5 594 

x 10-7), such that every decade the growth rate has increased by half a petagram of C per year.  Although 595 

the atmospheric CO2 growth rate has clearly accelerated it has not accelerated smoothly on decadal 596 

time scales.  For instance, during the 1980s the growth rate of atmospheric CO2 accelerated only slightly 597 

(0.04 PgC yr-2), compared to the 1990s when the atmospheric growth rate accelerated rapidly (0.17 PgC 598 

yr-2).  This highlights the importance of long-term measurements and the expansion of the long-term 599 

carbon measurement observatory, if we wish to verify changes in the rate of future CO2 emissions.While 600 

it has been suggested that these decadal changes in the growth rate of atmospheric CO2 are perhaps 601 

due to emission errors (Francey et al., 2013), our analysis suggests that this decadal variability is more 602 
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likely due to variability in terrestrial C uptake consistent with previous analyses (Bousquet et al., 2000; 603 

Sarmiento et al., 2010).   604 

Our ability to detect changes in atmospheric CO2 has increased considerably as additional sites have 605 

been added to the global monitoring network.  The error in calculating 
𝑑𝐶

𝑑𝑡

̂
 has decreased by a factor 4 606 

from a mean value of 1.2 PgC during the 1960s to 0.3 PgC during the 2000s.   Even though the annual 607 

mean of  
𝑑𝐶

𝑑𝑡

̂
  has increased rapidly over the last 50 years the standard deviation about this annual mean 608 

has decreased even faster, as evidenced by the annual coefficient of variation in 
𝑑𝐶

𝑑𝑡

̂
 that has gone down 609 

by a factor 10 from 0.37 in the 1960s to 0.04 in the 2000s.  This increase in signal to noise ratio of 610 

𝑑𝐶

𝑑𝑡

̂
 once again clearly illustrates our increased ability to detect annual changes in atmospheric CO2 at the 611 

global scale.  However, estimating global changes in 
𝑑𝐶

𝑑𝑡

̂
 from observations at an array of background 612 

sites is relatively easy compared to estimating regional changes in 
𝑑𝐶

𝑑𝑡

̂
 from continental sites even when 613 

an extensive network of frequent observations are available.  For instance, Gourdji et al. (2012) found a 614 

0.8 PgC yr-1 difference between two atmospheric inversion estimates of the C budget for N. America 615 

depending on two different sets of boundary layer mixing ratios of CO2, which is close to our 2 σ 616 

uncertainty of 1.2 PgC yr-1  for global C uptake for the year 2010.  Therefore verifying potential changes 617 

in CO2 fluxes that may be regulated at the national level remains a challenge at the regional to 618 

continental scale.Therefore verifying potential changes in net CO2 fluxes at the regional to continental 619 

scale remains a challenge and hopefully advances in satellite measurements, including the recently 620 

launched orbiting carbon observatory, in combination with surface measurements (Miller et al., 2014). 621 

4.2 Fossil Fuel Emissions 622 

At the inception of continuous atmospheric CO2 measurements in 1959,  fossil fuel emissions constituted 623 

approximately 75% of the total emissions to the atmosphere; however, as fossil fuel emissions have 624 

increased so has their relative contribution to the atmospheric burden of which fossil fuels now 625 

contribute > 90% (Table1).  As fossil fuel emissions have become the dominant driver of increasing 626 

atmospheric CO2 concentrations, absolute errors from fossil fuel emissions have also increased steadily 627 

thus causing a slight increase in uncertainty of global C uptake in recent years (Fig. 11).   628 

The greatest source of error in fossil fuel emission estimates is derived from national energy 629 

consumption statistics that can be as high as 20% of total emissions for some nations (Fig. 3) and may be 630 

even higher in some years due to the temporally correlated errors in emission estimates (Marland et al., 631 

2009).  Although the large errors in emission estimates have long been suspected, they have only 632 

recently been identified and quantified.  For instance, by comparing provincial and national fossil fuel 633 

emission estimates in 2010, Guan et al. (2012) revealed a 1.4 Pg discrepancy between national emission 634 

estimates that appear to be biased low and provincial emission estimates that appear to be biased high 635 

(Guan et al., 2012).  This difference in fossil fuel emission estimates from China alone amounts to 636 

approximately 15% of the total global emissions for 2010.  Similar analyses have not yet been conducted 637 

for other large emitting nations, but discrepancies probably exist in the reporting practices of many 638 
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nations.  It is worth pointing out that some of these errors maybe simple accounting mistakes that may 639 

not require retroactively correcting previous emissionIf the absolute fossil fuel emission errors continue 640 

to grow, they will start to undermine our ability to estimate C uptake by the biosphere, especially at the 641 

regional scale (Francey et al., 2013).  It is also noteworthy that some emission estimate errors may be 642 

simply accounting mistakes that do not require retroactively correcting previous estimates, and other 643 

errors may be improvements to protocols that may require retroactively correcting previous estimates, 644 

so our time-dependent error approach is more appropriate for the latter revisions to accounting 645 

protocols.   646 

4.3 Land Use Emissions 647 

The emission estimatesTotal emissions from land use change have gone down slightly over the last 2 648 

decades and now rival the errors in fossil fuel emissions.  As of 2010 the 2 σ error of FF was 649 

approximately ± 0.59 PgC yr-1, whereas the total EL was 0.76 ± 0.98 PgC yr-1 , clearly illustrating that EL 650 

fluxes are contributing a smaller proportion to the overall atmospheric CO2 burden and that errors in 651 

estimating the EL term remain quite large.  This suggests that efforts to reduce the atmospheric CO2 652 

growth rate or its concentration should focus primarily on reducing fossil fuel emissions and secondarily 653 

on changes in land use practices.  Policies designed to reduce emissions from deforestation and forest 654 

degradation (so-called REDD programs) have been widely promoted; however, it is clear that fossil fuel 655 

emissions currently dwarf land use emissions.  Although C uptake is arguably the greatest ecosystem 656 

service currently provided by the terrestrial biosphere at the global scale, it is not the only ecosystem 657 

service provided by the terrestrial biosphere.Therefore current policies aimed at Reducing Emissions 658 

from Deforestation and Degradation (REDD) maybe misguided and their effectiveness maybe difficult to 659 

quantify (Matthews et al., 2014).  Although C uptake is one of the most important ecosystem services 660 

currently provided by the terrestrial biosphere at the global scale, it is certainly not the only ecosystem 661 

service provided by the terrestrial biosphere.  662 

Our analysis indicates the need to reduce the uncertainty in what constitutes land use emissions and 663 

how their errors are calculated.  Although LULCC emission estimates from bookkeeping approaches and 664 

process model approaches are fairly comparable, discrepancies among these approaches may in fact be 665 

due to differences in the operational definition of what constitutes LULCC emissions (Houghton, 2013; 666 

Pongratz et al., 2014).  In fact, LULCC emission estimates differ by as much as 30% suggesting that 1/3 of 667 

the uncertainty in LULCC emissions is simply due to differences in terminology leading to differing 668 

treatments of deforestation and regrowth.  Further, the errors on LULCC emission estimates are poorly 669 

constrained with model simulations often not reporting estimate errors (Le Quéré et al., 2013) or 670 

bookkeeping methods often reporting relative errors.  Land use emissions have gone down slightly from 671 

~ 1.5 PgC yr-1 to 1.0 PgC yr-1 over the last 5 decades, so based on a relative 2 σ emission error of 50% one 672 

would conclude that absolute errors have also gone down from 0.75 PgC yr-1 to 0.50 PgC yr-1.  However, 673 

based on the discrepancies among approaches it is clear that absolute error have probably remained 674 

fairly constant over the last 5 decades (Fig. 4).  Discrepancies among the different operational 675 

definitions of land use emissions and their impacts on the global C budget have been identified 676 
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previously and methodological frameworks have been proposed for reconciling these different 677 

operational definitions and their estimates (Gasser and Ciais, 2013).   678 

4.4 Changes in Land and Ocean C uptake and their implications 679 

It is clear from our analysis that both the land and ocean biosphere continue to provide a tremendous 680 

climatic benefit by absorbing more than 50% of the total CO2 that has been emitted to the atmosphere 681 

over the last 50 years.  According to our estimates, net global C uptake (i.e. ΣN) has nearly doubled over 682 

the last 50 years due to a 99% increase in ocean C uptake and land C uptake has increased by ~ 78% 683 

from the 1960s to the 2000s (Table1).  At the same time our ability to detect changes in ΣN have 684 

increased tremendously (Fig. 7). This is clearly evident in the decrease of the mean of the standard 685 

deviations by decade (Table 1).  This reduced uncertainty in our ability to quantify ΣN is mainly due to 686 

the reduced error in our estimates of the atmospheric growth rate due to the addition of sites to the 687 

global observing network (Fig. 11).ΣN) has nearly doubled over the last 50 years.  While some evidence 688 

suggests that terrestrial C uptake may be waning in the Southern Hemisphere tropics (Zhao and 689 

Running, 2010) due to water stress and that the C uptake in the Southern Ocean might be reduced by 690 

increased surface winds (Le Quéré et al., 2007), our analysis indicates that these potential regional 691 

declines in both terrestrial and ocean C uptake are more than compensated by increased C uptake 692 

elsewhere in the biosphere.  At the same time our ability to detect changes in ΣN has increased (Fig. 7), 693 

as evidenced by the decrease of the mean of the standard deviations by decade (Table 1).  This reduced 694 

uncertainty in our ability to quantify ΣN is mainly due to the reduced error in our estimates of the 695 

atmospheric growth rate due to the addition of sites to the global observing network (Fig. 11).   696 

Another important diagnostic of how the global C cycle may be responding to concomitant changes in 697 

atmospheric CO2 and climate is the airborne fraction (i.e. AF), which provides a useful estimate of 698 

possible changes in C uptake efficiency by the biosphere.  A possible increase in AF over the last 5 699 

decades has been identified (Canadell et al., 2007) and attributed to a decrease in the efficiency with 700 

which C is being removed from the atmosphere by land and ocean sinks (Le Quéré et al., 2009).  Our 701 

analysis suggests that there is considerable uncertainty with respect to possible trends in AF, where the 702 

sign of the AF trend is slightly positive when including both fossil fuels and land use in our emission 703 

scenarios but the trend becomes negative if we do not consider land use in our emission scenarios.  This 704 

result is consistent with Knorr (2009) who found that any apparent trend in AF was not statistically 705 

distinguishable from zero, suggesting that there is too much uncertainty in the AF calculation to 706 

determine whether a trend is evident over the last 5 decades.  It should also be noted that previous 707 

analyses were only able to identify a possible trend in AF after removing interannual variability in the 708 

atmospheric growth rate due to volcanic activity and El Nino, making interpretation of any changes in th 709 

unitless relative AF even more difficult.  Furthermore, it has been demonstrated from model simulations 710 

that changes in AF are more likely to be sensitive to rapid changes in fossil fuel emissions than C uptake 711 

efficiency (Gloor et al., 2010).   However, it is important to note that the error associated with 712 

calculating AF appears to have gone down, which may make AF a more sensitive diagnostic of C cycle 713 

changes in the future.  714 
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The net exchange of carbon between the terrestrial biosphere and the atmosphere is challenging to 715 

estimate directly and can only be inferred; however, more tightly constrained estimates of the 716 

atmospheric CO2 growth rate have greatly reduced the error associated with the inferred residual C sink.  717 

As net global C uptake uncertainty has diminished (Fig. 11), so has uncertainty in our calculation of net 718 

Land C uptake (i.e. NL).  Indeed our estimates, of NL show an over-all decrease in the mean of the 719 

standard deviation over the last 5 decades, which indicates that once again our ability to detect changes 720 

in NL has improved in recent years (Table 1).  While our estimates of changes in terrestrial C uptake are 721 

largely inferred as a byproduct ocean biogeochemical models, more recently derived independent 722 

observationally based estimates of ocean C uptake (Khatiwala et al., 2009; Majkut et al., 2014) will allow 723 

for more observational constraints on the largely inferred residual land C sink. 724 

It is clearly evident that net land C uptake has increased over the last 50 years (Fig. 9).   Independent 725 

analyses from observations and models corroborate our findings that the absolute value of NL has 726 

increased over the last 5 decades.  A synthesis of data on C budgets of the world’s forests concluded 727 

that terrestrial C uptake has remained strong and fairly constant from 1990 through the 2000s (Pan et 728 

al., 2011).  In their synthesis Pan et al. (2011) conclude that NL was 2.5 ± 0.4 PgC yr-1 during the 1990s 729 

and only decreased slightly to 2.3 ± 0.5 PgC yr-1 from 2000 to 2007.  These estimates are fairly close to 730 

our estimates, although our estimates indicate a slight increase in NL from the 1990s (2.35 ± 1.5 PgC yr-1) 731 

to the 2000s (2.46 ± 1.4 PgC yr-1), but with greater uncertainty (Table 1).  It should be noted that there is 732 

considerable decadal variability in NL and that the conclusions from Pan et al. (2011) might have been 733 

completely different had they compared the 1970s to the 1980s over which time the amount of C 734 

uptake by the terrestrial biosphere actually decreased as evidenced by an increase in NL (Table 1.).  735 

Increases in terrestrial C uptake are also evident in estimates from dynamic vegetation models and 736 

atmospheric inversion studies, which both show terrestrial C uptake increasing from 1980 and peaking 737 

in 2011 (Poulter et al., 2014). 738 

While net terrestrial C uptake has increased over the last 5 decades, the variability in net land C uptake 739 

appears to have increased as well.  In fact, the standard deviation of the means in decadal C uptake by 740 

the terrestrial biosphere increased by almost a factor 3 from the 1960s through the 1990s and since 741 

2000 the variability in net terrestrial C uptake has gone down slightly (Table 1).  Although several well 742 

documented stochastic events occurred during the latter half of the observational record, including two 743 

strong El Nino events in 1987 and 1997 as well as the eruption of Mt. Pinatubo in 1991, there remains an 744 

apparent increase in variability of net C uptake by the terrestrial biosphere.  More recently semi-arid 745 

ecosystems have been identified as regions of increased photosynthetic activity and potentially 746 

enhanced C uptake (Donohue et al., 2013; Poulter et al., 2014) ; however, it should be noted that these 747 

ecosystems are often the most vulnerable to carbon loss due to disturbance (Reichstein et al., 2013) and 748 

thus increased C uptake during favorable climate conditions may be followed by increased C loss during 749 

extreme climate events ultimately leading to the increased variance in net terrestrial C uptake observe 750 

in our analysis.  It is also worth pointing out that in some instances when multiple disturbances of 751 

sufficient magnitude force the carbon system in the same direction their effect can be detected in the 752 

atmosphere.  For instance, one of the most severe El Nino events occurred in 1997 and this event was 753 

associated with widespread tropical drought that was thought to reduce photosynthesis at a global scale 754 
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(Nemani et al., 2003). However, the impact of this random climatic event was greatly exacerbated by 755 

land use practices in South East Asia that promoted the draining of peatlands, which subsequently 756 

burned during the El Nino event (Ballhorn et al., 2009).  Thus providing evidence of how compound 757 

disturbances to the terrestrial C cycle can actually be detected in the atmosphere. It remains to be seen 758 

whether this variability is simply the slow resilience of the biosphere to global perturbations, or if this 759 

increased variance indicates a potential regime shift in the terrestrial C cycle (Reichstein et al., 2013). 760 

Based on our error analysis including error estimates across a range of ocean biogeochemical models 761 

there is no clear indication that ocean C uptake has diminished over the last 50 years.  Although ocean C 762 

uptake appears to have accelerated steadily by 0.2 and 0.3 PgC yr-1 decade-1 from the 1960s to the 763 

1990s, ocean C uptake may have decreased slightly to 0.14 PgC yr-1 over the last decade.  However, at 764 

the same time the mean of the annual standard deviations also increased over the last decade 765 

suggesting less agreement among ocean models making it more difficult to detect the possible early 766 

stages of ocean CO2 saturation.  Much of the discussion regarding possible CO2 saturation of the oceans 767 

has focused on the Southern Ocean because it contributes such a large portion (0.4 Pg C yr-1) to the 768 

recent net global annual ocean C uptake of ~ 2.0 Pg C yr-1. (Le Quéré et al., 2007; Lovenduski et al., 769 

2007).  Unfortunately, this is a region of the Earth for which atmosphere CO2 measurements and oceanic 770 

pCO2 measurements are fairly scarce.  In fact, estimates between ocean biogeochemical models (0.42 ± 771 

0.07 Pg C yr-1 ) and observational constraints (0.27 ± 0.13 Pg C yr-1) for the Southern Ocean are not even 772 

in statistical agreement (Lenton et al., 2013), suggesting that possible CO2 saturation of the Southern 773 

Ocean would be extremely difficult to detect if it were in fact occurring given the current configuration 774 

of the global C observation network.  It should also be pointed outnoted that factors influencing the 775 

kinetics of air-sea gas exchange and how they are incorporated into these ocean biogeochemical models 776 

may have a large impact on global estimates of NO. For instance, the gas transfer velocity term used in 777 

calculating NO incorporates a solubility function and wind speed function neither of which are linear 778 

functions (Wanninkhof et al., 2013).  Although these functions have been optimized based on empirical 779 

studies, it is not known how much regional variability there is in these functions and whether it is valid 780 

to apply a universal air-sea gas exchange parameterization to all ocean basins.  781 

 Although the climate benefit conferred by increased land and ocean C uptake is irrefutable, this climate 782 

benefit may come at some expense of the biosphere to provide other vital ecosystem services.  The 783 

greatest and most easily quantified impact of increased C uptake has been on the oceans through 784 

decreases in pH.  It has been estimated that pH of the ocean has decreased by 0.1 over the last 50 years 785 

which is equivalent to a 20% increase in hydrogen ion concentration (Doney et al., 2009) .  This increase 786 

in ocean acidity is particularly harmful for calcareous organisms, especially those with shells formed 787 

from aragonite, such as corals that form the base of many tropical marine ecoystems and pteropods 788 

that form the base of many pelagic marine ecosystems (Doney et al., 2009).  Although some studies 789 

suggest that increased dissolved inorganic carbon in the water column may stimulate the biologic pump 790 

and thus primary productivity in the ocean (Riebesell et al., 2007), the direct impacts of acidification on 791 

calcareous organisms and the indirect impacts of increasing sea surface temperatures are thought to 792 

have a net negative effect on ocean productivity (Doney et al., 2009).   793 
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In contrast, the direct impacts of rising CO2 on the terrestrial biosphere may be both positive and 794 

negative.  For instance, the fertilizing effect of increasing atmospheric CO2 on photosynthesis in 795 

terrestrial plants is well documented (Ainsworth and Long, 2005), leading to potential increases in 796 

water-use efficiency as terrestrial plants become more frugal with water losses through transpiration 797 

(Keenan et al., 2013).  Although the detrimental effects of increasing atmospheric CO2 on the terrestrial 798 

biosphere are not as obvious, they may be just as insidious.  For instance, increasing atmospheric CO2 799 

has been implicated in accelerated weathering of bedrock (Andrews and Schlesinger, 2001), which can 800 

release both harmful and beneficial elements from Earth’s lithosphere into terrestrial ecosystems (Mast 801 

et al., 2011).  It has also been suggested that CO2 fertilization may differentially affect the growth of 802 

plant species, with faster growth in epiphytes such as lianas leading to tree mortality (Phillips et al., 803 

2002).  Thus because While detrimental impacts of increased atmospheric CO2 on terrestrial ecosystems 804 

are more challenging to identify, because CO2 is a well-mixed atmospheric gas and its concentration is 805 

rapidly increasing as a result of human activity,on annual timescales there remainsis no ecosystem on 806 

the surface of the Earth that has not been affectedimpacted by human activity.its increasing 807 

concentration and more detrimental impacts will undoubtedly be identified in the future.  808 

5.0 Conclusions:   809 

As scientists it is no longer sufficient to simply arrive at an estimate; we must bound our estimates with 810 

some level of confidence.  This is particularly important when investigating something as important as 811 

the global C cycle and the climate sensitivity of carbon sinks that continue to take up atmospheric CO2.  812 

Because the topic of carbon-climate feedbacks is critical for both political and social decisions at the 813 

global scale, we must provide the public with the best estimates of important terms in the global carbon 814 

budget and their respective uncertainties.  The uncertainty that arises from measurement, analytical 815 

and estimate errors is important because it provides scientists and policy makers alike a metric by which 816 

to weight the information provided when it is incorporated into their decision making framework.  For 817 

instance, the effectiveness of policies targeted at fossil fuel emissions with their relatively high rates and 818 

low errors may easier to verify than the effectiveness of policies targeted at land use emissions that are 819 

fraught with uncertainty.  In fact, errors associated with fossil fuel emissions are now comparable to 820 

total emissions from changes in LULCC (Table 1).  Here we have created a framework by which estimate 821 

errors can be explicitly incorporated into the global C budget, allowing for the calculation of uncertainty 822 

in global C uptake.  We have identified some major sources of error and their important spatial and 823 

temporal components; however, we acknowledge that latent sources of error do exist and thus can be 824 

incorporated into the flexible framework that we have created.  Despite the many sources of error that 825 

we have identified in estimating terms in the global C budget, we conclude with an extremely high level 826 

of confidence that ocean C uptake has increased over the past 50 years and with a high level of 827 

confidence that land C uptake has also increased.   828 
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Tables and Figures 1028 

Table 1.  Decadal changes in variables of the global C budget.  Reported are decadal means for the 1029 

atmospheric growth rate, land use emissions, fossil fuel emissions, global uptake, the Airborne Fraction, 1030 

Net Ocean Uptake, and Net Land Uptake.  The first number below the mean (in parentheses) is the 1031 

mean of the decadal standard deviations that provides a measure of our ability to detect a change in 1032 

that variable.  The second number below the meane (in parentheses) is the standard deviation of the 1033 

decadal means that provides a measure of variance in that variable. 1034 

 Decadal Mean Values and Standard Deviations. 
Variable 1960s 1970s 1980s 1990s 2000s 

Atmospheric CO2 (PgC yr-1;∂C/∂t) 1.75 2.72 3.42 3.18 4.14 
mean of standard deviations (0.60) (0.61) (0.22) (0.18) (0.16) 
standard deviation of the means (0.61) (0.91) (1.21) (1.40) (0.82) 
Land Use Emissions (PgC yr-1;EL) 1.16 1.28 1.42 1.15 0.89 
mean of standard deviations (0.76) (0.64) (0.65) (0.67) (0.63) 
standard deviation of the means (0.25) (0.11) (0.13) (0.23) (0.12) 
Fossil Fuel Emissions (PgC yr-1;EF) 3.09 4.76 5.53 6.45 7.89 
mean of standard deviations (0.15) (0.24) (0.30) (0.35) (0.47) 
standard deviation of the means (0.44) (0.41) (0.33) (0.24) (0.69) 
Net Global Uptake (PgC yr-1; ΣN) -2.51  -3.32  -3.61  -4.38  -4.64  
mean of standard deviations (0.83) (0.76) (0.52) (0.56) (0.50) 
standard deviation of the means (0.52) (0.84) (1.13) (1.37) (0.98) 
Airborne Fraction (AF) 0.42 0.45 0.48 0.42 0.47 
mean of standard deviations (0.16) (0.11) (0.05) (0.04) (0.03) 
standard deviation of the means (0.12) (0.14) (0.16) (0.18) (0.10) 
Net Ocean Uptake (PgC yr-1; NO) -1.11 -1.43 -1.79 -2.07 -2.21 
mean of standard deviations (1.31) (1.32) (1.33) (1.35) (1.39) 
standard deviation of the means (0.24) (0.16) (0.06) (0.09) (0.19) 
Net Land Uptake (PgC yr-1; NL) -1.39 -1.89 -1.78 -2.35 -2.46 
mean of standard deviations (1.56) (1.51) (1.43) (1.46) (1.43) 
standard deviation of the means (0.56) (0.90) (1.17) (1.48) (1.06) 
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 1039 

Figure 1.  Diagram of the global carbon budget in the year 2010.  Major fluxes of C to the atmospheric 1040 

reservoir of CO2 are from fossil fuel emissions (FF) and land-use land conversion (FL) and are illustrated as 1041 

red vectors.  Net land (NL) uptake of C from the reservoir of atmospheric CO2 is illustrated by green 1042 

vectors and net ocean uptake (NO) is illustrated by blue vectors.  The size of the vectors are proportional 1043 

to the mass flux of C as indicated inpetagrams of C per year, where 1 Pg = 1015 g (illustration modified 1044 

from Wikimedia Commons).  Error estimates for each flux in 2010 are expressed as ± 2 σ. 1045 
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 1048 

Figure 2. The global observation network used in calculating the annual atmospheric CO2 growth rate. 1049 

The annual growth rate of atmospheric CO2 is calculated from re-sampling sites in the global network 1050 

located in the marine boundary layer (black points; top panel).  The annual growth rate since 1980 is 1051 

calculated from the entire marine boundary layer, while the growth rate prior to 1980 is calculated from 1052 

observation sites at Mauna Loa, Hawaii, USA and South Pole, Antarctica.  The mean atmospheric growth 1053 

rate is illustrated as a thick black line and growth rates calculated from the 100 simulated sampling 1054 

networks are illustrated by the thin grey traces. 1055 
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 1058 

Figure 3.  Fossil fuel emission estimates and their errors from 1960 to 2010.  The three inventories (top 1059 

panel) compared are from BP (aka British Petroleum; black), the Emission Database for Global 1060 

Atmospheric Research (EDGAR: green), and the Carbon Dioxide Information and Analysis Center (CDIAC; 1061 

red).  All inventories also include cement production.  Thin grey traces represent the Monte-Carlo 1062 

simulations of uncertainty for the fossil fuel emission inventories (N = 3 x 500= 1500).  Errors are 1063 

estimated by deriving regional error distributions and then randomly drawing from these distributions 1064 

for error estimates of individual nations (bottom panel) where error estimates are taken from (Andres et 1065 
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al., 2014a).  Emission errors are reported as relative errors of total emissions by nation and emission 1066 

errors for Antarctica are for the Antarctic fishing fleet.  See supplemental table 1 for national errors. 1067 

 1068 

Figure 4.  Comparison of land use land change emission inventories from 1960 to 2010.  The three 1069 

inventories compared are the bookkeeping approach (Houghton et al. 2012; black), model derived 1070 

estimates including historical land use (Stocker et al 2013: blue), and model derived estimates, including 1071 

historical land use and nitrogen cycling (Yang et al 2010; red).  Thin grey traces represent the Monte-1072 

Carlo simulations of uncertainty for the land use emission estimates (N = 3 x 500= 1500). 1073 
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 1075 

Figure 5. Total emission scenarios including uncertainty.  Plotted are all combinations of the sum of land 1076 

use and fossil fuel emission estimates included in this study   A total of 500 realizations for each of the 3 1077 

land use emission estimates and each of the fossil fuel emission estimates is included for a total of 4500 1078 

global emission realizations (each colored line). 1079 
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 1082 

Figure 6.  Ocean carbon uptake estimates from five different ocean biogeochemical models.  1083 

Independent time invariant random error of 1.3 PgC (2 σ) has been added to each annual model 1084 

simulation according to independent estimates of ocean C uptake (Ishidoya et al. 2012).  For each 1085 

biogeochemical model estimate 900 Monte-Carlo simulations were performed to better estimate error 1086 

(thin grey lines).  1087 
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Figure 7. Simulations of net global C uptake and the airborne fraction from 1959 to 2010.  Net global C uptake (ΣN; top panel) is plotted in 

comparison to the airborne fraction (AF; bottom panel).  A total of 4500 simulations of ΣN and AF are plotted in each panel (thin grey lines) and 

mean annual values overlaid (thick black line).  A significant acceleration in global net C uptake is indicated by the dashed line with a slope = -

0.05 PgC yr-2 and a p-value = 5.5 x 10-5 fitted to the annual mean ΣN values.  See supplemental table 2 for global C uptake values and their 

uncertainty.
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Figure 8.  Trends in global carbon uptake.  Plotted are the histograms of slopes fitted to 4500 

simulations of net global carbon uptake (i.e. global sink ΣN in panels A and B) and the airborne fraction 

(i.e. AF in panels C and D).   Plotted also are the slopes fitted to 4500 simulations without land use 

emissions included for ΣN (B) and AF (C).  Negative trend slopes (grey filled bars) of ΣN indicate 

accelerating net global C uptake, whereas positive slopes (open bars) of AF indicate a decrease in 

relative C uptake efficiency.  The median slope values are overlaid (red lines) for comparison with the 2 

σ trend calculations (blue lines). 
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Figure 9.  Trends in global carbon uptake by the land and ocean.  Both the land (green line) and ocean (blue line) show increasing carbon uptake 

over the last 50 years as evidenced by increasingly negative uptake values (top panel).  Confidence intervals represent the 1σ (dark transparent) 

and 2σ (light transparent) distribution about the mean values for the land (green line) and the ocean (blue line).  Kernel density functions for the 

distribution of uptake by the land (green) and ocean (blue) by decades (bottom panel) showing the increase in C uptake by decade but also the 

increase in variance for land C uptake. See supplemental table 2 for ocean and terrestrial C uptake values and their uncertainty.  

Formatted: Width:  11", Height:  8.5",
Numbering: Restart each page



 
 

42 
 
 

Formatted: Header

Formatted: Footer

 

Figure 10.  Coefficient of variation for net land and ocean C uptake for each year from 1959 to 2010.  Coefficients of variation (CV) were 

calculated as the standard deviation/mean from each of our 4500 simulations of annual uptake.  Values of CV for net land uptake (green) are 

compared with values of CV for net ocean uptake (blue).  Absolute mean values were used to account for changes in sign of net land uptake that 

occurred over the 50 year period.   
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Figure 11.  Proportion of error in terms contributing to the global carbon uptake.  The total error in global C uptake is calculated as the square 

root sum of squared standard deviations for each term in the global budget (black line).  The proportion of global C uptake uncertainty 

contributed from land use (green area) has remained fairly constant, the proportion of global C uptake uncertainty contributed from fossil fuels 

(red area) has risen in recent years, and the proportion of global C uptake uncertainty contributed from atmospheric CO2 measurements (blue 

area) has decreased.   
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