
 1 

Technical Note: Hyperspectral Lidar Time Series of Pine 1 

Canopy Chlorophyll Content  2 

 3 

T. Hakala1, O. Nevalainen1, S. Kaasalainen1, and R. Mäkipää2  4 

[1]{Finnish Geodetic Institute, Masala, Finland} 5 

[2]{Finnish Forest Research Institute (METLA), Vantaa, Finland} 6 

Correspondence to: T. Hakala (Teemu.Hakala@nls.fi) 7 

 8 

Abstract 9 

We present an empirical application of hyperspectral lidar for monitoring the seasonal and 10 

spatial changes in pine chlorophyll content and upscaling the accurate leaf-level chlorophyll 11 

measurements into branch and tree level. The results show the capability of the new 12 

instrument for monitoring the changes in the shape and physiology of tree canopy:  the 13 

spectral indices retrieved from the hyperspectral point cloud agree with laboratory 14 

measurements of the chlorophyll content. The approach opens new prospects for replacing 15 

destructive and labor-intensive manual sampling with remote observations of tree physiology.  16 

1 Introduction 17 

The photosynthetic activity in tree canopy is an indicator of tree health. Vigorous trees with 18 

high foliar biomass and chlorophyll content have high carbon assimilation capacity. Stress in 19 

vegetation has been shown to induce changes in the photosynthetically-active pigments such 20 

as chlorophyll a and b. Therefore, the leaf chlorophyll content is an important indicator of the 21 

photosynthetic capacity as well as tree productivity and stress (Coops et al., 2003,Lausch et 22 

al. 2013). 23 

The leaf properties and the distribution of chlorophyll and nutrients within a canopy vary as a 24 

function of time and space, and depending on the resource availability (Wang and 25 

Schjoerring, 2012, Peltoniemi et al., 2012). Plant phenology and seasonal chlorophyll content 26 

cycle are correlated to the CO2 flux. For monitoring these seasonal variations, methods are 27 

needed for accurate and nondestructive chlorophyll estimation, both at the leaf and canopy 28 

level (e.g., Gond et al., 1999). Chlorophyll estimation with spectral remote-sensing has been 29 
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implemented increasingly in a number of studies (e.g., Coops et al., 2003, Lausch et al., 30 

2013), but improved resolution and more accurate 3D position for the spectra are still being 31 

called for, to extend the accurate leaf-level measurement into canopy and stand level (cf. 32 

Gaulton et al., 2013). To investigate the spatial variation of the photosynthetic capacity and 33 

self-shading of photosynthetically active tissue, the canopy and branch structure must also be 34 

included in the measurement.  35 

One way to provide simultaneous structural and spectral information is lidar combined with 36 

hyperspectral passive sensing (e.g., Thomas et al., 2006, Asner et al., 2007, Jones et al., 37 

2010), but new applications using multi or hyperspectral laser scanning have increased quite 38 

recently. Hancock et al., (2012) demonstrated the potential of dual wavelength, large-39 

footprint, spaceborne lidar to separate ground and canopy returns using the extra information 40 

contained in a spectral ratio to complement the canopy height from laser scanning. Three-41 

dimensional (3D) distributions of vegetation biochemical properties were measured with 42 

spectral indices developed for the Salford Advanced Laser Canopy Analyser (SALCA), which 43 

is also a dual-wavelength lidar (Gaulton et al., 2013). A similar approach was used in the 44 

Dual-Wavelength Echidna Lidar (DWEL) (Douglas et al., 2012). A multispectral canopy lidar 45 

has also been introduced for simultaneous retrieval of vegetation structure and spectral indices 46 

(Woodhouse et al., 2011). In this approach, a tunable laser operating at four wavelengths was 47 

used. The limitation of empirical vegetation indices estimating chlorophyll content is that they 48 

are also affected by the canopy structural properties. In addition, they can be affected by the 49 

internal structure, size, surface and shape of leaves and can thus be species-specific, requiring 50 

calibration when applied to specific species (Zhang et al., 2008). 51 

In this technical note, an application of the recently developed hyperspectral lidar instrument 52 

(Hakala et al., 2012) is presented for monitoring the seasonal and spatial changes in pine 53 

chlorophyll content. As a non-destructive method, the capability of the instrument to upscale 54 

the accurate leaf-level chlorophyll content measurements into branch and tree level has been 55 

investigated and validated with chemical analysis of chlorophyll content. In this study we 56 

used three spectral indices showing good correlation with Scots Pine shoot chlorophyll 57 

concentration using the HSL instrument in Nevalainen et al. (2014). 58 

2 Materials and methods 59 

Hyperspectral lidar (HSL) is a prototype laser scanning instrument (Hakala et al., 2012) 60 

utilizing a supercontinuum laser. White laser pulses are transmitted to a target and the 61 
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distances of reflected echoes are determined from time of flight. A spectrograph and an 62 

avalanche photodiode (APD) array connected to a high-speed digitizer are used to determine 63 

the spectrum of each returning echo by measuring the intensity of the echo at multiple 64 

wavelengths. Also the intensity of each transmitted laser pulse is measured and used to 65 

normalize the echo intensity. Current prototype configuration uses a 16 element APD array 66 

and an 8 channel digitizer, enabling us to measure at 8 wavelength bands: 545, 641, 675, 711, 67 

742, 778, 978, 1292 nm, full width at half maximum about 20 nm.  Before the target is 68 

measured a reference target with known reflectance (Spectralon) is measured at distance 69 

intervals of about 30 cm and these data are used to calibrate the reflectance over the whole 70 

measurement range. Additionally the Spectralon is placed in the scanned area during the 71 

actual measurement to validate the calibration. The instrument and data processing presented 72 

in more detail in Hakala et al., 2012. 73 

A Scots pine (Pinus sylvestris L.) was scanned five times during the 2013 growth season. The 74 

tree was approximately 13 years old, 5.5 m high and it was growing in a small forest stand 75 

near the institute building. The HSL was mounted on a portable cart, and the tree was scanned 76 

from two directions. The scans were co-registered using white spherical reference targets 77 

placed on fixed locations on the target area. The distance between the scanner and the tree 78 

was about 5 m. The tree was scanned with 0.1° horizontal and about 0.02° vertical resolution 79 

and the resulting point clouds contained 200 000- 470 000 echoes from the tree. The beam 80 

diameter at the target was about 5 mm. 81 

Needle samples were taken immediately after the scan for laboratory analysis. Six branches 82 

were selected and the samples were taken from these branches according to needle cohorts 83 

(current year needles, and 1-, 2, and 3-year old needles). Two needle pairs were taken from 84 

each cohort of each selected branch. Analysis of the chlorophyll contents followed the 85 

protocol described in Wellburn (1994) for extraction with dimethyl-sulfoxide (DMSO). After 86 

extraction, the chlorophyll concentrations were determined from solvents 87 

spectrophotometrically using wave-lengths 480.0, 649.1 and 665.1 nm (resolution 0.1 – 0.5 88 

nm). 89 

Two of the six sampled branches were clearly identifiable from the HSL point cloud, having 90 

enough point density and long enough growth of the branch. Previous year cohorts were 91 

selected for further analysis, since they had needles present during all measurements. 92 

Therefore the following analysis is performed for two cohorts and five measurement dates. 93 
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The parts of the point cloud containing the selected cohorts were isolated in post processing. 94 

Three spectral indices were tested for determining chlorophyll content of the needles. Since it 95 

was not possible to tune all required wavelengths to optimal positions for every index, we 96 

used the nearest available band.  97 

The Modified Chlorophyll Absorption Ratio Index using reflectance at 705 and 750 nm 98 

(referred here as MCARI750) was first presented by Wu et al. (2008). Contrary to the original 99 

MCARI (Daughtry et al. 2000), MCARI750 uses reflectance at 705 and 750 nm, which have 100 

shown better sensitivity to high chlorophyll contents (Wu et al. 2008). MCARI has been 101 

designed to measure the depth of the maximum chlorophyll absorption at 670 nm relative to 102 

green reflectance peak at 550 nm and reflectance at 700 nm, at canopy scale (Daughtry et al., 103 

2000).  104 

𝑀𝐶𝐴𝑅𝐼750 = [(𝑅750 − 𝑅705) − 0.2 ∗ (𝑅750 − 𝑅550)] ∗ (𝑅750 𝑅705⁄ ) (1) 105 

The Modified Simple Ratio (MSR), developed by Chen (1996), strives to have low noise 106 

effect and good linearity to vegetation biophysical parameters. MSR has been used to estimate 107 

chlorophyll and Leaf Area Index (LAI) at canopy scale. Wu et al. (2008) also developed MSR 108 

using reflectance at 705 and 750 nm, referred here as MSR2. 109 

𝑀𝑆𝑅2 =  
R750 𝑅705⁄ −1

√R750 𝑅705⁄ +1
  (2) 110 

The Simple Ratio (SR) indices directly compare the reflectance and absorbance peaks of 111 

chlorophyll pigments, which make them sensitive to changes in chlorophyll content (Wu et 112 

al., 2008). Variety of wavelength combinations are used with simple ratio indices, but the one 113 

selected for this study is SR6 (Zarco-Tejada et al., 2001). It has been used to estimate 114 

chlorophyll at leaf level. 115 

𝑆𝑅6 =
R750

R710
  (3) 116 

Additionally, normalised difference vegetation index (NDVI) (Rouse et al., 1973) was used to 117 

separate needles from branches. NDVI is the most widely used vegetation index. It is based 118 

on the contrast between high absorption at red and high reflectance at near-infrared (NIR). 119 

NDVI has been developed for canopy scale and it has been used for both chlorophyll and LAI 120 

estimation. 121 

𝑁𝐷𝑉𝐼 =  
𝑅800−𝑅670

𝑅800+𝑅670
  (4) 122 
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As the channels of the prototype HSL are limited to eight separate spectral bands, these 123 

indices had to be used with the closest available spectral band.  124 

3 Results 125 

The overall shape of the tree and changes in shape from May to November can be observed in 126 

Figure 1 where no spectral information is used. The changes in the shape and the spectra of 127 

tree parts are visible in the spectral point clouds. To demonstrate this, we plot the time series 128 

of the NDVI over the pine branch from May 15 to Nov 6, 2013 in Figure 2. The outbreak and 129 

growth of new shoots (May/Jun 2013) can be observed, as well as the year 2 parts defoliating 130 

(Sep/Oct 2013) and falling off completely (Nov 2013). 131 

To validate the capability of the HSL to estimate the chlorophyll content using spectral 132 

indices, we compared the HSL data with laboratory analysis over the growing season. We 133 

present data for two branch cohorts, denoted M2_1 and M3_1 (one year old part of M2 and 134 

M3), which were best visible in the HSL point clouds. The trends in the chlorophyll content 135 

and the indices MCARI750, MSR2, and SR6 from HSL data are well reproduced for the 136 

individual branches (Figures 3-5). For all three indices, the sample branch M2_1 was best 137 

correlated with the laboratory measurements with R
2
 0.8-0.9. The R

2 
for MCARI750 and 138 

MSR2 for M3_1 was 0.7, whereas SR6 performed worse for M3_1 (R
2
 0.4). When the data 139 

from M2_1 and M3_1 were combined for regression all indices correlated with the 140 

chlorophyll content measured in the laboratory (Figure 6). The results were worse for indices 141 

averaged over the entire tree point cloud (the right column in Figures 3-5), compared with the 142 

average of all year 1 needles measured in the laboratory. This is very likely a result of the 143 

variation of the physiological conditions between the tree parts, which is more pronounced 144 

when the sampling has been carried out over the entire tree (i.e., the point cloud), rather than 145 

just a few needle samples (as in the laboratory experiment). All in all, the analysis of branch 146 

parts shows that the spatial distribution of the HSL spectral indices describes the chlorophyll 147 

content within the branch, although more measurements are needed to better validate the 148 

results. 149 

In figures 3-5, branch M2_1 and M3_1 laboratory measurements consist of two separate 150 

needles only. More sampling should have been performed, however, the number of needles in 151 

each branch part is limited and the tree had to be sampled several times during the year (this 152 

emphasizes the need for non-destructive methods). The number of laser echoes from year 0 153 

and 2 were highly varying; in the spring lidar point clouds the year 0 growths were very small 154 
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providing very few echoes. The year 2 and older cohorts started dropping needles before 155 

September measurement thus reducing the number of echoes during autumn compared to 156 

spring. Therefore we only used year 1 laboratory measurement of needles in plots 3-5 for 157 

whole tree (right column), since the weight of the year 0 and 2 laboratory measurements 158 

would have been higher compared to the lidar point cloud (lidar point density variable and 159 

laboratory sample number constant). Some lidar echoes still originate from the year 0 and 2 160 

needles, reducing the overall correlation between laboratory and lidar data for the whole tree. 161 

The change in the shape of the tree point cloud is visible in Figure 1. The fact that tree shape 162 

can be retrieved from HSL point clouds has been shown before in numerous studies (see 163 

Kaasalainen et al., 2014 and Refs. therein). We have also shown in our previous study that the 164 

tree shape and its changes can be quantified from laser scanner point clouds using quantitative 165 

tree structure modelling (Kaasalainen et al., 2014). As the scope of this note was to show the 166 

added value of spectral data in the chlorophyll distribution monitoring, the changes in tree 167 

shape will be an object of our future study. 168 

 169 
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Figure 1. Co-registered point clouds from 2013-05-15 scan (grey) and 2013-11-06 scan (red). 170 

Growth of the tree is visible and also some movement of the branches can be observed. The 171 

height of the tree is about 5.5 m. 172 

 173 

Figure 2. NDVI (see the colour bar for values) point clouds of a sample branch M2. The 174 

growth of new needles (starting 05-27), already clearly visible new branch tips 06-19, fully 175 

grown new needles 09-12 and dying and falloff of old needles (shown in bluish green , low 176 

NDVI, colours in 09-12 and 10-03) are visible in the data measured at different times. The 177 

measurement dates are shown in the plot titles.  178 
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 179 

Figure 3. Top row: distribution of MCARI750 spectral index during separate HSL 180 

measurements, the central mark is the median, the edges of the box are the 25th and 75th 181 

percentiles, the whiskers extend to the most extreme data points not considered outliers. 182 

Middle row: Laboratory measurements chlorophyll a+b. Bottom row: Correlation of the 183 

spectral index and laboratory measurement. Subplot columns left to right: sample branch 3 184 

year 1, sample branch 2 year 1, spectral index of whole tree and laboratory measurements of 185 

all year 1 samples. 186 
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 187 

Figure 4. Same as previous figure (top and bottom rows, laboratory data is the same as in 188 

previous figure), this time using MSR2 spectral index. 189 

 190 

Figure 5. Same as previous figure, this time using SR6 spectral index. 191 

 192 
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Figure 6. Correlation of spectral index and laboratory measurement for combined M2_1 and 193 

M3_1 data. Left: MSR2, middle: MCARI750, right: SR6. Blue x: M3_1, red circle: M2_1. 194 

4 Conclusions and discussion 195 

We have shown that the hyperspectral lidar provides an empirical approach for efficient 196 

mapping the spatial distributions of tree physiological parameters that are correlated to 197 

reflectance of the foliage (such as chlorophyll a and b). Because the measurement is non-198 

destructive, it can be repeated for the same target to produce time series of important tree 199 

functions, such as moisture condition, photosynthetic capacity, or physiological status. 200 

We demonstrated that the seasonal changes in the shape and physiology of tree parts are 201 

visible in 3D; parameters affecting tree physiology can be quantified with spectral indices and 202 

linked to a specific location in the tree canopy using the HSL point cloud. We validated the 203 

method with reference measurements of chlorophyll a and b concentration in a laboratory. 204 

According to our results hyperspectral lidar can be used for the monitoring of the chlorophyll 205 

content, but similarly, the approach has potential in the monitoring of the water, carotenoid or 206 

lignin content, which all affect reflectance of the foliage (Austin and Ballare 2010). 207 

The benefit of active measurement system, such as HSL, is that they measure backscattered 208 

signal that has the potential to eliminate many of the multiple scattering and geometric 209 

viewing effects caused by the canopy structure (Gaulton et al., 2013; Morsdorf et al., 2009). 210 

The major factors affecting the backscattered signal are the local incidence angle of the target 211 

and the area of effective backscattering surface (Gaulton et al., 2013). These factors are also 212 

present in this study as one 5mm footprint may include one or several needles with varying 213 

incidence angles. However, the influence of these factors is similar with different wavelengths 214 

measured at the same optical path. Thus by calculating spectral ratios (i.e. vegetation indices), 215 

the influence of the incidence angle and target area can be reduced (Eitel et al., 2011; Gaulton 216 

et al., 2013). 217 

However, the influence of multiple scattering effects to the measured backscattered 218 

reflectance is not completely removed. Further study would be required to produce physically 219 

based model that would properly account for the multiple scattering of needles within single 220 

laser footprint and its effect to the measured backscattered reflectance. Some of the 221 

limitations of vegetation indices in chlorophyll estimation could be overcome by using 222 

inversion of radiative transfer models, such as LIBERTY (Leaf Incorporating Biochemistry 223 
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Exhibiting Reflectance and Transmittance Yields) (Dawson et al., 1998) which is specifically 224 

developed for needles, or PROSPECT model (Féret et al., 2011). 225 

The tree was scanned from two directions only. Increasing the number of scans from different 226 

directions around the tree will improve the results by increasing the point coverage. This will 227 

require some instrument development to allow a more efficient field use. Increasing the point 228 

density is also an important object of instrument improvement. However, the prototype 229 

instrument was capable of showing the potential of 3D spectral measurements. 230 

A major factor causing error and uncertainty in this research was the use of nearest possible 231 

channel in vegetation index calculation instead of the band the index was designed to use. 232 

Especially close to the vegetation red-edge region even small shift in channel wavelength 233 

causes high change in reflectance. This affects the performance of the vegetation indices, 234 

especially with indices requiring channels at red edge. However, this was not considered as a 235 

major problem as the aim of this study was to test the ability of the HSL in chlorophyll 236 

estimation and not to optimize the performance of the indices.  237 

Further work is needed to find the best spectral indices for different applications (e.g., 238 

monitoring the effects of drought or limited amount of light on the physiology of different 239 

tree parts), and then optimize the spectral channels to match with these indices. This will 240 

improve the precision of the results. Increasing the number of spectral channels would also 241 

improve the channel optimization and efficiency. Once the approach is well established and 242 

calibrated, it has potential for replacing a number of laborious and destructive manual 243 

experiments, and hence providing a new tool for remote observations of tree physiology. 244 

Although the first results show the potential of the approach, further studies on the laser 245 

interaction with the canopy are needed to establish the method physically. 246 

Acknowledgements 247 

This study was funded by the Academy of Finland research projects “New techniques in 248 

active remote sensing: hyperspectral laser in environmental change detection” and “Mobile 249 

hyperspectral laser remote sensing”. 250 

251 



 12 

References 252 

Asner, G. P.; Knapp, D. E.; Kennedy-Bowdoin, T.; Jones, M. O.; Martin, R. E. et al. Carnegie 253 

Airborne Observatory: in-flight fusion of hyperspectral imaging and waveform light detection 254 

and ranging for three-dimensional studies of ecosystems, Journal of Applied Remote Sensing, 255 

1(1), 013536; doi:10.1117/1.2794018, 2007. 256 

Austin, A. T. and Ballaré, C. S.: Dual role of lignin in plant litter decomposition in terrestrial 257 

ecosystems. PNAS 107(10), 4618–4622, doi: 10.1073/pnas.0909396107.  258 

Chen, J., Evaluation of vegetation indices and modified simple ratio for boreal applications. 259 

Canadian Journal of Remote Sensing 22, 229–242, 1996. 260 

Coops, N. C., Stone, C., Culvenor, D. S., Chisholm, L. A. and Merton, R. N.: Chlorophyll 261 

content in eucalypt vegetation at the leaf and canopy scales as derived from high resolution 262 

spectral data, Tree Physiology, 23(1), 23–31, doi:10.1093/treephys/23.1.23, 2003. 263 

Daughtry, C.: Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy 264 

Reflectance, Remote Sensing of Environment, 74(2), 229–239, doi:10.1016/S0034-265 

4257(00)00113-9, 2000. 266 

Dawson, T.P., Curran, P.J., Plummer, S.E.: LIBERTY—modeling the effects of leaf 267 

biochemical concentration on reflectance spectra. Remote Sensing of Environment, 65 (1), 268 

50–60, 1998. 269 

Douglas, E. S., Strahler, A., Martel, J., Cook, T., Mendillo, C., Marshall, R., Chakrabarti, S., 270 

Schaaf, C., Woodcock, C., Li, Z., Yang, X., Culvenor, D., Jupp, D., Newnham, G. and Lovell, 271 

J.: DWEL: A Dual-Wavelength Echidna Lidar for ground-based forest scanning, pp. 4998–272 

5001, IEEE., 2012. 273 

Eitel, J.U.H., Vierling, L.A., Long, D.S., Hunt, E.R.: Early season remote sensing of wheat 274 

nitrogen status using a green scanning laser. Agricultural and Forest Meteorology, 151, 1338–275 

1345, doi:10.1016/j.agrformet.2011.05.015, 2011. 276 

Féret, J. B., François, C., Gitelson, A., Asner, G., P., Barry, K., M., Panigada, C., Richardson, 277 

A., D, Jacquemoud, S.: Optimizing spectral indices and chemometric analysis of leaf 278 

chemical properties using radiative transfer modeling, Remote Sensing of Environment, 279 

115(10), 2742-2750, doi:10.1016/j.rse.2011.06.016, 2011. 280 

http://www.pnas.org/search?author1=Carlos+L.+Ballar%C3%A9&sortspec=date&submit=Submit
http://www.pnas.org/content/107/10/4618#fn-3


 13 

Gaulton, R., Danson, F. M., Ramirez, F. A. and Gunawan, O.: The potential of dual-281 

wavelength laser scanning for estimating vegetation moisture content, Remote Sensing of 282 

Environment, 132, 32–39, doi:10.1016/j.rse.2013.01.001, 2013. 283 

Gond, V., de Pury, D. G. G., Veroustraete, F. and Ceulemans, R.: Seasonal variations in leaf 284 

area index, leaf chlorophyll, and water content; scaling-up to estimate fAPAR and carbon 285 

balance in a multilayer, multispecies temperate forest, Tree Physiology, 19(10), 673–679, 286 

doi:10.1093/treephys/19.10.673, 1999. 287 

Hakala, T., Suomalainen, J., Kaasalainen, S. and Chen, Y.: Full waveform hyperspectral 288 

LiDAR for terrestrial laser scanning, Optics Express, 20(7), 7119, 289 

doi:10.1364/OE.20.007119, 2012. 290 

Hancock, S., Lewis, P., Foster, M., Disney, M. and Muller, J.-P.: Measuring forests with dual 291 

wavelength lidar: A simulation study over topography, Agricultural and Forest Meteorology, 292 

161, 123–133, doi:10.1016/j.agrformet.2012.03.014, 2012. 293 

Jones, T. G., Coops, N. C. and Sharma, T.: Assessing the utility of airborne hyperspectral and 294 

LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada, 295 

Remote Sensing of Environment, 114(12), 2841–2852, doi:10.1016/j.rse.2010.07.002, 2010. 296 

Kaasalainen, S., Krooks, A., Liski, J., Raumonen, P., Kaartinen, H., Kaasalainen, M., 297 

Puttonen, E., Anttila, K., and Mäkipää, R., Change Detection of Tree Biomass with Terrestrial 298 

Laser Scanning and Quantitative Structure Modelling. Remote Sensing 6(5), 3906-3922. 299 

doi:10.3390/rs6053906, 2014 300 

Lausch, A., Heurich, M., Gordalla, D., Dobner, H.-J., Gwillym-Margianto, S. and Salbach, 301 

C.: Forecasting potential bark beetle outbreaks based on spruce forest vitality using 302 

hyperspectral remote-sensing techniques at different scales, Forest Ecology and Management, 303 

308, 76–89, doi:10.1016/j.foreco.2013.07.043, 2013. 304 

Morsdorf, F., Nichol, C., Malthus, T., Woodhouse, I.H.: Assessing forest structural and 305 

physiological information content of multi-spectral LiDAR waveforms by radiative transfer 306 

modelling. Remote Sensing of Environment, 113 (10), 2152–2163, 307 

doi:10.1016/j.rse.2009.05.019, 2009. 308 

Nevalainen, O., Hakala, T., Suomalainen, J., Mäkipää, R., Peltoniemi, M., Krooks, A., 309 

Kaasalainen, S.: Fast and nondestructive method for leaf level chlorophyll estimation using 310 



 14 

hyperspectral LiDAR, Agricultural and Forest Meteorology, 198–199, 250-258, 311 

doi:10.1016/j.agrformet.2014.08.018, 2014. 312 

Peltoniemi, M. S., Duursma, R. A. and Medlyn, B. E.: Co-optimal distribution of leaf nitrogen 313 

and hydraulic conductance in plant canopies, Tree Physiology, 32(5), 510–519, 314 

doi:10.1093/treephys/tps023, 2012. 315 

Rouse, J.W., Haas, R.H., Schell, J.A., Deering, W.D., Monitoring vegetation systems in the 316 

Great Plains with ERTS. In: Third ERTS Symposium, NASA SP-351, 309–317, 1973 317 

Thomas, V., Finch, D. A., McCaughey, J. H., Noland, T., Rich, L. and Treitz, P.: Spatial 318 

modelling of the fraction of photosynthetically active radiation absorbed by a boreal 319 

mixedwood forest using a lidar–hyperspectral approach, Agricultural and Forest Meteorology, 320 

140(1-4), 287–307, doi:10.1016/j.agrformet.2006.04.008, 2006. 321 

Wang, L. and Schjoerring, J. K.: Seasonal variation in nitrogen pools and 
15

N/
13

C natural 322 

abundances in different tissues of grassland plants, Biogeosciences, 9(5), 1583–1595, 323 

doi:10.5194/bg-9-1583-2012, 2012. 324 

Wellburn, A. R.: The Spectral Determination of Chlorophylls a and b, as well as Total 325 

Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution, 326 

Journal of Plant Physiology, 144(3), 307–313, doi:10.1016/S0176-1617(11)81192-2, 1994. 327 

Woodhouse, I. H., Nichol, C., Sinclair, P., Jack, J., Morsdorf, F., Malthus, T. J. and 328 

Patenaude, G.: A Multispectral Canopy LiDAR Demonstrator Project, IEEE Geoscience and 329 

Remote Sensing Letters, 8(5), 839–843, doi:10.1109/LGRS.2011.2113312, 2011. 330 

Wu, C., Niu, Z., Tang, Q. and Huang, W.: Estimating chlorophyll content from hyperspectral 331 

vegetation indices: Modeling and validation, Agricultural and Forest Meteorology, 148(8-9), 332 

1230–1241, doi:10.1016/j.agrformet.2008.03.005, 2008. 333 

Zarco-Tejada, P. J., Miller, J. R., Noland, T. L., Mohammed, G. H. and Sampson, P. H.: 334 

Scaling-up and model inversion methods with narrowband optical indices for chlorophyll 335 

content estimation in closed forest canopies with hyperspectral data, IEEE Transactions on 336 

Geoscience and Remote Sensing, 39(7), 1491–1507, doi:10.1109/36.934080, 2001. 337 

Zhang, Y., Chen, J., Miller, J., Noland, T.: Leaf chlorophyll content retrieval from airborne 338 

hyperspectral remote sensing imagery. Remote Sensing of Environment, 112 (7), 3234–3247, 339 

doi:10.1016/j.rse.2008.04.005, 2008. 340 


