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Abstract 9 

We present an empirical application of multispectral laser scanning for monitoring the 10 

seasonal and spatial changes in pine chlorophyll (a + b) content and upscaling the accurate 11 

leaf-level chlorophyll measurements into branch and tree level. The results show the 12 

capability of the new instrument for monitoring the changes in the shape and physiology of 13 

tree canopy:  the spectral indices retrieved from the multispectral point cloud agree with 14 

laboratory measurements of the chlorophylls a and b content. The approach opens new 15 

prospects for replacing destructive and labor-intensive manual sampling with remote 16 

observations of tree physiology.  17 

1 Introduction 18 

The photosynthetic activity of leaves within a tree canopy is an indicator of tree health. 19 

Vigorous trees with high foliar biomass and chlorophyll content have high carbon 20 

assimilation capacity. Stress in vegetation has been shown to induce changes in the 21 

photosynthetically-active pigments such as chlorophylls a and b. Therefore, the leaf 22 

chlorophylls content is an important indicator of the photosynthetic capacity as well as tree 23 

productivity and stress (Coops et al., 2003,Lausch et al. 2013). 24 

The leaf properties and the distribution of chlorophylls and nutrients within a canopy vary as 25 

a function of time and space, and depending on the resource availability (Wang and 26 

Schjoerring, 2012, Peltoniemi et al., 2012). Plant phenology and seasonal chlorophyll content 27 

cycle are correlated to the CO2 flux. For monitoring these seasonal variations, methods are 28 

needed for accurate and nondestructive chlorophyll estimation, both at the leaf and canopy 29 
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level (e.g., Gond et al., 1999). Chlorophyll estimation with spectral remote-sensing has been 30 

implemented increasingly in a number of studies (e.g., Coops et al., 2003, Lausch et al., 31 

2013), but improved resolution and more accurate 3D position for the spectra are still being 32 

called for, to extend the accurate leaf-level measurement into canopy and stand level (cf. 33 

Gaulton et al., 2013). To investigate the spatial variation of the photosynthetic capacity and 34 

self-shading of photosynthetically active tissue, the canopy and branch structure must also be 35 

included in the measurement.  36 

One way to provide simultaneous structural and spectral information is lidar combined with 37 

hyperspectral passive sensing (e.g., Thomas et al., 2006, Asner et al., 2007, Jones et al., 38 

2010), but new applications using multi or hyperspectral laser scanning have increased quite 39 

recently. Hancock et al., (2012) demonstrated the potential of dual wavelength, large-40 

footprint, spaceborne lidar to separate ground and canopy returns using the extra information 41 

contained in a spectral ratio to complement the canopy height from laser scanning. Three-42 

dimensional (3D) distributions of vegetation biochemical properties were measured with 43 

spectral indices developed for the Salford Advanced Laser Canopy Analyser (SALCA), which 44 

is also a dual-wavelength lidar (Gaulton et al., 2013). A similar approach was used in the 45 

Dual-Wavelength Echidna Lidar (DWEL) (Douglas et al., 2012). A multispectral canopy lidar 46 

has also been introduced for simultaneous retrieval of vegetation structure and spectral indices 47 

(Woodhouse et al., 2011). In this approach, a tunable laser operating at four wavelengths was 48 

used.  49 

In this technical note, an application of the recently developed Hyperspectral Lidar  50 

instrument (HSL) (Hakala et al., 2012) is presented for monitoring the seasonal and spatial 51 

changes in pine total chlorophyll content (chlorophylls a + b). As a non-destructive method, 52 

the capability of the instrument to upscale the accurate leaf-level chlorophyll content 53 

measurements into branch and tree level has been investigated and validated with chemical 54 

analysis of chlorophylls content. In this study we used three spectral indices showing good 55 

correlation with Scots Pine shoot chlorophyll concentration using the instrument in 56 

Nevalainen et al. (2014). 57 

2 Materials and methods 58 

The HSL is a prototype laser scanning instrument (Hakala et al., 2012) utilizing a 59 

supercontinuum laser. White laser (420-1680 nm) pulses are transmitted to a target and the 60 

distances of reflected echoes are determined from time of flight. A spectrograph and an 61 
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avalanche photodiode (APD) array connected to a high-speed digitizer are used to determine 62 

the spectrum of each returning echo by measuring the intensity of the echo at multiple 63 

wavelengths. Also the intensity of each transmitted laser pulse is measured and used to 64 

normalize the echo intensity. Current prototype configuration uses a 16 element APD array 65 

and an 8 channel digitizer, enabling us to measure at 8 wavelength bands: 545, 641, 675, 711, 66 

742, 778, 978, 1292 nm, full width at half maximum 20 nm.  Before the target is measured a 67 

reference target with known reflectance (Spectralon) is measured at distance intervals of 68 

approximately 30 cm and these data are used to calibrate the reflectance over the whole 69 

measurement range. Additionally the Spectralon is placed in the scanned area during the 70 

actual measurement to validate the calibration. The instrument and data processing presented 71 

in more detail in Hakala et al., 2012. 72 

A Scots pine (Pinus sylvestris L.) was scanned five times during the 2013 growth season. The 73 

tree was approximately 13 years old, 5.5 m high and it was growing in a small forest stand 74 

near the institute building. The HSL was mounted on a portable cart, and the tree was scanned 75 

from two directions. The scans were co-registered using white spherical reference targets 76 

placed on fixed locations on the target area. The distance between the scanner and the tree 77 

was approximately 5 m. The tree was scanned with 0.1° horizontal and approximately 0.02° 78 

vertical resolution and the resulting point clouds contained 200 000- 470 000 echoes from the 79 

tree. The beam diameter at the target was approximately 5 mm. 80 

Needle samples were taken immediately after the scan for laboratory analysis. Six branches 81 

were selected and the samples were taken from these branches according to needle cohorts 82 

(current year needles, and 1-, 2, and 3-year old needles). Two needle pairs were taken from 83 

each cohort of each selected branch. Analysis of the chlorophylls contents followed the 84 

protocol described in Wellburn (1994) for extraction with dimethyl-sulfoxide (DMSO). After 85 

extraction, the chlorophylls concentrations were determined from solvents 86 

spectrophotometrically using wave-lengths 480.0, 649.1 and 665.1 nm (resolution 0.1 – 0.5 87 

nm). 88 

Two of the six sampled branches were clearly identifiable from the multiscpetral point cloud, 89 

having enough point density and long enough growth of the branch. Previous year cohorts 90 

were selected for further analysis, since they had needles present during all measurements. 91 

Therefore the following analysis is performed for two cohorts and five measurement dates. 92 

The parts of the point cloud containing the selected cohorts were isolated in post processing. 93 
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Three spectral indices were tested for determining chlorophyll content of the needles. Since it 94 

was not possible to tune all required wavelengths to optimal positions for every index, we 95 

used the nearest available band.  96 

The Modified Chlorophyll Absorption Ratio Index (Eq. 1) using reflectance at 705 and 750 97 

nm (referred here as MCARI750) was first presented by Wu et al. (2008). Contrary to the 98 

original MCARI (Daughtry et al. 2000), MCARI750 uses reflectance at 705 and 750 nm, 99 

which have shown better sensitivity to high chlorophyll contents (Wu et al. 2008). MCARI 100 

has been designed to measure the depth of the maximum chlorophyll absorption at 670 nm 101 

relative to green reflectance peak at 550 nm and reflectance at 700 nm, at canopy scale 102 

(Daughtry et al., 2000).  103 

𝑀𝐶𝐴𝑅𝐼750 = [(𝑅750 − 𝑅705) − 0.2 ∗ (𝑅750 − 𝑅550)] ∗ (𝑅750 𝑅705⁄ ) (1) 104 

The Modified Simple Ratio (MSR, Eq. 2), developed by Chen (1996), strives to have low 105 

noise effect and good linearity to vegetation biophysical parameters. MSR has been used to 106 

estimate chlorophyll and Leaf Area Index (LAI) at canopy scale. Wu et al. (2008) also 107 

developed MSR using reflectance at 705 and 750 nm, referred here as MSR2. 108 

𝑀𝑆𝑅2 =  
R750 𝑅705⁄ −1

√R750 𝑅705⁄ +1
  (2) 109 

The Simple Ratio (SR, Eq. 3) indices directly compare the reflectance and absorbance peaks 110 

of chlorophyll pigments, which make them sensitive to changes in chlorophyll content (Wu et 111 

al., 2008). Variety of wavelength combinations are used with simple ratio indices, but the one 112 

selected for this study is SR6 (Zarco-Tejada et al., 2001). It has been used to estimate 113 

chlorophyll at leaf level. 114 

𝑆𝑅6 =
R750

R710
  (3) 115 

Additionally, normalised difference vegetation index (NDVI, Eq. 4) (Rouse et al., 1973) was 116 

used to separate needles from branches. NDVI is the most widely used vegetation index. It is 117 

based on the contrast between high absorption at red and high reflectance at near-infrared 118 

(NIR). NDVI has been developed for canopy scale and it has been used for both chlorophyll 119 

and LAI estimation. 120 

𝑁𝐷𝑉𝐼 =  
𝑅800−𝑅670

𝑅800+𝑅670
  (4) 121 
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As the channels of the prototype lidar instrument are limited to eight separate spectral bands, 122 

these indices had to be used with the closest available spectral band (Table 1).  123 

The limitation of empirical vegetation indices estimating chlorophyll content is that they are 124 

also affected by the canopy structural properties. In addition, they can be affected by the 125 

internal structure, size, surface and shape of leaves and can thus be species-specific, requiring 126 

calibration when applied to specific species (Zhang et al., 2008). 127 

Table 1. The available channel wavelengths (nm) and the nominal wavelengths (nm) of the 128 

spectral indices. The closest available channel was used.  129 

Channel MCARI750 MSR2 SR6 NDVI 

545 550 
   641 

    675 
   

670 

711 705 705 710 
 742 750 750 750 
 778 

   
800 

978 
    1292 
    

The benefit of active measurement system, such as MSL, is that they measure backscattered 130 

signal that has the potential to eliminate many of the multiple scattering and geometric 131 

viewing effects caused by the canopy structure (Gaulton et al., 2013; Morsdorf et al., 2009). 132 

The major factors affecting the backscattered signal are the local incidence angle of the target 133 

and the area of effective backscattering surface (Gaulton et al., 2013). These factors are also 134 

present in this study as one 5mm footprint may include one or several needles with varying 135 

incidence angles. However, the influence of these factors is similar with different wavelengths 136 

measured at the same optical path. Thus by calculating spectral ratios (i.e. vegetation indices), 137 

the influence of the incidence angle and target area can be reduced (Eitel et al., 2011; Gaulton 138 

et al., 2013). 139 

3 Results 140 

A 3D point cloud of the tree and changes in structure (such as the growth of new shoots) from 141 

May to November can be observed in Figure 1 where no spectral information is used. The 142 

changes in the structure of one branch are visible in the coloured point clouds in Figure 2, 143 

where we plot the NDVI time series of the pine branch from May 15 to Nov 6, 2013. The 144 

outbreak and growth of new shoots (May/Jun 2013) can be observed, as well as the year 2 145 

cohorts defoliating (Sep/Oct 2013) and falling off completely (Nov 2013). 146 
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To validate the capability of the HSL to estimate the chlorophyll content using spectral 147 

indices, we compared the lidar data with laboratory analysis over the growing season. We 148 

present data for two branch cohorts, denoted M2_1 and M3_1 (one year old part of M2 and 149 

M3), which were best visible in the multispectral point clouds. The trends in the chlorophyll 150 

content and the indices MCARI750, MSR2, and SR6 from HSL data are well reproduced for 151 

the individual branches (Figures 3-5). For all three indices, the sample branch M2_1 was best 152 

correlated with the laboratory measurements with R
2
 0.8-0.9. The R

2 
for MCARI750 and 153 

MSR2 for M3_1 was 0.7, whereas SR6 performed worse for M3_1 (R
2
 0.4). When the data 154 

from M2_1 and M3_1 were combined for regression all indices correlated with the 155 

chlorophylls contents measured in the laboratory (Figure 6). The results were worse for 156 

indices averaged over the entire tree point cloud (the right column in Figures 3-5), compared 157 

with the average of all year 1 needles measured in the laboratory. This is very likely a result 158 

of the variation of the physiological conditions between different branches, which is more 159 

pronounced when the sampling has been carried out over the entire tree (i.e., the point cloud), 160 

rather than just a few needle samples (as in the laboratory experiment). All in all, the analysis 161 

of branch cohorts shows that the spatial distribution of the lidar-based spectral indices 162 

describes the chlorophyll content within the branch, although more measurements are needed 163 

to better validate the results. 164 

In figures 3-5, branch M2_1 and M3_1 laboratory measurements consist of two separate 165 

needles only. More sampling should have been performed, however, the number of needles in 166 

each branch cohort is limited and the tree had to be sampled several times during the year 167 

(this emphasizes the need for non-destructive methods). The number of laser echoes from 168 

year 0 and 2 were highly varying; in the spring lidar point clouds the year 0 growths were 169 

very small providing very few echoes. The year 2 and older cohorts started dropping needles 170 

before September measurement thus reducing the number of echoes during autumn compared 171 

to spring. Therefore we only used year 1 laboratory measurement of needles in plots 3-5 for 172 

whole tree (right column), since the weight of the year 0 and 2 laboratory measurements 173 

would have been higher compared to the lidar point cloud (lidar point density variable and 174 

laboratory sample number constant). Some lidar echoes still originate from the year 0 and 2 175 

needles, reducing the overall correlation between laboratory and lidar data for the whole tree. 176 

The changes in the structure of the tree are visible in Figure 1. The fact that the structure of 177 

the tree can be retrieved from laser scanner point clouds has been shown before in numerous 178 
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studies (see Kaasalainen et al., 2014 and Refs. therein). We have also shown in our previous 179 

study that the tree structure and its changes can be quantified from laser scanner point clouds 180 

using quantitative structure modelling (QSM) designed to retrieve tree branching structures 181 

(Raumonen et al., 2013, Kaasalainen et al., 2014). As the scope of this note was to show the 182 

added value of spectral data in the chlorophyll distribution monitoring, the changes in tree 183 

structure will be an object of our future study. 184 

 185 

Figure 1. Co-registered point clouds from 2013-05-15 scan (grey) and 2013-11-06 scan (red). 186 

Growth of the tree is visible and also some movement of the branches can be observed. The 187 

height of the tree is approximatly 5.5 m. 188 
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 189 

Figure 2. NDVI (see the colour bar for values) point clouds of a sample branch M2. The 190 

growth of new needles (starting 05-27), already clearly visible new branch tips 06-19, fully 191 

grown new needles 09-12 and dying and falloff of old needles (low NDVI in 09-12 and 10-192 

03) are visible in the data measured at different times. The measurement dates are shown in 193 

the plot titles.  194 
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 195 

Figure 3. Top row: distribution of MCARI750 spectral index during separate scans, the 196 

central mark is the median, the edges of the box are the 25th and 75th percentiles, the 197 

whiskers extend to the most extreme data points not considered outliers. Middle row: 198 

Laboratory measurements of chlorophylls a+b content per needle surface area. Bottom row: 199 

Correlation of the spectral index and laboratory measurement. Subplot columns left to right: 200 

sample branch 3 year 1, sample branch 2 year 1, spectral index of whole tree and laboratory 201 

measurements of all year 1 samples. 202 
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 203 

Figure 4. Same as previous figure (top and bottom rows, laboratory data is the same as in 204 

previous figure), this time using MSR2 spectral index. 205 

 206 

Figure 5. Same as previous figure, this time using SR6 spectral index. 207 

 208 
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Figure 6. Correlation of spectral index and laboratory measurement for combined M2_1 and 209 

M3_1 data. Left: MSR2, middle: MCARI750, right: SR6. Blue x: M3_1, red circle: M2_1. 210 

4 Conclusions and discussion 211 

We have shown that the multispectral lidar provides an empirical approach for efficient 212 

mapping the spatial distributions of tree physiological parameters that are correlated to 213 

reflectance of the foliage (such as chlorophylls a and b). Because the measurement is non-214 

destructive, it can be repeated for the same target to produce time series of important tree 215 

functions, such as moisture condition, photosynthetic capacity, or physiological status. 216 

We demonstrated that the seasonal changes in the structure and physiology of tree canopy, 217 

needles and branches are visible in 3D; parameters affecting tree physiology can be quantified 218 

with spectral indices and linked to a specific location in the tree canopy using the 219 

multispectral point cloud. We validated the method with reference measurements of 220 

chlorophylls a and b concentration in a laboratory. According to our results multispectral lidar 221 

can be used for the monitoring of the chlorophyll content, but similarly, the approach has 222 

potential in the monitoring of the water, carotenoid or lignin content, which all affect 223 

reflectance of the foliage (Austin and Ballare 2010). 224 

Although, the influence of multiple scattering effects caused by canopy structure can be 225 

reduced using multispectral lidar and ratios of backscattered reflectance, it is not completely 226 

removed. Further study would be required to produce a physically based model that would 227 

properly account for the multiple scattering of needles within single laser footprint and its 228 

effect to the measured backscattered reflectance. In addition, some of the limitations of 229 

vegetation indices in chlorophyll estimation, such as robustness and portability to different 230 

measurement configuration and wavelengths, might be overcome by using inversion of 231 

radiative transfer models, such as LIBERTY (Leaf Incorporating Biochemistry Exhibiting 232 

Reflectance and Transmittance Yields) (Dawson et al., 1998) which is specifically developed 233 

for needles, or PROSPECT model (Féret et al., 2011). 234 

The tree was scanned from two directions only. Increasing the number of scans from different 235 

directions around the tree will improve the results by increasing the point coverage. This will 236 

require some instrument development to allow a more efficient field use. Increasing the point 237 

density is also an important object of instrument improvement. However, the prototype 238 

instrument was capable of showing the potential of 3D spectral measurements. 239 
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A major factor causing error and uncertainty in this research was the use of nearest possible 240 

channel in vegetation index calculation instead of the band the index was designed to use. 241 

This affects the performance of the vegetation indices, especially with indices requiring 242 

channels at red edge, where even small shift in channel wavelength causes high change in 243 

reflectance. However, this was not considered as a major problem as the aim of this study was 244 

to test the ability of our HSL instrument in chlorophyll estimation and not to optimize the 245 

performance of the indices.  246 

Further work is needed to find the best spectral indices for different applications (e.g., 247 

monitoring the 3D effects of drought or limited amount of light on the physiology of a tree), 248 

and then optimize the spectral channels to match with these indices. This will improve the 249 

precision of the results. Increasing the number of spectral channels would also improve the 250 

channel optimization and efficiency. Once the approach is well established and calibrated, it 251 

has potential for replacing a number of laborious and destructive manual experiments, and 252 

hence providing a new tool for remote observations of tree physiology. Although the first 253 

results show the potential of the approach, further studies on the laser interaction with the 254 

canopy are needed to establish the method physically. 255 
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