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Abstract 9 

We present an empirical application of hyperspectral lidar for monitoring the seasonal and 10 

spatial changes in pine chlorophyll content and upscaling the accurate leaf-level chlorophyll 11 

measurements into branch and tree level. The results show the capability of the new 12 

instrument for monitoring the changes in the shape and physiology of tree canopy:  the 13 

spectral indices retrieved from the hyperspectral point cloud agree with laboratory 14 

measurements of the chlorophyll content. The approach opens new prospects for replacing 15 

destructive and labor-intensive manual sampling with remote observations of tree physiology.  16 

1 Introduction 17 

The photosynthetic activity in tree canopy is an indicator of tree health. Vigorous trees with 18 

high foliar biomass and chlorophyll content have high carbon assimilation capacity. Stress in 19 

vegetation has been shown to induce changes in the photosynthetically-active pigments such 20 

as chlorophyll a and b. Therefore, the leaf chlorophyll content is an important indicator of the 21 

photosynthetic capacity as well as tree productivity and stress (Coops et al., 2003,Lausch et 22 

al. 2013). 23 

The leaf properties and the distribution of chlorophyll and nutrients within a canopy vary as a 24 

function of time and space, and depending on the resource availability (Wang and 25 

Schjoerring, 2012, Peltoniemi et al., 2012). Seasonal changes in pPlant phenology and 26 

seasonal chlorophyll content cycle are correlated to the CO2 flux. For monitoring these 27 

seasonal variations, methods are needed for accurate and nondestructive chlorophyll 28 

estimation, both at the leaf and canopy level (e.g., Gond et al., 1999). Chlorophyll estimation 29 
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with spectral remote-sensing has been implemented increasingly in a number of studies (e.g., 30 

Coops et al., 2003, Lausch et al., 2013), but improved resolution and more accurate 3D 31 

position for the spectra are still being called for, to extend the accurate leaf-level measurement 32 

into canopy and stand level (cf. Gaulton et al., 2013). To investigate the spatial variation of 33 

the photosynthetic capacity and self-shading of photosynthetically active tissue, the canopy 34 

and branch structure must also be included in the measurement.  35 

One way to provide simultaneous structural and spectral information is lidar combined with 36 

hyperspectral passive sensing (e.g., Thomas et al., 2006, Asner et al., 2007, Jones et al., 37 

2010), but new applications using multi or hyperspectral laser scanning have increased quite 38 

recently. Hancock et al., (2012) demonstrated the potential of dual wavelength, large-39 

footprint, spaceborne lidar to separate ground and canopy returns using the extra information 40 

contained in a spectral ratio to complement the canopy height from laser scanning. Three-41 

dimensional (3D) distributions of vegetation biochemical properties were measured with 42 

spectral indices developed for the Salford Advanced Laser Canopy Analyser (SALCA), which 43 

is also a dual-wavelength lidar (Gaulton et al., 2013). A similar approach was used in the 44 

Dual-Wavelength Echidna Lidar (DWEL) (Douglas et al., 2012). A multispectral canopy lidar 45 

has also been introduced for simultaneous retrieval of vegetation structure and spectral indices 46 

(Woodhouse et al., 2011). In this approach, a tunable laser operating at four wavelengths was 47 

used. The limitation of empirical vegetation indices estimating chlorophyll content is that they 48 

are also affected by the canopy structural properties. In addition, they can be affected by the 49 

internal structure, size, surface and shape of leaves and can thus be species-specific, requiring 50 

calibration when applied to specific species (Zhang et al., 2008). 51 

In this technical note, an application of the recently developed hyperspectral lidar instrument 52 

(Hakala et al., 2012) is presented for monitoring the seasonal and spatial changes in pine 53 

chlorophyll content. As a non-destructive method, the capability of the instrument to upscale 54 

the accurate leaf-level chlorophyll content measurements into branch and tree level has been 55 

investigated and validated with chemical analysis of chlorophyll content. In this study, three 56 

spectral indices that showed good correlation with Scots Pine shoot chlorophyll concentration 57 

using the HSL instrument in Nevalainen et al. (2014) were used. 58 

2 Materials and methods 59 

Hyperspectral lidar (HSL) is a prototype laser scanning instrument (Hakala et al., 2012) 60 

utilizing a supercontinuum laser. White laser pulses are sent transmitted to a target and the 61 
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distances of reflected echoes are determined from time of flightare timed for distance. A 62 

spectrograph and an avalanche photodiode (APD) array connected to a high-speed digitizer 63 

are used to determine the spectrum of each returning echo by measuring the intensity of the 64 

echo at multiple wavelengths. Also the intensity of each transmitted laser pulse is measured 65 

and used to normalize the echo intensity. Current prototype configuration uses a 16 element 66 

APD array and an 8 channel digitizer, enabling us to measure at 8 different wavelength bands: 67 

545, 641, 675, 711, 742, 778, 978, 1292 nm, full width at half maximum about 20 nm.  Before 68 

the target is measured Aa reference target with known reflectance (Spectralon) is measured at 69 

distance intervals of about 30 cmfrom multiple distances and these data are used for 70 

calibratingto calibrate the reflectance over the whole measurement range. Additionally the 71 

Spectralon is placed in the scanned area during the actual measurement to validate the 72 

calibration. The instrument and data processing presented in more detail in Hakala et al., 73 

2012. 74 

A Scots pine (Pinus sylvestris L.) was scanned five times during the 2013 growth season. The 75 

tree was approximately 13 years old, 5.5 m high and it was growing in a small forest stand 76 

near the institute building. The HSL was mounted on a portable cart, and the tree was scanned 77 

from two directions. The scans were co-registered using white spherical reference targets 78 

placed on fixed locations on the target area. The distance between the scanner and the tree 79 

was about 5 m. The tree was scanned with 0.1° horizontal and about 0.02° vertical resolution 80 

and the resulting point clouds contained 200 000- 470 000 echoes from the tree. The beam 81 

diameter at the target was about 5 mm. 82 

Needle samples were taken immediately after the scan for laboratory analysis. Six branches 83 

were selected and the samples were taken from these branches according to needle cohorts 84 

(current year needles, and 1-, 2, and 3-year old needles). Two needle pairs were taken from 85 

each cohort of each selected branch. Analysis of the chlorophyll contents followed the 86 

protocol described in Wellburn (1994) for extraction with dimethyl-sulfoxide (DMSO). After 87 

extraction, the chlorophyll concentrations were determined from solvents 88 

spectrophotometrically using wave-lengths 480.0, 649.1 and 665.1 nm (resolution 0.1 – 0.5 89 

nm). 90 

Two of the six sampled branches were clearly identifiable from the HSL point cloud, having 91 

enough point density and long enough growth of the branch. Parts of thePrevious year cohorts 92 

branches that carried previous year needles were selected for further analysis, since they had 93 
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needles present during all measurements. Therefore the following analysis is performed for 94 

two cohorts and five measurement dates. The parts of the point cloud containing the selected 95 

branch partscohorts were isolated in post processing. Three spectral indices were tested for 96 

determining chlorophyll content of the needles. Since it was not possible to tune all required 97 

wavelengths to optimal positions for every index, we used the nearest available band.  98 

The Modified Chlorophyll Absorption Ratio Index using reflectance at 705 and 750 nm 99 

(referred here as MCARI750) was first presented by Wu et al. (2008). Contrary to the original 100 

MCARI (Daughtry et al. 2000), MCARI750 uses reflectance at 705 and 750 nm, which have 101 

shown better sensitivity to high chlorophyll contents (Wu et al. 2008). MCARI has been 102 

designed to measure the depth of the maximum chlorophyll absorption at 670 nm relative to 103 

green reflectance peak at 550 nm and reflectance at 700 nm, at canopy scale (Daughtry et al., 104 

2000).  105 

𝑀𝐶𝐴𝑅𝐼750 = [(𝑅750 − 𝑅705) − 0.2 ∗ (𝑅750 − 𝑅550)] ∗ (𝑅750 𝑅705⁄ ) (1) 106 

The Modified Simple Ratio (MSR), developed by Chen (1996), strives to have low noise 107 

effect and good linearity to vegetation biophysical parameters. MSR has been used to estimate 108 

chlorophyll and Leaf Area Index (LAI) at canopy scale. Wu et al. (2008) also developed MSR 109 

using reflectance at 705 and 750 nm, referred here as MSR2. 110 

𝑀𝑆𝑅2 =  
R750 𝑅705⁄ −1

√R750 𝑅705⁄ +1
  (2) 111 

The Simple Ratio (SR) indices directly compare the reflectance and absorbance peaks of 112 

chlorophyll pigments, which make them sensitive to changes in chlorophyll content (Wu et 113 

al., 2008). Variety of wavelength combinations are used with simple ratio indices, but the one 114 

selected for this study is SR6 (Zarco-Tejada et al., 2001). It has been used to estimate 115 

chlorophyll at leaf level. 116 

𝑆𝑅6 =
R750

R710
  (3) 117 

Additionally, normalised difference vegetation index (NDVI) (Rouse et al., 1973) was used to 118 

separate needles from branches. NDVI is the most widely used vegetation index. It is based 119 

on the contrast between high absorption at red and high reflectance at near-infrared (NIR). 120 

NDVI has been developed for canopy scale and it has been used for both chlorophyll and LAI 121 

estimation. 122 
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𝑁𝐷𝑉𝐼 =  
𝑅800−𝑅670

𝑅800+𝑅670
  (4) 123 

As the channels of the prototype HSL are limited to eight separate spectral bands, these 124 

indices had to be used with the closest available spectral band.  125 

3 Results 126 

The overall shape of the tree and changes in shape from May to November can be observed in 127 

Figure 1 where no spectral information is used. The changes in the shape and the spectra of 128 

tree parts are visible in the spectral point clouds. To demonstrate this, we plot the time series 129 

of the NDVI over the pine branch from May 15 to Nov 6, 2013 in Figure 2. The outbreak and 130 

growth of new shoots (May/Jun 2013) can be observed, as well as the year 2 parts drying 131 

outdefoliating (Sep/Oct 2013) and falling off completely (Nov 2013). 132 

To validate the capability of the HSL to estimate the chlorophyll content using spectral 133 

indices, we compared the HSL data with laboratory analysis over the growing season. We 134 

present data for two branches cohorts, denoted M2_1 and M3_1 (one year old part of M2 and 135 

M3), which were best visible in the HSL point clouds. The trends in the chlorophyll content 136 

and the indices MCARI750, MSR2, and SR6 from HSL data are well reproduced for the 137 

individual branches (Figures 3-5). For all three indices, the sample branch M2_1 (year 1 part 138 

of M2) was best correlated with the laboratory measurements with R
2
 0.8-0.9. The R

2 
for 139 

MCARI750 and MSR2 for M3_1 was 0.7, whereas SR6 performed worse for M3_1 (R
2
 0.54). 140 

When the data from M2_1 and M3_1 were combined for regression, MCARI750 and 141 

MSR2all indices correlated with the chlorophyll content measured in the laboratory, whereas 142 

there was distinct difference in SR6 value levels for M2_1 and M3_1 (Figure 6). The results 143 

were worse for indices averaged over the entire tree point cloud (the right column in Figures 144 

3-5), compared with the average of all year 1 needles measured in the laboratory. This is very 145 

likely a result of the variation of the physiological conditions between the tree parts, which is 146 

more pronounced when the sampling has been carried out over the entire tree (i.e., the point 147 

cloud), rather than just a few needle samples (as in the laboratory experiment). All in all, the 148 

analysis of branch parts shows that the spatial distribution of the HSL spectral indices 149 

describes the chlorophyll content within the branch, although more measurements are needed 150 

to better validate the results. 151 

In figures 3-5, branch M2_1 and M3_1 laboratory measurements consist of two separate 152 

needles only. More sampling should have been performed, however, the number of needles in 153 
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each branch part is limited and the tree had to be sampled several times during the year (this 154 

emphasizes the need for non-destructive methods). The number of laser echoes from year 0 155 

and 2 were highly varying; in the first spring lidar point clouds the year 0 growths were very 156 

small providing very few echoes., and t The year 2 and older growths cohorts started dropping 157 

needles before September measurement thus reducing the number of echoes during autumn 158 

compared to spring. If the laboratory measurements of all needles would have been 159 

usedTherefore we only used year 1 laboratory measurement of needles in plots 3-5 for whole 160 

tree (right column), since the weight of the year 0 and 2 laboratory measurements would have 161 

been higher compared to the lidar point cloud (lidar point density variable and laboratory 162 

sample number constant). Some lidar echoes still originate from the year 0 and 2 needles, 163 

reducing the overall correlation between laboratory and lidar data for the whole tree. 164 

The change in the shape of the tree point cloud is visible in Figure 1. The fact that tree shape 165 

can be retrieved from HSL point clouds has been shown before in numerous studies (see 166 

Kaasalainen et al., 2014 and Refs. therein). We have also shown in our previous study that the 167 

tree shape and its changes can be quantified from laser scanner point clouds using quantitative 168 

tree structure modelling (Kaasalainen et al., 2014). As the scope of this note was to show the 169 

added value of spectral data in the chlorophyll distribution monitoring, the changes in tree 170 

shape will be an object of our future study. 171 
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 172 

Figure 1. Co-registered point clouds from 2013-05-15 scan (grey) and 2013-11-06 scan (red). 173 

Growth of the tree is visible and also some movement of the branches can be observed. The 174 

height of the tree is about 5.5 m. 175 

 176 
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Figure 2. NDVI (see the colour bar for values) point clouds of a sample branch M2. The 177 

growth of new needles (starting 05-27), already clearly visible new branch tips 06-19, fully 178 

grown new needles 09-12 and dying and falloff of old needles (shown in bluish green , low 179 

NDVI, colours in 09-12 and 10-03) are visible in the data measured at different times. The 180 

measurement dates are shown in the plot titles.  181 

 182 

Figure 3. Top row: distribution of MCARI750 spectral index during separate HSL 183 

measurements, the central mark is the median, the edges of the box are the 25th and 75th 184 

percentiles, the whiskers extend to the most extreme data points not considered outliers. 185 

Middle row: Laboratory measurements chlorophyll a+b. Bottom row: Correlation of the 186 

spectral index and laboratory measurement. Subplot columns left to right: sample branch 3 187 

year 1, sample branch 2 year 1, spectral index of whole tree and laboratory measurements of 188 

all year 1 samples. 189 
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 190 

Figure 4. Same as previous figure (top and bottom rows, laboratory data is the same as in 191 

previous figure), this time using MSR2 spectral index. 192 

 193 

Figure 5. Same as previous figure, this time using SR6 spectral index. 194 

 195 
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Figure 6. Correlation of spectral index and laboratory measurement for combined M2_1 and 196 

M3_1 data. Left: MSR2, middle: MCARI750, right: SR6. Blue x: M3_1, red circle: M2_1. 197 

4 Conclusions and discussion 198 

We have shown that the hyperspectral lidar provides an empirical approach for efficient 199 

mapping the spatial distributions of tree physiological parameters that are correlated to 200 

reflectance of the foliage (such as chlorophyll a and b). Because the measurement is non-201 

destructive, it can be repeated for the same target to produce time series of important tree 202 

functions, such as moisture condition, photosynthetic capacity, or physiological status. 203 

We demonstrated that the seasonal changes in the shape and physiology of tree parts are 204 

visible in 3D; parameters affecting tree physiology can be quantified with spectral indices and 205 

linked to a specific location in the tree canopy using the HSL point cloud. We validated the 206 

method with reference measurements of chlorophyll a and b concentration in a laboratory. 207 

According to our results hyperspectral lidar can be used for the monitoring of the chlorophyll 208 

content, but similarly, the approach has potential in the monitoring of the water, carotenoid or 209 

lignin content, which all affect reflectance of the foliage (Austin and Ballare 2010). 210 

The benefit of active measurement system, such as HSL, is that they measure backscattered 211 

signal that has the potential to eliminate many of the multiple scattering and geometric 212 

viewing effects caused by the canopy structure (Gaulton et al., 2013; Morsdorf et al., 2009). 213 

The major factors affecting the backscattered signal are the local incidence angle of the target 214 

and the area of effective backscattering surface (Gaulton et al., 2013). These factors are also 215 

present in this study as one 5mm footprint may include one or several needles with varying 216 

incidence angles. However, the influence of these factors is similar with different wavelengths 217 

measured at the same optical path. Thus by calculating spectral ratios (i.e. vegetation indices), 218 

the influence of the incidence angle and target area can be reduced (Eitel et al., 2011; Gaulton 219 

et al., 2013). 220 

However, the influence of multiple scattering effects to the measured backscattered 221 

reflectance is not completely removed. Further study would be required to produce physically 222 

based model that would properly account for the multiple scattering of needles within single 223 

laser footprint and its effect to the measured backscattered reflectance. Some of the 224 

limitations of vegetation indices in chlorophyll estimation could be overcome by using 225 

inversion of radiative transfer models, such as LIBERTY (Leaf Incorporating Biochemistry 226 
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Exhibiting Reflectance and Transmittance Yields) (Dawson et al., 1998) which is specifically 227 

developed for needles, or PROSPECT model (Féret et al., 2011). 228 

The tree was scanned from two directions only. Increasing the number of scans from different 229 

directions around the tree will improve the results by increasing the point coverage. This will 230 

require some instrument development to allow a more efficient field use. Increasing the point 231 

density is also an important object of instrument improvement. However, the prototype 232 

instrument was capable of showing the potential of 3D spectral measurements. 233 

A major factor causing error and uncertainty in this research was the use of nearest possible 234 

channel in vegetation index calculation instead of the band the index was designed to use. 235 

Especially close to the vegetation red-edge region even small shift in channel wavelength 236 

causes high change in reflectance. This affects the performance of the vegetation indices, 237 

especially with indices requiring channels at red edge. However, this was not considered as a 238 

major problem as the aim of this study was to test the ability of the HSL in chlorophyll 239 

estimation and not to optimize the performance of the indices.  240 

Further work is needed to find the best spectral indices for different applications (e.g., 241 

monitoring the effects of drought or limited amount of light on the physiology of different 242 

tree parts), and then optimize the spectral channels to match with these indices. This will 243 

improve the precision of the results. Increasing the number of spectral channels would also 244 

improve the channel optimization and efficiency. Once the approach is well established and 245 

calibrated, it has potential for replacing a number of laborious and destructive manual 246 

experiments, and hence providing a new tool for remote observations of tree physiology. 247 

Although the first results show the potential of the approach, further studies on the laser 248 

interaction with the canopy are needed to establish the method physically. 249 

Acknowledgements 250 

This study was funded by the Academy of Finland research projects “New techniques in 251 

active remote sensing: hyperspectral laser in environmental change detection” and “Mobile 252 

hyperspectral laser remote sensing”. 253 

254 



 12 

References 255 

Asner, G. P.; Knapp, D. E.; Kennedy-Bowdoin, T.; Jones, M. O.; Martin, R. E. et al. Carnegie 256 

Airborne Observatory: in-flight fusion of hyperspectral imaging and waveform light detection 257 

and ranging for three-dimensional studies of ecosystems, Journal of Applied Remote Sensing, 258 

1(1), 013536; doi:10.1117/1.2794018, 2007. 259 

Austin, A. T. and Ballaré, C. S.: Dual role of lignin in plant litter decomposition in terrestrial 260 

ecosystems. PNAS 107(10), 4618–4622, doi: 10.1073/pnas.0909396107.  261 

Chen, J., Evaluation of vegetation indices and modified simple ratio for boreal applications. 262 

Canadian Journal of Remote Sensing 22, 229–242, 1996. 263 

Coops, N. C., Stone, C., Culvenor, D. S., Chisholm, L. A. and Merton, R. N.: Chlorophyll 264 

content in eucalypt vegetation at the leaf and canopy scales as derived from high resolution 265 

spectral data, Tree Physiology, 23(1), 23–31, doi:10.1093/treephys/23.1.23, 2003. 266 

Daughtry, C.: Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy 267 

Reflectance, Remote Sensing of Environment, 74(2), 229–239, doi:10.1016/S0034-268 

4257(00)00113-9, 2000. 269 

Dawson, T.P., Curran, P.J., Plummer, S.E.: LIBERTY—modeling the effects of leaf 270 

biochemical concentration on reflectance spectra. Remote Sensing of Environment, 65 (1), 271 

50–60, 1998. 272 

Douglas, E. S., Strahler, A., Martel, J., Cook, T., Mendillo, C., Marshall, R., Chakrabarti, S., 273 

Schaaf, C., Woodcock, C., Li, Z., Yang, X., Culvenor, D., Jupp, D., Newnham, G. and Lovell, 274 

J.: DWEL: A Dual-Wavelength Echidna Lidar for ground-based forest scanning, pp. 4998–275 

5001, IEEE., 2012. 276 

Eitel, J.U.H., Vierling, L.A., Long, D.S., Hunt, E.R.: Early season remote sensing of wheat 277 

nitrogen status using a green scanning laser. Agricultural and Forest Meteorology, 151, 1338–278 

1345, doi:10.1016/j.agrformet.2011.05.015, 2011. 279 

Féret, J. B., François, C., Gitelson, A., Asner, G., P., Barry, K., M., Panigada, C., Richardson, 280 

A., D, Jacquemoud, S.: Optimizing spectral indices and chemometric analysis of leaf 281 

chemical properties using radiative transfer modeling, Remote Sensing of Environment, 282 

115(10), 2742-2750, doi:10.1016/j.rse.2011.06.016, 2011. 283 

http://www.pnas.org/search?author1=Carlos+L.+Ballar%C3%A9&sortspec=date&submit=Submit
http://www.pnas.org/content/107/10/4618#fn-3
http://dx.doi.org/10.1016/j.rse.2011.06.016


 13 

Gaulton, R., Danson, F. M., Ramirez, F. A. and Gunawan, O.: The potential of dual-284 

wavelength laser scanning for estimating vegetation moisture content, Remote Sensing of 285 

Environment, 132, 32–39, doi:10.1016/j.rse.2013.01.001, 2013. 286 

Gond, V., de Pury, D. G. G., Veroustraete, F. and Ceulemans, R.: Seasonal variations in leaf 287 

area index, leaf chlorophyll, and water content; scaling-up to estimate fAPAR and carbon 288 

balance in a multilayer, multispecies temperate forest, Tree Physiology, 19(10), 673–679, 289 

doi:10.1093/treephys/19.10.673, 1999. 290 

Hakala, T., Suomalainen, J., Kaasalainen, S. and Chen, Y.: Full waveform hyperspectral 291 

LiDAR for terrestrial laser scanning, Optics Express, 20(7), 7119, 292 

doi:10.1364/OE.20.007119, 2012. 293 

Hancock, S., Lewis, P., Foster, M., Disney, M. and Muller, J.-P.: Measuring forests with dual 294 

wavelength lidar: A simulation study over topography, Agricultural and Forest Meteorology, 295 

161, 123–133, doi:10.1016/j.agrformet.2012.03.014, 2012. 296 

Jones, T. G., Coops, N. C. and Sharma, T.: Assessing the utility of airborne hyperspectral and 297 

LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada, 298 

Remote Sensing of Environment, 114(12), 2841–2852, doi:10.1016/j.rse.2010.07.002, 2010. 299 

Kaasalainen, S., Krooks, A., Liski, J., Raumonen, P., Kaartinen, H., Kaasalainen, M., 300 

Puttonen, E., Anttila, K., and Mäkipää, R., 2014. Change Detection of Tree Biomass with 301 

Terrestrial Laser Scanning and Quantitative Structure Modelling. Remote Sensing 6(5), 3906-302 

3922. http://dx.doi.org/doi:10.3390/rs6053906, 2014 303 

Lausch, A., Heurich, M., Gordalla, D., Dobner, H.-J., Gwillym-Margianto, S. and Salbach, 304 

C.: Forecasting potential bark beetle outbreaks based on spruce forest vitality using 305 

hyperspectral remote-sensing techniques at different scales, Forest Ecology and Management, 306 

308, 76–89, doi:10.1016/j.foreco.2013.07.043, 2013. 307 

Morsdorf, F., Nichol, C., Malthus, T., Woodhouse, I.H.: Assessing forest structural and 308 

physiological information content of multi-spectral LiDAR waveforms by radiative transfer 309 

modelling. Remote Sensing of Environment, 113 (10), 2152–2163, 310 

doi:10.1016/j.rse.2009.05.019, 2009. 311 

Nevalainen, O., Hakala, T., Suomalainen, J., Mäkipää, R., Peltoniemi, M., Krooks, A., 312 

Kaasalainen, S.: Fast and nondestructive method for leaf level chlorophyll estimation using 313 



 14 

hyperspectral LiDAR, Agricultural and Forest Meteorology, 198–199, 250-258, 314 

doi:10.1016/j.agrformet.2014.08.018, 2014. 315 

Peltoniemi, M. S., Duursma, R. A. and Medlyn, B. E.: Co-optimal distribution of leaf nitrogen 316 

and hydraulic conductance in plant canopies, Tree Physiology, 32(5), 510–519, 317 

doi:10.1093/treephys/tps023, 2012. 318 

Rouse, J.W., Haas, R.H., Schell, J.A., Deering, W.D., 1973. Monitoring vegetation systems in 319 

the Great Plains with ERTS. In: Third ERTS Symposium, NASA SP-351, 309–317, 1973. 320 

Thomas, V., Finch, D. A., McCaughey, J. H., Noland, T., Rich, L. and Treitz, P.: Spatial 321 

modelling of the fraction of photosynthetically active radiation absorbed by a boreal 322 

mixedwood forest using a lidar–hyperspectral approach, Agricultural and Forest Meteorology, 323 

140(1-4), 287–307, doi:10.1016/j.agrformet.2006.04.008, 2006. 324 

Wang, L. and Schjoerring, J. K.: Seasonal variation in nitrogen pools and 
15

N/
13

C natural 325 

abundances in different tissues of grassland plants, Biogeosciences, 9(5), 1583–1595, 326 

doi:10.5194/bg-9-1583-2012, 2012. 327 

Wellburn, A. R.: The Spectral Determination of Chlorophylls a and b, as well as Total 328 

Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution, 329 

Journal of Plant Physiology, 144(3), 307–313, doi:10.1016/S0176-1617(11)81192-2, 1994. 330 

Woodhouse, I. H., Nichol, C., Sinclair, P., Jack, J., Morsdorf, F., Malthus, T. J. and 331 

Patenaude, G.: A Multispectral Canopy LiDAR Demonstrator Project, IEEE Geoscience and 332 

Remote Sensing Letters, 8(5), 839–843, doi:10.1109/LGRS.2011.2113312, 2011. 333 

Wu, C., Niu, Z., Tang, Q. and Huang, W.: Estimating chlorophyll content from hyperspectral 334 

vegetation indices: Modeling and validation, Agricultural and Forest Meteorology, 148(8-9), 335 

1230–1241, doi:10.1016/j.agrformet.2008.03.005, 2008. 336 

Zarco-Tejada, P. J., Miller, J. R., Noland, T. L., Mohammed, G. H. and Sampson, P. H.: 337 

Scaling-up and model inversion methods with narrowband optical indices for chlorophyll 338 

content estimation in closed forest canopies with hyperspectral data, IEEE Transactions on 339 

Geoscience and Remote Sensing, 39(7), 1491–1507, doi:10.1109/36.934080, 2001. 340 

Zhang, Y., Chen, J., Miller, J., Noland, T.: Leaf chlorophyll content retrieval from airborne 341 

hyperspectral remote sensing imagery. Remote Sensing of Environment, 112 (7), 3234–3247, 342 

doi:10.1016/j.rse.2008.04.005, 2008. 343 

344 



 15 

Comments by Mathias Disney 345 

“I think this paper in general presents interesting results from a new hyperspectral lidar instrument. 346 

This kind of measurement is likely to hold real promise for disentangling structure and spectral 347 

properties of vegetation canopies. The work is generally clear and well-written. I have a few 348 

comments on the limitations, but these are fairly minor. “ 349 

RESPONSE: Thank you for the comments.  350 

“A limitation here is the very small number of needle samples taken for biochemical analysis - only 2 351 

needles for M2 and M3 - what were the numbers for others? Chlorophyll content can vary quite a lot 352 

between different cohorts of needles, so the resulting scatter plots are essentially extrapolations 353 

from 2 needles only. I’m not sure this is useful. Fig 2 shows this variability (in part) - although of 354 

course the fact is that the laser will return signals from multiple needles even for a single pulse. A 5 355 

mm beam diameter is much larger than a single needle. What are the implications of this? There will 356 

also be significant multiple scattering and shadowing at needle scale. Using spectral ratios may 357 

average this effect out but it’s still there. This means all results are a function of the spot size relative 358 

to the needle size. This issue ought to be discussed and quantified if possible, or at least discussed. 359 

Given the work is intended to look at small targets and the chemical analysis has been done on a very 360 

small sample of these, I think this needs investigation.” 361 

RESPONSE: The denotation “M2, M3” was inconsistent in the article; all the analysis was for one year 362 

old cohort (M2_1, M3_1). The needle samples were taken from all cohorts of sample branches with 363 

needles during time of sampling. The cohorts were also isolated from the lidar point cloud, which 364 

was difficult to do reliably. Most of the cohorts were either too small to be reliably distinguishable 365 

from the point cloud or, after new growth, shadowed by other parts of the tree. Several branches 366 

were sampled, but only these two were clearly visible, and since the new grown cohort (year 0, eg. 367 

M2_0) was not present during all of the measurements we only used year 1 cohorts. Additionally, 368 

only two needle pairs were taken from each cohort because we were worried that if we take too 369 

many needles each time, the point cloud would be eventually affected by the reducing amount of 370 

needles. The question about the spot size requires further research, but it mainly affects the intensity 371 

of the return signal and not the spectral content. And the effect of intensity is minimized by using 372 

spectral ratios. At this stage, single echoes have significant uncertainty, and meaningful results can 373 

only be achieved by averaging. 374 

“One other question here is why use spectral ratios at all? These are purely empirical and no 375 

rationale is given as to why one or other might be used. What kind of results are we to expect? There 376 

are of course spectral models of needle reflectance properties which might be more appropriate to 377 

use in analysis like this eg the LIBERTY needle model of Dawson et al.” 378 

RESPONSE: Spectral ratios are commonly used for estimating various parameters. They are simple, 379 

robust and easily implemented to our data. The purpose of this study is to show that useful 380 

information of the physiological state of the tree can be obtained by using this data. The advanced 381 

modelling techniques (eg. LIBERTY) are certainly interesting, but out of the scope of this study and a 382 

suitable topic for further papers.   383 
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“Minor points p15020 line19 - phenology is periodic anyway by definition i.e. it’s not seasonal 384 

changes in phenology, it’s just phenology. “ 385 

RESPONSE: Rephrased to “Plant phenology and seasonal chlorophyll content cycle are correlated to 386 

the CO2 flux.” 387 

“p15021 l5: worth mentioning work of Asner here - has done a lot of this at large scale i.e. combining 388 

spectral and lidar. “ 389 

RESPONSE: Reference added. 390 

“p15022 l15: why are these details approximate (scan resolution)? “ 391 

RESPONSE: The scan resolution is approximate due to mechanical configuration of the scanner; each 392 

sweep is performed individually and the mirror is stopped after each sweep. At the beginning of the 393 

sweep the mirror is accelerating and at the end of the sweep it’s decelerating, while the pulse rate 394 

remains constant. Therefore the pulse density is higher at the beginning and end of the sweep. 395 

“Fig 1 - a scale would be useful, as would some indication of the accuracy of the co-registration. In 396 

addition, can the branches that are sampled be marked?“ 397 

RESPONSE: Marked the branches M2, M3 to the figure and added information about tree height to 398 

the caption. 399 

 “Fig 3 - I’m not sure R2 values to 5 decimal places are useful. Also, can error bars be added to the 400 

scatter plots in fig 3-6?” 401 

RESPONSE: Reduced to 2 decimal values, added error bars to figure 6. The error bars are also visible 402 

figures 3-5 top row. 403 

---------------- 404 

Comments by Anonymous referee #1 405 

This is an interesting paper with significant novelty in testing a range of spectral indices derived from 406 

multispectral laser scanning. The study is very small in scale and includes only very limited sampling, 407 

but does provide an initial demonstration of the potential of this technology for plant physiological 408 

measurements. In this context it does represent a significant and original contribution to the 409 

literature. It is likely to be of significant interest to both the plant physiology and remote sensing 410 

scientific communities. However, it could be improved by English language editing, clarification of the 411 

methodology and a more thorough discussion of results as outlined below.  412 

RESPONSE: Thank you for the comments. 413 

Specific comments:  414 

1)The title of the paper refers to ‘physiological parameters’ but the study only really considers the 415 

single parameter of chlorophyll content. I think the title could be more specific and therefore more 416 
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fitting to the study. The lidar system would also be better described as multispectral as it measures 417 

at only 8 discrete wavelengths.  418 

RESPONSE: Changed the title from ‘physiological parameters’ to ‘chlorophyll content’. The definition 419 

of hyperspectral is generally vague. It is true that this particular prototype is more multispectral than 420 

hyperspectral since it uses selected bands. However, we have 16 spectrally continuous channels 421 

available and the reason we only use 8 is more financial and practical than technical. Therefore I 422 

would define the instrument as prototype of hyperspectral. 423 

2)Page 15022, lines 5-8: A single panel of 99% reflectance is used to normalise the lidar intensities. 424 

This will account for range influences, but is a single reflectance panel sufficient? Is the detector 425 

response linear? Is the laser output intensity constant? Given the focus of the paper is on the 426 

intensity data the normalization method is of considerable relevance. 427 

RESPONSE: The intensity of each transmitted pulse is not constant. This is taken into account by 428 

measuring the intensity of each transmitted pulse using the same detector as for the echo 429 

measurement. This is done by using a beam sampler and bypassing the other optics. This part of the 430 

signal also triggers the measurement. We also have a 4 color Spectralon that we have used to check 431 

the linearity, but these results are not published. 432 

3)Page 15022, lines 18 – 24: Only a very small number of needles are sampled at each time period. 433 

The majority of the results discussed rely on the Chlorophyll content of just 2 needles from 2 434 

branches (i.e. 4 needles in total) at each time period. This limitation is acknowledged by the authors, 435 

but does reduce conclusiveness of the study somewhat. Whilst little can be done retrospectively to 436 

remedy this, the sample size should be made clear upfront in the methods not just later on in the 437 

discussion (i.e. the number of needles per sample needs to be included here in all cases). 438 

RESPONSE: Added information about sampling to methods. It was unfortunate that we were unable 439 

to use most of the laboratory data. We measured 6 different branches with 3 cohorts each, but were 440 

able to only use data of 2 cohorts. In future work the visibility of the sampled cohorts in lidar data 441 

must be ensured. 442 

4)Page 15023-15024: A range of indices are tested, benefitting from the multiple wavelengths of the 443 

lidar. This is a novel and interesting aspect, representing an advance on previous attempts to retrieve 444 

physiological parameters from single / dual-wavelength systems. However, a little more discussion of 445 

these indices would be useful in terms of the extent to which using different wavelengths (those of 446 

the lidar) to those for which they were designed might influence results and their sensitivity to 447 

structural changes and multiple scattering. With this system, needles will be significantly smaller than 448 

the footprint so these factors as well as physiological parameters could have significant influence 449 

(and structural changes might influence results based on a time series).  450 

RESPONSE: We used slightly different wavelengths for the indices than what was stated in the 451 

original articles describing the index. This will cause uncertainty and difficulties in comparing our 452 

results to results published elsewhere. I added some discussion about this to results, and mentioned 453 

this in methods before the indices are introduced. Also added to discussion that the use of spectral 454 

indices reduce the effect of geometric effects (needles smaller than footprint). Also,  since  lidar 455 

echoes from needles have high variance, multiple echoes are needed to get meaningful results.  456 
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5)Page 15024, line 14 (and fig. 2 caption): There is reference here to the branch parts ‘drying out’. It 457 

is unclear where the physiological measurements to demonstrate the shoots are drying are and 458 

which spectral index would show water loss (rather than other physiological / structural changes). 459 

Only NDVI is plotted. Can it be demonstrated the NDVI changes are due to loss of moisture content? 460 

RESPONSE: What was meant here was that the oldest needles defoliated and dropped off, which can 461 

be observed as loss of chlorophyll and changes in NDVI. The drying out was a visual observation of 462 

the situation. This was normal for the growth of the tree, as these needles would be most shaded by 463 

other parts and therefore less valuable than the new needles in outermost cohorts. I changed the 464 

‘drying out’ to ‘defoliate’.  465 

6)Conclusions: I find the conclusions reached rather broad. The paper demonstrates, based on a 466 

quite limited sample, that Chlorophyll content (not all ‘physiological parameters’) can be estimated 467 

from a multispectral lidar system and that changes over time can be detected. It less clearly shows 468 

the extent to which spatial variation can be mapped as only a limited needle sample from a small 469 

number of branches was taken. It would be useful to see a more thorough discussion of the findings 470 

and the potential challenges of applying such systems (e.g the role of multiple scattering, how to 471 

determine if a point is a needle rather than woody material, influence of structural change on 472 

physiological parameter estimates). At least an acknowledgement of such issues should be included. 473 

Re. the ‘further work’, what specifically would be needed that hasn’t already been examined in the 474 

hyperspectral remote sensing / leaf optical properties modelling literature? Are there reasons the 475 

indices likely to work with lidar might be different to those for passive optical systems? 476 

RESPONSE: Added several paragraphs to the discussion (paragraphs 3,4,6 in revised article) to 477 

address these questions. 478 

7)Figure 3: While there is some relationship shown for mean values in Fig. 3 bottom row, it would be 479 

useful to know if there was any statistically significant differences in laboratory and lidar 480 

measurements for each branch (and the tree) between dates. The spectral changes look rather 481 

limited and the indices quite variable (top row graphs) compared to the laboratory measurements. 482 

RESPONSE:  The variance of the lidar measurements is very high because of the nature of the 483 

measurement. A single laser point may hit a needle/group of needles at any incidence angle relative 484 

to the needle and also may hit any point at the length of the needle. Therefore only average of the 485 

data is meaningful at this scale (cohort). The plots 3-5 top row show the 25 to 75 % percentiles (box) 486 

that show significant differences between measurement dates and the trend of these follow 487 

relatively well the laboratory measurements (as shown in the scatter plot). 488 

Technical corrections: 489 

There are a number of grammar errors in the paper. It would benefit from detailed language editing. 490 

Page 15025, lines 16-19: This is unclear. Rephrase this. What is meant by ‘the weight of the year 0 491 

and 2 laboratory measurements’? 492 

RESPONSE: Rephrased. What is meant here is that we took constant number of samples from the 493 

branches, but the point density varies when the needles are growing or defoliating. Therefore if we 494 
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average over whole tree and use all the laboratory measurements, the few needles that were left in 495 

year 2 cohort after defoliation  have higher weight in laboratory average than in the lidar point cloud, 496 

since very few lidar points are acquired from cohort 2 compared to eg. cohort 0. 497 

-------------- 498 

List of relevant changes 499 

Title changed to ‘Technical Note: Hyperspectral Lidar Time Series of Pine Canopy Chlorophyll 500 

Content’ 501 

Introduction, paragraph 3, last 4 lines: Added information about the limitations of spectral indices. 502 

Introduction, paragraph 4, last 3 lines: Added reference to our previous study (Nevalainen 2014), 503 

where more information about the spectral indices used can be found. 504 

Materials and methods, paragraph 1: Reformulated some sentences, and added more information 505 

about calibrations. 506 

Materials and methods, paragraphs 3-4: Elaborated the fact that we only used two needle pairs from 507 

two cohorts in final results and noted that we used nearest available bands for the indices. 508 

Results: Notation for the branches was inconsistent and was corrected 509 

Figure 1: added the positons of sample branches. 510 

Figure 5: (SR6) was an issue with data processing; the values saturated causing the values for SR6 to 511 

be too low. This also affected values of figure 6, right subplot. The values were also corrected to text, 512 

but this didn’t affect the conclusions from the data. 513 

 Figure 6: Added error bars for the index values. 514 

Conclusions and discussion: Added paragraphs 3, 4, and 6 to address the issues raised by referees. 515 

 516 

 517 


