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Abstract 12 

We report global long-term trends in surface ocean pH using a new pH data set computed by 13 

combining fCO2 observations from the Surface Ocean CO2 Atlas (SOCAT) version 2 with 14 

surface alkalinity estimates based on temperature and salinity. Trends were determined over 15 

the periods 1981-2011 and 1991-2011 for a set of 17 biomes using a weighted linear least 16 

squares method. We observe significant decreases in surface ocean pH in ~70% of all biomes 17 

and a mean rate of decrease of 0.0018±0.0004 yr-1 for 1991-2011. We are not able to calculate 18 

a global trend for 1981-2011 because too few biomes have enough data for this. In half the 19 

biomes, the rate of change is commensurate with the trends expected based on the assumption 20 

that the surface ocean pH change is only driven by the surface ocean CO2 chemistry 21 

remaining in a transient equilibrium with the increase in atmospheric CO2. In the remaining 22 

biomes deviations from such equilibrium may reflect that the trend of surface ocean fCO2 is 23 

not equal to that of the atmosphere, most notably in the equatorial Pacific Ocean, or changes 24 

in the oceanic buffer (Revelle) factor. We conclude that well-planned and long-term sustained 25 

observational networks are key to reliably document the ongoing and future changes in ocean 26 

carbon chemistry due to anthropogenic forcing.  27 

1. Introduction 28 

 The concentration of atmospheric carbon dioxide (CO2) is rapidly increasing due to 29 

the burning of fossil fuels, cement production, and land use changes (Le Quéré et al., 2014). 30 
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This drives a net flux of CO2 into the ocean, causing the dissolved inorganic carbon (DIC) 31 

concentration to increase, which drives a decrease in pH and in the concentration of the 32 

carbonate ion (CO3
2-, Doney et al., 2009b; Zeebe and Wolf-Gladrow, 2001). These changes in 33 

the ocean inorganic carbon chemistry, collectively referred to as ocean acidification (Gattuso 34 

and Hansson, 2011), are a source of concern due to their potential impact on organisms, 35 

ecosystems and biogeochemical cycles (Doney et al., 2009a). Hereafter we refer to the 36 

inorganic carbon chemistry in the ocean as CO2 chemistry. In contrast to the surface ocean 37 

fugacity of carbon dioxide (fCO2), for which many studies have analyzed the long-term 38 

trends, both regionally and globally (e.g. Fay and McKinley, 2013; Le Quéré, 2010; Lenton et 39 

al., 2012; Takahashi et al., 2009b), only a handful of regional studies have so far been 40 

published on long-term pH trends (Bates, 2007; Dore et al., 2009; Gonzalez-Davila et al., 41 

2007; Olafsson et al., 2010).  42 

 The most extensive assessment to date is the one of Bates et al. (2014). They described 43 

changes in ocean CO2 chemistry variables at seven, mostly tropical/sub-tropical, time-series 44 

stations, all of which have been occupied for at least two decades. Their analysis shows that 45 

while there are regional differences, these open ocean time-series show relatively similar 46 

trends in DIC, fCO2, and pH. At the tropical and subtropical open ocean stations (Bates, 2007; 47 

Dore et al., 2009; Gonzalez-Davila et al., 2010) ocean pH is decreasing at a rate of 48 

0.0017±0.0002 yr-1.  At the high-latitude stations, however, a more variable picture emerges. 49 

While the pH trend in the Icelandic Sea follows the rate observed at the lower latitude 50 

stations, the trend in the Irminger Sea (Olafsson et al., 2010) is nearly twice as large, i.e., -51 

0.0026±0.0006 yr-1. Thus, in a global analysis, we expect a complex spatial pattern of long-52 

term trends, yet hitherto unknown. 53 

 The absence of a global analysis of long-term trends is largely a consequence of the 54 

lack of direct surface ocean pH measurements, which is in sharp contrast to the situation for 55 

surface ocean fCO2, for which data products contain several million observations (Bakker et 56 

al., 2014; Pfeil et al., 2013; Takahashi et al., 2009a). This limitation can be overcome by 57 

using computed pH, obtained by combining the very large data products of fCO2 with 58 

estimates of surface alkalinity. Lauvset and Gruber (2014) demonstrated for the North 59 

Atlantic that this approach is able to produce rather accurate estimates of surface ocean pH. 60 

Takahashi et al. (2014) came to the same result globally. Even though the use of pH 61 

computed from fCO2 generates a global data set containing millions of pH observations, the 62 

resulting data are still sparse in time and space on a global scale, making the determination of 63 
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global long-term trends challenging. For surface pCO2 this challenge has historically been 64 

overcome by binning the data into a very coarse grid (order of 5º-10° in latitude and 65 

longitude) by e.g. Lenton et al. (2012), Takahashi et al. (2002), and Takahashi et al. (2009b), 66 

but more recently Fay and McKinley (2013) proposed to aggregate the data into biomes. This 67 

type of aggregation is more likely to capture the correct long-term dynamics of a region, as 68 

one expects a biome to respond in a more coherent manner to perturbations than a region 69 

defined by a latitude/longitude range.  70 

 Given the absence of a global observation-based analysis of pH trends, models have so 71 

far been the only source of information. The Norwegian Earth System Model (NorESM1-72 

ME), as part of the Coupled Model Intercomparison Project phase 5 (CMIP5, Taylor et al., 73 

2012), simulates a global average pH decrease of 0.0017 yr-1 (1981-2011), which is largely 74 

commensurate with observations reported from the time series stations. A recent study using 75 

ten different CMIP5 models, including NorESM1-ME, showed that all models give similar 76 

global average pH trends—both in the historical and future scenarios (Bopp et al., 2013).  77 

 This secular pH trend of -0.0017 yr-1 and the low spread between models is expected 78 

for an ocean where (i) the surface ocean fCO2 follows that in the atmosphere due to the 79 

sufficiently rapid exchange of the excess CO2 between the atmosphere and the surface ocean, 80 

and (ii) where the change in the buffer (Revelle) factor remains spatially uniform, as the 81 

partial derivative ∂[H+]/∂fCO2 is directly related to this quantity (Orr, 2011; Sarmiento and 82 

Gruber, 2006). A change in the buffer (Revelle) factor is expected as much of the CO2 newly 83 

added to the surface ocean from the atmosphere will be titrated away by CO3
2-, causing a 84 

decrease in its concentration. This decreases the ability of the surface ocean to “buffer” the 85 

pH against further uptake of CO2, thus increasing the Revelle factor (Sarmiento and Gruber, 86 

2006). However, regional variations in how the Revelle factor changes may occur. Bates et al. 87 

(2014) show, for example, not only variations of the pH trends between the high- and low 88 

latitude time series, but also that the trends in Revelle factor are different, indicating that other 89 

factors are influencing the Revelle factor. These factors are mainly those processes that affect 90 

DIC and alkalinity, such as changes in ocean productivity and calcification, while changes in 91 

temperature and salinity are of minor importance (Sarmiento and Gruber, 2006). 92 

 Local and regional changes in the buffer (Revelle) factor are driven by the changing, 93 

and spatially varying, ratio of DIC to alkalinity. Spatial changes in this ratio have the potential 94 

to decouple the pH trends from those of the surface ocean fCO2 (Orr, 2011), potentially 95 

causing a more variable pattern in the pH trends. The complex spatial variability, identified by 96 
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Bates et al. (2014) and others (e.g. Tjiputra et al., 2014) supports this hypothesis. This also 97 

shows that analyses of global pH trends, including the regional distribution of changes and the 98 

dynamics of the changing ocean CO2 system, are required for a comprehensive understanding. 99 

Global analyses are also necessary for the validation of model results, for underpinning and 100 

interpreting response studies from organism to ecosystem level, and for optimizing the 101 

planning of continued and future observational networks.  102 

 Here we take advantage of the approach of  Lauvset and Gruber (2014) to determine 103 

global ocean pH trends, and their drivers, using pH data calculated from the more than 10 104 

million observations of surface ocean fCO2 that have been made available through the Surface 105 

Ocean CO2 Atlas (SOCAT) project (Bakker et al., 2014; Pfeil et al., 2013). Although pH is 106 

the main parameter of interest, fCO2 has been carried through all our analyses in order to 107 

determine how CO2 chemistry causes the evolution of pH to differ from that expected from 108 

fCO2 alone. Finally we use the long term pH trends derived from a global earth system model, 109 

the NorESM1-ME, in order to illustrate how important spatial variability is for the 110 

representativeness of our trend results. 111 

 112 

2. Data and Methods 113 

 We calculated pH in the surface ocean by a two-step calculation using observations of 114 

fCO2, sea surface temperature (SST), and sea surface salinity (SSS) from SOCAT version 2, 115 

(Bakker et al., 2014). In the first step, alkalinity was calculated from SSS and SST using the 116 

algorithms developed by Lee et al. (2006) and Nondal et al. (2009). The Nondal et al. (2009) 117 

algorithms were developed specifically for the high-latitude (>60ºN) Atlantic Ocean, and 118 

were used only there. Whenever no measured SSS was available in the SOCATv2 data set the 119 

climatological World Ocean Atlas SSS value (Antonov et al., 2010)—which is included in the 120 

SOCATv2 data product—was used instead. The SOCAT SSS data have not been quality 121 

controlled and might therefore be biased. Lauvset and Gruber (2014) showed that this 122 

potential bias does not greatly affect the precision of the pH trends. It may affect the accuracy 123 

of the calculation, but for our purpose of determining long-term trends, the accuracy (i.e. the 124 

lack of bias in the data) is of less importance as long as the precision is good enough, and 125 

assuming that any bias remains constant over time. In the second step, pH on the total scale at 126 

in situ temperature was calculated from the estimated alkalinity and the observed fCO2 using 127 

CO2SYS (Lewis and Wallace, 1998). We used the K1 and K2 constants from Mehrbach et al. 128 
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(1973) refit by Dickson and Millero (1987), and the borate to salinity ratio from Uppström 129 

(1974). Since we use CO2SYS this calculation also gives us dissolved inorganic carbon (DIC) 130 

and all other variables of the ocean carbon chemistry system. 131 

 Quite a few of the data fall outside the valid ranges for input data for the Lee et al. 132 

(2006) and Nondal et al. (2009) alkalinity algorithms and are lost in this step. There remain 133 

7,381,013 data points of pH (and alkalinity) over the global ocean in the time period 1973-134 

2011. The fCO2 trends have been estimated using only data points which have a calculated pH 135 

value in order to avoid spurious differences when comparing these trends to those of pH. The 136 

global calculation error (precision) for pH is 0.0032±0.0005, and the calculated pH compares 137 

well to observed pH at crossover locations in the Atlantic Ocean (Lauvset and Gruber, 2014). 138 

Before analysis the pH data were bin averaged into monthly 1ºx1º bins, using no extrapolation 139 

or interpolation of the data. The global data set was divided into the 17 ocean biomes, defined 140 

(using mixed layer depth, sea surface temperature, and chlorophyll-a concentrations) by Fay 141 

and McKinley (2014), as shown in Fig. 1. Here, we only evaluate trends in the open ocean. 142 

Data from coastal regions shallower than 250 m, based on the ETOPO2 bathymetry, and those 143 

with salinity <20 were removed.  144 

 In each biome a least squares linear regression weighted with Tukey’s bisquare 145 

method was used to determine the long-term pH trend. For the long-term trend determination 146 

we required each biome to have at least three observations in each decade (1981-1990, 1991-147 

2000, and 2001-2011). While this criterion was met in only 8 biomes for the period 1981-148 

2011, 15 had sufficient data for the period 1991-2011. Both ordinary and weighted least 149 

squares regressions were carried out, but we chose a weighted least squares regression over an 150 

ordinary least squares regression since this is less sensitive to outliers in the data. This makes 151 

the statistics of the regression more robust, but generally this choice does not significantly 152 

affect the results presented here. All regression results are presented with the standard error of 153 

the slope (se), which represents its 68% confidence interval, and the root mean square error 154 

(RMSE). The RMSE is used as a measure of interannual variability.  155 

 Before the regression analysis was carried out two corrections were applied to the 156 

data: deseasonalization and removal of spatial bias. The importance of these corrections, 157 

particularly in data sparse biomes such as those in the Southern Ocean, was recently 158 

highlighted by Fay et al. (2014). The seasonal cycle in the data was removed following 159 

Takahashi et al. (2009b), using the long-term average seasonal cycle as contained in our data 160 

for each biome. However, we find that using the climatological seasonal cycle—calculated 161 
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using the Takahashi pCO2 climatology (Takahashi et al., 2009a)—does not significantly 162 

affect the results. To correct for any spatial bias in the large scale biomes the difference 163 

between the climatological value in each 1ºx1º bin and the biome mean climatological value 164 

was subtracted from the observed value in each 1ºx1º bin. There is no difference between this 165 

method and simply subtracting the climatological value in each 1ºx1º bin, but our approach 166 

retains the absolute values in each biome. It should be noted that the computed trends in some 167 

biomes are sensitive to which climatological data is used for the spatial bias correction: 168 

subtracting the climatological value vs. subtracting the long-term average in each 1ºx1º bin. 169 

Mostly this is because in some 1ºx1º bins, the long-term average is biased towards the last 170 

decade, which has significantly more data than earlier periods.  171 

 A statistical test was performed to test the necessity of these corrections: results after 172 

applying one or both corrections were compared to results after applying none using a one-173 

way analysis of variance (ANOVA, see e.g. Vijayvargiya, 2009). A statistically significant 174 

change in the slope and its standard error was interpreted as making the correction(s) 175 

necessary. The deseasonalization removes scatter in the data and leads to more robust 176 

regressions by reducing the standard error of the slope in all biomes. This correction does not 177 

significantly (p-value<0.05) affect the long-term trend in any biome or time period, however. 178 

The spatial bias correction has no statistically significant impact on the long term trend in 179 

most biomes, but because it reduces the standard error and increases the r2 in six biomes we 180 

decided to keep it applied. The long-term pH trend is also much more sensitive to this 181 

correction than the fCO2 trend, mostly because the pH trend is very small and thus more 182 

sensitive to any data correction. 183 

 The pH change expected from a certain change in fCO2 was calculated using 184 

∆pH/∆fCO2 = ∂pH/∂fCO2. The partial derivative was estimated in CO2SYS using 0.01 µatm 185 

increments in fCO2. Since both the fCO2 and pH trends are inextricably coupled to DIC 186 

change, what we in reality calculate here is the pH change incurred by a change in DIC 187 

equivalent to the given fCO2 trend when alkalinity, SST, and SSS remain constant. We used 188 

the same equation to evaluate what global average fCO2 change the global long-term trend in 189 

pH is consistent with, but then using -0.001 incremental changes in pH.  190 

 In each biome the long-term trend in pH was decomposed into the effects of changes 191 

in SST, SSS, alkalinity, and DIC. First the impact of each of these drivers on the fCO2 trend 192 

was determined following Takahashi et al. (1993), equations 2-5, we then converted our 193 

results to the impacts on [CO2] and on [H+] following equation 1.5.87 in Zeebe and Wolf-194 



 

7 
 

Gladrow (2001), and finally we determined the impact on pH. The DIC data and dissociation 195 

constants required for these calculations were calculated in CO2SYS from the fCO2 and 196 

alkalinity pair in the same calculation that gave us pH. 197 

 To test the effect of the highly variable spatial and temporal coverage of the 198 

observational data on the results we have used the NorESM1-ME Earth system model, which 199 

prognostically simulates the seawater CO2 chemistry. A detailed description and evaluation of 200 

the model simulation is available in Tjiputra et al. (2013). We examined the model simulation 201 

for the 1981-2011 period based on the CMIP5 historical and future RCP8.5 scenarios, where 202 

the atmospheric CO2 concentration is used as the boundary condition. We binned the model 203 

monthly output into the same 1ºx1º bins and used the same method to calculate and 204 

decompose the long-term trends in each biome as we used for the observational data—205 

including the two-step pH calculation described above. Two sets of model trends were 206 

determined. For the first, we used the fully sampled model output, referred to here as the 207 

‘fully-sampled trend’. For the second set, we subsampled the model output according to the 208 

observational coverage, i.e. only data from monthly grid cells corresponding to those where 209 

real observations have been obtained were used. The ‘sub-sampled trend’ was then computed 210 

from these subsampled model data. The comparison of these two informs us on how sensitive 211 

the calculated trends are to the variable data coverage. 212 

 213 

3. Results and Discussion   214 

3.1. Long-term trends in pH  215 

 We find statistically significant trends in 6 out of the 8 biomes with sufficient data for 216 

the period 1981-2011, and for 13 out of the 15 biomes with sufficient data for the period 217 

1991-2011 (Fig. 1 with the numerical values in Table 1). As shown in Figs. 2-4, the data 218 

coverage in each biome is generally very good after 1990, but often spotty prior to this year. 219 

These figures also reveal a substantial amount of interannual variability around the 220 

determined trends, with RMSE values of between 0.01 and 0.04 pH units— i.e., roughly of 221 

similar magnitude as the cumulative trend over the 20 to 30 years of analyses. No robust 222 

analyses were possible for the North Pacific ice covered (NP-ICE) and North Atlantic ice 223 

covered (NA-ICE) biomes, due to the lack of data (<20 data points) hence they are not further 224 
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discussed in the paper. Unfortunately, these are the Arctic biomes where the earliest impacts 225 

of ocean acidification are expected (Steinacher et al., 2009).  226 

 The regions with sufficient data, but without statistically significant trends, i.e, the 227 

North Pacific subpolar seasonally stratified (NP-SPSS) biome for the period 1981-2011, and 228 

the Southern Ocean subtropical seasonally stratified (SO-STSS) and ice covered (SO-ICE) 229 

biomes for the period 1991-2011, are characterized by large RMSE and a substantial amount 230 

of decadal variability, which is likely masking the long-term trends. In addition to these three 231 

biomes where the trends are statistically indistinguishable from zero, the South Pacific 232 

subtropical permanently stratified (SP-STPS) biome is likely biased by its low data density, 233 

and will not be further discussed. This decision was corroborated by comparing the pH trend 234 

in the fully-sampled model results with the sub-sampled model results (Fig. 5): the SP-STPS 235 

biome is the only one where the difference in these trends is statistically significant at the 236 

95% confidence level. 237 

 Since we are not able to calculate statistically significant trends in all 17 biomes we 238 

are also unable to calculate a global average trend. For the period 1991-2011 only the Arctic 239 

and parts of the Southern Ocean have no statistically significant results, and the area-weighted 240 

average pH decrease of the remaining 13 biomes (Table 1), is 0.0018±0.0004 yr-1. For the 241 

period 1981-2011 the number of biomes with trend estimates is quite small, but almost all the 242 

Pacific Ocean biomes have results and the area-weighted pH decrease is 0.0019±0.0001 yr-1 243 

between 1981 and 2011. Within the uncertainty limits the global 1991-2011 trend is 244 

comparable to the global trend in the fully-sampled NorESM1-ME model results (-0.0017 yr-245 
1) and to the average trend of -0.0018±0.0003 yr-1 over the seven time series evaluated by 246 

Bates et al. (2014). Assuming that alkalinity, SST, and SSS remain constant, and that the 247 

change in DIC and Revelle factor remains spatially uniform, this global average pH trend 248 

corresponds to a rate of increase in surface ocean fCO2 of 1.75±0.4 µatm yr-1, which is 249 

roughly the rate of increase in atmospheric fCO2. Regionally, however, the response of the 250 

ocean CO2 system to the atmospheric forcing is more variable (Fig. 1).  251 

 In the North Atlantic subpolar seasonally stratified (NA-SPSS) biome the observed pH 252 

trend is -0.0020±0.0004 yr-1. This is right in between the trend observed at the Irminger Sea 253 

time series (-0.0026±0.0006 yr-1) and that observed at the Iceland Sea time series (-254 

0.0014±0.0005 yr-1) (Bates et al., 2014). Within the 68% confidence intervals, the NA-SPSS 255 

pH trend is consistent with both of these local trends. In the North Atlantic subtropical 256 

seasonally stratified (NA-STSS) biome there are no time series data to compare with, but its 257 
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trend of -0.0018±0.0003 yr-1 is consistent with a trend of ~ -0.0020 yr-1 observed in the 258 

Rockall Trough by McGrath et al. (2012). In the North (NA-STPS) and South (SA-STPS) 259 

Atlantic subtropical permanently stratified biomes the pH trend is the same, but the RMSE 260 

values indicate larger interannual variability in the southern biome (Table 1). This is likely 261 

caused by the inclusion of the Benguela upwelling region, but the full effect of this has not 262 

been quantified for the SA-STPS or any other biome. The trend identified here for the NA-263 

STPS (-0.0011±0.0002 yr-1) is significantly lower than the trend observed at the Bermuda 264 

Atlantic Time-series Study (BATS, Bates et al., 2014), of -0.0017±0.0001 yr-1. Unfortunately, 265 

we have no time series data for comparison in the SA-STPS biome. In the Atlantic Ocean 266 

equatorial region (A-EQU) the pH trend (-0.0016±0.0003 yr-1) is lower than that observed at 267 

the Carbon Retention in A Colored Ocean (CARIACO) time-series station of -0.0025±0.0004 268 

yr-1 (Bates et al., 2014), but this station is located at the very edge of the biome in a more 269 

coastal setting and not ideal for comparison.  270 

 In the Pacific Ocean the RMSE around the fitted pH trends is generally larger than in 271 

the Atlantic Ocean (Table 1), possibly reflecting the higher interannual variability of the 272 

surface CO2 system there (see e.g., Landschützer et al. (2014) for pCO2 variability). In the 273 

North Pacific subtropical permanently stratified (NP-STPS) biome the pH trend of -274 

0.0016±0.0002 yr-1 is the same as that observed at the Hawaii Ocean Time-series (HOT, Bates 275 

et al., 2014). The trends in the two equatorial Pacific Ocean biomes differ substantially. While 276 

the western biome (WP-EQU) has a relatively weak trend (-0.0010±0.0002 yr-1), the eastern 277 

(EP-EQU) biome has a much stronger pH trend than any other biome except the IO-STPS. 278 

This could be related to the recent trend toward stronger and more prevalent La Niña 279 

conditions in the eastern tropical Pacific leading to stronger upwelling, and higher surface 280 

fCO2 and lower pH in this region (Rödenbeck et al., 2014).   281 

 The Indian Ocean subtropical permanently stratified (IO-STPS) biome had a very 282 

strong pH trend the past 30 years, only rivaled by that in the EP-EQU biome, as mentioned 283 

above. There are not any time series stations in the Indian Ocean to compare with, but fCO2 284 

trends for the Indian Ocean computed by Metzl (2009) are considerably larger than what we 285 

find: 2.11 µatm yr-1 vs 1.44±0.24 µatm yr-1. Hence there is no reason to believe that our 286 

approach overestimates the pH trends here. It should be noted though that the trend identified 287 

by Metzl (2009) is based on data in a considerably smaller region than the IO-STPS which 288 

could account for some of the difference. In the Southern Ocean only the subpolar seasonally 289 

stratified (SO-SPSS) biome has a statistically significant pH trend, which at -0.0020±0.0002 290 
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yr-1 is comparable to that in the NA-SPSS biome. Furthermore, this trend is very similar to 291 

that calculated for this region by Takahashi et al. (2014), although they used a different 292 

method. 293 

3.2. Effects of changes in carbonate chemistry  294 

 To first order, the pH trends are expected to represent the direct response to increasing 295 

oceanic DIC, as is the case for the long-term trends in surface ocean fCO2. In order to assess 296 

how our results compare with this expectation, we have calculated two expected pH rates of 297 

change: first the 1981-2011 change in pH resulting from a surface ocean fCO2 rate of change 298 

equal to that in the atmosphere (1.8±0.1 µatm yr-1) while keeping all other variables constant 299 

at their 1981 values; and second the change in pH that would be expected if the pH change 300 

mirrored the observed fCO2 change in each biome provided that all other variables were kept 301 

at their 1981 values. The first expected pH change reflects how pH should change if the 302 

change in atmospheric CO2 was the sole driver for the change in ocean pH. The second 303 

expected pH change reflects how pH should change if the oceanic fCO2 changes were allowed 304 

to depart from the atmospheric ones but fCO2 change remaining the only driver of pH change.305 

 Fig. 6 shows both expected pH changes along with the observed pH change in each 306 

biome. Only the 13 biomes that have statistically significant pH trends for either 1981-2011 307 

or 1991-2011 (Fig. 1) are discussed further. When the atmospheric CO2 increase is assumed 308 

to be the only driver for the pH changes, we find that in 7 of the 13 biomes the observed pH 309 

trends significantly differ from the expected pH change. This is due either to the uncertainty 310 

in the observed trends, to associated changes in the CO2 chemistry, or to the surface ocean 311 

fCO2 trends being significantly different from that in the atmosphere. However, the observed 312 

pH trends also significantly differ from the expected pH change calculated using the observed 313 

fCO2 trend in 6 of the 13 biomes (Fig. 6). Only 3 of the biomes are the same in both cases. 314 

Thus, the surface ocean fCO2 trend not exactly mirroring the atmospheric cannot explain the 315 

discrepancy between expected and observed pH trends in most biomes. It may be an 316 

explanation in the equatorial Pacific biomes (EP-EQU and WP-EQU) where there is no 317 

discrepancy between observed and expected pH trends when the observed fCO2 trend is used 318 

to calculate the expected pH change (Fig. 6), but a significant difference when an atmospheric 319 

rate of change is assumed.  320 

 The observed pH trend is more often smaller than that expected for the ocean 321 

mirroring the atmospheric fCO2 change than vice versa. Only the EP-EQU and IO-STPS 322 
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biomes have observed pH changes larger than those expected (Fig. 6). Our hypothesis is that 323 

the differences between the observed and expected pH trends are caused by changes in the 324 

spatial variations in the ratio of DIC to alkalinity, which leads to spatial changes in the buffer 325 

(Revelle) factor. In the biomes where the observed trend differs from the expected trend there 326 

are indications which point to such changes. When the difference is negative (i.e., the 327 

observed trend is smaller than the expected), the decrease in Revelle factor, e.g., is stronger 328 

the larger the difference. However, given the combined calculation errors, generally high level 329 

of noise in our data, and relatively few data points, only some of these indications are 330 

statistically significant. Further analysis of these spatial patterns needs to be undertaken using 331 

independent pH data, preferably direct measurements in order to quantify any possible biases 332 

in the results due to our pH being a calculated variable. A combination of SOCAT data with 333 

repeat hydrography and time-series data would be ideal but this is outside the scope of this 334 

study.  335 

3.3. Major driving forces behind the observed pH an d trends 336 

 The decomposition of the fCO2 and pH trends confirms (Figs. 7-9) that in all biomes 337 

the long-term increase in DIC is by far the dominant driver for the long-term pH changes. 338 

Knowledge about the changes in ocean DIC therefore is the most important in 339 

understanding—and predicting—changes in ocean pH (Table 2). This is not unexpected since 340 

the open ocean is in—or very close to—chemical equilibrium with the atmosphere (Lauvset 341 

and Gruber, 2014). Thus the surface ocean is taking up CO2 from the atmosphere in order to 342 

re-establish a chemical equilibrium, leading to a corresponding increase in fCO2 and DIC. It 343 

must be noted that since we do not have measurements of alkalinity this parameter is 344 

calculated from SST and SSS, and the relatively large uncertainties in these calculations may 345 

add a degree of uncertainty to the decomposition. Due to a lack of independent data this is not 346 

further evaluated in this study.  347 

 In the Atlantic Ocean biomes the second most important driver is SST (Fig. 7), which 348 

mostly has a positive change and therefore has limited the DIC increase required to maintain 349 

an fCO2 growth rate similar to that in the atmosphere. SST is the second most important 350 

driver also in the Pacific Ocean biomes (except in the NP-SPSS, Fig. 8), but here SST 351 

decreased in many biomes leading to an enhanced increase in DIC through CO2 uptake from 352 

the atmosphere. In the Southern Ocean biomes alkalinity changes have a significant impact on 353 

the trends (Fig. 9), which also modulates the DIC changes. Decreasing alkalinity over time 354 
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increases fCO2 so that the DIC change required to maintain a sea surface fCO2 growth rate 355 

similar to the atmospheric is reduced. 356 

 In most biomes there is a residual between the sum of the four components and the 357 

observed trend (Fig. 10). Lenton et al. (2012) performed a similar analysis and attributed such 358 

residuals to the use of a spatial mean Revelle factor, the approximations underlying the 359 

Takahashi et al. (1993) equations, and the assumption of linear trends in all variables. We 360 

tested whether variable data coverage is also an important contributor to this residual by 361 

subsampling the NorESM1-ME simulated pH data and comparing the resulting 1981-2011 362 

decomposition with the decomposition determined using the full model output. Fig. 10 363 

illustrates that in most biomes there are similar residuals between the sum of the four 364 

components and the actual trends in the sub-sampled and fully-sampled model fields as well. 365 

We can, therefore, find no evidence to show that poor data coverage is of major importance in 366 

determining what drives the change in surface ocean pH. 367 

3.4.  Recent changes in the Southern Ocean biomes 368 

 In contrast to the majority of the global ocean biomes, trends within the SO-STSS and 369 

SO-ICE biomes do not appear statistically significant over the past two decades (Table 1). 370 

This can be linked to strong interannual and decadal variations (Fig. 3). This is consistent 371 

with the changing fCO2 trends revealed in a recent study by Fay et al. (2014) as well as 372 

previous findings of a change in the CO2 sink in this region (e.g. Fay and McKinley, 2013; 373 

Landschützer et al., 2014). In order to investigate these recent changes in the trend in the 374 

Southern Ocean, we also decompose the 2001-2011 trends in the Southern Ocean biomes 375 

(Table 3).  376 

 In the SO-STSS biome there is no significant change in pH over the 30 year period, 377 

but from Fig. 3 it is seen that there is a decrease until ~2000 and then an increase over the last 378 

decade. Over the last decade (Table 3) we find that the contributions of the individual 379 

parameters to the overall trend in pH are amplified. Temperature and DIC changes remain the 380 

strongest drivers, and of these the forcing from DIC has increased strongest over the last 381 

decade. We hence conclude that the increase in pH over the past decade in the SO-STSS 382 

biome is due to the decreasing DIC concentrations dominating over the thermally induced 383 

reduction in pH.   384 

 In the SO-SPSS biome the pH trend appears to become less steep over the last decade 385 

(Fig. 3), which is consistent with the well-documented trend changes in fCO2. In this biome 386 
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we find a less negative DIC driven pH trend in the period 2001-2011 compared to the period 387 

1981-2011, indicating a reduced increasing trend in DIC over this decade. This supports the 388 

conclusion drawn by Fay and McKinley (2013) that a reduction in vertical DIC supply causes 389 

a weakening of both fCO2 and pH trends in this region. In the SO-ICE biome the sign of the 390 

non-thermal drivers appears to change within the last decade, potentially driven by the recent 391 

Antarctic ice melt and ice-sheet melting driven iron fertilization (Death et al., 2014). 392 

3.5. Spatial variability 393 

 In both the observations and the sub-sampled model results we see significant regional 394 

differences in the pH trends (Fig. 5). Note that the actual simulated pH trends in each biome 395 

are not directly comparable with the observed trends since the model is a coupled climate 396 

model, which simulates its own internal climate variability. We therefore compare the fully 397 

sampled and the sub-sampled model results, and the fully sampled model results show much 398 

more uniform pH trends (Fig. 5). While these differences are mostly statistically 399 

indistinguishable within the uncertainties, it highlights the need for careful consideration of 400 

representativeness when comparing model-derived future changes and trends based on data. 401 

Fig. 5 shows that in the IO-STPS and WP-EQU biomes the sub-sampled trend is within 402 

±0.0001 of the fully-sampled pH trends, and an ANOVA analysis shows that only in the SP-403 

STPS biome are the two model trends significantly different. Thus the trends based on the 404 

existing observational coverage are overall representative of the respective biomes, and it is 405 

unlikely that there are major biases in our results due to low data density. However, the 406 

uncertainties in the long-term pH trend estimates remain large, both in observations and the 407 

model (Fig. 5) and this prohibits a mechanistic understanding the observed changes in most 408 

biomes. Improved sampling strategies are necessary to reduce these uncertainties and thereby 409 

improve our understanding of surface ocean CO2 chemistry changes today and in the future. 410 

 This highlights the importance of both maintaining the observational networks already 411 

in place—like the voluntary observing ship (VOS) network in the North Atlantic (Watson et 412 

al., 2009)—and instigating new ones in less well-covered ocean regions. Of particular 413 

importance is improved data coverage in the Southern Pacific Ocean (SP-STPS) where the 414 

data density as of today it too low for a robust analysis of long term pH trends.  415 

 416 
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4. Conclusions 417 

 Global surface ocean pH changes over the past 30 years cannot be calculated as there 418 

are too few data in many biomes.  For the past twenty years on the other hand, we find that 419 

the surface ocean pH has decreased by on average 0.0018±0.0004 yr-1, excluding the Arctic 420 

and high-latitude Southern Ocean. There are however large regional variations with trends 421 

ranging from -0.0024 yr-1 in the Indian Ocean (IO-STPS) biome to no significant change in 422 

the polar Southern Ocean (SO-ICE) biome. Our estimated global trend is comparable to the 423 

trends found at time-series stations and to the global average trend in the NorESM1-ME 424 

model. In all biomes, the pH trend is predominantly driven by changes in DIC, implying that 425 

the surface ocean pH decline is a direct response to the increasing uptake of atmospheric CO2. 426 

Despite this, the fCO2 and pH trends do not exactly mirror each other, which is potentially 427 

linked to trends in the surface ocean buffer (Revelle) factor over the past decades. In some 428 

biomes this leads to smaller pH changes than expected from the fCO2 change, while in others 429 

regions, the pH changes are larger than expected. Thus, knowledge of both the changing 430 

ocean DIC and the changing ocean buffer (Revelle) factor is important for understanding and 431 

accurately determining the changing ocean pH.  432 

 There are regional differences in the pH trends. It is likely that these are caused by 433 

spatial heterogeneity in the concurrent changes in buffer (Revelle) factor, while spatial 434 

heterogeneity in the surface ocean fCO2 trends seems to have only a minor effect. Our 435 

comparison between fully-sampled model and sub-sampled output from the NorESM1-ME 436 

model indicates that variable data coverage only presents a major problem in the South 437 

Pacific. This nicely highlights the overall success of the scientific community in creating 438 

observational networks that reduce data coverage issues. The many scientific studies arising 439 

from this effort—among many others the recent publications by Nakaoka et al. (2013), 440 

Landschützer et al. (2013), Landschützer et al. (2014), and Schuster et al. (2013)—show that 441 

we have come a long way in understanding how ocean CO2 chemistry is evolving in a world 442 

perturbed by fossil fuel emissions. The uncertainties in the trends presented here are, 443 

however, substantial and this largely prevents a more thorough understanding of current 444 

changes. Filling the remaining gaps in our surface ocean data is, therefore, still of great 445 

importance.  446 
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Table 1. Results and statistics of the regression analysis of fCO2 (µatm) and pHinsitu versus 641 

time. Bold text indicates biomes where the results are not statistically significant (95% 642 

confidence). No number is given if a biome does not have enough data to calculate the trend 643 

in a given time period. 644 

1981 – 2011 1991 – 2011 

 pH fCO2 pH fCO2 

region slope rmse slope rmse slope rmse slope rmse 

NP-SPSS -0.0003±0.0005 0.041 1.20±0.17 16.2 0.0013±0.0005 0.038 0.74±0.22 16.1 

NP-STSS --- --- 1.30±0.15 10.5 -0.0010±0.0005 0.031 1.37±0.13 8.9 

NP-STPS -0.0016±0.0002 0.020 1.51±0.09 10.3 -0.0019±0.0002 0.018 1.52±0.12 9.9 

WP-EQU -0.0010±0.0002 0.016 1.54±0.19 17.8 -0.0012±0.0002 0.015 1.59±0.27 17.3 

EP-EQU -0.0023±0.0003 0.023 2.94±0.41 28.2 -0.0026±0.0002 0.023 3.51±0.51 27.9 

SP-STPS -0.0019±0.0002 0.020 1.34±0.11 12.0 -0.0022±0.0003 0.020 1.12±0.18 12.3 

NA-SPSS --- --- 1.18±0.22 15.4 -0.0020±0.0004 0.028 1.11±0.22 14.2 

NA-STSS --- --- 1.78±0.20 12.3 -0.0018±0.0003 0.015 1.79±0.20 12.5 

NA-STPS --- --- 1.42±0.12 8.5 -0.0011±0.0002 0.012 1.44±0.12 8.6 

A-EQU --- --- 1.86±0.35 16.6 -0.0016±0.0003 0.014 1.81±0.32 15.7 

SA-STPS --- --- 1.06±0.37 16.7 -0.0011±0.0005 0.024 0.99±0.37 17.0 

IO-STPS -0.0024±0.0004 0.023 1.49±0.25 13.6 -0.0027±0.0005 0.025 1.55±0.26 13.5 

SO-STSS -0.0006±0.0004 0.032 1.78±0.11 10.8 -0.0004±0.0004 0.032 1.82±0.12 10.8 

SO-SPSS -0.0020±0.0002 0.020 1.44±0.10 9.1 -0.0021±0.0002 0.020 1.46±0.11 9.0 

SO-ICE --- --- 0.34±0.31 24.4 -0.0002±0.0004 0.029 0.23±0.34 24.3 

 645 

 646 

 647 

 648 

 649 

 650 

 651 

 652 

 653 

 654 

 655 

 656 

 657 

 658 
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Table 2. Decomposition of the fCO2 and pHinsitu trends into their major drivers. The units are 659 

µatm yr-1 and pH-units yr-1 respectively. 660 

Region pH fCO2 

theta salinity DIC alkalinity sum theta salinity DIC alkalinity sum 

NP-SPSS -0.57 -0.15 3.18 -3.04 -0.58 0.52 0.14 -2.89 2.76 0.53 

NP-STSS -0.39 0.02 -0.89 -0.13 -1.39 0.38 -0.02 0.87 0.13 1.37 

NP-STPS 1.15 -0.02 -1.68 0.04 -0.50 -1.19 0.02 1.73 -0.05 0.51 

WP-EQU -0.47 0.11 -0.87 0.14 -1.10 0.53 -0.12 0.97 -0.15 1.23 

EP-EQU 0.51 -0.07 -2.99 0.13 -2.42 -0.63 0.08 3.68 -0.15 2.99 

SP-STPS 2.28 -0.11 -3.02 0.04 -0.81 -2.47 0.12 3.28 -0.05 0.88 

NA-SPSS -0.02 0.17 -2.41 0.12 -2.13 0.01 -0.16 2.17 -0.11 1.91 

NA-STSS 0.74 -0.07 -1.43 -0.11 -0.87 -0.72 0.07 1.40 0.10 0.85 

NA-STPS -1.20 -0.05 -0.10 -0.12 -1.47 1.29 0.05 0.11 0.13 1.57 

A-EQU -0.21 0.02 -1.33 -0.05 -1.56 0.24 -0.03 1.53 0.06 1.80 

SA-STPS -0.31 0.06 -1.55 -0.05 -1.85 0.34 -0.07 1.69 0.05 2.02 

IO-STPS 0.80 -0.02 -3.23 0.06 -2.39 -0.79 0.02 3.22 -0.06 2.38 

SO-STSS -0.99 -0.08 2.02 -0.86 0.09 0.88 0.08 -1.81 0.77 -0.08 

SO-SPSS 0.89 0.01 -3.09 0.53 -1.66 -0.83 -0.01 2.89 -0.50 1.56 

SO-ICE 0.13 -0.01 -2.22 0.15 -1.95 -0.12 0.01 2.02 -0.13 1.78 

 661 
Table 3. Decomposition of the 2001-2011 fCO2 and pHinsitu trends in the Southern Ocean into 662 

their major drivers. The units are µatm yr-1 and pH-units yr-1 respectively. 663 

Region pH fCO2 

  theta salinity DIC alkalinity sum observed theta salinity DIC alkalinity sum observed 

SO-STSS -3.7 -0.79 8.46 -2.48 1.49 0.0032±0.0010 3.4 0.73 -7.78 2.28 -1.37 1.56±0.39 

SO-SPSS 1.11 -0.07 -1.28 -0.05 -0.29 -0.0011±0.0006 -1.06 0.07 1.22 0.05 0.28 0.89±0.22 

SO-ICE -0.62 -0.05 1 -0.39 -0.06 0.0006±0.0009 0.59 0.05 -0.95 0.37 0.06 0.21±0.74 

 664 

Fig. 1. A map of the Fay and McKinley (2014) biomes which have (a) a statistically 665 

significant pH trend in the period 1981-2011, and (b) the biomes with a statistically 666 

significant pH trend in the period 1991-2011.  667 

 668 

Fig. 2. Long term pH trend (1981-2011) in the five Atlantic Ocean biomes.  669 

 670 

Fig. 3. Long term pH trend (1981-2011) in the five Pacific Ocean biomes.  671 

 672 

Fig. 4. Long term pH trend (1981-2011) in the Indian Ocean biome and the three Southern 673 

Ocean biomes.  674 

 675 
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Fig. 5. Summary of the pH trends in all biomes. The error bars show the 1σ confidence 676 

interval.  677 

 678 

Fig. 6. Comparison between the observed pH trend in each biome (either 1981-2011 or 1991-679 

2011) in black and the pH trends expected if the surface ocean fCO2 changed equal to the 680 

atmosphere (blue) and expected for the observed ocean fCO2 trends (red). 681 

 682 

Fig. 7. The long term trends in pH from Fig. 2 decomposed into the contributions from SST, 683 

SSS, alkalinity, and DIC. Also shown is the sum of the four contributions and the actual 684 

observed trend. Note that the trend has been multiplied by 1000 for easier visualization.  685 

 686 

Fig. 8. The long term trends in pH from Fig. 3 decomposed into the contributions from SST, 687 

SSS, alkalinity, and DIC. Also shown is the sum of the four contributions and the actual 688 

observed trend. Note that the trend has been multiplied by 1000 for easier visualization. 689 

 690 

Fig. 9. The long term trends in pH from Fig. 4 decomposed into the contributions from SST, 691 

SSS, alkalinity, and DIC. Also shown is the sum of the four contributions and the actual 692 

observed trend. Note that the trend has been multiplied by 1000 for easier visualization. 693 

 694 

Fig. 10. The residual between the actual pH trends and the sum of the four decomposition 695 

parts (SSS, SST, DIC, ALK). In gray is the residual for the observations, in black the residual 696 

for the sub-sampled model output, and in white the residual for the fully-sampled model 697 

output.  698 

 699 
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Figure 5

observations

fully sampled model output

sub−sampled model output
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Figure 6

observations

expected given the observed fCO
2
 change

expected given a 1.8± 0.1 µatm fCO
2
 change in the ocean
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