

1 **Trends and drivers in global surface ocean pH over the**
2 **past three decades**

3

4 **S. K. Lauvset^{1,2}; N. Gruber³; P. Landschützer³; A. Olsen^{1,2,4}; J. Tjiputra^{2,4}**

5 ¹Geophysical Institute, University of Bergen, Norway

6 ²Bjerknes Center for Climate Research, Bergen, Norway

7 ³Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich,
8 Zürich, Switzerland.

9 ⁴Uni Climate – Uni Research, Bergen, Norway

10 Correspondence to S. K. Lauvset (siv.lauvset@gfi.uib.no)

11

12 **Abstract**

13 We report global long-term trends in surface ocean pH using a new pH data set computed by
14 combining fCO₂ observations from the Surface Ocean CO₂ Atlas (SOCAT) version 2 with
15 surface alkalinity estimates based on temperature and salinity. Trends were determined over
16 the periods 1981-2011 and 1991-2011 for a set of 17 biomes using a weighted linear least
17 squares method. We observe significant decreases in surface ocean pH in ~70% of all biomes
18 and a mean rate of decrease of $0.0018 \pm 0.0004 \text{ yr}^{-1}$ for 1991-2011. We are not able to calculate
19 a global trend for 1981-2011 because too few biomes have enough data for this. In half the
20 biomes, the rate of change is commensurate with the trends expected based on the assumption
21 that the surface ocean pH change is only driven by the surface ocean CO₂ chemistry
22 remaining in a transient equilibrium with the increase in atmospheric CO₂. In the remaining
23 biomes deviations from such equilibrium may reflect that the trend of surface ocean fCO₂ is
24 not equal to that of the atmosphere, most notably in the equatorial Pacific Ocean, or changes
25 in the oceanic buffer (Revelle) factor. We conclude that well-planned and long-term sustained
26 observational networks are key to reliably document the ongoing and future changes in ocean
27 carbon chemistry due to anthropogenic forcing.

28 **1. Introduction**

29 The concentration of atmospheric carbon dioxide (CO₂) is rapidly increasing due to
30 the burning of fossil fuels, cement production, and land use changes (Le Quéré et al., 2014).

31 This drives a net flux of CO₂ into the ocean, causing the dissolved inorganic carbon (DIC)
32 concentration to increase, which drives a decrease in pH and in the concentration of the
33 carbonate ion (CO₃²⁻, Doney et al., 2009b; Zeebe and Wolf-Gladrow, 2001). These changes in
34 the ocean inorganic carbon chemistry, collectively referred to as ocean acidification (Gattuso
35 and Hansson, 2011), are a source of concern due to their potential impact on organisms,
36 ecosystems and biogeochemical cycles (Doney et al., 2009a). Hereafter we refer to the
37 inorganic carbon chemistry in the ocean as CO₂ chemistry. In contrast to the surface ocean
38 fugacity of carbon dioxide (fCO₂), for which many studies have analyzed the long-term
39 trends, both regionally and globally (*e.g.* Fay and McKinley, 2013; Le Quéré, 2010; Lenton et
40 al., 2012; Takahashi et al., 2009b), only a handful of regional studies have so far been
41 published on long-term pH trends (Bates, 2007; Dore et al., 2009; Gonzalez-Davila et al.,
42 2007; Olafsson et al., 2010).

43 The most extensive assessment to date is the one of Bates et al. (2014). They described
44 changes in ocean CO₂ chemistry variables at seven, mostly tropical/sub-tropical, time-series
45 stations, all of which have been occupied for at least two decades. Their analysis shows that
46 while there are regional differences, these open ocean time-series show relatively similar
47 trends in DIC, fCO₂, and pH. At the tropical and subtropical open ocean stations (Bates, 2007;
48 Dore et al., 2009; Gonzalez-Davila et al., 2010) ocean pH is decreasing at a rate of
49 0.0017±0.0002 yr⁻¹. At the high-latitude stations, however, a more variable picture emerges.
50 While the pH trend in the Icelandic Sea follows the rate observed at the lower latitude
51 stations, the trend in the Irminger Sea (Olafsson et al., 2010) is nearly twice as large, *i.e.*, -
52 0.0026±0.0006 yr⁻¹. Thus, in a global analysis, we expect a complex spatial pattern of long-
53 term trends, yet hitherto unknown.

54 The absence of a global analysis of long-term trends is largely a consequence of the
55 lack of direct surface ocean pH measurements, which is in sharp contrast to the situation for
56 surface ocean fCO₂, for which data products contain several million observations (Bakker et
57 al., 2014; Pfeil et al., 2013; Takahashi et al., 2009a). This limitation can be overcome by
58 using computed pH, obtained by combining the very large data products of fCO₂ with
59 estimates of surface alkalinity. Lauvset and Gruber (2014) demonstrated for the North
60 Atlantic that this approach is able to produce rather accurate estimates of surface ocean pH.
61 Takahashi et al. (2014) came to the same result globally. Even though the use of pH
62 computed from fCO₂ generates a global data set containing millions of pH observations, the
63 resulting data are still sparse in time and space on a global scale, making the determination of

64 global long-term trends challenging. For surface pCO_2 this challenge has historically been
65 overcome by binning the data into a very coarse grid (order of 5°-10° in latitude and
66 longitude) by *e.g.* Lenton et al. (2012), Takahashi et al. (2002), and Takahashi et al. (2009b),
67 but more recently Fay and McKinley (2013) proposed to aggregate the data into biomes. This
68 type of aggregation is more likely to capture the correct long-term dynamics of a region, as
69 one expects a biome to respond in a more coherent manner to perturbations than a region
70 defined by a latitude/longitude range.

71 Given the absence of a global observation-based analysis of pH trends, models have so
72 far been the only source of information. The Norwegian Earth System Model (NorESM1-
73 ME), as part of the Coupled Model Intercomparison Project phase 5 (CMIP5, Taylor et al.,
74 2012), simulates a global average pH decrease of 0.0017 yr^{-1} (1981-2011), which is largely
75 commensurate with observations reported from the time series stations. A recent study using
76 ten different CMIP5 models, including NorESM1-ME, showed that all models give similar
77 global average pH trends—both in the historical and future scenarios (Bopp et al., 2013).

78 This secular pH trend of -0.0017 yr^{-1} and the low spread between models is expected
79 for an ocean where (i) the surface ocean fCO_2 follows that in the atmosphere due to the
80 sufficiently rapid exchange of the excess CO_2 between the atmosphere and the surface ocean,
81 and (ii) where the change in the buffer (Revelle) factor remains spatially uniform, as the
82 partial derivative $\partial[\text{H}^+]/\partial\text{fCO}_2$ is directly related to this quantity (Orr, 2011; Sarmiento and
83 Gruber, 2006). A change in the buffer (Revelle) factor is expected as much of the CO_2 newly
84 added to the surface ocean from the atmosphere will be titrated away by CO_3^{2-} , causing a
85 decrease in its concentration. This decreases the ability of the surface ocean to “buffer” the
86 pH against further uptake of CO_2 , thus increasing the Revelle factor (Sarmiento and Gruber,
87 2006). However, regional variations in how the Revelle factor changes may occur. Bates et al.
88 (2014) show, for example, not only variations of the pH trends between the high- and low
89 latitude time series, but also that the trends in Revelle factor are different, indicating that other
90 factors are influencing the Revelle factor. These factors are mainly those processes that affect
91 DIC and alkalinity, such as changes in ocean productivity and calcification, while changes in
92 temperature and salinity are of minor importance (Sarmiento and Gruber, 2006).

93 Local and regional changes in the buffer (Revelle) factor are driven by the changing,
94 and spatially varying, ratio of DIC to alkalinity. Spatial changes in this ratio have the potential
95 to decouple the pH trends from those of the surface ocean fCO_2 (Orr, 2011), potentially
96 causing a more variable pattern in the pH trends. The complex spatial variability, identified by

97 Bates et al. (2014) and others (*e.g.* Tjiputra et al., 2014) supports this hypothesis. This also
98 shows that analyses of global pH trends, including the regional distribution of changes and the
99 dynamics of the changing ocean CO₂ system, are required for a comprehensive understanding.
100 Global analyses are also necessary for the validation of model results, for underpinning and
101 interpreting response studies from organism to ecosystem level, and for optimizing the
102 planning of continued and future observational networks.

103 Here we take advantage of the approach of Lauvset and Gruber (2014) to determine
104 global ocean pH trends, and their drivers, using pH data calculated from the more than 10
105 million observations of surface ocean fCO₂ that have been made available through the Surface
106 Ocean CO₂ Atlas (SOCAT) project (Bakker et al., 2014; Pfeil et al., 2013). Although pH is
107 the main parameter of interest, fCO₂ has been carried through all our analyses in order to
108 determine how CO₂ chemistry causes the evolution of pH to differ from that expected from
109 fCO₂ alone. Finally we use the long term pH trends derived from a global earth system model,
110 the NorESM1-ME, in order to illustrate how important spatial variability is for the
111 representativeness of our trend results.

112

113 **2. Data and Methods**

114 We calculated pH in the surface ocean by a two-step calculation using observations of
115 fCO₂, sea surface temperature (SST), and sea surface salinity (SSS) from SOCAT version 2,
116 (Bakker et al., 2014). In the first step, alkalinity was calculated from SSS and SST using the
117 algorithms developed by Lee et al. (2006) and Nondal et al. (2009). The Nondal et al. (2009)
118 algorithms were developed specifically for the high-latitude (>60°N) Atlantic Ocean, and
119 were used only there. Whenever no measured SSS was available in the SOCATv2 data set the
120 climatological World Ocean Atlas SSS value (Antonov et al., 2010)—which is included in the
121 SOCATv2 data product—was used instead. The SOCAT SSS data have not been quality
122 controlled and might therefore be biased. Lauvset and Gruber (2014) showed that this
123 potential bias does not greatly affect the precision of the pH trends. It may affect the accuracy
124 of the calculation, but for our purpose of determining long-term trends, the accuracy (*i.e.* the
125 lack of bias in the data) is of less importance as long as the precision is good enough, and
126 assuming that any bias remains constant over time. In the second step, pH on the total scale at
127 *in situ* temperature was calculated from the estimated alkalinity and the observed fCO₂ using
128 CO2SYS (Lewis and Wallace, 1998). We used the K₁ and K₂ constants from Mehrbach et al.

129 (1973) refit by Dickson and Millero (1987), and the borate to salinity ratio from Uppström
130 (1974). Since we use CO2SYS this calculation also gives us dissolved inorganic carbon (DIC)
131 and all other variables of the ocean carbon chemistry system.

132 Quite a few of the data fall outside the valid ranges for input data for the Lee et al.
133 (2006) and Nondal et al. (2009) alkalinity algorithms and are lost in this step. There remain
134 7,381,013 data points of pH (and alkalinity) over the global ocean in the time period 1973-
135 2011. The $f\text{CO}_2$ trends have been estimated using only data points which have a calculated pH
136 value in order to avoid spurious differences when comparing these trends to those of pH. The
137 global calculation error (precision) for pH is 0.0032 ± 0.0005 , and the calculated pH compares
138 well to observed pH at crossover locations in the Atlantic Ocean (Lauvset and Gruber, 2014).
139 Before analysis the pH data were bin averaged into monthly $1^\circ \times 1^\circ$ bins, using no extrapolation
140 or interpolation of the data. The global data set was divided into the 17 ocean biomes, defined
141 (using mixed layer depth, sea surface temperature, and chlorophyll-a concentrations) by Fay
142 and McKinley (2014), as shown in Fig. 1. Here, we only evaluate trends in the open ocean.
143 Data from coastal regions shallower than 250 m, based on the ETOPO2 bathymetry, and those
144 with salinity < 20 were removed.

145 In each biome a least squares linear regression weighted with Tukey's bisquare
146 method was used to determine the long-term pH trend. For the long-term trend determination
147 we required each biome to have at least three observations in each decade (1981-1990, 1991-
148 2000, and 2001-2011). While this criterion was met in only 8 biomes for the period 1981-
149 2011, 15 had sufficient data for the period 1991-2011. Both ordinary and weighted least
150 squares regressions were carried out, but we chose a weighted least squares regression over an
151 ordinary least squares regression since this is less sensitive to outliers in the data. This makes
152 the statistics of the regression more robust, but generally this choice does not significantly
153 affect the results presented here. All regression results are presented with the standard error of
154 the slope (se), which represents its 68% confidence interval, and the root mean square error
155 (RMSE). The RMSE is used as a measure of interannual variability.

156 Before the regression analysis was carried out two corrections were applied to the
157 data: deseasonalization and removal of spatial bias. The importance of these corrections,
158 particularly in data sparse biomes such as those in the Southern Ocean, was recently
159 highlighted by Fay et al. (2014). The seasonal cycle in the data was removed following
160 Takahashi et al. (2009b), using the long-term average seasonal cycle as contained in our data
161 for each biome. However, we find that using the climatological seasonal cycle—calculated

162 using the Takahashi pCO_2 climatology (Takahashi et al., 2009a)—does not significantly
163 affect the results. To correct for any spatial bias in the large scale biomes the difference
164 between the climatological value in each $1^\circ \times 1^\circ$ bin and the biome mean climatological value
165 was subtracted from the observed value in each $1^\circ \times 1^\circ$ bin. There is no difference between this
166 method and simply subtracting the climatological value in each $1^\circ \times 1^\circ$ bin, but our approach
167 retains the absolute values in each biome. It should be noted that the computed trends in some
168 biomes are sensitive to which climatological data is used for the spatial bias correction:
169 subtracting the climatological value vs. subtracting the long-term average in each $1^\circ \times 1^\circ$ bin.
170 Mostly this is because in some $1^\circ \times 1^\circ$ bins, the long-term average is biased towards the last
171 decade, which has significantly more data than earlier periods.

172 A statistical test was performed to test the necessity of these corrections: results after
173 applying one or both corrections were compared to results after applying none using a one-
174 way analysis of variance (ANOVA, see *e.g.* Vijayvargiya, 2009). A statistically significant
175 change in the slope and its standard error was interpreted as making the correction(s)
176 necessary. The deseasonalization removes scatter in the data and leads to more robust
177 regressions by reducing the standard error of the slope in all biomes. This correction does not
178 significantly ($p\text{-value} < 0.05$) affect the long-term trend in any biome or time period, however.
179 The spatial bias correction has no statistically significant impact on the long term trend in
180 most biomes, but because it reduces the standard error and increases the r^2 in six biomes we
181 decided to keep it applied. The long-term pH trend is also much more sensitive to this
182 correction than the fCO_2 trend, mostly because the pH trend is very small and thus more
183 sensitive to any data correction.

184 The pH change expected from a certain change in fCO_2 was calculated using
185 $\Delta\text{pH}/\Delta\text{fCO}_2 = \partial\text{pH}/\partial\text{fCO}_2$. The partial derivative was estimated in CO2SYS using $0.01 \mu\text{atm}$
186 increments in fCO_2 . Since both the fCO_2 and pH trends are inextricably coupled to DIC
187 change, what we in reality calculate here is the pH change incurred by a change in DIC
188 equivalent to the given fCO_2 trend when alkalinity, SST, and SSS remain constant. We used
189 the same equation to evaluate what global average fCO_2 change the global long-term trend in
190 pH is consistent with, but then using -0.001 incremental changes in pH.

191 In each biome the long-term trend in pH was decomposed into the effects of changes
192 in SST, SSS, alkalinity, and DIC. First the impact of each of these drivers on the fCO_2 trend
193 was determined following Takahashi et al. (1993), equations 2-5, we then converted our
194 results to the impacts on $[\text{CO}_2]$ and on $[\text{H}^+]$ following equation 1.5.87 in Zeebe and Wolf-

195 Gladrow (2001), and finally we determined the impact on pH. The DIC data and dissociation
196 constants required for these calculations were calculated in CO2SYS from the fCO₂ and
197 alkalinity pair in the same calculation that gave us pH.

198 To test the effect of the highly variable spatial and temporal coverage of the
199 observational data on the results we have used the NorESM1-ME Earth system model, which
200 prognostically simulates the seawater CO₂ chemistry. A detailed description and evaluation of
201 the model simulation is available in Tjiputra et al. (2013). We examined the model simulation
202 for the 1981-2011 period based on the CMIP5 historical and future RCP8.5 scenarios, where
203 the atmospheric CO₂ concentration is used as the boundary condition. We binned the model
204 monthly output into the same 1°x1° bins and used the same method to calculate and
205 decompose the long-term trends in each biome as we used for the observational data—
206 including the two-step pH calculation described above. Two sets of model trends were
207 determined. For the first, we used the fully sampled model output, referred to here as the
208 ‘fully-sampled trend’. For the second set, we subsampled the model output according to the
209 observational coverage, *i.e.* only data from monthly grid cells corresponding to those where
210 real observations have been obtained were used. The ‘sub-sampled trend’ was then computed
211 from these subsampled model data. The comparison of these two informs us on how sensitive
212 the calculated trends are to the variable data coverage.

213

214 **3. Results and Discussion**

215 **3.1. Long-term trends in pH**

216 We find statistically significant trends in 6 out of the 8 biomes with sufficient data for
217 the period 1981-2011, and for 13 out of the 15 biomes with sufficient data for the period
218 1991-2011 (Fig. 1 with the numerical values in Table 1). As shown in Figs. 2-4, the data
219 coverage in each biome is generally very good after 1990, but often spotty prior to this year.
220 These figures also reveal a substantial amount of interannual variability around the
221 determined trends, with RMSE values of between 0.01 and 0.04 pH units—*i.e.*, roughly of
222 similar magnitude as the cumulative trend over the 20 to 30 years of analyses. No robust
223 analyses were possible for the North Pacific ice covered (NP-ICE) and North Atlantic ice
224 covered (NA-ICE) biomes, due to the lack of data (<20 data points) hence they are not further

225 discussed in the paper. Unfortunately, these are the Arctic biomes where the earliest impacts
226 of ocean acidification are expected (Steinacher et al., 2009).

227 The regions with sufficient data, but without statistically significant trends, *i.e.*, the
228 North Pacific subpolar seasonally stratified (NP-SPSS) biome for the period 1981-2011, and
229 the Southern Ocean subtropical seasonally stratified (SO-STSS) and ice covered (SO-ICE)
230 biomes for the period 1991-2011, are characterized by large RMSE and a substantial amount
231 of decadal variability, which is likely masking the long-term trends. In addition to these three
232 biomes where the trends are statistically indistinguishable from zero, the South Pacific
233 subtropical permanently stratified (SP-STPS) biome is likely biased by its low data density,
234 and will not be further discussed. This decision was corroborated by comparing the pH trend
235 in the fully-sampled model results with the sub-sampled model results (Fig. 5): the SP-STPS
236 biome is the only one where the difference in these trends is statistically significant at the
237 95% confidence level.

238 Since we are not able to calculate statistically significant trends in all 17 biomes we
239 are also unable to calculate a global average trend. For the period 1991-2011 only the Arctic
240 and parts of the Southern Ocean have no statistically significant results, and the area-weighted
241 average pH decrease of the remaining 13 biomes (Table 1), is $0.0018 \pm 0.0004 \text{ yr}^{-1}$. For the
242 period 1981-2011 the number of biomes with trend estimates is quite small, but almost all the
243 Pacific Ocean biomes have results and the area-weighted pH decrease is $0.0019 \pm 0.0001 \text{ yr}^{-1}$
244 between 1981 and 2011. Within the uncertainty limits the global 1991-2011 trend is
245 comparable to the global trend in the fully-sampled NorESM1-ME model results (-0.0017 yr^{-1})
246 and to the average trend of $-0.0018 \pm 0.0003 \text{ yr}^{-1}$ over the seven time series evaluated by
247 Bates et al. (2014). Assuming that alkalinity, SST, and SSS remain constant, and that the
248 change in DIC and Revelle factor remains spatially uniform, this global average pH trend
249 corresponds to a rate of increase in surface ocean $f\text{CO}_2$ of $1.75 \pm 0.4 \mu\text{atm yr}^{-1}$, which is
250 roughly the rate of increase in atmospheric $f\text{CO}_2$. Regionally, however, the response of the
251 ocean CO_2 system to the atmospheric forcing is more variable (Fig. 1).

252 In the North Atlantic subpolar seasonally stratified (NA-SPSS) biome the observed pH
253 trend is $-0.0020 \pm 0.0004 \text{ yr}^{-1}$. This is right in between the trend observed at the Irminger Sea
254 time series ($-0.0026 \pm 0.0006 \text{ yr}^{-1}$) and that observed at the Iceland Sea time series ($-0.0014 \pm 0.0005 \text{ yr}^{-1}$) (Bates et al., 2014). Within the 68% confidence intervals, the NA-SPSS
255 pH trend is consistent with both of these local trends. In the North Atlantic subtropical
256 seasonally stratified (NA-STSS) biome there are no time series data to compare with, but its

258 trend of $-0.0018 \pm 0.0003 \text{ yr}^{-1}$ is consistent with a trend of $\sim -0.0020 \text{ yr}^{-1}$ observed in the
259 Rockall Trough by McGrath et al. (2012). In the North (NA-STPS) and South (SA-STPS)
260 Atlantic subtropical permanently stratified biomes the pH trend is the same, but the RMSE
261 values indicate larger interannual variability in the southern biome (Table 1). This is likely
262 caused by the inclusion of the Benguela upwelling region, but the full effect of this has not
263 been quantified for the SA-STPS or any other biome. The trend identified here for the NA-
264 STPS ($-0.0011 \pm 0.0002 \text{ yr}^{-1}$) is significantly lower than the trend observed at the Bermuda
265 Atlantic Time-series Study (BATS, Bates et al., 2014), of $-0.0017 \pm 0.0001 \text{ yr}^{-1}$. Unfortunately,
266 we have no time series data for comparison in the SA-STPS biome. In the Atlantic Ocean
267 equatorial region (A-EQU) the pH trend ($-0.0016 \pm 0.0003 \text{ yr}^{-1}$) is lower than that observed at
268 the Carbon Retention in A Colored Ocean (CARIACO) time-series station of -0.0025 ± 0.0004
269 yr^{-1} (Bates et al., 2014), but this station is located at the very edge of the biome in a more
270 coastal setting and not ideal for comparison.

271 In the Pacific Ocean the RMSE around the fitted pH trends is generally larger than in
272 the Atlantic Ocean (Table 1), possibly reflecting the higher interannual variability of the
273 surface CO₂ system there (see *e.g.*, Landschützer et al. (2014) for pCO₂ variability). In the
274 North Pacific subtropical permanently stratified (NP-STPS) biome the pH trend of -
275 $0.0016 \pm 0.0002 \text{ yr}^{-1}$ is the same as that observed at the Hawaii Ocean Time-series (HOT, Bates
276 et al., 2014). The trends in the two equatorial Pacific Ocean biomes differ substantially. While
277 the western biome (WP-EQU) has a relatively weak trend ($-0.0010 \pm 0.0002 \text{ yr}^{-1}$), the eastern
278 (EP-EQU) biome has a much stronger pH trend than any other biome except the IO-STPS.
279 This could be related to the recent trend toward stronger and more prevalent La Niña
280 conditions in the eastern tropical Pacific leading to stronger upwelling, and higher surface
281 fCO₂ and lower pH in this region (Rödenbeck et al., 2014).

282 The Indian Ocean subtropical permanently stratified (IO-STPS) biome had a very
283 strong pH trend the past 30 years, only rivaled by that in the EP-EQU biome, as mentioned
284 above. There are not any time series stations in the Indian Ocean to compare with, but fCO₂
285 trends for the Indian Ocean computed by Metzl (2009) are considerably larger than what we
286 find: $2.11 \mu\text{atm yr}^{-1}$ vs $1.44 \pm 0.24 \mu\text{atm yr}^{-1}$. Hence there is no reason to believe that our
287 approach overestimates the pH trends here. It should be noted though that the trend identified
288 by Metzl (2009) is based on data in a considerably smaller region than the IO-STPS which
289 could account for some of the difference. In the Southern Ocean only the subpolar seasonally
290 stratified (SO-SPSS) biome has a statistically significant pH trend, which at -0.0020 ± 0.0002

291 yr^{-1} is comparable to that in the NA-SPSS biome. Furthermore, this trend is very similar to
292 that calculated for this region by Takahashi et al. (2014), although they used a different
293 method.

294 **3.2. Effects of changes in carbonate chemistry**

295 To first order, the pH trends are expected to represent the direct response to increasing
296 oceanic DIC, as is the case for the long-term trends in surface ocean fCO_2 . In order to assess
297 how our results compare with this expectation, we have calculated two expected pH rates of
298 change: first the 1981-2011 change in pH resulting from a surface ocean fCO_2 rate of change
299 equal to that in the atmosphere ($1.8 \pm 0.1 \mu\text{atm yr}^{-1}$) while keeping all other variables constant
300 at their 1981 values; and second the change in pH that would be expected if the pH change
301 mirrored the observed fCO_2 change in each biome provided that all other variables were kept
302 at their 1981 values. The first expected pH change reflects how pH should change if the
303 change in atmospheric CO_2 was the sole driver for the change in ocean pH. The second
304 expected pH change reflects how pH should change if the oceanic fCO_2 changes were allowed
305 to depart from the atmospheric ones but fCO_2 change remaining the only driver of pH change.

306 Fig. 6 shows both expected pH changes along with the observed pH change in each
307 biome. Only the 13 biomes that have statistically significant pH trends for either 1981-2011
308 or 1991-2011 (Fig. 1) are discussed further. When the atmospheric CO_2 increase is assumed
309 to be the only driver for the pH changes, we find that in 7 of the 13 biomes the observed pH
310 trends significantly differ from the expected pH change. This is due either to the uncertainty
311 in the observed trends, to associated changes in the CO_2 chemistry, or to the surface ocean
312 fCO_2 trends being significantly different from that in the atmosphere. However, the observed
313 pH trends also significantly differ from the expected pH change calculated using the observed
314 fCO_2 trend in 6 of the 13 biomes (Fig. 6). Only 3 of the biomes are the same in both cases.
315 Thus, the surface ocean fCO_2 trend not exactly mirroring the atmospheric cannot explain the
316 discrepancy between expected and observed pH trends in most biomes. It may be an
317 explanation in the equatorial Pacific biomes (EP-EQU and WP-EQU) where there is no
318 discrepancy between observed and expected pH trends when the observed fCO_2 trend is used
319 to calculate the expected pH change (Fig. 6), but a significant difference when an atmospheric
320 rate of change is assumed.

321 The observed pH trend is more often smaller than that expected for the ocean
322 mirroring the atmospheric fCO_2 change than vice versa. Only the EP-EQU and IO-STPS

323 biomes have observed pH changes larger than those expected (Fig. 6). Our hypothesis is that
324 the differences between the observed and expected pH trends are caused by changes in the
325 spatial variations in the ratio of DIC to alkalinity, which leads to spatial changes in the buffer
326 (Revelle) factor. In the biomes where the observed trend differs from the expected trend there
327 are indications which point to such changes. When the difference is negative (*i.e.*, the
328 observed trend is smaller than the expected), the decrease in Revelle factor, *e.g.*, is stronger
329 the larger the difference. However, given the combined calculation errors, generally high level
330 of noise in our data, and relatively few data points, only some of these indications are
331 statistically significant. Further analysis of these spatial patterns needs to be undertaken using
332 independent pH data, preferably direct measurements in order to quantify any possible biases
333 in the results due to our pH being a calculated variable. A combination of SOCAT data with
334 repeat hydrography and time-series data would be ideal but this is outside the scope of this
335 study.

336 **3.3. Major driving forces behind the observed pH and trends**

337 The decomposition of the fCO₂ and pH trends confirms (Figs. 7-9) that in all biomes
338 the long-term increase in DIC is by far the dominant driver for the long-term pH changes.
339 Knowledge about the changes in ocean DIC therefore is the most important in
340 understanding—and predicting—changes in ocean pH (Table 2). This is not unexpected since
341 the open ocean is in—or very close to—chemical equilibrium with the atmosphere (Lauvset
342 and Gruber, 2014). Thus the surface ocean is taking up CO₂ from the atmosphere in order to
343 re-establish a chemical equilibrium, leading to a corresponding increase in fCO₂ and DIC. It
344 must be noted that since we do not have measurements of alkalinity this parameter is
345 calculated from SST and SSS, and the relatively large uncertainties in these calculations may
346 add a degree of uncertainty to the decomposition. Due to a lack of independent data this is not
347 further evaluated in this study.

348 In the Atlantic Ocean biomes the second most important driver is SST (Fig. 7), which
349 mostly has a positive change and therefore has limited the DIC increase required to maintain
350 an fCO₂ growth rate similar to that in the atmosphere. SST is the second most important
351 driver also in the Pacific Ocean biomes (except in the NP-SPSS, Fig. 8), but here SST
352 decreased in many biomes leading to an enhanced increase in DIC through CO₂ uptake from
353 the atmosphere. In the Southern Ocean biomes alkalinity changes have a significant impact on
354 the trends (Fig. 9), which also modulates the DIC changes. Decreasing alkalinity over time

355 increases $f\text{CO}_2$ so that the DIC change required to maintain a sea surface $f\text{CO}_2$ growth rate
356 similar to the atmospheric is reduced.

357 In most biomes there is a residual between the sum of the four components and the
358 observed trend (Fig. 10). Lenton et al. (2012) performed a similar analysis and attributed such
359 residuals to the use of a spatial mean Revelle factor, the approximations underlying the
360 Takahashi et al. (1993) equations, and the assumption of linear trends in all variables. We
361 tested whether variable data coverage is also an important contributor to this residual by
362 subsampling the NorESM1-ME simulated pH data and comparing the resulting 1981-2011
363 decomposition with the decomposition determined using the full model output. Fig. 10
364 illustrates that in most biomes there are similar residuals between the sum of the four
365 components and the actual trends in the sub-sampled and fully-sampled model fields as well.
366 We can, therefore, find no evidence to show that poor data coverage is of major importance in
367 determining what drives the change in surface ocean pH.

368 **3.4. Recent changes in the Southern Ocean biomes**

369 In contrast to the majority of the global ocean biomes, trends within the SO-STSS and
370 SO-ICE biomes do not appear statistically significant over the past two decades (Table 1).
371 This can be linked to strong interannual and decadal variations (Fig. 3). This is consistent
372 with the changing $f\text{CO}_2$ trends revealed in a recent study by Fay et al. (2014) as well as
373 previous findings of a change in the CO_2 sink in this region (*e.g.* Fay and McKinley, 2013;
374 Landschützer et al., 2014). In order to investigate these recent changes in the trend in the
375 Southern Ocean, we also decompose the 2001-2011 trends in the Southern Ocean biomes
376 (Table 3).

377 In the SO-STSS biome there is no significant change in pH over the 30 year period,
378 but from Fig. 3 it is seen that there is a decrease until ~ 2000 and then an increase over the last
379 decade. Over the last decade (Table 3) we find that the contributions of the individual
380 parameters to the overall trend in pH are amplified. Temperature and DIC changes remain the
381 strongest drivers, and of these the forcing from DIC has increased strongest over the last
382 decade. We hence conclude that the increase in pH over the past decade in the SO-STSS
383 biome is due to the decreasing DIC concentrations dominating over the thermally induced
384 reduction in pH.

385 In the SO-SPSS biome the pH trend appears to become less steep over the last decade
386 (Fig. 3), which is consistent with the well-documented trend changes in $f\text{CO}_2$. In this biome

387 we find a less negative DIC driven pH trend in the period 2001-2011 compared to the period
388 1981-2011, indicating a reduced increasing trend in DIC over this decade. This supports the
389 conclusion drawn by Fay and McKinley (2013) that a reduction in vertical DIC supply causes
390 a weakening of both $f\text{CO}_2$ and pH trends in this region. In the SO-ICE biome the sign of the
391 non-thermal drivers appears to change within the last decade, potentially driven by the recent
392 Antarctic ice melt and ice-sheet melting driven iron fertilization (Death et al., 2014).

393 **3.5. Spatial variability**

394 In both the observations and the sub-sampled model results we see significant regional
395 differences in the pH trends (Fig. 5). Note that the actual simulated pH trends in each biome
396 are not directly comparable with the observed trends since the model is a coupled climate
397 model, which simulates its own internal climate variability. We therefore compare the fully
398 sampled and the sub-sampled model results, and the fully sampled model results show much
399 more uniform pH trends (Fig. 5). While these differences are mostly statistically
400 indistinguishable within the uncertainties, it highlights the need for careful consideration of
401 representativeness when comparing model-derived future changes and trends based on data.
402 Fig. 5 shows that in the IO-STPS and WP-EQU biomes the sub-sampled trend is within
403 ± 0.0001 of the fully-sampled pH trends, and an ANOVA analysis shows that only in the SP-
404 STPS biome are the two model trends significantly different. Thus the trends based on the
405 existing observational coverage are overall representative of the respective biomes, and it is
406 unlikely that there are major biases in our results due to low data density. However, the
407 uncertainties in the long-term pH trend estimates remain large, both in observations and the
408 model (Fig. 5) and this prohibits a mechanistic understanding the observed changes in most
409 biomes. Improved sampling strategies are necessary to reduce these uncertainties and thereby
410 improve our understanding of surface ocean CO_2 chemistry changes today and in the future.

411 This highlights the importance of both maintaining the observational networks already
412 in place—like the voluntary observing ship (VOS) network in the North Atlantic (Watson et
413 al., 2009)—and instigating new ones in less well-covered ocean regions. Of particular
414 importance is improved data coverage in the Southern Pacific Ocean (SP-STPS) where the
415 data density as of today it too low for a robust analysis of long term pH trends.

416

417 **4. Conclusions**

418 Global surface ocean pH changes over the past 30 years cannot be calculated as there
419 are too few data in many biomes. For the past twenty years on the other hand, we find that
420 the surface ocean pH has decreased by on average $0.0018 \pm 0.0004 \text{ yr}^{-1}$, excluding the Arctic
421 and high-latitude Southern Ocean. There are however large regional variations with trends
422 ranging from -0.0024 yr^{-1} in the Indian Ocean (IO-STPS) biome to no significant change in
423 the polar Southern Ocean (SO-ICE) biome. Our estimated global trend is comparable to the
424 trends found at time-series stations and to the global average trend in the NorESM1-ME
425 model. In all biomes, the pH trend is predominantly driven by changes in DIC, implying that
426 the surface ocean pH decline is a direct response to the increasing uptake of atmospheric CO₂.
427 Despite this, the fCO₂ and pH trends do not exactly mirror each other, which is potentially
428 linked to trends in the surface ocean buffer (Revelle) factor over the past decades. In some
429 biomes this leads to smaller pH changes than expected from the fCO₂ change, while in others
430 regions, the pH changes are larger than expected. Thus, knowledge of both the changing
431 ocean DIC and the changing ocean buffer (Revelle) factor is important for understanding and
432 accurately determining the changing ocean pH.

433 There are regional differences in the pH trends. It is likely that these are caused by
434 spatial heterogeneity in the concurrent changes in buffer (Revelle) factor, while spatial
435 heterogeneity in the surface ocean fCO₂ trends seems to have only a minor effect. Our
436 comparison between fully-sampled model and sub-sampled output from the NorESM1-ME
437 model indicates that variable data coverage only presents a major problem in the South
438 Pacific. This nicely highlights the overall success of the scientific community in creating
439 observational networks that reduce data coverage issues. The many scientific studies arising
440 from this effort—among many others the recent publications by Nakaoka et al. (2013),
441 Landschützer et al. (2013), Landschützer et al. (2014), and Schuster et al. (2013)—show that
442 we have come a long way in understanding how ocean CO₂ chemistry is evolving in a world
443 perturbed by fossil fuel emissions. The uncertainties in the trends presented here are,
444 however, substantial and this largely prevents a more thorough understanding of current
445 changes. Filling the remaining gaps in our surface ocean data is, therefore, still of great
446 importance.

447

448 **Acknowledgements**

449 The work of S. K. Lauvset was funded by the Norwegian Research Council through the
450 project DECApH (214513/F20). Are Olsen acknowledge funding from the Centre for Climate
451 Dynamics at the Bjerknes Centre for Climate Research, and the Norwegian Research Council
452 project SNACS (229756). N. Gruber and P. Landschützer acknowledge funding from the
453 ETH and the EU FP7 projects CARBOCHANGE (264879) and GEOCARBON (283080). J.
454 Tjiputra acknowledges the Centre for Climate Dynamics project BIOFEEDBACK.
455

456 **References**

457 Antonov, J., Seidov, D., Boyer, T., Locarnini, R., Mishonov, A., Garcia, H., Baranova, O.,
458 Zweng, M., and Johnson, D.: World Ocean Atlas 2009, vol. 2, Salinity, edited by S.
459 Levitus, 184 pp, US Gov. Print. Off., Washington, DC, 2010. 2010.

460 Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Olsen, A., Alin, S. R., Cosca, C., Harasawa,
461 S., Kozyr, A., Nojiri, Y., O'Brien, K. M., Schuster, U., Telszewski, M., Tilbrook, B.,
462 Wada, C., Akl, J., Barbero, L., Bates, N. R., Boutin, J., Bozec, Y., Cai, W. J., Castle, R.
463 D., Chavez, F. P., Chen, L., Chierici, M., Currie, K., de Baar, H. J. W., Evans, W.,
464 Feely, R. A., Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N. J., Hoppema,
465 M., Huang, W. J., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E. M.,
466 Jones, S. D., Jutterström, S., Kitidis, V., Körtzinger, A., Landschützer, P., Lauvset, S.
467 K., Lefèvre, N., Manke, A. B., Mathis, J. T., Merlivat, L., Metzl, N., Murata, A.,
468 Newberger, T., Omar, A. M., Ono, T., Park, G. H., Paterson, K., Pierrot, D., Ríos, A. F.,
469 Sabine, C. L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Sieger, R.,
470 Skjelvan, I., Steinhoff, T., Sullivan, K. F., Sun, H., Sutton, A. J., Suzuki, T., Sweeney,
471 C., Takahashi, T., Tjiputra, J., Tsurushima, N., van Heuven, S. M. A. C., Vandemark,
472 D., Vlahos, P., Wallace, D. W. R., Wanninkhof, R., and Watson, A. J.: An update to the
473 Surface Ocean CO₂ Atlas (SOCAT version 2), *Earth Syst. Sci. Data*, 6, 69-90, 2014.

474 Bates, N. R.: Interannual variability of the oceanic CO₂ sink in the subtropical gyre of the
475 North Atlantic Ocean over the last 2 decades, *J. Geophys. Res.-Oceans*, 112, 26, 2007.

476 Bates, N. R., Astor, Y. M., Church, M. J., Currie, K., Dore, J. E., Gonzalez-Davila, M.,
477 Lorenzoni, L., Muller-Karger, F., Olafsson, J., and Magdalena Santana-Casiano, J.: A
478 Time-Series View of Changing Surface Ocean Chemistry Due to Ocean Uptake of
479 Anthropogenic CO₂ and Ocean Acidification, *Oceanography*, 27, 126-141, 2014.

480 Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P.,
481 Heinze, C., Ilyina, T., Seferian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of

482 ocean ecosystems in the 21st century: projections with CMIP5 models, *Biogeosciences*,
483 10, 6225-6245, 2013.

484 Dickson, A.G. and Millero, F.J., 1987. A comparison of the equilibrium-constants for the
485 dissociation of carbonic-acid in seawater media. *Deep-Sea Research Part a-*
486 *Oceanographic Research Papers*, 34(10): 1733-1743.

487 Death, R., Wadham, J. L., Monteiro, F., Le Brocq, A. M., Tranter, M., Ridgwell, A.,
488 Dutkiewicz, S., and Raiswell, R.: Antarctic ice sheet fertilises the Southern Ocean,
489 *Biogeosciences*, 11, 2635-2643, 2014.

490 Doney, S. C., Balch, W. M., Fabry, V. J., and Feely, R. A.: Ocean Acidification: A critical
491 emerging problem for the ocean sciences, *Oceanography*, 22, 16-25, 2009a.

492 Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean Acidification: The Other
493 CO₂ Problem, *Annual Review of Marine Science*, 1, 169-192, 2009b.

494 Dore, J. E., Lukas, R., Sadler, D. W., Church, M. J., and Karl, D. M.: Physical and
495 biogeochemical modulation of ocean acidification in the central North Pacific,
496 *Proceedings of the National Academy of Sciences*, 106, 12235-12240, 2009.

497 Fay, A. R. and McKinley, G. A.: Global trends in surface ocean pCO₂ from in situ data,
498 *Global Biogeochemical Cycles*, 27, 541-557, 2013.

499 Fay, A. R. and McKinley, G. A.: Global Ocean Biomes: Mean and time-varying maps
500 (NetCDF 7.8 MB), doi:10.1594/PANGAEA.828650, 2014, Supplement to: Fay, A. R.
501 and McKinley, G. A.: Global open-ocean biomes: mean and temporal variability, *Earth
502 Syst. Sci. Data*, 6, 273–284, doi: 10.5194/essd-6-273-2014, 2014.

503 Fay, A. R., McKinley, G. A., and Lovenduski, N. S.: Southern Ocean carbon trends:
504 sensitivity to methods, *Geophys. Res. Lett.*, 41, doi: 10.1002/2014GL061324, online
505 first, 2014.

506 Gattuso, J.-P. and Hansson, L.: *Ocean Acidification*, Oxford University Press, New York,
507 2011

508 Gonzalez-Davila, M., Santana-Casiano, J. M., and Gonzalez-Davila, E. F.: Interannual
509 variability of the upper ocean carbon cycle in the northeast Atlantic Ocean, *Geophysical
510 Research Letters*, 34, 2007.

511 Gonzalez-Davila, M., Santana-Casiano, J. M., Rueda, M. J., and Llinas, O.: The water column
512 distribution of carbonate system variables at the ESTOC site from 1995 to 2004,
513 *Biogeosciences*, 7, 3067-3081, 2010.

514 Landschützer, P., Gruber, N., Bakker, D. C. E., and Schuster, U.: Recent variability of the
515 global ocean carbon sink, *Global Biogeochemical Cycles*, doi: 10.1002/2014GB004853,
516 2014. 2014GB004853, 2014.

517 Landschützer, P., Gruber, N., Bakker, D. C. E., Schuster, U., Nakaoka, S., Payne, M. R.,
518 Sasse, T. P., and Zeng, J.: A neural network-based estimate of the seasonal to inter-
519 annual variability of the Atlantic Ocean carbon sink, *Biogeosciences*, 10, 7793-7815,
520 2013.

521 Lauvset, S. K. and Gruber, N.: Long-term trends in surface ocean pH in the North Atlantic,
522 *Marine Chemistry*, 162, 71-76, 2014.

523 Lewis, E. and Wallace, D.W.R.: Program developed for CO₂ system calculations,
524 ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National
525 Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, 1998.

526 Le Quéré, C.: Trends in the land and ocean carbon uptake, *Current Opinion in Environmental
527 Sustainability*, 2, 219-224, 2010.

528 Le Quéré, C., Peters, G. P., Andres, R. J., Andrew, R. M., Boden, T. A., Ciais, P.,
529 Friedlingstein, P., Houghton, R. A., Marland, G., Moriarty, R., Sitch, S., Tans, P.,
530 Arneth, A., Arvanitis, A., Bakker, D. C. E., Bopp, L., Canadell, J. G., Chini, L. P.,
531 Doney, S. C., Harper, A., Harris, I., House, J. I., Jain, A. K., Jones, S. D., Kato, E.,
532 Keeling, R. F., Klein Goldewijk, K., Körtzinger, A., Koven, C., Lefèvre, N., Maignan,
533 F., Omar, A., Ono, T., Park, G. H., Pfeil, B., Poulter, B., Raupach, M. R., Regnier, P.,
534 Rödenbeck, C., Saito, S., Schwinger, J., Segschneider, J., Stocker, B. D., Takahashi, T.,
535 Tilbrook, B., van Heuven, S., Viovy, N., Wanninkhof, R., Wiltshire, A., and Zaehle, S.:
536 Global carbon budget 2013, *Earth Syst. Sci. Data*, 6, 235-263, 2014.

537 Lee, K., Tong, L. T., Millero, F. J., Sabine, C. L., Dickson, A. G., Goyet, C., Park, G.-H.,
538 Wanninkhof, R., Feely, R. A., and Key, R. M.: Global relationships of total alkalinity
539 with salinity and temperature in surface waters of the world's oceans, *Geophysical
540 Research Letters*, 33, L19605, 2006.

541 Lenton, A., Metzl, N., Takahashi, T., Kuchinke, M., Matear, R. J., Roy, T., Sutherland, S. C.,
542 Sweeney, C., and Tilbrook, B.: The observed evolution of oceanic pCO₂ and its drivers
543 over the last two decades, *Global Biogeochem. Cycles*, 26, GB2021, 2012.

544 McGrath, T., Kivimae, C., Tanhua, T., Cave, R. R., and McGovern, E.: Inorganic carbon and
545 pH levels in the Rockall Trough 1991-2010, *Deep-Sea Research Part I-Oceanographic
546 Research Papers*, 68, 79-91, 2012.

547 Mehrbach, C., Culberso.Ch, Hawley, J.E. and Pytkowic.Rm, 1973. Measurement of apparent
548 dissociation-constants of carbonic-acid in seawater at atmospheric-pressure. Limnology
549 and Oceanography, 18(6): 897-907.

550 Metzl, N.: Decadal increase of oceanic carbon dioxide in Southern Indian Ocean surface
551 waters (1991–2007), Deep Sea Research Part II: Topical Studies in Oceanography, 56,
552 607-619, 2009.

553 Nakaoka, S., Telszewski, M., Nojiri, Y., Yasunaka, S., Miyazaki, C., Mukai, H., and Usui, N.:
554 Estimating temporal and spatial variation of ocean surface pCO₂ in the North Pacific
555 using a self-organizing map neural network technique, Biogeosciences, 10, 6093-6106,
556 2013.

557 Nondal, G., Bellerby, R. G. J., Olsen, A., Johannessen, T., and Olafsson, J.: Optimal
558 evaluation of the surface ocean CO₂ system in the northern North Atlantic using data
559 from voluntary observing ships, Limnol. Oceanogr. Meth., 7, 109-118, 2009.

560 Olafsson, J., Olafsdottir, S. R., Benoit-Cattin, A., and Takahashi, T.: The Irminger Sea and the
561 Iceland Sea time series measurements of sea water carbon and nutrient chemistry 1983–
562 2008, Earth Syst. Sci. Data, 2, 99-104, 2010.

563 Orr, J.: Recent and future changes in ocean carbonate chemistry. In: Ocean acidification,
564 Gattuso, J.-P. and Hansson, L. (Eds.), Oxford University Press, New York, 41-66, 2011.

565 Pfeil, B., Olsen, A., Bakker, D. C. E., Hankin, S., Koyuk, H., Kozyr, A., Malczyk, J., Manke,
566 A., Metzl, N., Sabine, C. L., Akl, J., Alin, S. R., Bates, N., Bellerby, R. G. J., Borges,
567 A., Boutin, J., Brown, P. J., Cai, W. J., Chavez, F. P., Chen, A., Cosca, C., Fassbender,
568 A. J., Feely, R. A., González-Dávila, M., Goyet, C., Hales, B., Hardman-Mountford, N.,
569 Heinze, C., Hood, M., Hoppema, M., Hunt, C. W., Hydes, D., Ishii, M., Johannessen,
570 T., Jones, S. D., Key, R. M., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre,
571 N., Lenton, A., Lourantou, A., Merlivat, L., Midorikawa, T., Mintrop, L., Miyazaki, C.,
572 Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A. M., Padin, X.
573 A., Park, G. H., Paterson, K., Perez, F. F., Pierrot, D., Poisson, A., Ríos, A. F., Santana-
574 Casiano, J. M., Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Schneider, B., Schuster,
575 U., Sieger, R., Skjelvan, I., Steinhoff, T., Suzuki, T., Takahashi, T., Tedesco, K.,
576 Telszewski, M., Thomas, H., Tilbrook, B., Tjiputra, J., Vandemark, D., Veness, T.,
577 Wanninkhof, R., Watson, A. J., Weiss, R., Wong, C. S., and Yoshikawa-Inoue, H.: A
578 uniform, quality controlled Surface Ocean CO₂ Atlas (SOCAT), Earth Syst. Sci. Data,
579 5, 125-143, 2013.

580 Rödenbeck, C., Bakker, D. C. E., Metzl, N., Olsen, A., Sabine, C., Cassar, N., Reum, F.,
581 Keeling, R. F., and Heimann, M.: Interannual sea–air CO₂ flux variability from an
582 observation-driven ocean mixed-layer scheme, *Biogeosciences*, 11, 4599–4613,
583 doi:10.5194/bg-11-4599-2014, 2014.

584 Sarmiento, J. L. and Gruber, N.: Ocean biogeochemical dynamics, Princeton University Press,
585 Princeton, N.J., 2006.

586 Schuster, U., McKinley, G. A., Bates, N., Chevallier, F., Doney, S. C., Fay, A. R., González-
587 Dávila, M., Gruber, N., Jones, S., Krijnen, J., Landschützer, P., Lefèvre, N., Manizza,
588 Mathis, J., Metzl, N., Olsen, A., Rios, A. F., Rödenbeck, C., Santana-Casiano, J.
589 M., Takahashi, T., Wanninkhof, R., and Watson, A. J.: An assessment of the Atlantic
590 and Arctic sea–air CO₂ fluxes, 1990–2009, *Biogeosciences*, 10, 607–627, 2013.

591 Steinacher, M., Joos, F., Froelicher, T. L., Plattner, G. K., and Doney, S. C.: Imminent ocean
592 acidification in the Arctic projected with the NCAR global coupled carbon cycle-
593 climate model, *Biogeosciences*, 6, 515–533, 2009.

594 Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W., and Sutherland, S. C.: Seasonal-
595 Variation of CO₂ and Nutrients in the High-Latitude Surface Oceans - A Comparative
596 Study, *Global Biogeochemical Cycles*, 7, 843–878, 1993.

597 Takahashi, T., Sutherland, S. C., Chipman, D. W., Goddard, J. G., Ho, C., Newberger, T.,
598 Sweeney, C., and Munro, D. R.: Climatological distributions of pH, pCO₂, total CO₂,
599 alkalinity, and CaCO₃ saturation in the global surface ocean, and temporal changes at
600 selected locations, *Marine Chemistry*, 164, 95–125, 2014.

601 Takahashi, T., Sutherland, S. C., and Kozyr, A.: Global Ocean Surface Water Partial Pressure
602 of CO₂ Database: Measurements Performed During 1968–2008 (Version 2008). . In:
603 ORNL/CDIAC-152, NDP-088r, Carbon Dioxide Information Analysis Center, Oak
604 Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, 2009a.

605 Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N.
606 R., Wanninkhof, R., Feely, R. A., Sabine, C. L., Olafsson, J., and Nojiri, Y.: Global sea-
607 air CO₂ flux based on climatological surface ocean pCO₂, and seasonal biological and
608 temperature effects, *Deep-Sea Research II*, 49, 1601–1622, 2002.

609 Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D.
610 W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E.,
611 Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y.,
612 Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B.,

613 Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de
614 Baar, H. J. W.: Climatological mean and decadal change in surface ocean pCO₂, and
615 net sea-air CO₂ flux over the global oceans, Deep-Sea Research Part II - Topical
616 Studies in Oceanography, 56, 554-577, 2009b.

617 Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: AN OVERVIEW OF CMIP5 AND THE
618 EXPERIMENT DESIGN, Bulletin of the American Meteorological Society, 93, 485-
619 498, 2012.

620 Tjiputra, J. F., Olsen, A. R. E., Bopp, L., Lenton, A., Pfeil, B., Roy, T., Segschneider, J.,
621 Totterdell, I. A. N., and Heinze, C.: Long-term surface pCO₂ trends from observations
622 and models, Tellus B, 66, 2014.

623 Tjiputra, J. F., Roelandt, C., Bentsen, M., Lawrence, D. M., Lorentzen, T., Schwinger, J.,
624 Seland, O., and Heinze, C.: Evaluation of the carbon cycle components in the
625 Norwegian Earth System Model (NorESM), Geoscientific Model Development, 6, 301-
626 325, 2013.

627 Uppstrom, L.R., 1974. BORON/CHLORINITY RATIO OF DEEP-SEA WATER FROM
628 PACIFIC OCEAN. Deep-Sea Research, 21(2): 161-162.

629 Vijayvargiya, A.: One-Way Analysis of Variance, Journal of Validation Technology, 15, 62-
630 63, 2009.

631 Watson, A. J., Schuster, U., Bakker, D. C. E., Bates, N. R., Corbiere, A., Gonzalez-Davila,
632 M., Friedrich, T., Hauck, J., Heinze, C., Johannessen, T., Körtzinger, A., Metzl, N.,
633 Olafsson, J., Olsen, A., Oschlies, A., Padin, X. A., Pfeil, B., Santana-Casiano, J. M.,
634 Steinhoff, T., Telszewski, M., Rios, A. F., Wallace, D. W. R., and Wanninkhof, R.:
635 Tracking the Variable North Atlantic Sink for Atmospheric CO₂, Science, 326, 1391-
636 1393, 2009.

637 Zeebe, R., E. and Wolf-Gladrow, D.: CO₂ in seawater, equilibrium, kinetics, isotopes,
638 Elsevier, Amsterdam, PAYS-BAS, 2001.

639

640

641 Table 1. Results and statistics of the regression analysis of fCO₂ (μatm) and pH_{insitu} versus
 642 time. Bold text indicates biomes where the results are not statistically significant (95%
 643 confidence). No number is given if a biome does not have enough data to calculate the trend
 644 in a given time period.

region	1981 – 2011				1991 – 2011			
	pH		fCO ₂		pH		fCO ₂	
	slope	rmse	slope	rmse	slope	rmse	slope	rmse
NP-SPSS	-0.0003±0.0005	0.041	1.20±0.17	16.2	0.0013±0.0005	0.038	0.74±0.22	16.1
NP-STSS	---	---	1.30±0.15	10.5	-0.0010±0.0005	0.031	1.37±0.13	8.9
NP-STPS	-0.0016±0.0002	0.020	1.51±0.09	10.3	-0.0019±0.0002	0.018	1.52±0.12	9.9
WP-EQU	-0.0010±0.0002	0.016	1.54±0.19	17.8	-0.0012±0.0002	0.015	1.59±0.27	17.3
EP-EQU	-0.0023±0.0003	0.023	2.94±0.41	28.2	-0.0026±0.0002	0.023	3.51±0.51	27.9
SP-STPS	-0.0019±0.0002	0.020	1.34±0.11	12.0	-0.0022±0.0003	0.020	1.12±0.18	12.3
NA-SPSS	---	---	1.18±0.22	15.4	-0.0020±0.0004	0.028	1.11±0.22	14.2
NA-STSS	---	---	1.78±0.20	12.3	-0.0018±0.0003	0.015	1.79±0.20	12.5
NA-STPS	---	---	1.42±0.12	8.5	-0.0011±0.0002	0.012	1.44±0.12	8.6
A-EQU	---	---	1.86±0.35	16.6	-0.0016±0.0003	0.014	1.81±0.32	15.7
SA-STPS	---	---	1.06±0.37	16.7	-0.0011±0.0005	0.024	0.99±0.37	17.0
IO-STPS	-0.0024±0.0004	0.023	1.49±0.25	13.6	-0.0027±0.0005	0.025	1.55±0.26	13.5
SO-STSS	-0.0006±0.0004	0.032	1.78±0.11	10.8	-0.0004±0.0004	0.032	1.82±0.12	10.8
SO-SPSS	-0.0020±0.0002	0.020	1.44±0.10	9.1	-0.0021±0.0002	0.020	1.46±0.11	9.0
SO-ICE	---	---	0.34±0.31	24.4	-0.0002±0.0004	0.029	0.23±0.34	24.3

645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658

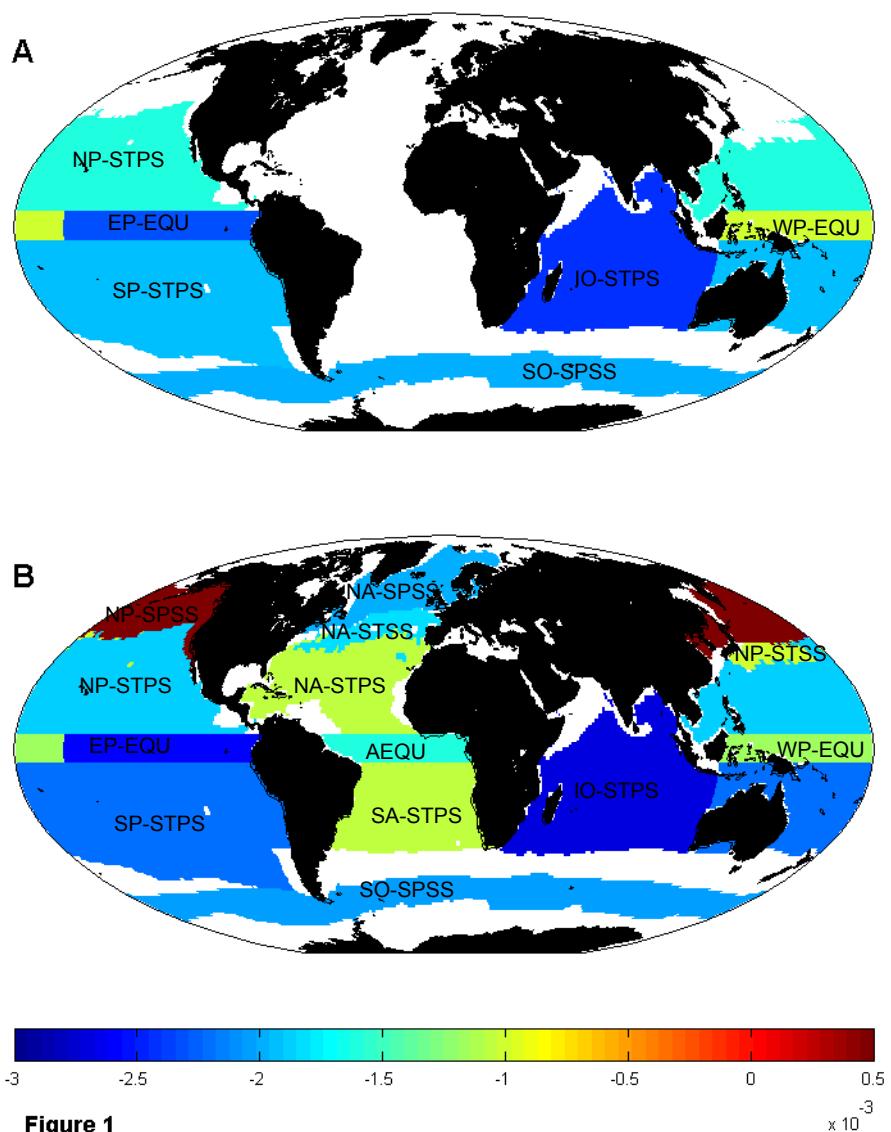
659 Table 2. Decomposition of the $f\text{CO}_2$ and $\text{pH}_{\text{insitu}}$ trends into their major drivers. The units are
 660 $\mu\text{atm yr}^{-1}$ and pH-units yr^{-1} respectively.

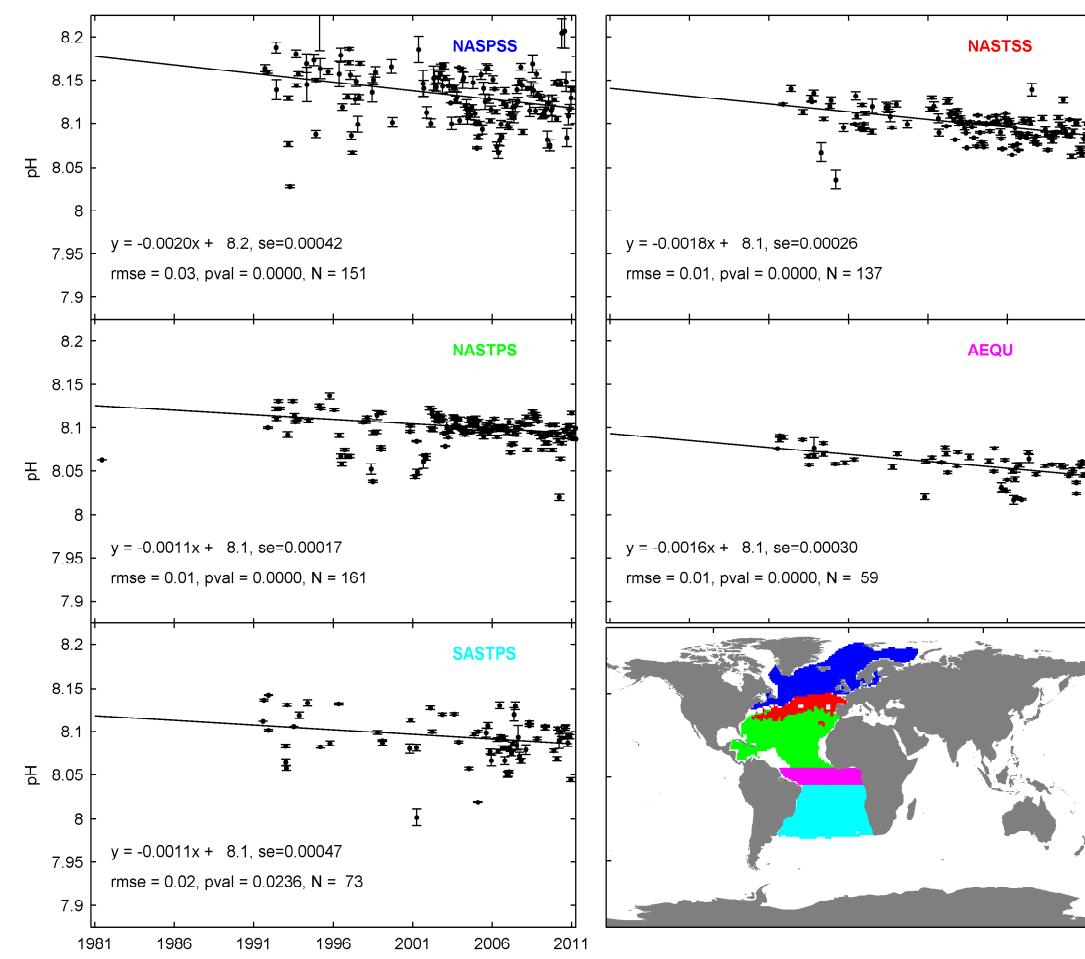
Region	pH					$f\text{CO}_2$				
	theta	salinity	DIC	alkalinity	sum	theta	salinity	DIC	alkalinity	sum
NP-SPSS	-0.57	-0.15	3.18	-3.04	-0.58	0.52	0.14	-2.89	2.76	0.53
NP-STSS	-0.39	0.02	-0.89	-0.13	-1.39	0.38	-0.02	0.87	0.13	1.37
NP-STPS	1.15	-0.02	-1.68	0.04	-0.50	-1.19	0.02	1.73	-0.05	0.51
WP-EQU	-0.47	0.11	-0.87	0.14	-1.10	0.53	-0.12	0.97	-0.15	1.23
EP-EQU	0.51	-0.07	-2.99	0.13	-2.42	-0.63	0.08	3.68	-0.15	2.99
SP-STPS	2.28	-0.11	-3.02	0.04	-0.81	-2.47	0.12	3.28	-0.05	0.88
NA-SPSS	-0.02	0.17	-2.41	0.12	-2.13	0.01	-0.16	2.17	-0.11	1.91
NA-STSS	0.74	-0.07	-1.43	-0.11	-0.87	-0.72	0.07	1.40	0.10	0.85
NA-STPS	-1.20	-0.05	-0.10	-0.12	-1.47	1.29	0.05	0.11	0.13	1.57
A-EQU	-0.21	0.02	-1.33	-0.05	-1.56	0.24	-0.03	1.53	0.06	1.80
SA-STPS	-0.31	0.06	-1.55	-0.05	-1.85	0.34	-0.07	1.69	0.05	2.02
IO-STPS	0.80	-0.02	-3.23	0.06	-2.39	-0.79	0.02	3.22	-0.06	2.38
SO-STSS	-0.99	-0.08	2.02	-0.86	0.09	0.88	0.08	-1.81	0.77	-0.08
SO-SPSS	0.89	0.01	-3.09	0.53	-1.66	-0.83	-0.01	2.89	-0.50	1.56
SO-ICE	0.13	-0.01	-2.22	0.15	-1.95	-0.12	0.01	2.02	-0.13	1.78

661
 662 Table 3. Decomposition of the 2001-2011 $f\text{CO}_2$ and $\text{pH}_{\text{insitu}}$ trends in the Southern Ocean into
 663 their major drivers. The units are $\mu\text{atm yr}^{-1}$ and pH-units yr^{-1} respectively.

Region	pH						$f\text{CO}_2$					
	theta	salinity	DIC	alkalinity	sum	observed	theta	salinity	DIC	alkalinity	sum	observed
SO-STSS	-3.7	-0.79	8.46	-2.48	1.49	0.0032 ± 0.0010	3.4	0.73	-7.78	2.28	-1.37	1.56 ± 0.39
SO-SPSS	1.11	-0.07	-1.28	-0.05	-0.29	-0.0011 ± 0.0006	-1.06	0.07	1.22	0.05	0.28	0.89 ± 0.22
SO-ICE	-0.62	-0.05	1	-0.39	-0.06	0.0006 ± 0.0009	0.59	0.05	-0.95	0.37	0.06	0.21 ± 0.74

664
 665 Fig. 1. A map of the Fay and McKinley (2014) biomes which have (a) a statistically
 666 significant pH trend in the period 1981-2011, and (b) the biomes with a statistically
 667 significant pH trend in the period 1991-2011.


668
 669 Fig. 2. Long term pH trend (1981-2011) in the five Atlantic Ocean biomes.

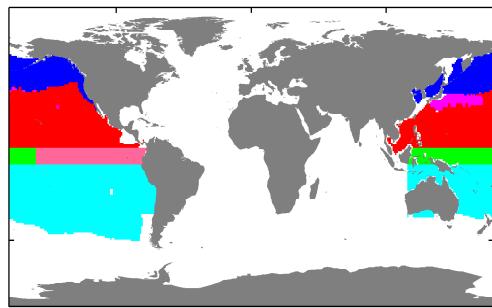
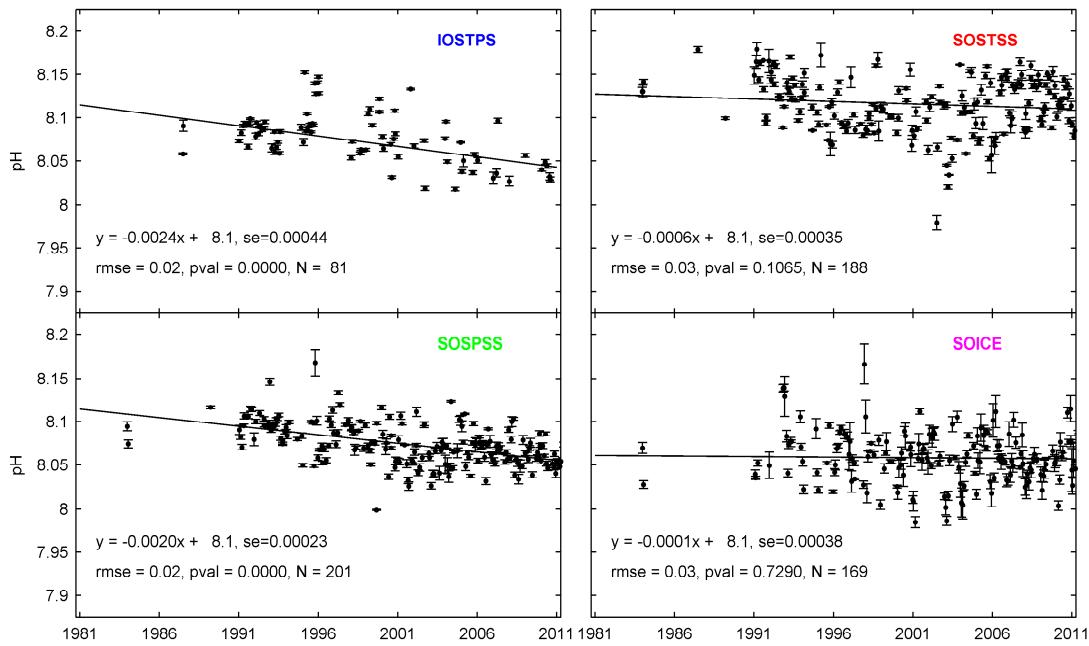
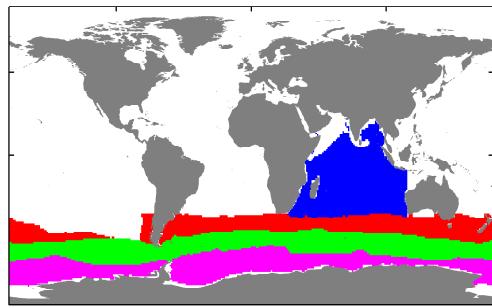
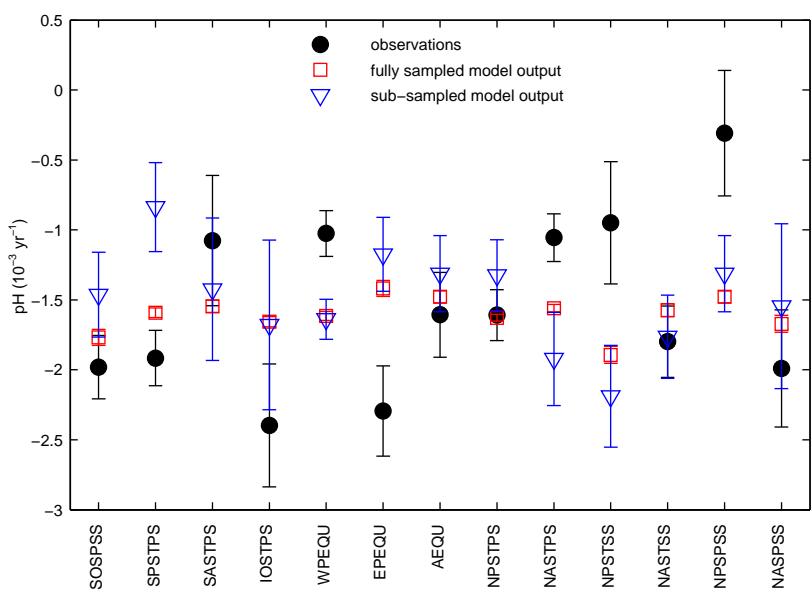

670
 671 Fig. 3. Long term pH trend (1981-2011) in the five Pacific Ocean biomes.

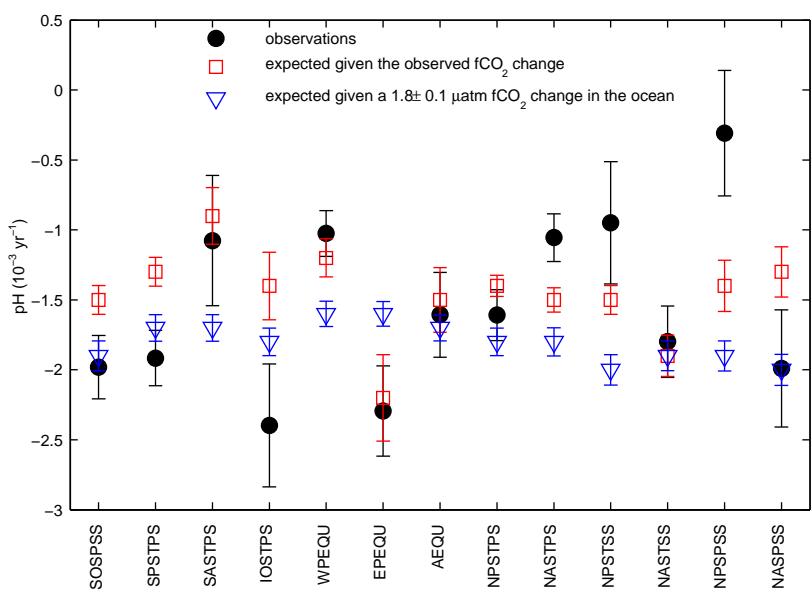
672
 673 Fig. 4. Long term pH trend (1981-2011) in the Indian Ocean biome and the three Southern
 674 Ocean biomes.

675

676 Fig. 5. Summary of the pH trends in all biomes. The error bars show the 1σ confidence
677 interval.
678
679 Fig. 6. Comparison between the observed pH trend in each biome (either 1981-2011 or 1991-
680 2011) in black and the pH trends expected if the surface ocean fCO₂ changed equal to the
681 atmosphere (blue) and expected for the observed ocean fCO₂ trends (red).
682
683 Fig. 7. The long term trends in pH from Fig. 2 decomposed into the contributions from SST,
684 SSS, alkalinity, and DIC. Also shown is the sum of the four contributions and the actual
685 observed trend. Note that the trend has been multiplied by 1000 for easier visualization.
686
687 Fig. 8. The long term trends in pH from Fig. 3 decomposed into the contributions from SST,
688 SSS, alkalinity, and DIC. Also shown is the sum of the four contributions and the actual
689 observed trend. Note that the trend has been multiplied by 1000 for easier visualization.
690
691 Fig. 9. The long term trends in pH from Fig. 4 decomposed into the contributions from SST,
692 SSS, alkalinity, and DIC. Also shown is the sum of the four contributions and the actual
693 observed trend. Note that the trend has been multiplied by 1000 for easier visualization.
694
695 Fig. 10. The residual between the actual pH trends and the sum of the four decomposition
696 parts (SSS, SST, DIC, ALK). In gray is the residual for the observations, in black the residual
697 for the sub-sampled model output, and in white the residual for the fully-sampled model
698 output.
699
700
701

Figure 2


Figure 3

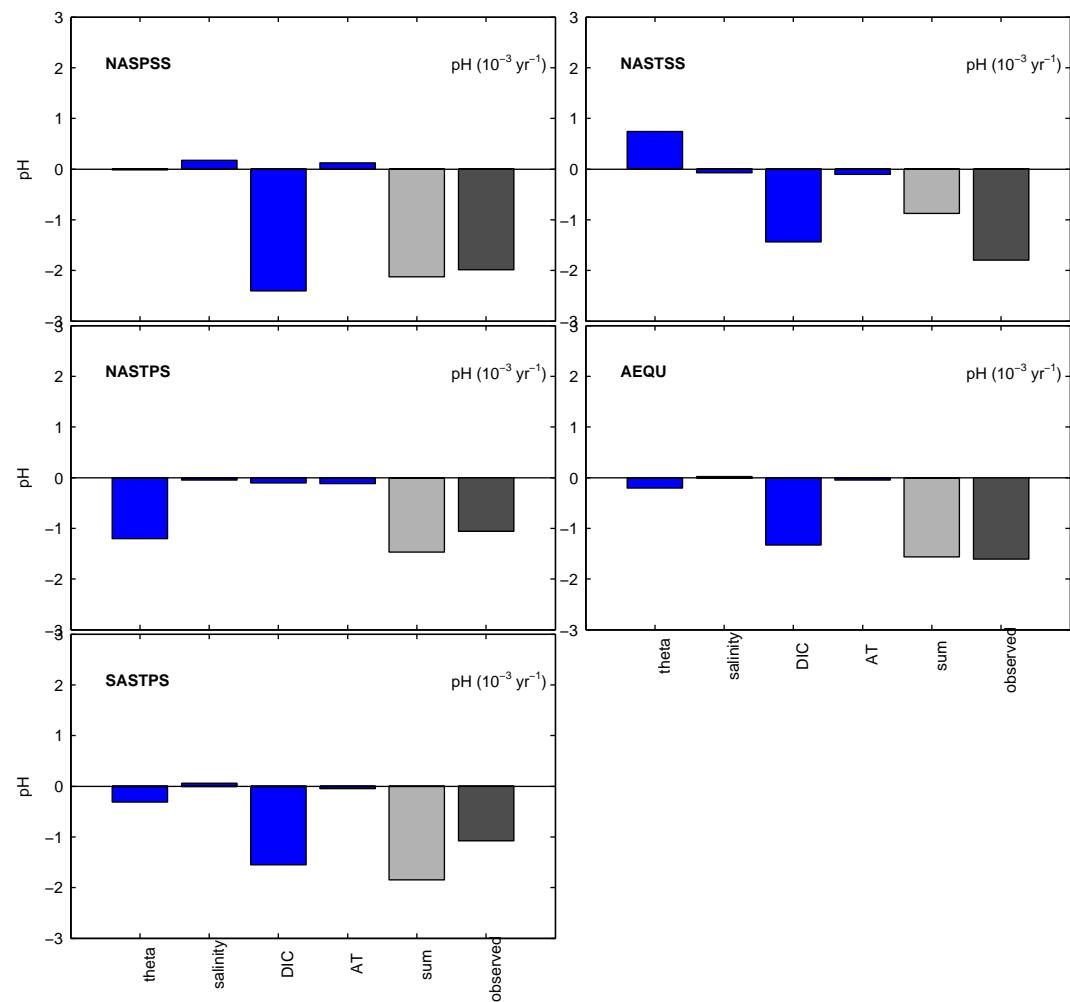

Figure 4

Figure 5

Figure 6

Figure 7

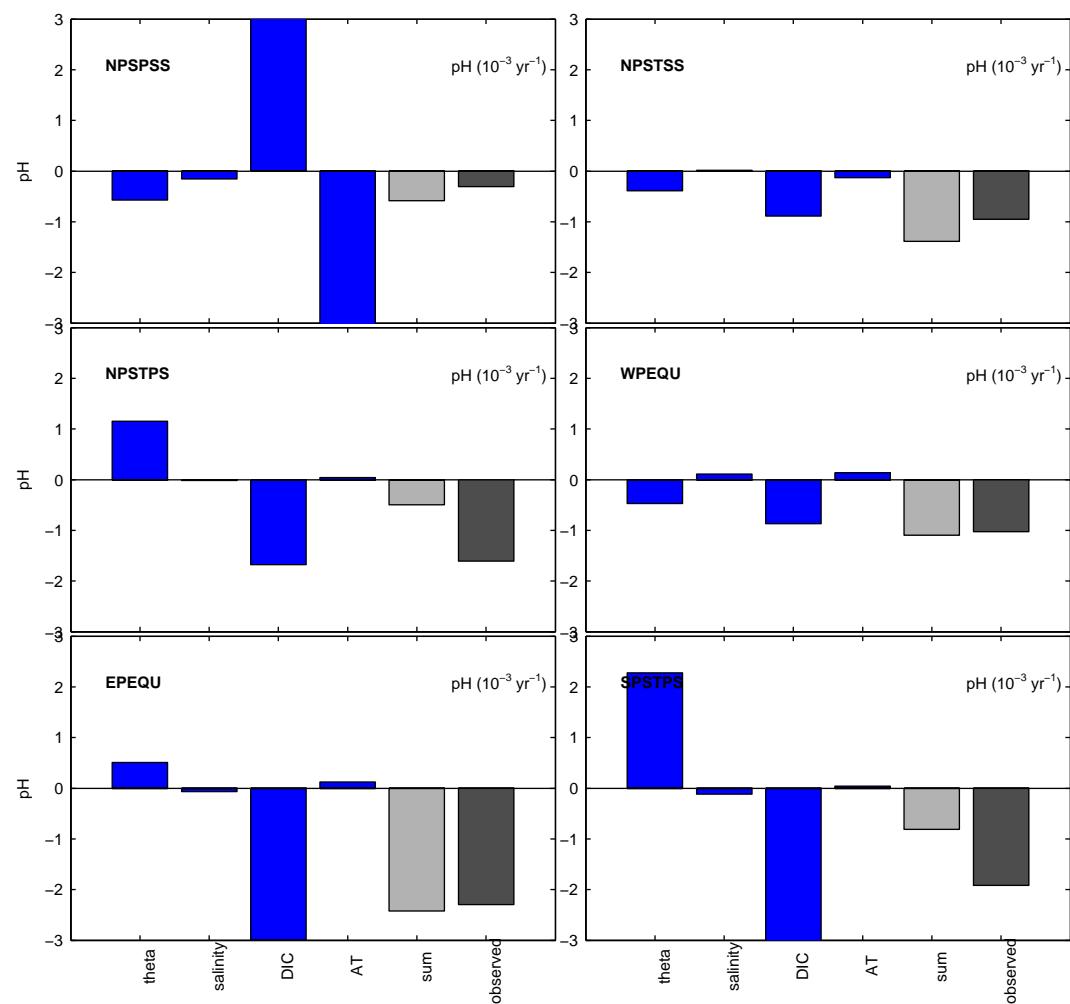
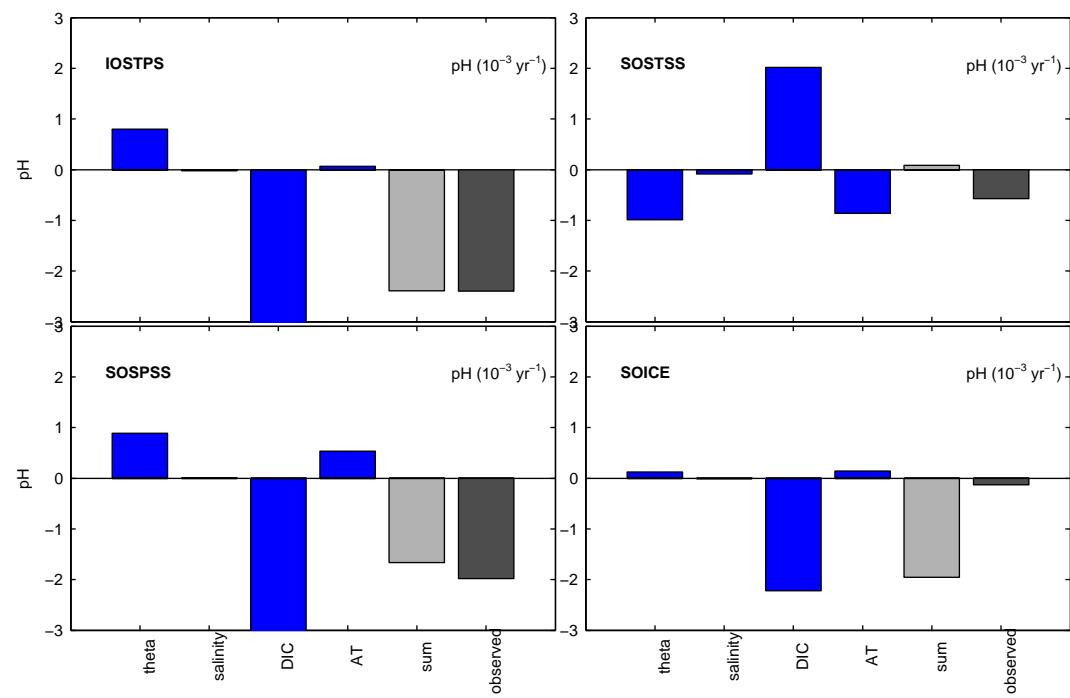
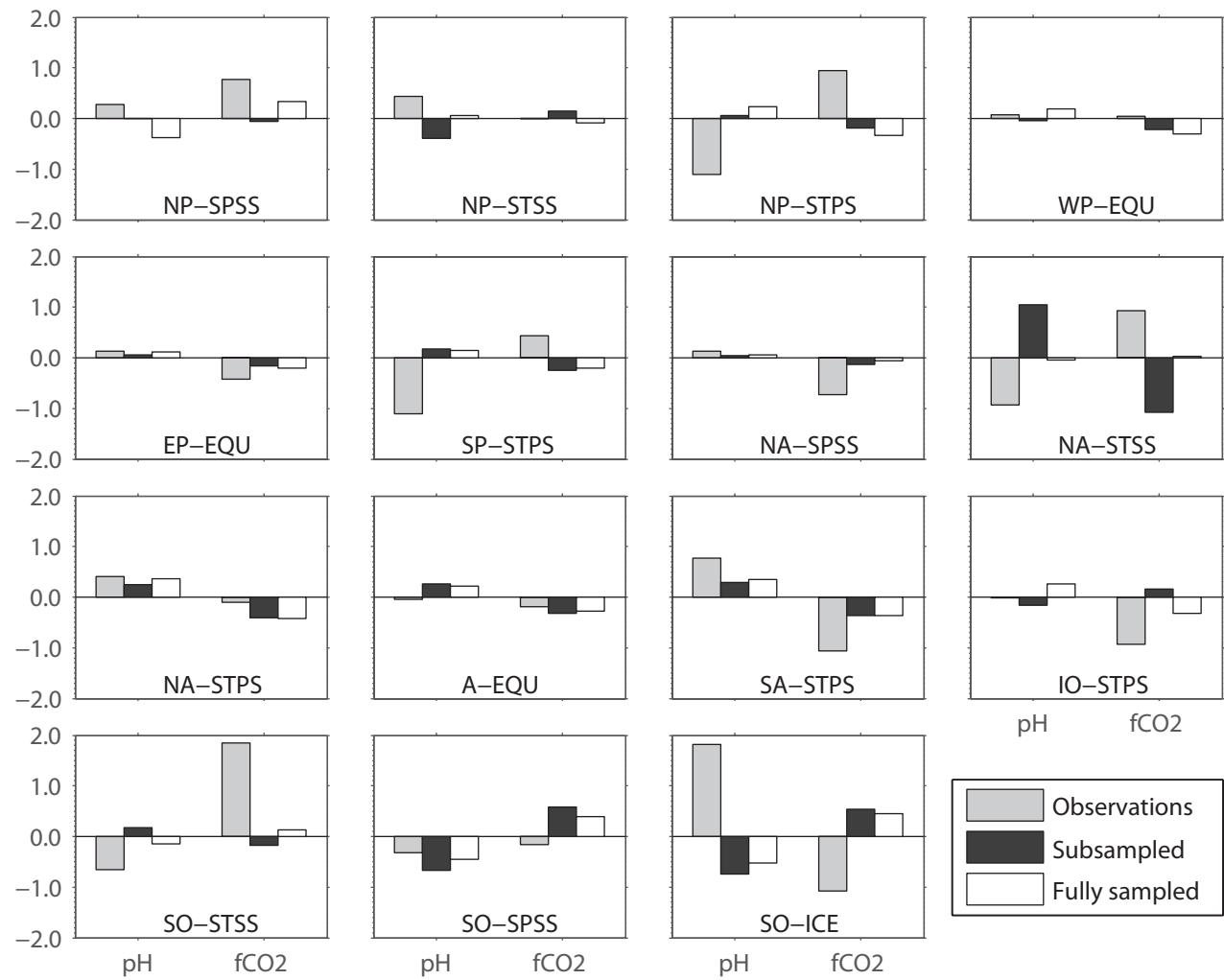




Figure 8

Figure 9

Figure 10