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Abstract

We report global long-term trends in surface ogaldrusing a new pH data set computed by
combining fCQ observations from the Surface Ocean,@@as (SOCAT) version 2 with
surface alkalinity estimates based on temperatudesalinity. Trends were determined over
the periods 1981-2011 and 1991-2011 for a set dfidmes using a weighted linear least
squares method. We observe significant decreasesface ocean pH in ~70% of all biomes
and a mean rate of decrease of 0.0018+0.00040yr1991-2011. We are not able to calculate
a global trend for 1981-2011 because too few bionaee enough data for this. In half the
biomes, the rate of change is commensurate witkréinels expected based on the assumption
that the surface ocean pH change is only drivethéysurface ocean G@hemistry

remaining in a transient equilibrium with the in@se in atmospheric GOn the remaining
biomes deviations from such equilibrium may reflett the trend of surface ocean &

not equal to that of the atmosphere, most notabtiieé equatorial Pacific Ocean, or changes
in the oceanic buffer (Revelle) factor. We concltiue well-planned and long-term sustained
observational networks are key to reliably docuntkeatongoing and future changes in ocean
carbon chemistry due to anthropogenic forcing.

1. Introduction

The concentration of atmospheric carbon dioxid@2Gs rapidly increasing due to

the burning of fossil fuels, cement production, &éamt use changes (Le Quéré et al., 2014).
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This drives a net flux of C£nto the ocean, causing the dissolved inorganicara(DIC)
concentration to increase, which drives a decrempkl and in the concentration of the
carbonate ion (C¢, Doney et al., 2009b; Zeebe and Wolf-Gladrow, 30These changes in
the ocean inorganic carbon chemistry, collectivefgrred to as ocean acidification (Gattuso
and Hansson, 2011), are a source of concern diheitgootential impact on organisms,
ecosystems and biogeochemical cycles (Doney €2019a). Hereafter we refer to the
inorganic carbon chemistry in the ocean as €@ mistry. In contrast to the surface ocean
fugacity of carbon dioxide (fC£), for which many studies have analyzed the lomgite
trends, both regionally and globallgd. Fay and McKinley, 2013; Le Quéré, 2010; Lenton et
al., 2012; Takahashi et al., 2009b), only a handfuegional studies have so far been
published on long-term pH trends (Bates, 2007; [@o@., 2009; Gonzalez-Davila et al.,
2007; Olafsson et al., 2010).

The most extensive assessment to date is thef@wes et al. (2014). They described
changes in ocean G@hemistry variables at seven, mostly tropical/sopical, time-series
stations, all of which have been occupied for asiéwo decades. Their analysis shows that
while there are regional differences, these op@amwdtime-series show relatively similar
trends in DIC, fCQ, and pH. At the tropical and subtropical open acs&ations (Bates, 2007,
Dore et al., 2009; Gonzalez-Davila et al., 201®awcpH is decreasing at a rate of
0.0017+0.0002 yt. At the high-latitude stations, however, a maoaeiable picture emerges.
While the pH trend in the Icelandic Sea follows tag observed at the lower latitude
stations, the trend in the Irminger Sea (Olafsdal.e2010) is nearly twice as larges,, -
0.0026+0.0006 yt. Thus, in a global analysis, we expect a compgetial pattern of long-
term trends, yet hitherto unknown.

The absence of a global analysis of long-termdsasa largely a consequence of the
lack of direct surface ocean pH measurements, wkithsharp contrast to the situation for
surface ocean fCQfor which data products contain several millidoservations (Bakker et
al., 2014; Pfell et al., 2013; Takahashi et alQ24). This limitation can be overcome by
using computed pH, obtained by combining the varge data products of fG@vith
estimates of surface alkalinity. Lauvset and GryB644) demonstrated for the North
Atlantic that this approach is able to produceenticcurate estimates of surface ocean pH.
Takahashi et al. (2014) came to the same resldatiio Even though the use of pH
computed from fC@generates a global data set containing millionstbbbservations, the

resulting data are still sparse in time and spaca global scale, making the determination of
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global long-term trends challenging. For surfac®p@is challenge has historically been
overcome by binning the data into a very coarsg @nder of 5°-10° in latitude and
longitude) bye.g. Lenton et al. (2012), Takahashi et al. (2002), Bakihashi et al. (2009b),
but more recently Fay and McKinley (2013) proposedggregate the data into biomes. This
type of aggregation is more likely to capture tbeaect long-term dynamics of a region, as
one expects a biome to respond in a more coheramhen to perturbations than a region
defined by a latitude/longitude range.

Given the absence of a global observation-baselysis of pH trends, models have so
far been the only source of information. The Noriaadzarth System Model (NorESM1-

ME), as part of the Coupled Model Intercomparisonjétt phase 5 (CMIP5, Taylor et al.,
2012), simulates a global average pH decrease®6L@.yi* (1981-2011), which is largely
commensurate with observations reported from the 8eries stations. A recent study using
ten different CMIP5 models, including NorESM1-MBosved that all models give similar
global average pH trends—both in the historical fatdre scenarios (Bopp et al., 2013).

This secular pH trend of -0.0017yand the low spread between models is expected
for an ocean where (i) the surface oceanf@Dows that in the atmosphere due to the
sufficiently rapid exchange of the excess@®@tween the atmosphere and the surface ocean,
and (ii) where the change in the buffer (Reveléexdr remains spatially uniform, as the
partial derivativeo[H™]/ofCO,is directly related to this quantity (Orr, 2011 r®é&nto and
Gruber, 2006). A change in the buffer (Revelle}dacs expected as much of the £@wly
added to the surface ocean from the atmospherdeiitrated away by C), causing a
decrease in its concentration. This decreasedihy @f the surface ocean to “buffer” the
pH against further uptake of GQhus increasing the Revelle factor (Sarmiento@ndber,
2006). However, regional variations in how the Rleviactor changes may occur. Bates et al.
(2014) show, for example, not only variations @& fiH trends between the high- and low
latitude time series, but also that the trendsendRe factor are different, indicating that other
factors are influencing the Revelle factor. Thesedrs are mainly those processes that affect
DIC and alkalinity, such as changes in ocean printicand calcification, while changes in
temperature and salinity are of minor importanci8ento and Gruber, 2006).

Local and regional changes in the buffer (Revé#e)or are driven by the changing,
and spatially varying, ratio of DIC to alkalinit$patial changes in this ratio have the potential
to decouple the pH trends from those of the surfaean fCQ (Orr, 2011), potentially

causing a more variable pattern in the pH trentle. domplex spatial variability, identified by



97 Bates et al. (2014) and otheeg( Tjiputra et al., 2014) supports this hypothestisTalso
98 shows that analyses of global pH trends, includiegregional distribution of changes and the
99 dynamics of the changing ocean £Xystem, are required for a comprehensive undelisign
100 Global analyses are also necessary for the vaddati model results, for underpinning and
101 interpreting response studies from organism toystem level, and for optimizing the
102 planning of continued and future observational eks.
103 Here we take advantage of the approach of LaarskGruber (2014) to determine
104 global ocean pH trends, and their drivers, usingdaté calculated from the more than 10
105 million observations of surface ocean fCiat have been made available through the Surface
106 Ocean CQAtlas (SOCAT) project (Bakker et al., 2014; Ptilal., 2013). Although pH is
107 the main parameter of interest, fEkas been carried through all our analyses in doder
108 determine how C@chemistry causes the evolution of pH to diffenirthat expected from
109 fCO, alone. Finally we use the long term pH trendsweetifrom a global earth system model,
110 the NorESM1-ME, in order to illustrate how importapatial variability is for the
111 representativeness of our trend results.
112

113 2. Data and Methods

114 We calculated pH in the surface ocean by a twp-sédculation using observations of
115 fCO,, sea surface temperature (SST), and sea surflatiey§&®SS) from SOCAT version 2,
116 (Bakker et al., 2014). In the first step, alkalnitas calculated from SSS and SST using the
117 algorithms developed by Lee et al. (2006) and Nbetlal. (2009). The Nondal et al. (2009)
118 algorithms were developed specifically for the higtitude (>60°N) Atlantic Ocean, and

119 were used only there. Whenever no measured SS8waidable in the SOCATV2 data set the
120 climatological World Ocean Atlas SSS value (Antoebdwal., 2010)—which is included in the
121 SOCATV2 data product—was used instead. The SOCATS &$a have not been quality

122 controlled and might therefore be biased. Lauvedt@ruber (2014) showed that this

123 potential bias does not greatly affect the preoisibthe pH trends. It may affect the accuracy
124  of the calculation, but for our purpose of determgriong-term trends, the accuracy(the

125 lack of bias in the data) is of less importancéag as the precision is good enough, and
126 assuming that any bias remains constant over timée second step, pH on the total scale at
127 inditu temperature was calculated from the estimatediaiygand the observed fCQusing

128 CO2SYS (Lewis and Wallace, 1998). We used thaid K, constants from Mehrbach et al.
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(1973) refit by Dickson and Millero (1987), and tharate to salinity ratio from Uppstrom
(1974). Since we use CO2SYS this calculation aigesgus dissolved inorganic carbon (DIC)
and all other variables of the ocean carbon cheysgstem.

Quite a few of the data fall outside the validges for input data for the Lee et al.
(2006) and Nondal et al. (2009) alkalinity algonith and are lost in this step. There remain
7,381,013 data points of pH (and alkalinity) oves global ocean in the time period 1973-
2011. The fCQ@trends have been estimated using only data paimtsh have a calculated pH
value in order to avoid spurious differences whemgaring these trends to those of pH. The
global calculation error (precision) for pH is 03230.0005, and the calculated pH compares
well to observed pH at crossover locations in thiamtic Ocean (Lauvset and Gruber, 2014).
Before analysis the pH data were bin averagednmanthly 1°x1° bins, using no extrapolation
or interpolation of the data. The global data s&s divided into the 17 ocean biomes, defined
(using mixed layer depth, sea surface temperagume chlorophyll-a concentrations) by Fay
and McKinley (2014), as shown in Fig. 1. Here, wyevaluate trends in the open ocean.
Data from coastal regions shallower than 250 medas the ETOPO2 bathymetry, and those
with salinity <20 were removed.

In each biome a least squares linear regressiaghtee with Tukey’s bisquare
method was used to determine the long-term pH tiéadthe long-term trend determination
we required each biome to have at least three wdisens in each decade (1981-1990, 1991-
2000, and 2001-2011). While this criterion was meinly 8 biomes for the period 1981-
2011, 15 had sufficient data for the period 199112®oth ordinary and weighted least
squares regressions were carried out, but we chosaghted least squares regression over an
ordinary least squares regression since this ssdessitive to outliers in the data. This makes
the statistics of the regression more robust, boegally this choice does not significantly
affect the results presented here. All regresssnlts are presented with the standard error of
the slope (se), which represents its 68% confidemeeval, and the root mean square error
(RMSE). The RMSE is used as a measure of interdwvanability.

Before the regression analysis was carried outcweections were applied to the
data: deseasonalization and removal of spatial biaes importance of these corrections,
particularly in data sparse biomes such as tho#eeisouthern Ocean, was recently
highlighted by Fay et al. (2014). The seasonaleytkthe data was removed following
Takahashi et al. (2009b), using the long-term ayeeseasonal cycle as contained in our data

for each biome. However, we find that using thenaliological seasonal cycle—calculated
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using the Takahashi pG@limatology (Takahashi et al., 2009a)—does natifigantly

affect the results. To correct for any spatial lnethe large scale biomes the difference
between the climatological value in each 1°x1°%md the biome mean climatological value
was subtracted from the observed value in eact? Birl There is no difference between this
method and simply subtracting the climatologicduean each 1°x1° bin, but our approach
retains the absolute values in each biome. It shbelnoted that the computed trends in some
biomes are sensitive to which climatological datased for the spatial bias correction:
subtracting the climatological value vs. subtragtime long-term average in each 1°x1° bin.
Mostly this is because in some 1°x1° bins, theengn average is biased towards the last
decade, which has significantly more data thanexgseriods.

A statistical test was performed to test the ngtesf these corrections: results after
applying one or both corrections were compare@salts after applying none using a one-
way analysis of variance (ANOVA, segq. Vijayvargiya, 2009). A statistically significant
change in the slope and its standard error wagpmaieed as making the correction(s)
necessary. The deseasonalization removes scatter data and leads to more robust
regressions by reducing the standard error ofltpesn all biomes. This correction does not
significantly (p-value<0.05) affect the long-terrerid in any biome or time period, however.
The spatial bias correction has no statisticatiypsicant impact on the long term trend in
most biomes, but because it reduces the standandaerd increases th&in six biomes we
decided to keep it applied. The long-term pH trenalso much more sensitive to this
correction than the fC{Qrend, mostly because the pH trend is very snmallthus more
sensitive to any data correction.

The pH change expected from a certain change@ ¥as calculated using
ApH/AFCO;, = 0pHIofCO,. The partial derivative was estimated in CO2SYi8@i6.01patm
increments in fC@ Since both the fC&and pH trends are inextricably coupled to DIC
change, what we in reality calculate here is thechbhge incurred by a change in DIC
equivalent to the given fCQrend when alkalinity, SST, and SSS remain consYae used
the same equation to evaluate what global avea@e ¢hange the global long-term trend in
pH is consistent with, but then using -0.001 inceetal changes in pH.

In each biome the long-term trend in pH was deamsagd into the effects of changes
in SST, SSS, alkalinity, and DIC. First the impateach of these drivers on the f&@end
was determined following Takahashi et al. (1998uations 2-5, we then converted our
results to the impacts on [GJ&and on [H] following equation 1.5.87 in Zeebe and Wolf-
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Gladrow (2001), and finally we determined the intpat pH. The DIC data and dissociation
constants required for these calculations werautatied in CO2SYS from the fG@nd
alkalinity pair in the same calculation that gagepit.

To test the effect of the highly variable spatiatl temporal coverage of the
observational data on the results we have useNaneSM1-ME Earth system model, which
prognostically simulates the seawater,@femistry. A detailed description and evaluatibn o
the model simulation is available in Tjiputra et(@013). We examined the model simulation
for the 1981-2011 period based on the CMIP5 hiséband future RCP8.5 scenarios, where
the atmospheric C{concentration is used as the boundary conditiom biined the model
monthly output into the same 1°x1° bins and used#me method to calculate and
decompose the long-term trends in each biome assea for the observational data—
including the two-step pH calculation describedwaebd@wo sets of model trends were
determined. For the first, we used the fully sampteodel output, referred to here as the
‘fully-sampled trend’. For the second set, we sufggad the model output according to the
observational coveragee. only data from monthly grid cells correspondinglose where
real observations have been obtained were usedstibesampled trend’ was then computed
from these subsampled model data. The comparistiresé two informs us on how sensitive

the calculated trends are to the variable dataragee

3. Results and Discussion

3.1.Long-term trends in pH

We find statistically significant trends in 6 aftthe 8 biomes with sufficient data for
the period 1981-2011, and for 13 out of the 15 @smvith sufficient data for the period
1991-2011 (Fig. 1 with the numerical values in Eab). As shown in Figs. 2-4, the data
coverage in each biome is generally very good 4880, but often spotty prior to this year.
These figures also reveal a substantial amoumttefannual variability around the
determined trends, with RMSE values of between @r@il0.04 pH units—+e., roughly of
similar magnitude as the cumulative trend over2i¢o 30 years of analyses. No robust
analyses were possible for the North Pacific ioeeced (NP-ICE) and North Atlantic ice

covered (NA-ICE) biomes, due to the lack of data0(data points) hence they are not further
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discussed in the paper. Unfortunately, these adéthtic biomes where the earliest impacts
of ocean acidification are expected (Steinachat.e2009).

The regions with sufficient data, but without stiatally significant trends,e, the
North Pacific subpolar seasonally stratified (NPSSPbiome for the period 1981-2011, and
the Southern Ocean subtropical seasonally strdt{$€-STSS) and ice covered (SO-ICE)
biomes for the period 1991-2011, are charactefizeldrge RMSE and a substantial amount
of decadal variability, which is likely masking theng-term trends. In addition to these three
biomes where the trends are statistically indistisigable from zero, the South Pacific
subtropical permanently stratified (SP-STPS) biasrlékely biased by its low data density,
and will not be further discussed. This decisiors warroborated by comparing the pH trend
in the fully-sampled model results with the sub-pled model results (Fig. 5): the SP-STPS
biome is the only one where the difference in thieseds is statistically significant at the
95% confidence level.

Since we are not able to calculate statisticagipificant trends in all 17 biomes we
are also unable to calculate a global average tieorthe period 1991-2011 only the Arctic
and parts of the Southern Ocean have no statigtgighificant results, and the area-weighted
average pH decrease of the remaining 13 biomedgTabis 0.0018+0.0004 yr For the
period 1981-2011 the number of biomes with trertoneges is quite small, but almost all the
Pacific Ocean biomes have results and the areahtesigpH decrease is 0.0019+0.000% yr
between 1981 and 2011. Within the uncertainty Brttie global 1991-2011 trend is
comparable to the global trend in the fully-sampledtESM1-ME model results (-0.0017 yr
1) and to the average trend of -0.0018+0.00080yrer the seven time series evaluated by
Bates et al. (2014). Assuming that alkalinity, S&8Ad SSS remain constant, and that the
change in DIC and Revelle factor remains spatiatiiyorm, this global average pH trend
corresponds to a rate of increase in surface d@@snof 1.75+0.4uatm yr*, which is
roughly the rate of increase in atmospheric 0Regionally, however, the response of the
ocean CQ@system to the atmospheric forcing is more variébig. 1).

In the North Atlantic subpolar seasonally stratifiNA-SPSS) biome the observed pH
trend is -0.0020+0.0004 yr This is right in between the trend observed atltminger Sea
time series (-0.0026+0.0006 §)rand that observed at the Iceland Sea time sgries
0.0014+0.0005 y1) (Bates et al., 2014). Within the 68% confidenterivals, the NA-SPSS
pH trend is consistent with both of these locahdi® In the North Atlantic subtropical
seasonally stratified (NA-STSS) biome there aréime series data to compare with, but its
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trend of -0.0018+0.0003 Vris consistent with a trend of ~ -0.0020" ybserved in the
Rockall Trough by McGrath et al. (2012). In the NMofNA-STPS) and South (SA-STPS)
Atlantic subtropical permanently stratified biontee pH trend is the same, but the RMSE
values indicate larger interannual variability i@ tsouthern biome (Table 1). This is likely
caused by the inclusion of the Benguela upwellagjan, but the full effect of this has not
been quantified for the SA-STPS or any other biohie trend identified here for the NA-
STPS (-0.0011+0.0002 V¥ is significantly lower than the trend observedhat Bermuda
Atlantic Time-series Study (BATS, Bates et al., 2)bf -0.0017+0.0001 ¥ Unfortunately,
we have no time series data for comparison in R&EPS biome. In the Atlantic Ocean
equatorial region (A-EQU) the pH trend (-0.0016:8@8 yrY) is lower than that observed at
the Carbon Retention in A Colored Ocean (CARIACOetseries station of -0.0025+0.0004
yr! (Bates et al., 2014), but this station is locatethe very edge of the biome in a more
coastal setting and not ideal for comparison.

In the Pacific Ocean the RMSE around the fittedtigds is generally larger than in
the Atlantic Ocean (Table 1), possibly reflectihg tigher interannual variability of the
surface CQ@system there (sexg., Landschitzer et al. (2014) for pg@ariability). In the
North Pacific subtropical permanently stratifiedPd$TPS) biome the pH trend of -
0.0016+0.0002 yt is the same as that observed at the Hawaii Oceae-3eries (HOT, Bates
et al., 2014). The trends in the two equatoriaiffRa®©cean biomes differ substantially. While
the western biome (WP-EQU) has a relatively weakdr(-0.0010+0.0002 Vj, the eastern
(EP-EQU) biome has a much stronger pH trend thgrodrer biome except the IO-STPS.
This could be related to the recent trend towaiahger and more prevalent La Nifia
conditions in the eastern tropical Pacific leadimgtronger upwelling, and higher surface
fCO, and lower pH in this region (Rédenbeck et al.,£01

The Indian Ocean subtropical permanently stratifl©-STPS) biome had a very
strong pH trend the past 30 years, only rivaledhay in the EP-EQU biome, as mentioned
above. There are not any time series stationsitntian Ocean to compare with, but f£O
trends for the Indian Ocean computed by Metzl (2@08 considerably larger than what we
find: 2.11patm yf* vs 1.44+0.241atm yr*. Hence there is no reason to believe that our
approach overestimates the pH trends here. It dimihoted though that the trend identified
by Metzl (2009) is based on data in a considerafigller region than the 10-STPS which
could account for some of the difference. In thatS8ern Ocean only the subpolar seasonally
stratified (SO-SPSS) biome has a statisticallyifigant pH trend, which at -0.0020+0.0002
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yr'is comparable to that in the NA-SPSS biome. Fumtioee, this trend is very similar to
that calculated for this region by Takahashi e{2014), although they used a different
method.

3.2. Effects of changes in carbonate chemistry

To first order, the pH trends are expected toesgnt the direct response to increasing
oceanic DIC, as is the case for the long-term gandurface ocean fGOIn order to assess
how our results compare with this expectation, aeehcalculated two expected pH rates of
change: first the 1981-2011 change in pH resuliiogn a surface ocean fGQ@ate of change
equal to that in the atmosphere (1.8+@atm yr) while keeping all other variables constant
at their 1981 values; and second the change irhpHatould be expected if the pH change
mirrored the observed fGQ@hange in each biome provided that all other béegwere kept
at their 1981 values. The first expected pH chaefjects how pH should change if the
change in atmospheric G@as the sole driver for the change in ocean phé. Sgtond
expected pH change reflects how pH should chanihpe ibceanic fC@changes were allowed
to depart from the atmospheric ones but §€@ange remaining the only driver of pH change.

Fig. 6 shows both expected pH changes along Wwélobserved pH change in each
biome. Only the 13 biomes that have statisticatipiicant pH trends for either 1981-2011
or 1991-2011 (Fig. 1) are discussed further. Whenatmospheric COncrease is assumed
to be the only driver for the pH changes, we finattin 7 of the 13 biomes the observed pH
trends significantly differ from the expected pHaole. This is due either to the uncertainty
in the observed trends, to associated changeg i6@ chemistry, or to the surface ocean
fCO, trends being significantly different from thatthre atmosphere. However, the observed
pH trends also significantly differ from the expst{pH change calculated using the observed
fCO, trend in 6 of the 13 biomes (Fig. 6). Only 3 of thiomes are the same in both cases.
Thus, the surface ocean fg@end not exactly mirroring the atmospheric carexgilain the
discrepancy between expected and observed pH tiremalgst biomes. It may be an
explanation in the equatorial Pacific biomes (EPcE&d WP-EQU) where there is no
discrepancy between observed and expected pH tvemels the observed fG@rend is used
to calculate the expected pH change (Fig. 6), migrificant difference when an atmospheric
rate of change is assumed.

The observed pH trend is more often smaller thahéxpected for the ocean

mirroring the atmospheric f{C&hange than vice versa. Only the EP-EQU and IOSSTP

10
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biomes have observed pH changes larger than tixpseted (Fig. 6). Our hypothesis is that
the differences between the observed and expettecepds are caused by changes in the
spatial variations in the ratio of DIC to alkalyitwhich leads to spatial changes in the buffer
(Revelle) factor. In the biomes where the obsetvead differs from the expected trend there
are indications which point to such changes. Whertifference is negatived, the

observed trend is smaller than the expected), ¢beedse in Revelle factag., is stronger

the larger the difference. However, given the caorabicalculation errors, generally high level
of noise in our data, and relatively few data pgioily some of these indications are
statistically significant. Further analysis of teespatial patterns needs to be undertaken using
independent pH data, preferably direct measurememisier to quantify any possible biases
in the results due to our pH being a calculatethisée. A combination of SOCAT data with
repeat hydrography and time-series data would & iout this is outside the scope of this

study.

3.3. Major driving forces behind the observed pH an  d trends

The decomposition of the fG@nd pH trends confirms (Figs. 7-9) that in allrbes
the long-term increase in DIC is by far the domirdniver for the long-term pH changes.
Knowledge about the changes in ocean DIC therg$diee most important in
understanding—and predicting—changes in ocean @HI€T2). This is not unexpected since
the open ocean is in—or very close to—chemicallgmwim with the atmosphere (Lauvset
and Gruber, 2014). Thus the surface ocean is tan@Q from the atmosphere in order to
re-establish a chemical equilibrium, leading t@aesponding increase in fG@nd DIC. It
must be noted that since we do not have measursrokalkalinity this parameter is
calculated from SST and SSS, and the relativegelancertainties in these calculations may
add a degree of uncertainty to the decompositiae 10 a lack of independent data this is not
further evaluated in this study.

In the Atlantic Ocean biomes the second most itapodriver is SST (Fig. 7), which
mostly has a positive change and therefore hagelihthe DIC increase required to maintain
an fCQ growth rate similar to that in the atmosphere. 83¥he second most important
driver also in the Pacific Ocean biomes (exceph&NP-SPSS, Fig. 8), but here SST
decreased in many biomes leading to an enhanceghsein DIC through CQuptake from
the atmosphere. In the Southern Ocean biomes r@iliyathanges have a significant impact on

the trends (Fig. 9), which also modulates the Dh@nges. Decreasing alkalinity over time
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increases fC@so that the DIC change required to maintain ssse@ace fCQ growth rate
similar to the atmospheric is reduced.

In most biomes there is a residual between theduthe four components and the
observed trend (Fig. 10). Lenton et al. (2012) qrenked a similar analysis and attributed such
residuals to the use of a spatial mean Revellefaitte approximations underlying the
Takahashi et al. (1993) equations, and the assampfilinear trends in all variables. We
tested whether variable data coverage is also partant contributor to this residual by
subsampling the NorESM1-ME simulated pH data amdparing the resulting 1981-2011
decomposition with the decomposition determinedgighe full model output. Fig. 10
illustrates that in most biomes there are simiéaiduals between the sum of the four
components and the actual trends in the sub-sarmapi@dully-sampled model fields as well.
We can, therefore, find no evidence to show that pata coverage is of major importance in

determining what drives the change in surface opéan

3.4. Recent changes in the Southern Ocean biomes

In contrast to the majority of the global oceaonbes, trends within the SO-STSS and
SO-ICE biomes do not appear statistically signifiaaver the past two decades (Table 1).
This can be linked to strong interannual and ddozataations (Fig. 3)This is consistent
with the changing fC@trends revealed in a recent study by Fay et @ll4Pas well as
previous findings of a change in the £€nk in this region€.g. Fay and McKinley, 2013;
Landschitzer et al., 2014). In order to investighése recent changes in the trend in the
Southern Ocean, we also decompose the 2001-201dstie the Southern Ocean biomes
(Table 3).

In the SO-STSS biome there is no significant cleangH over the 30 year period,
but from Fig. 3 it is seen that there is a decreguié ~2000 and then an increase over the last
decade. Over the last decade (Table 3) we findttteatontributions of the individual
parameters to the overall trend in pH are amplifieemperature and DIC changes remain the
strongest drivers, and of these the forcing fror@ Das increased strongest over the last
decade. We hence conclude that the increase invpHtloe past decade in the SO-STSS
biome is due to the decreasing DIC concentratiamsiclating over the thermally induced
reduction in pH.

In the SO-SPSS biome the pH trend appears to betss steep over the last decade

(Fig. 3), which is consistent with the well-docurtezhtrend changes in fGQn this biome
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we find a less negative DIC driven pH trend in pleeiod 2001-2011 compared to the period
1981-2011, indicating a reduced increasing treridI{® over this decade. This supports the
conclusion drawn by Fay and McKinley (2013) thatduction in vertical DIC supply causes
a weakening of both fC{and pH trends in this region. In the SO-ICE bidheesign of the
non-thermal drivers appears to change within teedacade, potentially driven by the recent

Antarctic ice melt and ice-sheet melting drivemifertilization (Death et al., 2014).

3.5. Spatial variability

In both the observations and the sub-sampled nredelts we see significant regional
differences in the pH trends (Fig. 5). Note that élstual simulated pH trends in each biome
are not directly comparable with the observed tsegidce the model is a coupled climate
model, which simulates its own internal climateiaiility. We therefore compare the fully
sampled and the sub-sampled model results, arfdlthsampled model results show much
more uniform pH trends (Fig. 5). While these diffieces are mostly statistically
indistinguishable within the uncertainties, it Hights the need for careful consideration of
representativeness when comparing model-derivenddahanges and trends based on data.
Fig. 5 shows that in the I0-STPS and WP-EQU biothesub-sampled trend is within
+0.0001 of the fully-sampled pH trends, and an ANOAhalysis shows that only in the SP-
STPS biome are the two model trends significantfeiént. Thus the trends based on the
existing observational coverage are overall repitasiee of the respective biomes, and it is
unlikely that there are major biases in our resiilis to low data density. However, the
uncertainties in the long-term pH trend estimaéesain large, both in observations and the
model (Fig. 5) and this prohibits a mechanisticamsthnding the observed changes in most
biomes. Improved sampling strategies are necessaegluce these uncertainties and thereby
improve our understanding of surface ocean €l@mistry changes today and in the future.

This highlights the importance of both maintainthg observational networks already
in place—like the voluntary observing ship (VOS)werk in the North Atlantic (Watson et
al., 2009)—and instigating new ones in less welleted ocean regions. Of particular
importance is improved data coverage in the SontRecific Ocean (SP-STPS) where the

data density as of today it too low for a robusdlgsis of long term pH trends.
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4. Conclusions

Global surface ocean pH changes over the pase&@ yannot be calculated as there
are too few data in many biomes. For the pasttywssars on the other hand, we find that
the surface ocean pH has decreased by on ave@@EB8&0.0004 yt, excluding the Arctic
and high-latitude Southern Ocean. There are howaxge regional variations with trends
ranging from -0.0024 Vkin the Indian Ocean (I0-STPS) biome to no signiftazhange in
the polar Southern Ocean (SO-ICE) biome. Our es#idhglobal trend is comparable to the
trends found at time-series stations and to theajlaverage trend in the NorESM1-ME
model. In all biomes, the pH trend is predominadtiyen by changes in DIC, implying that
the surface ocean pH decline is a direct respaneetincreasing uptake of atmospheric,CO
Despite this, the fC&and pH trends do not exactly mirror each otheiictvis potentially
linked to trends in the surface ocean buffer (Reyéhctor over the past decades. In some
biomes this leads to smaller pH changes than eegdaam the fCQchange, while in others
regions, the pH changes are larger than expectad, knowledge of both the changing
ocean DIC and the changing ocean buffer (Reveadletpf is important for understanding and
accurately determining the changing ocean pH.

There are regional differences in the pH trends. likely that these are caused by
spatial heterogeneity in the concurrent changésiffer (Revelle) factor, while spatial
heterogeneity in the surface ocean $@@nds seems to have only a minor effect. Our
comparison between fully-sampled model and sub-saimutput from the NorESM1-ME
model indicates that variable data coverage ordggamts a major problem in the South
Pacific. This nicely highlights the overall succe$she scientific community in creating
observational networks that reduce data coveragess The many scientific studies arising
from this effort—among many others the recent mabions by Nakaoka et al. (2013),
Landschiitzer et al. (2013), Landschuitzer et all420and Schuster et al. (2013)—show that
we have come a long way in understanding how o€&chemistry is evolving in a world
perturbed by fossil fuel emissions. The uncertasin the trends presented here are,
however, substantial and this largely prevents eerttiorough understanding of current
changes. Filling the remaining gaps in our surfacean data is, therefore, still of great

importance.
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Table 1. Results and statistics of the regressiaityais of fCQ (uatm) and phisi, Versus

time. Bold text indicates biomes where the resaiésnot statistically significant (95%

confidence). No number is given if a biome doeshaste enough data to calculate the trend

in a given time period.

1981 - 2011 1991 - 2011

pH fCO, pH fCO,
region slope rmse slope rmse slope rmse slope ‘mse
NP-SPSS | -0.0003+0.0005 0.041 1.204+0.17 16.2 0.0013+0.0005 0.038 0.74+0.22 16.1
NP-STSS 1.30+0.15 10.p -0.0010+0.0005 0.03L37+0.13 8.9
NP-STPS -0.0016+0.0002 0.020 1.51+0.09 1p.3 -0.80D®02 0.018 1.52+0.12 9.4
WP-EQU -0.0010+£0.0002 0.016 1.54+0.19 171.8 -0.001@302 0.015 1.59+0.27 1783
EP-EQU -0.0023+0.0003 0.023 2.94+0.41 2$.2 -0.002B302 0.023 3.51+0.51 279
SP-STPS -0.0019+0.0002 0.020 1.34+0.11 12.0 -0f@PR03 0.020 1.12+0.18 128
NA-SPSS 1.18+0.22 154 -0.0020+0.0004 0.028.11+0.22 14.2
NA-STSS 1.78+0.20 12.3 -0.0018+0.0003 0.01%.79+0.20 12.5
NA-STPS 1.42+0.12 8.5  -0.0011+0.0002 0.012.44+0.12 8.6
A-EQU 1.86+0.35 16.4 -0.0016+0.0003 0.014.811#0.32 15.7
SA-STPS 1.06+0.37 16.F -0.0011+0.0005 0.02@.99+0.37 17.0
IO-STPS -0.0024+0.0004 0.023 1.49+0.25 1B.6 -0.802005 0.025 1.55+0.26 13/
SO-STSS | -0.0006+0.0004 0.032 1.78+0.11 10.8] -0.0004+0.0004 0.032 1.82+0.12 10.8
SO-SPSS -0.0020+£0.0002 0.020 1.44%0.10 b.1  -0.00P0H2 0.020 1.46+0.11 9.
SO-ICE 0.34+0.31 24.4 -0.0002+0.0004 0.029 0.23+0.34 24.3
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Table 2. Decomposition of the fG@nd pHhsiw, trends into their major drivers. The units are

patm yr* and pH-units yt respectively.

Region pH fCO,
theta salinity DIC alkalinity sum theta salinity  DIC alkalinity sum

NP-SPSS| -0.57 -0.15 3.18 -3.04 -0.58 0.52 0.14 -2.89 2.76 0.53
NP-STSS| -0.39 0.02 -0.89 -0.13 -1.39 0.38 -0.02 0.87 0.13 1.37
NP-STPS| 1.15 -0.02 -1.68 0.04 -0.50| -1.19 0.02 1.73 -0.05 0.51
WP-EQU| -0.47 0.11 -0.87 0.14 -1.10 0.53 -0.12 0.97 -0.15 1.23
EP-EQU 0.51 -0.07 -2.99 0.13 -2.42| -0.63 0.08 3.68 -0.15 2.99
SP-STPS 228 -0.11 -3.02 0.04 -0.81| -2.47 0.12 3.28 -0.05 0.88
NA-SPSS| -0.02 0.17 -2.41 0.12 -2.13 0.01 -0.16 2.17 -0.11 1.91
NA-STSS| 0.74  -0.07 -1.43 -0.11 -0.87| -0.72 0.07 1.40 0.10 0.85
NA-STPS| -1.20 -0.05 -0.10 -0.12 -1.47 1.29 0.05 0.11 0.13 1.57
A-EQU -0.21 0.02 -1.33 -0.05 -1.56 0.24 -0.03 1.53 0.06 1.80
SA-STPS| -0.31 0.06 -1.55 -0.05 -1.85 0.34 -0.07 1.69 0.05 2.02
IO-STPS 0.80 -0.02 -3.23 0.06 -2.39] -0.79 0.02 3.22 -0.06 2.38
SO-STSS| -0.99 -0.08 2.02 -0.86 0.09 0.88 0.08 -1.81 0.77 -0.08
SO-SPSS 0.89 0.01 -3.09 0.53 -1.66| -0.83 -0.01 2.89 -0.50 1.56
SO-ICE 0.13 -0.01 -2.22 0.15 -1.95| -0.12 0.01 202 -0.13 1.78

Table 3. Decomposition of the 2001-2011 #CGd pHsiw trends in the Southern Ocean into

their major drivers. The units apatm yf* and pH-units yf respectively.

Region pH fCO,

theta salinity DIC alkalinity sum observed thetesalinity DIC alkalinity sum gpserved
SO-STs§ -3.7 -0.79 846 -248 149 0.0032+0.0010 3.4 0.73.78 228 -1.37 1.56+0.39
SO-spPSsg 1.11 -0.07 -1.28 -0.05 -0.29 -0.0011+0.0006( -1.06 0.07 1.22 0.05 0.28 0.89+0.22
SO-ICE | -0.62 -0.05 1 -0.39  -0.06 0.0006+0.0009| 0.59 0.05 -0.95 0.37 0.06 0.21+0.74

Fig. 1. A map of the Fay and McKinley (2014) biomégsch have (a) a statistically
significant pH trend in the period 1981-2011, abythie biomes with a statistically
significant pH trend in the period 1991-2011.

Fig. 2. Long term pH trend (1981-2011) in the fAttantic Ocean biomes.

Fig. 3. Long term pH trend (1981-2011) in the fRacific Ocean biomes.

Fig. 4. Long term pH trend (1981-2011) in the Imd@cean biome and the three Southern

Ocean biomes.
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Fig. 5. Summary of the pH trends in all biomes. €her bars show theslconfidence

interval.

Fig. 6. Comparison between the observed pH treméah biome (either 1981-2011 or 1991-
2011) in black and the pH trends expected if thiéase ocean fC@changed equal to the
atmosphere (blue) and expected for the observeahd€O trends (red).

Fig. 7. The long term trends in pH from Fig. 2 deposed into the contributions from SST,
SSS, alkalinity, and DIC. Also shown is the sunthaf four contributions and the actual

observed trend. Note that the trend has been rhettipy 1000 for easier visualization.

Fig. 8. The long term trends in pH from Fig. 3 daposed into the contributions from SST,
SSS, alkalinity, and DIC. Also shown is the sunthaf four contributions and the actual

observed trend. Note that the trend has been rhedtipy 1000 for easier visualization.

Fig. 9. The long term trends in pH from Fig. 4 deposed into the contributions from SST,
SSS, alkalinity, and DIC. Also shown is the sunthaf four contributions and the actual

observed trend. Note that the trend has been rhettipy 1000 for easier visualization.

Fig. 10. The residual between the actual pH tremdisthe sum of the four decomposition
parts (SSS, SST, DIC, ALK). In gray is the residiealthe observations, in black the residual
for the sub-sampled model output, and in whiteréisgdual for the fully-sampled model

output.
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