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Abstract 29 

 30 

Phytoplankton observation in the ocean can be a challenge in oceanography. Accurate 31 

estimations of its biomass and dynamics will help to understand ocean ecosystems and refine 32 

global climate models. Relevant datasets of phytoplankton defined at a functional level and on 33 

a daily and sub meso scale are thus required. In order to achieve this, an automated, high 34 

frequency, dedicated scanning flow cytometer (SFC, Cytobuoy, NL), has been developed to 35 

cover the entire size range of phytoplankton cells whilst simultaneously taking pictures of the 36 

largest of them. This cytometer was directly connected to the water inlet of a pocket Ferry 37 

Box during a cruise in the North Sea, 8-12 May 2011 (DYMAPHY project, INTERREG IV A 38 

“2 Seas”), in order to identify the phytoplankton community structure of near surface waters 39 

(6 m) with a high spatial resolution basis (2.2 ± 1.8 km). Ten groups of cells, distinguished on 40 

the basis of their optical pulse shapes, were described (abundance, size estimate, red 41 

fluorescence per unit volume). Abundances varied depending on the hydrological status of the 42 

traversed waters, reflecting different stages of the North Sea blooming period. Comparisons 43 

between several techniques analyzing chlorophyll a and the scanning flow cytometer, using 44 

the integrated red fluorescence emitted by each counted cell, showed significant correlations. 45 

For the first, time, the community structure observed from the automated flow cytometry 46 

dataset was compared with PHYSAT reflectance anomalies over a daily scale. The number of 47 

matchups observed between the SFC automated high frequency in situ sampling and remote 48 

sensing was found to be more than two times better than when using traditional water 49 

sampling strategies. Significant differences in the phytoplankton community structure within 50 

the two days for which matchups were available suggest that it is possible to label PHYSAT 51 

anomalies using automated flow cytometry to resolve not only dominant groups, but 52 

community structure.  53 
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1. Introduction 54 

 55 

Phytoplankton plays a major role in marine ecosystems as the most important primary 56 

producer in the ocean (Field et al. 1998). Phytoplankton is involved in the long-term trapping 57 

of atmospheric carbon and its role in carbon transfer from the upper ocean layers to deep 58 

waters highlight its influence on climate (Boyce et al. 2010; Marinov et al. 2010). Beyond its 59 

role in the carbon cycle, phytoplankton also plays a major role in modifying the 60 

biogeochemical properties of water masses by converting most of the inorganic matter into 61 

available organic matter (nitrogen, phosphate, silicate, sulfur, iron); and determining the 62 

structure of the trophic status of marine environments. Given this importance, it is insufficient 63 

to use a single proxy, such as chlorophyll a measurements, for quantifying and qualifying 64 

phytoplankton over large scales when attempting to understand its role in biogeochemical 65 

processes (Colin et al. 2004). Such a proxy does not reflect changes in community structure 66 

(Hirata et al. 2011) and does not yield robust biomass estimations (Kruskopf and Flynn 2006). 67 

Yet this classical proxy is frequently used to study the spatial and temporal variability of 68 

phytoplankton from both remotely sensed and in situ measurements. LeQuéré (LeQuéré et al. 69 

2005) pointed out the importance of taking into account the functionality of phytoplankton 70 

species when considering the influence of phytoplankton community structure on 71 

biogeochemical processes. This functionality concept (i.e. Phytoplankton Functional Types, 72 

PFT) is described as set of species sharing similar properties or responses in relation to the 73 

main biogeochemical processes such as the N, P, Si, C and S cycles (diazotrophs for N cycle 74 

such as Cyanobacteria, diméthylsulfoniopropionate producers for S cycle such as Phaeocystis, 75 

silicifiers for Si cycle such as Diatoms, calcifiers for C cycle such as Coccolithophorids, size 76 

classes mainly used for C cycle).  77 
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 Representative data sets of phytoplankton functional types, size classes and specific 78 

chlorophyll a concentrations are the subject of active research using high frequency in situ 79 

dedicated analysis from automated devices such as spectral fluorometers, particle scattering 80 

and absorption spectra recording instruments, or automated and remotely controlled scanning 81 

flow cytometry (SFC). Among the high frequency in situ techniques used to quantify 82 

phytoplankton abundance, community structure and dynamics, SFC is the most advanced 83 

instrument, counting and recording cell optical properties at the single cell level. This 84 

technology has recently been adapted for the analysis of almost all the phytoplankton size 85 

classes and focuses on the resolution of phytoplankton community structure dynamics 86 

(Dubelaar et al. 1999; Olson et al. 2003; Sosik et al. 2003; Thyssen et al. 2008a; Thyssen et 87 

al. 2008b). In parallel, algorithms applied to remote sensing data have been developed which 88 

are dedicated to characterizing phytoplankton groups, PFTs or size classes (Sathyendranath et 89 

al. 2004; Ciotti et al. 2006; Nair et al. 2008; Aiken et al. 2008; Kostadinov et al. 2010; Uitz et 90 

al. 2010; Moisan et al. 2012). One of these algorithms, PHYSAT, has provided a description 91 

of the dominant phytoplankton functional types (LeQuéré et al., 2005) for open waters on a 92 

global scale, leading to various studies concerning the PFT variability (Alvain et al. 2005; 93 

Alvain et al. 2013; Masotti et al. 2011; Demarcq et al. 2011, Navarro et al., 2014). PHYSAT 94 

relies on the identification of water-leaving radiance spectra anomalies, empirically associated 95 

with the presence of specific phytoplankton groups in the surface water. The anomalies were 96 

labeled thanks to the comparison with high pressure liquid chromatography (HPLC) 97 

biomarker pigment match ups. To date, six dominant phytoplankton functional groups in open 98 

waters (Diatoms, Nanoeukaryotes, Prochlorococcus, Synecochoccus, Phaeocystis-like, 99 

Coccolithophorids) have been found to be significantly related to specific water-leaving 100 

radiance anomalies from SeaWiFS (Sea-viewing Wide Field-of-view Sensor) sensor 101 

measurements at a resolution of 9 km (Alvain et al. 2008). These relationships have been 102 
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verified by theoretical optical models (Alvain et al. 2012). This theoretical study also showed 103 

that additional groups or assemblages could be added in the future, once accurate in situ 104 

observations are available.  105 

Describing the community structure on a regional scale will give better quantification 106 

and understanding of the phytoplankton responses to environmental change and consequently, 107 

support the modification of theoretical considerations regarding energy fluxes across trophic 108 

levels. It is critical for understanding community structure interactions and particularly when 109 

it is necessary to take into account the meso-scale structure in a specific area (D‟Ovidio et al. 110 

2010), which is the case in areas under the influence of regional physical forcing such as the 111 

English Channel and the North Sea. Long-term changes detected in these regions have been 112 

shown to impact local ecosystem functioning by inducing, for instance, a shift in the timing of 113 

the spring bloom (Wiltshire and Manly 2004; Sharples et al. 2009; Vargas et al. 2009; Racault 114 

et al. 2013) or specific migrations of regional (Gomez and Souissi 2007) or dominant 115 

phytoplankton groups (Widdicombe et al. 2010). In addition, hydrodynamic conditions have 116 

been shown to play a strong role in the phytoplankton distribution on a regional scale 117 

(Gailhard et al. 2002; Leterme et al. 2008). It is therefore crucial to develop specific 118 

approaches to characterize the phytoplankton community structure (beyond global-scale 119 

dominance) and its high frequency variation in time and space. In order to achieve this, large 120 

data sets of in situ analyses resolving PFT are essential for specific calibration and validation 121 

of regional remote sensing algorithms such as PHYSAT. Flow-through surface water 122 

properties analysis for remote sensing calibration optimizes the amount of matchups (Werdell 123 

et al., 2010; Chase et al., 2013). For the purpose of collecting high resolution in situ data 124 

describing phytoplankton community structure, automated SFC technology allows samples to 125 

be collected at high frequency, resolving hourly and km scales with a totally automated 126 

system. The instrument enables single cell analysis of phytoplankton from 1 to 800 µm and 127 
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several mm in length for chain forming cells and automated sampling allows large space and 128 

time domains to be covered at a high resolution (Sosik et al. 2003; Thyssen et al. 2008b; 129 

Thyssen et al. 2009; Ribalet et al. 2010). 130 

Based on this approach, a high frequency study of the phytoplankton community 131 

structure in the North Sea was conducted. The in situ observations from SFC have been used 132 

for the first time and as a first trial to label PHYSAT anomalies detected during the sampling 133 

period. Thus, the available dataset makes it possible to distinguish between different water-134 

leaving radiance anomaly signatures in which significantly distinct phytoplankton community 135 

structures can be described, rather than just the dominant communities, as it is the case in 136 

previous studies. Our results are an improvement over conventional approaches as they allow 137 

the distribution of phytoplankton community structure to be characterized at a high resolution, 138 

from both in situ and day-to-day water-leaving radiance anomaly maps specific to the study 139 

area. 140 

 141 

2. Materials and Methods 142 

Samples were collected during the PROTOOL/DYMAPHY-project cruise onboard the 143 

RV Cefas Endeavour from the 8 to 12 May 2011 in the south-west region of the North Sea 144 

(Figure 1). Automated coupled sampling using a Pocket FerryBox (PFB) and a Cytosense 145 

scanning flow cytometer (SFC, Cytobuoy, b.v.) started on the 8 May at 9:00 UTC and ended 146 

on the 12 May at 4:00 UTC. Water was continuously collected from a depth of 6 m and 147 

entered the PFB at a pressure of 1 bar maximum. Sub-surface discrete samples were collected 148 

using Niskin bottles on a rosette and analyzed using a second Cytosense SFC (Stations 4, 6 149 

and 13 were used in this paper, Figure 1). 150 

2.1. Phytoplankton community structure from automated SFC 151 
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 Phytoplankton abundance and group description were determined by using two 152 

Cytosense SFCs (Cytobuoy, b.v.), one was fixed close to the PFB and sampling the 153 

continuous flow of pumped sea water, the second one was used for pictures collection from 154 

discrete samples. These instruments are dedicated to phytoplankton single cell recording, 155 

enabling cells from 1 µm to 800 µm and several mm in length to be analysed routinely in 1-10 156 

cm
3
 of sea water.  Each single cell or particle in suspension in the solution passes through the 157 

laser beam thanks to the principle of hydrodynamic focusing. The instrument then records the 158 

resulting optical pulse shapes and count each single particle.  159 

2.1.1. Automation of the continuous flow sampling 160 

Automated measurements were run from the continuous flow of sea water passing 161 

through the PFB. Samples for SFC were automatically collected from a 450 cm
3

 sampling 162 

unit where water from the continuous flow was periodically stabilized. This sampling unit 163 

was designed to collect bypass water from the 1 bar PFB inlet. The sampling unit water was 164 

replaced within a minute. One of the Cytosenses was directly connected to the sampling unit 165 

and two successive analyses with two distinct protocols were scheduled automatically every 166 

10 min.  167 

2.1.2.  Flow cytometry analysis 168 

A calibrated peristaltic pump was used to estimate the analysed volumes and send the 169 

sample to the SFC optical unit.  Suspended particles were then separated using a laminar flow 170 

and subsequently crossed a laser beam (Coherent, 488 nm, 20 mV). The instrument recorded 171 

the pulse shapes of forward scatter (FWS) and side ward scatter (SWS) signals as well as red, 172 

orange and yellow fluorescence (FLR, FLO, FLY respectively) signals for each chain or 173 

single cell. The Cytosense instrument was equipped with two sets of photomultiplier (PMT) 174 

tubes (high sensitivity and low sensitivity modes), resolving a wider range of optical signals 175 

from small (~<10 µm) to large particles (~<800 µm). Two trigger levels were applied on the 176 
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high sensitivity PMT to discriminate highly concentrated eukaryotic picophytoplankton and 177 

cyanobacteria (trigger level: FLR 10 mV; acquisition time: 180 s; sample flow rate: 4.5 178 

mm
3

.s
-1

), from less concentrated nano- and microphytoplankton (trigger level: FLR 25 mV, 179 

acquisition time: 400 s; sample flow rate: 9 mm
3

.s
-1

). Setting the trigger on red fluorescence 180 

was preferred to the commonly FWS or SWS triggering as a tradeoff between representative 181 

phytoplankton data sets and non-fluorescing particles/noise recording, but this procedure 182 

affected the SWS and FWS pulse shapes to some extent. To ensure good control and 183 

calibration of the instrument settings, a set of spherical beads with different diameters was 184 

analysed daily. This allowed the definition of estimated-size calibration-curves between Total 185 

FWS (in arbitrary units) and actual bead size. This set of beads included 1, 6, 20, 45, 90 µm 186 

yellow green fluorescence from Polyscience Fluoresbrite microspheres, 10 µm orange 187 

fluorescence Invitrogen polystyrene Fluorosphere, and 3 µm 488 nm Cyto-calTMAlignment 188 

standards. To correct for the high refraction index of polystyrene beads that generates an 189 

underestimation of cell size, we defined a correcting factor by using 1.5 µm silica beads 190 

(Polyscience, Silica microspheres) (Foladori et al. 2008). The phytoplankton community was 191 

described using several two-dimensional cytograms built with the Cytoclus® software. For 192 

each autofluorescing phytoplankton cell analysed, the integrated value of FLR pulse shape 193 

(Total red fluorescence TFLR, a.u.) was calculated. For each phytoplankton cluster, the 194 

amount of TFLR is reported per unit volume (TFLR.cm
-3

, a.u..cm
-3

). The TFLR.cm-3
 of each 195 

resolved phytoplankton cluster was summed (Total TFLR.cm
-3

) and was used as a proxy for 196 

chlorophyll a concentration. The TFLR signal was corrected from high sensitivity PMT 197 

saturation signal in the case of highly fluorescing cells (> 4000 mV) thanks to the low 198 

sensitivity PMTs that behaved linearly with the high sensitivity PMT, allowing the 199 

reconstruction of the high sensitivity signal.  200 



9 

 

 Discrete samples were collected during the cruise and analyzed using a second 201 

Cytosense SFC equipped with the Image in Flow system. The samples were analysed using 202 

settings similar to those of the Cytosense coupled to the PFB. The amount of pictures was 203 

determined before each sample acquisition and pictures were randomly collected within the 204 

largest particles until the predetermined number of pictures was reached. 205 

2.2. Temperature and Salinity  206 

The PFB (4H-JENA©) was fixed on the wet laboratory bench, close to the Cytosense, 207 

in order to share the same water inlet. This instrument recorded temperature and conductivity 208 

(from which salinity was computed) from the clean water supplied by the ship‟s seawater 209 

pumping system at a frequency of one sample every minute.  210 

Within the PFB dataset, only data related to automated SFC analyses were selected for 211 

plotting temperature – salinity diagrams.  212 

2.3. Chlorophyll a  213 

 Samples for High Pressure Liquid Chromatography (HPLC) analyses and bench top 214 

fluorometry (Turner® fluorometer) were collected randomly within 6 hour periods before or 215 

after the supposed on-board Aqua MODIS (Moderate Resolution Imaging Spectroradiometer) 216 

sensor passage (12:30 pm UTC) to fulfill classical requirements in terms of in situ and 217 

remotely sensed matchup criteria. Samples were collected from the outlet of the PFB, filtered 218 

onto GF/F filters and stored directly in a -80°C freezer. The HPLC analyses were run on an 219 

Agilent Technologie, 1200 series. Pigments were extracted using 3 cm
3

 ethanol containing 220 

vitamin E acetate as described by Claustre et al. (2004) and adapted by Van Heukelem and 221 

Thomas (2001). For bench top fluorometry, the filters were subsequently extracted in 90% 222 

acetone. Chlorophyll a (chla) concentration was evaluated by fluorometry using a Turner 223 

Designs Model 10-AU fluorometer (Yentsch and Menzel 1963). The fluorescence was 224 
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measured before and after acidification with HCl (Lorenzen 1966). The fluorometer was 225 

calibrated using known concentrations of commercially purified chla (Sigma-Aldrich®). 226 

The PFB was equipped with a multiple fixed wavelength spectral fluorometer (AOA 227 

fluorometer, bbe©) sampling once every minute to obtain chla values. 228 

MODIS chla values corresponded to Level-3 binned data consisting of the 229 

accumulated daily Level-2 data with a 4.6 km resolution. 230 

2.4. Mixed layer depth 231 

 Daily water column temperature mapping was obtained from the Forecasting Ocean 232 

Assimilation Model 7 km Atlantic Margin model (FOAM AMM7), available at MyOcean data 233 

base (http://www.myocean.eu.org/). Model output temperature depths were as follows: 0, 3, 234 

10, 15, 20, 30, 50, 75, 100, 125, 150 m. Average mixed layer depth (MLD) on the 5 sampling 235 

days was calculated from daily temperature datasets. MLD was defined as the depth 236 

associated with an observed temperature difference of more than 0.2 °C with respect to the 237 

surface (defined at 10 m, de Boyer Montégut et al. 2004).  238 

2.5. Matching method between in situ and remotely sensed observations for 239 

phytoplankton community structure. 240 

 The PHYSAT approach is based on the identification of specific signatures in the 241 

water leaving radiance (nLw) spectra measured by an ocean color sensor. It is described in 242 

detail by Alvain et al. (2005, 2008). Briefly, this empirical method has been first established 243 

by using two kinds of simultaneous and coincident measurements:  nLw measurements and in 244 

situ measurements of diagnostic phytoplankton pigments. The presence of a specific 245 

phytoplankton group was established based on pigment analysis. In a first step, this approach 246 

has allowed to detect four dominant phytoplankton groups identified within the available in 247 

situ data set, based on the pigment inventories. Four groups were detected first (diatoms, 248 

nanoeukaryotes, Synechococcus and Prochlorococcus) when they are dominant. Note that 249 
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here, „„dominant‟‟ has been defined by Alvain et al. (2005) as situations in which a given 250 

phytoplankton group is a major contributor to the total diagnostic pigments.  This represented 251 

a limitation in using other potential phytoplankton in situ analysis. In a second step, 252 

coincident remote sensed radiance anomalies (Ra) spectra between 412 and 555 nm were 253 

transformed into specific normalized water-leaving radiance or Ra spectra in order to 254 

evidence the second-order variability of the satellite signal. This was done by dividing the 255 

actual nLw by a mean nLw model (nLwref), which depends only on the standard chla. 256 

Then, coincident nLw spectra and in situ analysis were used to show that every 257 

dominant phytoplankton group sampled during in situ sampling is associated with a specific 258 

Ra spectrum in terms of shape and amplitude. Based on this, a set of criteria has been defined 259 

in order to characterize each group in function of its Ra spectrum, first by minimum and 260 

maximum values approach and more recently using neuronal network classification tools 261 

(Ben Mustapha et al., 2014). These criteria can be applied to global daily archives to get 262 

global maps of the most frequent group of dominant phytoplankton. When no group prevails 263 

over the month, the pixels are associated with an „„unidentified‟‟ phytoplankton group.   264 

In this study, remotely sensed observations were selected on the basis of quality 265 

criteria that ensured a high degree of confidence in PHYSAT as described in Alvain et al. 266 

(2005). Thus, pixels were only considered when clear sky conditions were found and when 267 

the aerosol optical thickness, a proxy of the atmospheric correction steps quality, was lower 268 

than 0.15. The effects of sediments and/or CDOM were minimized by focusing on 269 

phytoplankton dominated waters as defined from the optical typology described in 270 

Vantrepotte et al (2012). Waters classified as turbid were therefore excluded from the 271 

empirical relationship since the PHYSAT method is currently not available for such areas. 272 

Waters classified as non-turbid using the same criteria were selected and the PHYSAT 273 

algorithm applied. To link coincident in situ and remotely sensed observations, a match-up 274 



12 

 

exercise was carried out. Matching points between in situ SFC samples (considered as in situ 275 

data) and 4.6 km resolution MODIS pixels (highest L3 binned resolution) were selected by 276 

comparing their concomitant position day after day. When more than one in situ SFC sample 277 

was found in a MODIS pixel the averaged value of TFLR (a.u..cm
-3

) for each phytoplankton 278 

group was calculated.  279 

2.6. Statistics  280 

Statistics were run under R software (CRAN, http://cran.r-project.org/). Before 281 

running correlation and comparison tests on the different in situ sensors (for chla and Total 282 

TFLR), the Shapiro normality test was run. When data did not follow a normal distribution, a 283 

Wilcoxon signed rank test was applied. Correlations between data were defined using 284 

Spearman‟s rank correlation coefficient.  285 

As the PHYSAT approach is based on the link between specific Ra spectra (in terms of 286 

shapes and amplitudes) and specific phytoplankton composition, the set of remotely sensed 287 

data was separated into distinct groups with similar Ra. The PHYSAT Ra found over the 288 

studied area and matching the in situ SFC samples was differentiated by applying a k-means 289 

clustering partitioning method (tested either around means (Everitt and Hothorn 2006) or 290 

around menoids (Kaufman and Rousseeuw 1990)). The appropriate number of clusters 291 

(distinct PHYSAT Ra) was decided with a plot of the within groups sum of squares by 292 

number of clusters extracted. A hierarchical clustering was computed to illustrate the k-means 293 

clustering method. Within each k-mean cluster, SFC-defined phytoplankton community was 294 

described and differences between TFLR.cm
-3

 per phytoplankton group were compared 295 

within the different PHYSAT spectra clusters using the Wilcoxon signed rank test. 296 

 297 

3. Results 298 

3.1. Temperature, Salinity and Mixed layer depth 299 

http://cran.r-project.org/
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The sampling track crossed four North Sea marine zones: Western Humber, Tyne, 300 

Dogger, Eastern Humber and Thames (Fig. 1). The PFB measured temperature associated 301 

with the SFC samples ranged between 8.83 °C and 12.39°C with an average of 10.67 ± 0.72 302 

°C. Minimal temperatures were found in the western Humber area (53-55°N and -1-1°E) and 303 

maximal temperatures were found in the Thames area (54-52°N, 2-4°E) (Fig. 2A). Salinity 304 

from the PFB ranged between 34.02 and 35.07 with an average value of 34.6 ± 0.26. Highest 305 

salinity values were found in the Dogger area above 55°N and in the limit between the 306 

Humber and the Thames areas, 53°N. Lowest salinity values were found in the Tyne area 307 

around 55°N, -1 °E and in the Thames area (by the Thames plume; Fig. 2B). 308 

The mixed layer depth calculated from the FOAM AMM7 was used to illustrate the 309 

physical environment of the traversed water masses. Different mixed layer depth 310 

characterized the sampled area, with deeper MLD in the northern part (15 to 30 m) and a 311 

shallower MLD in the southern area (~10 m, Fig.1). A tongue of shallow MLD (~10 m) 312 

surrounded by deeper MLD (~20 m) crossed the sampling area at ~55°N and ~3°E. 313 

3.2. Phytoplankton community from SFC analysis 314 

A total of 247 SFC validated analysed samples were collected during this experiment. 315 

Average distance between samples collected with the automated SFC was of 2.2 ± 1.8 km 316 

when the system ran continuously. The sampling rate was 25 ± 45 min. Up to 10 317 

phytoplankton clusters were resolved (Fig. 3) based on their optical fingerprints from SFC 318 

analysis. The 10 discriminated clusters were labeled as follows: PicoORG (Fig. 3A), 319 

PicoRED (Fig. 3A), NanoSWS (Fig. 3B), NanoRED1 (Fig. 3C), NanoRED2 (Fig. 3B and 320 

3C); Micro1 (Fig. 3C and 3D), MicroLowORG (Fig. 3A), NanoORG and MicroORG (Fig. 321 

3D) and Micro2 (Fig 3D). Pictures were randomly collected (between 20 and 60 pictures per 322 

sample within Micro2) and were used to illustrate the most frequently encountered class (Fig. 323 

4). Station 4 (Fig. 4A) sampled at 12 m, showed mostly a mixture of dinoflagellate-like cells 324 
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(25 pictures collected within 47 Micro2 cluster‟s counted cells). Station 6 (Fig. 4B) sampled 325 

at 7 m, showed pictures composed mainly of diatoms (Thalassiosira and Chaetoceros, 11 326 

images collected among 28 Micro2 cluster‟s counted cells). Station 13 (Fig. 4C) sampled at 7 327 

m, gave a mixture of diatoms and dinoflagellates (58 pictures shot among the 99 Micro2 328 

cluster‟s counted cells: 5 Chaetoceros, 30 Rhizosolenia, 10 Dinoflagellates, one flagellate and 329 

several unidentified cells).  330 

Cell abundance, average cell size and TLFR.cm
-3

 for each cluster are illustrated on 331 

Figures 5, 6 and 7 respectively. Average abundance and sizes of each cluster are addressed in 332 

Table 1. PicoRED cells were on average, the most abundant in the studied area (Fig. 5B and 333 

Table 1) followed by NanoRED2, PicoORG, NanoRED1 and Micro1 (Fig. 5F, 5A, 5C and 5G 334 

respectively, Table 1). The other cluster‟s abundances were below 1.10
2

 cells.cm
-3

on average 335 

(Fig. 5D, E, H, I, J; Table 1). PicoORG cells were the smallest estimated (Fig. 6A, Table 1), 336 

while the largest estimated were MicroORG, MicroLowORG and Micro2 cells (Fig. 6H, 6I 337 

and 6J respectively, Table 1).  338 

The western Humber zone (Fig.1) was marked by the highest abundances of PicoRED, 339 

PicoORG, MicroORG, MicroLowORG and Micro1 (Fig. 5B, 5A, 5H, 5I and 5G). The eastern 340 

part of the Humber zone (Fig.1) was marked by the highest abundances of NanoRED1 and 341 

Micro1 (as for the western part) (Fig. 5C, 5G). High values of PicoRED were also observed in 342 

this part of the Humber zone. The Tyne zone (Fig.1) had the highest abundance of NanoORG 343 

and Micro2 clusters (Fig. 5D, 5J), and the lowest abundance of PicoRED and NanoSWS. 344 

High abundance values of MicroORG were also observed (Fig. 5H). The size of the 345 

NanoSWS and the NanoRED2 were the greatest in this zone (Fig. 6E, 6F). The Dogger zone 346 

(Fig.1) was dominated in terms of abundance by the PicoRED and the PicoORG, where the 347 

sizes were the smallest (Fig. 6B and 6A) but did not show the highest abundance values. The 348 

cell sizes of Micro1 were the greatest in this zone (Fig. 6G). Observations in the Thames zone 349 
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(Fig.1) produced the maximal abundance of NanoSWS and NanoRED2 (Fig. 6E, 6F). Sizes 350 

were the greatest for PicoORG, NanoRED1 and NanoSWS (together with the Tyne zone; Fig. 351 

6A, 6C, 6E). TFLR follows similar trends to abundance (Fig. 7). 352 

3.3. Comparison between scanning flow cytometry, Total Red Fluorescence 353 

and chlorophyll a analysis 354 

 Several bench top and in situ instruments, i.e. HPLC, Turner fluorometer and the PFB 355 

AOA fluorometer, were used to give either exact and/or proxy values of chla. Similarly to 356 

temperature and salinity, the PFB AOA fluorometer samples were selected to match SFC 357 

samples. Overall values of chla originating from these instruments were superimposed to the 358 

Total TFLR.cm
-3

 (by summing up the TFLR.cm
-3

values of the observed cluster) and the 359 

MODIS chla values matching the points on Figure 8. HPLC values varied between 0.21 and 360 

7.58 µg.dm
-3

 with an average of 1.57 ± 2.01 µg.dm
-3

. Turner fluorometer values varied 361 

between 0.41 and 2.31 with an average of 1.24 ± 0.7 µg.dm
-3

. AOA fluorometer values varied 362 

between 0.73 and 28.53 µg.dm
-3

with an average of 4.44 ± 5.54 µg.dm
-3

. The Total TFLR.cm
-3

 363 

from SFC, normalized with 3 µm bead red fluorescence varied between 5011 and 399200 364 

a.u..cm
-3

 with an average value of 64394.5 ± 67488.4 a.u..cm
-3

. The Shapiro normality test 365 

showed non normality for each of the variables so a Wilcox test was run between techniques 366 

involving similar units. HPLC and Turner chla concentrations were significantly not different 367 

(n=9, p=0.65) and the correlation was significant (Spearman, r=0.98, Table 2). The absolute 368 

values from both techniques were significantly different from the AOA fluorometer values 369 

(n=9, p<0.001 for both) but were significantly correlated (Spearman, r=0.86 and r=0.82 for 370 

HPLC and Turner fluorometer respectively, Table 2). The SFC Total TFLR (a.u..cm
-3

) 371 

summing up the TFLR of all the phytoplankton groups was used for comparison with other 372 
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chla determinations. Correlations with the AOA fluorometer, the HPLC and the Turner 373 

fluorometer results were all significant as shown in Table 2. 374 

3.4. PHYSAT anomalies and SFC phytoplankton community composition, 375 

extrapolation to the non-turbid classified waters in the North Sea 376 

Considering our database of coincident SFC in situ and MODIS remotely sensed 377 

observations, a total of 56 matching points were identified, from which only 38 points 378 

corresponded to non-turbid classified waters. Matching points between in situ sampling and 379 

remote sensing pixels for the purpose of the PHYSAT empirical calibration were selected in 380 

the daytime period 6 - 18 h. Additional samples collected out of this period results in the loss 381 

of correlation significance between MODIS chla and the AOA fluorometer chla within the 382 

SFC dataset (r=0.49, p=0.06, n=15, Spearman rank test), leaving 15 SFC matching points 383 

(Fig. 1 and Fig. 8). The chla values found in the matching points were lower than 0.5 µg.dm
-3

 384 

(Fig. 8). 385 

PHYSAT radiance anomalies (Ra) were calculated based on the 2005 method (Alvain 386 

et al., 2005) and the average signal was recalculated to fit the sampling area. The Ra were 387 

separated into two distinct anomalies using the within sum of square minimization (Fig. 9A) 388 

and illustrated on a dendrogram (Fig. 9B). These two distinct types of anomalies in terms of 389 

shape and amplitude are illustrated in Figure 9C and 9D and the anomaly characteristics are 390 

summarized on Table 3. The first anomaly set (N1, Table 3) was composed of 5 spectra that 391 

had overall higher values than the second anomaly set (N2, Table 3), composed of the other 392 

10 spectra. The corresponding SFC cluster proportion of TFLR.cm
-3

to the overall Total 393 

TFLR.cm
-3

 found within the two anomalies are illustrated in Figures 10 A and B. Similarly, 394 

the relative difference of each phytoplankton cluster‟s TFLR.cm
-3

 within the two anomalies to 395 

its overall TFLR.cm
-3

 median value are illustrated in Figures 10 C and D. Considering our 396 

previous analyses, N1 and N2 community structures were dominated by NanoRED2 397 
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TFLR.cm
-3

 (Fig. 10A and 10B). Regarding each distinct cluster relative difference to its 398 

overall median value, samples corresponding to N1 anomalies had significantly higher 399 

NanoRED1 TFLR.cm
-3

, higher NanoORG TFLR.cm
-3

and higher MicroORG TFLR.cm
-3

; 400 

while the samples corresponding to N2 anomalies had only higher PicoRED TFLR.cm
-3

 401 

(Wilcox rank test, N1, n=5; N2, n=10, Fig. 10C and 10D). Temperature, salinity, MODIS chla 402 

and SFC Total TFLR.cm
-3

 found in each in situ sample corresponding to both sets of 403 

anomalies are illustrated in Fig. 11. Samples found in the N1 pixels were significantly warmer 404 

(11.3 ± 0.32°C in N1 and 10.94 ± 0.23°C in N2, p<0.1, Wilcox rank test, Fig. 11A), not 405 

significantly different in terms of salinity, although N1 waters were less salty (Fig. 11B), 406 

significantly richer in chla (0.87 ± 0.19 µg.dm
-3

 in N1 and 0.43 ± 0.07 µg.dm
-3

 in N2, p<0.01, 407 

Wilcox rank test, Fig. 11C), but not significantly different in Total TFLR.cm
-3

 values (Fig. 408 

11D). 409 

Considering the specificity of each set of Ra in terms of phytoplankton and 410 

environmental conditions, it‟s interesting to map their frequency of detection in our area of 411 

interest. A pixel is associated with an anomaly when the Ra values at each wavelength 412 

fulfilled the criteria of Table 3. The frequencies of occurrence over the sampling period based 413 

on a composite overlapping the sampling period are illustrated in Fig. 12A and 12B. Pixels 414 

corresponding to N1 anomaly were mostly found in the 54-56°N area (Dogger and German, 415 

Fig. 1), following the edge between the shallow MLD tongue and the deepest MLD zones 416 

(Fig. 1), but also near the Northern Scottish coast (Forth, Forties and Cromarty, Fig. 12A), 417 

where MLD was shallow (Fig. 1). The N2 anomaly pixels were mostly found in the Forties, 418 

Fisher and German area, on much smaller surfaces (Fig. 12B).  419 

 420 

 421 
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4. Discussion 422 

 423 

  Water mass dynamics generates patchiness which modifies phytoplankton 424 

community structure and makes it difficult to follow a population over time and at a basin 425 

scale. In this context, the hourly observation of phytoplankton at the single cell and the 426 

community level and its daily spatial structure resolution from extrapolation using PFT 427 

remote sensing mapping can help to follow spatial distribution of phytoplankton communities. 428 

The improvement of PFT mapping, i.e. from dominant groups to the community structure 429 

resolution, is one of the ideas generated in this paper. This paper shows for the first time that 430 

SFC datasets can be used for labeling PHYSAT anomalies at the daily scale. The SFC is a 431 

powerful automated system aimed to be implemented in several vessels of opportunity and 432 

monitoring programs for future PHYSAT anomalies identification at the daily scale and at the 433 

community structure level. A recent publication that enables the classification of a large range 434 

of anomaly spectra (Ben Mustapha et al., 2014) should help to make this easier. Thus, the 435 

knowledge and the tools are available, which augurs well for understanding phytoplankton 436 

heterogeneity and variability over high resolution spatio-temporal scales. Indeed, resolving 437 

phytoplankton community structure over the sub meso scale and hourly scale is a good way to 438 

understand the influence of environmental short scale events (Thyssen et al., 2008a; Lomas et 439 

al. 2009), seasonal (or not) succession schemes, resilience capacities of the community after 440 

environmental changes and impacts on the specific growth rates (Sosik et al. 2003, Dugenne 441 

et al., 2014). Resolving the community structure and the causes of variations at several 442 

temporal and spatial scales has great importance in further understanding the phytoplankton 443 

functional role in biogeochemical processes. This scale information is currently lacking for 444 

the global integration of phytoplankton in biogeochemical models, mainly due to the lack of 445 
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adequate technology which is needed to integrate the different levels of complexity linked to 446 

phytoplankton community structure.  447 

Phytoplankton community description 448 

Phytoplankton community structure from automated SFC is described through clusters 449 

of analyzed particles sharing similar optical properties. Thus cluster identification at the 450 

species level is speculative and, as any cytometric optical signature, it needs a sorting and 451 

genetic or microscopic analysis to be resolved at the taxonomic level. This deep level of 452 

phytoplankton diversity resolution requirement is not needed in biogeochemical processes 453 

studies in which functionality is preferred to taxonomy (LeQuéré et al., 2005).  In this context, 454 

most of the optical clusters could be described at the plankton functional type level because of 455 

some singular similarities combining abundance, size, pigments and structure proxies 456 

obtained from optical SFC variables (Chisholm et al. 1988; Veldhuis and Kraay 2000; Rutten 457 

et al. 2005; Zubkov and Burkill 2006). The Cytobuoy instrument used in this study was 458 

developed to identify phytoplankton cells from picophytoplankton up to large 459 

microphytoplankton with complex shapes, even those forming chains. Indeed, the volume 460 

analyzed was close to 3 cm
3

, giving accurate counts of clusters with abundances as low as 30 461 

cells.cm
-3

(100 cells counted), under which, coefficient of variation exceeds 10% (Thyssen et 462 

al., 2008a). Such low abundances were found for some of the clusters identified in this study 463 

(NanoORG, MicroORG and Micro2 clusters for which the median abundance value was close 464 

to 30 cells.cm
-3

), in agreement with concentrations observed in previous studies for the 465 

possibly related phytoplankton genus, as discussed below, i.e. cryptophytes (Buma et al. 466 

1992), diatoms and dinoflagellates (Leterme et al. 2006). Previous comparisons between 467 

bench top flow cytometry and remote sensing (Zubkov and Quartly, 2003) could technically 468 

not include the entire size range of nano-microphytoplankton. The Cytobuoy SFC resolves 469 

cells up to 800 µm in theory, but this depends on the counted cells in the volume sampled 470 
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(which is approximately ten times more than classical flow cytometry). However, the largest 471 

part of phytoplankton production in the North Sea is driven by cells < 20 µm (Nielsen et al. 472 

1993), and we can consider this size class to be correctly counted with the SFC. Furthermore, 473 

significance between the sum of each cluster‟s TFLR (Total TFLR.cm
-3

 ) and bulk chlorophyll 474 

measurements (Table 2 and Fig. 7) confirms the power of SFC for phytoplankton community 475 

resolution. 476 

PicoORG cells could be labeled Synechococcus (Waterbury et al. 1979; Li1994) based 477 

on their phycoerythrin pigment fluorescence (Fig. 3A), their size estimated between 0.8 and 478 

1.2 µm (Fig. 6A) and their abundances around 10
2

 - 10
4

 cells.cm
-3

 (Fig. 5A). PicoRED cells 479 

could be autotrophic eukaryotic picoplankton, as their cell size varied between 1-3 µm (Fig. 480 

6B) and contained chla as their main pigment. Thus, PicoORG and PicoRED clusters 481 

contained the smallest cells found above the so called non-fluorescing/electronical noise 482 

background of this instrument (Fig. 3A and 3B). As Prochloroccocus is expected to be absent 483 

in these waters, we can conclude that the cytometer observed most of the phytoplankton size 484 

classes when sufficiently concentrated in the analysed volume. NanoRED1 cells exhibited 485 

abundance and sizes close to those of Phaeocystis haploid flagellate cells (3-6 µm, Fig. 6C, 486 

Rousseau et al. 2007 and references therein). Their presence, found mostly in the Humber 487 

(Fig. 5C), suggests that this area corresponded to a period between the inter-bloom (haploid 488 

stage, life stage persisting between two blooms of diploid colonial cells) and the start of the 489 

Phaeocystis bloom (Rousseau et al., 2007). Similarly, NanoRED2 could be referred to as 490 

Phaeocystis diploid flagellates or free colonial cells, based on their size and abundance (4-8 491 

µm and 0-50.10
3

cells.cm
3 

(Fig. 6F and 5F respectively), Rousseau et al., 2007). Their 492 

maximal abundance was found in the southern North Sea Thames area. Their presence 493 

suggested an area of Phaeocystis colonial blooming stage (Guiselin 2010).  494 
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MicroORG cells, whose abundance and size are close to those of some large 495 

cryptophytes cells, were found in the same areas as NanoORG cells (Fig. 5H and 5D 496 

respectively), which are related to smaller Cryptophyceae cells. MicroLowORG cells with 497 

sizes close to that of MicroORG cells and although low in concentration, emitted orange 498 

fluorescence and could represent cells with little phycoerythrin content. NanoSWS cluster 499 

was composed of high SWS scattering cells that are consistent with the signature of 500 

Coccolithophorideae cells (van Bleijswijk et al. 1994; Burkill et al., 2002). The observed 501 

abundances did fit with the low Coccolithophorideae concentrations observed in the southern 502 

North Sea (Houghton, 1991). The Micro1 cluster could correspond to small nanoplanktonic 503 

diatom cells (~10-30 µm, Fig. 6G). Regarding the size range, this cluster could represent 504 

several species. They were mainly found within the Humber area. The Micro2 cluster was 505 

mostly composed of large diatoms (Rhizosolenia, Chaetoceros) and dinoflagellates (Fig. 4) 506 

within the size range of 40 - 100 µm (Fig. 6J) as observed in the pictures (Fig. 4). The 507 

presence of these groups illustrates the boundary between the end of the diatom bloom and the 508 

development of a dinoflagellate bloom, from which it could be possible to make a link with 509 

the Dinophysis norvegica and Alexandrium early summer bloom, observed in the Tyne region 510 

by Dodge (Dodge 1977). This is in agreement with the stratification observed within the 511 

Thames zone (Fig.1). 512 

Phytoplankton community structure at the North Sea basin scale 513 

The data sets from the spatial (km) and the temporal (hourly) scales for phytoplankton 514 

community structure based on single cell optical properties are important for validating the 515 

methods describing phytoplankton community structure from space. Ocean algorithms need 516 

specific information on water properties and phytoplankton structure and are dependent on 517 

validation from in situ observations, always complex to collect and limited by sky condition 518 

criteria. The PHYSAT method was built on an empirical relationship between dominant 519 
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phytoplankton functional types from in situ HPLC analysis and Ra. The method was thus 520 

limited to dominance cases only as HPLC analysis can‟t give us more information. The 521 

remote sensing synoptic extrapolation concerning phytoplankton community structure 522 

remains to be established and in spite of a theoretical validation (Alvain et al., 2012), still 523 

depends on important in situ data point collection in order to build robust empirical 524 

relationships. In this study, the combination of phytoplankton high frequency analysis from an 525 

automated SFC with the PHYSAT method proved to be an excellent calibration by giving an 526 

unprecedented amount of matching points for only two significant sampling days (number of 527 

analyzed samples for non-turbid waters matching MODIS pixels: 38, number of used samples 528 

between 6 and 18h: 15, corresponding to 39.5 % profitability), compared to the 14% matching 529 

points from the GeP&CO dataset (Alvain et al., 2005).  530 

The combination of SFC and PHYSAT has shown that a first set of specific anomalies 531 

(N1) can be associated with NanoRED1, NanoORG and MicroORG, which contributed more 532 

to the Total TFLR.cm
-3

 (a proxy of chla, Fig. 7, Table 2) than in the second set of anomaly 533 

(N2), in which PicoRED cells contributed significantly more to the Total TFLR.cm
-3

, but also, 534 

where Micro1 contribution to Total TFLR.cm
-3

 was above its overall median value observed 535 

along the matching points (Fig. 10D). Spatial successions between diatoms (as could be found 536 

in the NanoRED1 and Micro1 clusters) and cryptophytes (corresponding to the NanoORG 537 

and MicroORG specific signatures) revealed differences in stratification, lower salinity and 538 

shallower MLD (Moline et al. 2004; Mendes et al. 2013). Indeed, the N1 anomaly 539 

corresponds to areas of low MLD (Fig. 1) following the main North Sea current from the 540 

south west to the north east (Holligan et al. 1989), surrounding the Dogger bank. This 541 

anomaly was also found on the north-western part of the northern North Sea, following the 542 

Scottish coastal water current with a shallow MLD (Fig. 1 11A). The N2 anomaly was 543 

observed with the deeper MLD of the Forties, Fisher and German areas (Fig. 1 and 11B). 544 
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These N2 areas corresponded to a phytoplankton community still blooming while the N1 545 

anomaly areas might be at a stage of late blooming, in which conditions fit cryptophyceae 546 

development and grazing (cells of Myrionecta rubra were observed when using the Image in 547 

Flow, not shown). These organisms were found dominating the areas surrounding the Dogger 548 

bank from observations and counts carried out by Nielsen et al. (1993) during the same 549 

period. 550 

 551 

 In conclusion, our study of phytoplankton community structure distribution 552 

resolved at the sub mesoscale evidenced the importance of the North Sea hydrological 553 

context. Significant differences between the two sets of anomalies observed during the 554 

sampling period are mainly due to cryptophyte like cells and pico-nanophytoplankton size 555 

class cells.  This daily scale resolution thanks to high resolution techniques meeting single cell 556 

and remote technologies will help in understanding the role of circulation and hydrological 557 

properties of the water masses on the phytoplankton composition, succession schema, 558 

spreading and bloom triggering and collapsing.   559 
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Figure legends: 783 

 784 

Figure 1. Flow cytometry sampling points superimposed on the mixed layer depth (m) 785 

calculated with modeled temperature of the water column from the FOAM AMM7 (average 786 

values from the 8 to the 12 May 2011). Chosen stations for phytoplankton pictures collection 787 

with the flow cytometer are labeled (ST=station, ST4, ST6, ST13). Yellow squares correspond 788 

to MODIS matching points for non-turbid waters selected between 6 h and 18 h.  789 

Figure 2. A. Temperature and B. Salinity measured with the Pocket Ferry Box. 790 

Presented data are selected to match the scanning flow cytometry collected samples. Grey 791 

bars delimit the traversed marine areas: H= Humber, T=Tyne, D=Dogger, Th=Thames. 792 

Figure 3. A. TFLO vs TFLR (a.u.) cytogram with a FLR trigger level at 10 mV 793 

showing the PicoORG cluster, the PicoRED cluster, the MicroLowORG cluster. B. Maximum 794 

SWS (a.u.) vs TFLR (a.u.) cytogram with a FLR trigger level at 10 mV showing the 795 

NanoSWS cluster, the NanoRED2 cluster and 3 µm beads. C. TFLR (a.u.) vs TFWS (a.u.) 796 

cytogram with a FLR trigger level at 10 mV showing the NanoRED1 cluster, the NanoRED2 797 

cluster, and the Micro1 cluster. D. TFLO vs TLFR (a.u.) cytogram with a FLR trigger level of 798 

25 mV showing the NanoORG1, the MicroORG, the Micro1 and Micro2 clusters and 10 µm 799 

beads. Clusters colors are consistent across different panels. 800 

Figure 4. Pictures of cells from the scanning flow cytometer image in flow device 801 

collected within the Micro2 cluster. Surface closest stations where Micro2 abundance was the 802 

highest (station 4, 6, and 13) are illustrated. 803 

Figure 5. Abundance (10
3
 cells.cm

-3
) of each phytoplankton cluster resolved with the 804 

scanning flow cytometer. Scales are not homogenised for the purpose of distribution evidence. 805 

Grey bars separate the traversed marine areas: H= Humber, T=Tyne, D=Dogger, Th=Thames. 806 
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Figure 6. Average estimated size for each phytoplankton cluster resolved with the 807 

scanning flow cytometer. Scales are not homogenised for the purpose of distribution evidence. 808 

Grey bars separate the traversed marine areas: H= Humber, T=Tyne, D=Dogger, Th=Thames. 809 

Figure 7. Scanning flow cytometer Total red fluorescence per unit volume (SFC 810 

TFLR.cm
-3

) for each phytoplankton cluster. Superimposed large black squares are the 811 

matching points with MODIS pixels in non-turbid waters between 6 h and 18 h. Diamonds 812 

correspond to the night SFC samples matching MODIS passage but not taken into account 813 

because of the possible differences between day and night community structures. Scales are 814 

not homogenised for the purpose of distribution evidence. Grey bars separate the traversed 815 

marine areas: H= Humber, T=Tyne, D=Dogger, Th=Thames. 816 

Figure 8. SFC Total TFLR per cm
-3

 compared to chl a analyses using different 817 

instruments. Refer to Material and Methods for a detailed description of each method. Blue 818 

triangles: AOA fluorometer PFB (chla µg.dm
-3

). Black diamonds: SFC Total TFLR.cm
-3

 819 

(a.u..cm
-3

). Green triangles: Turner fluorometer (chla µg.dm
-3

). Grey triangles: HPLC (chla 820 

µg.dm
-3

). Red squares: MODIS chla values corresponding to non-turbid waters (after 821 

Vantrepotte et al., 2012) and selected between 6 h and 18 h (chla µg.dm
-3

).  822 

Figure 9. A. Within sum of squares for the optimal number of K-nodes selection 823 

corresponding to PHYSAT anomalies. B. Cluster dendrogram defining the two main nodes 824 

grouping similar PHYSAT anomalies matchups (N1 and N2). C and D. Corresponding Ra 825 

(Radiance Anomaly) spectra for N1 and N2. Red dashed lines correspond to the minima and 826 

maxima values of the spectra as described in Table 3. 827 

Figure 10. A and B. Clusters proportional contribution to the Total TFLR.cm
-3

 within 828 

each PHYSAT anomaly (N1 and N2). C and D. Within each anomaly, clusters TFLR.cm
-3 

829 

proportional difference to its median value calculated on the entire matching points dataset. 830 
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Wilcoxon rank test was run for each cluster between the two anomalies. ***p<0,001; 831 

**p<0,01; *p<0,1. 832 

Figure 11. Boxplots within each PHYSAT anomaly (N1, N2) of A. Temperature (°C), 833 

B. Salinity, C. Chlorophyll a (as estimated from MODIS L3 Binned) and D. Total TFLR 834 

(a.u..cm
-3

). Wilcoxon rank test was run for each parameter between the two anomalies. 835 

***p<0,001; **p<0,01; *p<0,1. 836 

Figure 12. A and B. Frequency of occurrence of the two distinct anomalies (N1 and 837 

N2) over the North Sea during the sampling period (08/05/2011 to the 12/05/2011). Yellow 838 

squares correspond to MODIS matching points for non-turbid waters selected between 6 h 839 

and 18 h and used to distinguish N1 and N2 PHYSAT anomalies. 840 

Table 1. Minimal, maximal, average and standard deviation of abundance (cells.cm
-3

) 841 

for each defined phytoplankton cluster followed by the size estimated (µm) average ± 842 

standard deviation values. 843 

Table 2. Spearman‟s rank correlation coefficient between the different methods used 844 

for chlorophyll a estimates and with the Total TFLR from the scanning flow cytometer per 845 

unit volume. ***p<0,001; ** p<0,01. 846 

Table 3. Minimal and maximal radiance anomaly (Ra) values for each collected 847 

MODIS wavelength (nm) that characterizes the edges for the two PHYSAT radiance 848 

anomalies spectra (N1 and N2) observed in this study. 849 

 850 

 851 

 852 

 853 

 854 

 855 
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 856 

 857 

Table 1 858 

 859 

 860 

Cluster’s name 
Abundance                              

min-max (cells.cm-3) 
Average abundance ± SD 

(cells.cm-3) 
Average size ± SD                        

(µm) 

PicoORG 25 - 18710 1559 ± 2821 1.09 ± 0.17 

PicoRED 275 - 26960 5674 ± 4647 1.83 ± 0.32 

NanoRED1 97 - 7172 888 ± 942 2.33 ± 0.33 

NanoORG <10 - 759 87 ± 150 5.8 ± 2.1 

NanoSWS < 10 - 376 99 ± 93 10 ± 2.56 

NanoRED2 200 - 54880 4187 ± 7878 6.4 ± 1.4 

Micro1 <10 - 4392 420 ± 769 16.9 ± 5.6 

MicroORG <10 - 306 48 ± 60 23.5 ± 10 

MicroLowORG <10 - 687 69 ± 111 23.75 ± 8.6 

Micro2 <10 - 420 37 ± 59 65.5 ± 21.0 

 861 

 862 

 863 

 864 

 865 

 866 

 867 

 868 

 869 

 870 

 871 

 872 

 873 

 874 

 875 
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 876 

 877 

Table 2. 878 

 879 

 

Spearman’s correlation coefficient 

SFC 
TFLR.cm-3 

(a.u.) 
n=247 

AOA fluorometer 
(µg.dm-3) 

n=254 

HPLC chla 
(µg.dm-3) 

n=12 

Turner chla 
(µg.dm-3) 

n=9 

SFC 
TFLR.cm-3 (a.u.) 

1 0,93*** 0,82*** 0,82*** 

AOA fluorometer 
(µg.dm-3)  

1 0,86*** 0,82*** 

HPLC chla 
(µg.dm-3) 

  

1 0,98*** 

Turner chla 
(µg.dm-3)  

1 

 880 

 881 

 882 

 883 

 884 

 885 

 886 

 887 

 888 

 889 

 890 

 891 

 892 

 893 

 894 

 895 

 896 

 897 

 898 
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 899 

Table 3. 900 

 901 

 902 

Node 
Ra (412) nm 

Min 

Ra (412) nm 

Max 

Ra  (443) nm 

Min 

Ra  (443) nm 

Max 

Ra  (488) nm 

Min 

Ra  (488) nm 

Max 

Ra  (531) nm 

Min 

Ra  (531) nm 

Max 

N1 (n=5) 1.06 1.30 0.96 1.24 0.91 1.10 0.91 1.09 

N2 (n=10) 0.74 0.97 0.75 0.93 0.70 0.89 0.72 0.93 

 903 

 904 

 905 

 906 

 907 

 908 

 909 

 910 

 911 

 912 

 913 

 914 

 915 
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 924 

 925 

 926 

 927 
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