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Abstract

The biological composition of the material exported to a moored sediment trap located
under the winter mixed layer of the naturally-fertilized Kerguelen Plateau in the Southern
Ocean was studied over an annual cycle. Despite iron availability in spring, the annual
particulate organic carbon (POC) export (98.2 mmol m?) at 289 m was low but annual
biogenic silica export was significant (114 mmol m™). This feature was related to the
abundance of empty diatom cells and the ratio of full:empty cells exerted a first order control
in BSi:POC export stoichiometry of the biological pump. Chaetoceros Hyalochaete spp. and
Thalassiosira antarctica resting spores were responsible for more than 60 % of the annual
POC flux that occurred during two very short export events of <14 days in spring-summer.
Relatively low diatom fluxes were observed over the remainder of the year. Faecal pellet

contribution to annual carbon flux was low (34 %) and reached its seasonal maximum in
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autumn and winter (> 80 %). The seasonal progression of faecal pellet types revealed a clear
transition from small spherical shapes (small copepods) in spring, larger cylindrical and
ellipsoid shapes in summer (euphausiids and large copepods) and finally large tabular shapes
(salps) in autumn and winter. We propose in this High Biomass, Low Export (HBLE)
environment that small, but highly silicified and fast-sinking resting spores are able to bypass
the intense grazing pressure and efficient carbon transfer to higher trophic levels that are
responsible for the low fluxes observed the during the remainder of the year. More generally
our study also provides a statistical framework linking the ecological succession of diatom
and zooplankton communities to the seasonality of carbon and silicon export within an iron-

fertilized bloom region in the Southern Ocean.
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1 Introduction

The Southern Ocean is the place of exposure of old upwelled waters to the atmosphere and
the formation of mode waters, thereby ventilating an important part of the global Ocean and
playing a central role in distributing heat, carbon and nutrients in the global Ocean (Sarmiento
et al., 2004; Takahashi et al., 2012; Sallée et al., 2012). Silicon trapping occurs in the
Southern Ocean because silicon is stripped out of the euphotic zone more efficiently than
phosphorous and nitrogen (Holzer et al., 2014). It is generally acknowledged that regional
variations in plankton community structure are responsible for variations in nutrient
stoichiometry in the Southern Ocean (Jin et al., 2006; Weber and Deutsch, 2010) and that the
biological pump is a central process regulating this stoichiometry (Ragueneau et al., 2006;
Salter et al., 2012; Primeau et al., 2013). These characteristics emphasize the importance of
biological processes in the Southern Ocean waters for the availability of silicic acid and
nitrate (Sarmiento et al., 2004; Dutkiewicz et al., 2005) as well as phosphate (Primeau et al.,
2013) at lower latitudes, thereby regulating part of the productivity of the global Ocean. It has
been proposed that change in the uptake ratio of silicate and nitrate by Southern Ocean
phytoplankton in response to increased iron availability during the Last Glacial Maximum
could have played a substantial role in varying atmospheric CO, (Brzezinski et al., 2002;

Matsumoto et al., 2002).

Primary production in the Southern Ocean is regulated by macro- and micronutrient
availability (Martin et al., 1990; Moore et al., 2001; Nelson et al., 2001; Moore et al., 2013)
and light-mixing regime (Venables and Moore, 2010; Blain et al.,, 2013). The complex
interaction of these factors introduces strong spatial heterogeneity in the distribution of
primary producer biomass (Arrigo et al., 1998; Thomalla et al., 2011). In particular, High
Nutrient, Low Chlorophyll (HNLC) areas in the open ocean contrast strongly with highly

productive, naturally fertilized, blooms located downstream of island systems such as the
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Keguelen Plateau (Blain et al., 2001, 2007), Crozet Islands (Pollard et al., 2002) and South
Georgia (Park et al., 2010; Tarling et al., 2012). The diatom-dominated phytoplankton blooms
characteristic of these island systems are the product of multiple environmental conditions
favorable for their rapid growth (Quéguiner, 2013), which appear to promote POC export
from the mixed layer (Nelson et al., 1995; Buesseler, 1998). However the ecological traits of
certain species can impact the BSi:POC export stoichiometry (Crawford, 1995; Salter et al.,
2012), and may therefore control the biogeochemical function of a particular region of the

Southern Ocean (Smetacek et al., 2004; Assmy et al., 2013)

Among the numerous ecological characteristics of plankton communities, algal
aggregation (Jackson et al., 2005; Burd and Jackson, 2009), mesozooplankton faecal pellets
(Lampitt et al., 1990; Wilson et al., 2008, 2013), vertical migrations of zooplankton and
mesopelagic fish (Jackson and Burd, 2001; Steinberg et al., 2002; Davison et al., 2013),
radiolarian faecal pellets (Lampitt et al., 2009), and diatom resting spore formation, (Salter et
al., 2012; Rynearson et al., 2013) have all been highlighted as efficient vectors of carbon
export out of the surface mixed layer. The challenge in describing the principal ecological
processes regulating POC export fluxes is the requirement to have direct access to sinking
particles. Many of the processes described occur in the upper layers of the ocean, where
circulation can strongly influence the reliability of sediment trap collections (Baker et al.,
1988; Buesseler et al., 2007). Short term deployments of free drifting sediment traps can be an
efficient solution to minimize the hydrodynamic bias (Buesseler et al., 2000; Lampitt et al.,
2008) but spatial and temporal decoupling of production and export needs to be considered
(Salter et al., 2007; Rynearson et al., 2013). In regions characterized by relatively weak
circulation, moored sediment trap observations in areas of naturally fertilized production can
track temporal succession of exported material from long-term (several month) blooms

(Westberry et al., 2013). Such an approach can partially resolve how ecological processes in
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plankton communities regulate POC and biomineral export out of the mixed layer (Salter et
al., 2012; Salter et al., 2014), although selective processes during export may modify original

surface features

The central Kerguelen Plateau is a good environment to study the ecological vectors of
export with sediment traps due to the naturally fertilized recurrent bloom (Blain et al., 2007)
and shallow bathymetry that breaks the strong Antarctic Circumpolar Current flow (Park et
al., 2008, 2014). As reported in the companion paper (Rembauville et al., 2014), annual POC
export measured by the sediment trap deployment at 289 m beneath the southeastern iron-
fertilized Kerguelen bloom is 98+4 mmol m? y™*. This downward flux of carbon may account
for as little as ~1.5 % of seasonal net community carbon production (6.6+2.2 mol m?,
Jouandet et al., 2008) and <2 % of seasonally-integrated POC export estimated at 200 m from
a dissolved inorganic carbon budget (5.1 molC m¥, Blain et al., 2007). Although
hydrodynamical and biological biases related to the shallow moored sediment trap
deployment may partly explain the low POC fluxes we report, independent measurements of
low POC fluxes (>300 m) at the same station (Ebersbach and Trull, 2008; Jouandet et al.,
2014) are consistent with the hypothesis of flux attenuation below the winter mixed layer.
These observations suggest a ‘High Biomass, Low Export’ (HBLE, Lam and Bishop, 2007)
status characterizing the productive Kerguelen Plateau. HBLE status appears to be a common
feature of other productive sites of the Southern Ocean (Lam and Bishop, 2007; Ebersbach et
al., 2011; Lam et al., 2011; Maiti et al., 2013; Cavan et al., 2015). Describing the temporal
succession of POC and BSi flux vectors from the Kerguelen Plateau is of interest to increase

our understanding of the ecological processes characterizing HBLE environments.

Numerous studies have described diatom fluxes from sediment trap records in the
Southern Ocean (Leventer and Dunbar, 1987; Fischer et al., 1988; Abelmann and Gersonde,

1991; Leventer, 1991; Gersonde and Zielinski, 2000; Fischer et al., 2002; Pilskaln et al.,
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2004; Ichinomiya et al., 2008; Salter et al.,, 2012). Highest diatom fluxes recorded by
sediment traps (>10° valves m2 d™* ) were observed in the Seasonal Ice Zone (SIZ) near
Prydz Bay and Adélie Land and were dominated by Fragilariopsis kerguelensis and smaller
Fragilariopsis species such as Fragilariopsis curta and Fragilariopsis cylindrus (Suzuki et
al., 2001; Pilskaln et al., 2004). These high fluxes occured in summer and were associated
with the melting of sea ice. Changes in light availability and melt water input appear to
establish favorable conditions for the production and export of phytoplankton cells (Romero
and Armand, 2010). In the Permanently Open Ocean Zone (POOZ), highest diatom fluxes
recorded were two orders of magnitude lower ~10 valves m 2 d ! (Abelmann and Gersonde,
1991; Salter et al., 2012; Grigorov et al., 2014) and typically represented by F. kerguelensis
and Thalassionema nitzschioides. One notable exception is the naturally iron-fertilized waters
downstream of the Crozet Plateau where resting spores of Eucampia antarctica var.

antarctica dominated the diatom export assemblage (Salter et al., 2012).

Other studies have reported faecal pellet contribution to POC fluxes in the Southern
Ocean (Dunbar, 1984; Wefer et al., 1988; Wefer et al., 1990; Wefer and Fisher, 1991,
Dubischar and Bathmann, 2002; Suzuki et al., 2001,2003; Accornero and Gowing, 2003;
Schnack-Schiel and Isla, 2005; Gleiber et al., 2012) with a particular emphasis on shelf
environments where faecal pellet contribution to POC flux was typically higher than in the
oceanic regions (Wefer et al., 1990; Wefer and Fischer, 1991; Schnack-Schiel and Isla, 2005).
In the Ross Sea, a northward decreasing contribution to carbon flux of 59 %, 38 % and 15 %
for southern, central and northern areas was reported from 235 m sediment traps deployments
(Schnack-Schiel and Isla, 2005). Faecal pellets in the Ross Sea were generally represented by
larger shapes with only 2 to 3 % of them present as small spherical or ellipsoid shapes and
total faecal pellet flux was slightly higher than 10° pellets m? d*. High faecal pellet

contribution to carbon fluxes (> 90 %) have been observed in the Bransfield Strait and the
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Marginal Ice Zone of the Scotia Sea, and have been linked to the abundance of the Antarctic
krill Euphausia superba, resulting in maximum recorded fluxes of >5 x 10° pellets m? d™*
(Bodungen, 1986; von Bodungen et al., 1987; Wefer et al., 1988). The strong contribution of
krill faecal pellets to carbon flux in the western Antarctic Peninsula was confirmed over
several years of observations, with the highest contributions to carbon flux succeeding the

phytoplankton bloom in January and February (Gleiber et al., 2012).

In the present study, particulate material exported from the mixed layer in the naturally
fertilized Permanently Open Ocean Zone (POOZ) of the Kerguelen Plateau is described from
an annual sediment trap mooring. To develop our understanding of seasonal variability in the
ecological flux vectors and particle biogeochemistry we investigate the link between the
chemical (POC, PON, BSi) and biological (diatom species and faecal pellet types)
components of exported particles. Furthermore, we advance the limitations of previous studies
by explicitly distinguishing full and empty diatom cells in the exported material and thereby

determine species-specific roles for carbon and silica export.
2 Materials and methods

As part of the multidisciplinary research program KEOPS2 a moored sediment trap
(Technicap PPS3) was deployed at 289 m (seafloor depth: 527 m) at the representative bloom
station A3 (50°38.3° S — 72°02.6 E) for a period of 321 days (21 October 2011 to 7
September 2012). The sediment trap mooring was located within an iron-fertilized bloom site
on the southern part of the Kerguelen Plateau (Blain et al., 2007). The cup rotation dates of
the sediment trap are listed in Table 1. Details of sediment trap design, hydrological
conditions, sample processing, POC and PON analyses and surface chlorophyll a data
extraction are described in a companion paper (Rembauville et al., 2014). Comparison with

thorium-based estimates of carbon export suggests a trapping efficiency of 15-30 % relative to
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the proxy, although strong particle flux attenuation between 200 m and the trap depth (289 m)
might also contribute to the low fluxes. We therefore interpret our results to accurately reflect
the relationships between the biological and geochemical signals of the material caught by the
sediment trap, which we acknowledge may not necessarily represent the entire particle export

at 289 m.

2.1 Biogenic and lithogenic silicon analyses
For the analysis of biogenic silica (BSi) and lithogenic silica (LSi), 2 to 8 mg of freeze-dried
material were weighed (Sartorius precision balance, precision 10 g) and placed into falcon
tubes. The extraction of silicon from biogenic and lithogenic particle phases was performed
following the Ragueneau et al. (2005) triple NaOH/HF extraction procedure. Silicic acid
(Si(OH),4) resulting from NaOH extractions was measured automatically on a Skalar 5100
autoanalyzer whereas Si(OH), resulting from HF extraction was measured manually on a
Milton Roy Spectronic 401 spectrophotometer. Si(OH), analyses were performed
colorimetrically following Aminot and Kerouel (2007). Standards for the analysis of samples
from the HF extraction were prepared in an HF/H3BO, matrix, ensuring the use of an
appropriate calibration factor that differs from Milli-Q water. The contribution of LSi to the
first leaching was determined by using Si:Al ratios from a second leaching step (Ragueneau et
al., 2005). Aluminum concentrations were measured by spectrophotometry (Howard et al.,
1986). The triple extraction procedure is optimized for samples with a BSi content < 10 pmol.
For some samples (cup #3, #4, #6, #7, #8, #9 and #10) the Si:Al molar ratio in the second
leachate was high (>10) indicating the incomplete dissolution of BSi. For these samples it was
not possible to use Si:Al ratios to correct for LSi leaching. A crustal Si:Al mass ratio of 3.74
(Taylor and McClennan, 1986) was therefore used and applied to all the samples for
consistency. Precision (estimated from measurement of 25 independent samples) was 13

nmol/mg, which represents <1 % of the BSi content in all samples and 14 % of the mean LSi
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content. Blank triplicates from each extraction were below the detection limit. BSi results
from this method were compared to the kinetic method from DeMaster (1981). There was an
excellent agreement between the two methods (Spearman rank correlation, n = 12, p <0.001,
BSi kinetic = 1.03 BSi iple extraction - 0.08, data not shown). To estimate the contribution of opal
to total mass flux, we assumed an opal composition of SiO, 0.4H,0 (Mortlock and Froelich,
1989).

In order to correct for the dissolution of BSi during deployment and storage, Si(OH),
excess was analyzed in the overlying preservative solution. Particulate BSi fluxes were
corrected for dissolution assuming that excess silicic acid originated only from the dissolution
of BSi phases. Si(OH), excess was always <10 % of total (dissolved + particulate) Si
concentrations. Error propagation for POC, PON, BSi fluxes and molar ratios were calculated
as the quadratic sum of the relative error from triplicate measurements of each variable.

2.2 Diatom identification, fluxes and biomass

Many sediment trap studies reporting diatom fluxes in the Southern Ocean use a
micropaleontological protocol that oxidizes organic material (KMnQy4, HCI, H,0,) thereby
facilitating the observation of diatom valves (see Romero et al., 1999, 2000 for a description).
In the present manuscript, our specific aim was to separately enumerate full and empty diatom
cells captured by the sediment trap to identify key carbon or silicon exporters amongst the
diatom species. We therefore used a biological method following a similar protocol to that of
(Salter et al., 2007, 2012). To prepare samples for counting, 2 mL of a gently homogenized
1/8 wet aliquot were diluted in a total volume of 20 mL of artificial seawater (S = 34). In
order to minimize the exclusion and/or breaking of large or elongated diatom frustules (e.g.
Thalassiothrix antarctica), the pipette tip used for sub-sampling was modified to increase the
tip aperture to >2 mm. The diluted and homogenized sample was placed in a Sedgewick-

Rafter counting chamber (Pyser SGE S52, 1 mL chamber volume). Each sample was
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observed under an inverted microscope (Olympus 1X71) with phase contrast at 200x and 400x
magnification. Diatom enumeration and identification was made from one quarter to one half
of the counting chamber (depending on cell abundance). The total number of diatoms counted
was >400 in all the cups with the exception of the winter cup #12 (May — September 2012)
where the diatom abundance was low (<100 diatoms counted). Diatoms species were
identified following the recommendations of Hasle and Syvertsen (1997). All whole, intact
and recognizable frustules were enumerated. Full and empty cells were counted separately,

following suggestions in Assmy et al. (2013).

Due to the lower magnification used and preserved cell contents sometimes obscuring
taxonomic features on the valve face, taxonomic identification to the species level was
occasionally difficult and necessitated the categorizing of diatom species to genus or taxa
groupings in the following manner: Chaetoceros species of the subgenus Hyalochaete resting
spores (CRS) were not differentiated into species or morphotypes but were counted separately
from the vegetative cells; Fragilariopsis separanda and Fragilarsiopsis rhombica were
grouped as Fragilariopsis separanda/rhombica; Membraneis imposter and Membraneis
challengeri and species of the genera Banquisia and Manguinea were denominated as
Membraneis spp. (Armand et al., 2008a); diatoms of the genus Haslea and Pleurosigma were
grouped as Pleurosigma spp.; all Pseudo-nitzschia species encountered were grouped as
Pseudo-nitzschia spp.; Rhizosolenia antennata and Rhizosolenia styliformis were grouped as
Rhizosolenia antennata/styliformis; large and rare Thalassiosira oliverana and Thalassiosira
tumida were grouped as Thalassiosira spp.; Thalassiosira antarctica resting spores (TRS)
were identified separately from the vegetative cells; small centric diatoms (<20 pm)
represented by Thalassiosira gracilis and other Thalassiosira species were designated as
Small centrics (< 20um); and finally large and rare centrics including Azpeitia tabularis,

Coscinodiscus spp. and Actinocyclus curvatulus were grouped as Large centrics (>20 um).
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Full and empty frustules of each species or taxa grouping were distinguished and enumerated
separately. The cell flux for each diatom species or taxa grouping was calculated according to

Equation (1):

1 1 .
Cell flux = Ngjge X d X 8 X Vg X PRTTRS P X chamber fraction Q)

Where Cell flux is in valves m? d™*, Ngis: is the number of cells enumerated for each diatom
classification, d is the dilution factor from the original wet aliquot, 8 is the total number of
wet aliquots comprising one sample cup, V¢ is the volume of each wet aliquot, 0.125 is the
Technicap PPS/3 sediment trap collecting area (m?), days is the collecting period, chamber
fraction is the surface fraction of the counting chamber that was observed (one quarter or one
half). The annually integrated full and empty diatom flux for each species was calculated

assuming as follows:

Annual flux(x) = Zl-lfl(Flux(x)i X daysl-) ()

Where Annual flux) is the annually integrated flux of a full or empty diatom species x (cell
m? y™h), Fluxwy is the full or empty flux of this species in the cup number i (cell m? d*) and
days; is the collecting time for the cup number i (d). The calculations assume negligible export
occurred during the month of September which was not sampled by the sediment trap. We
consider this assumption reasonable based on the preceding flux profile and low concentration
of satellite-derived chlorophyll a (Rembauville et al. 2014).

We directly compared the micropaleontological (as used in Rigual-Hernandez et al.
(2015)) and biological counting techniques in our sediment trap samples and noted the loss of
several species (Chaetoceros decipiens, Chaetoceros dichaeta, Corethron pennatum

Corethron inerme, Guinardia cylindrus and Rhizosolenia chunii) under the
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micropaleontological technique. We attribute this to the aggressive chemical oxidation
techniques used to “clean” the samples as well as the centrifugation steps which may also
selectively destroy or dissolve certain frustules. For the species that were commonly observed
by both techniques, total valve flux was in good agreement (Spearman rank correlation, n =
12, p = 091, p < 0.001, data not shown) although consistently lower with the
micropaleontolgical technique, probably due to the loss of certain frustules described above.

Full details of this method comparison are in preparation for a separate submission.

Diatoms species that contributed to more than 1 % of total full cell flux were
converted to carbon flux. For E. antarctica var. antarctica, Fragilariopsis kerguelensis,
Fragilariopsis separanda/rhombica, Pseudo-nitzschia spp. and Thalassionema nitzschioides
spp., we used published cell-specific carbon content (Celle, pgC cell®) for diatoms
communities of the Kerguelen Plateau from Cornet-Barthaux et al. (2007). As Chaetoceros
Hyalochaete resting spores (CRS) and Thalassiosira antarctica resting spores (TRS) largely
dominated the full diatom fluxes (>80%), an appropriate estimation of their carbon content
based on the specific sizes observed in our dataset was required for accurate quantification of
their contribution to carbon fluxes. Biomass calculations for both CRS and TRS were
determined from >50 randomly selected complete resting spores observed in splits from cups
#4 to #11 (December 2011 to May 2012). Morphometric measurements (pervalvar and apical

axis) were made using the Fiji image processing package (available at http://fiji.sc/Fiji) on

images taken with an Olympus DP71 camera. Cell volumes followed appropriate shape
designated calculations from Hillebrand et al. (1999) (Table 2). The cell volume coefficient of
variation was 46 % and 54 % for CRS and TRS, respectively. CRS carbon content was
estimated from the derived cell volume using the volume to carbon relationship of 0.039
pmolC um™ established from the resting spore of Chaetoceros pseudocurvisetus (Kuwata et

al., 1993), leading to a mean Cellc value of 227 pgC cell™ (Table 2). There is currently no
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volume to carbon relationship for Thalassiosira antarctica resting spores described in the
literature, therefore, the allometric relationship for vegetative diatoms (Menden-Deuer and
Lessard, 2000) was used to calculate our TRS carbon content, giving a mean Cellc value of

1428 pgC cell™ (Table 2). Full diatom fluxes were converted to carbon fluxes as follows:

Flux X Cellg(x)
M1z, % 10°

C flux(x) = (3)

where C fluxy is the carbon flux carried by each diatom species x (mmol C m? d™), Flux is
the full cell numerical flux of species x (cell m? d%), Cellc is the carbon content of species x
(pgC cell™) and Myoc is the molecular weight of **C (12 g mol™) and 10° is a conversion factor

from pmol to mmol.
2.3 Faecal pellet composition and fluxes

To enumerate faecal pellets an entire 1/8 aliquot of each sample cup was placed in a gridded
petri dish and observed under a stereomicroscope (Zeiss Discovery V20) coupled to a camera
(Zeiss Axiocam ERc5s) at 10x magnification. Photographic images (2560 x 1920 pixels, 3.49
um pixel™) covering the entire surface of the petri dish were acquired. Following Wilson et al.
(2013), faecal pellets were classified into five types according to their shape: spherical, ovoid,
cylindrical, ellipsoid and tabular. The flux of each faecal pellet class (nb m? d™) was

calculated as follows:

1 1
Faecal pellet flux = Ngp X8 X 58 X 2ays

(4)

where Ngp is the number of pellets within each class observed in the 1/8" aliquot. The other
constants are as described in Eq. (1). Individual measurements of the major and minor axis for
each faecal pellet were performed with the Fiji software. The total number of spherical, ovoid,

cylindrical, ellipsoid and tabular faecal pellets measured was 4041, 2047, 1338, 54 and 29,
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respectively. Using these dimensions, faecal pellet volume was determined using the
appropriate shape equation (e.g. sphere, ellipse, cylinder, ovoid/ellipse) and converted to
carbon using a factor of 0.036 mgC mm™ (Gonzalez and Smetacek, 1994). Due to the
irregularity of the tabular shapes preventing the use of single equation to calculate their
volume, a constant value of 119 pgC pellet™ representing a midrange value for tabular shapes
(Madin, 1982), was applied to tabular faecal pellets (Wilson et al., 2013). This value was
appropriate because the observed tabular faecal pellets were within the size range reported in
Madin (1982). Ranges and mean values of faecal pellet volumes and carbon content are
reported in Table 3. Faecal fluff and disaggregated faecal pellets were not considered in these
calculations because quantitative determination of their volume is difficult. We acknowledge
that fragmentation of larger pellets may represent an artifact of the sample splitting procedure.
Alternatively, their presence may also result from natural processes within the water column,
although dedicated sampling techniques (e.g. polyacrylamide gel traps) are required to make
this distinction (Ebersbach et al., 2014, 2011; Ebersbach and Trull, 2008; Laurenceau et al.,
2014). Consequently our present quantification of faecal pellet carbon flux should be

considered as lower-end estimates.

The precision of our calculations depends on the reliability of carbon-volume
conversion factors of feacal pellets, which vary widely in the literature, as well as variability
in diatom resting spore volumes (Table 2). To constrain the importance of this variability on
our quantitative estimation of C flux, we calculated upper and lower error bounds by a

constant scaling of the conversion factors (+ 50 %).
2.4 Statistical analyses

Correspondence analysis was performed to summarize the seasonality of diatom export

assemblages. This approach projects the original variables (here full and empty cells) onto a
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few principal axes that concentrate the information of the Chi-squared (Chi®) distance
between both observations and variables (Legendre and Legendre, 1998). Chi? distance is
very sensitive to rare events. Consequently, only species with an annual mean flux higher than
10% of the mean annually integrated flux of all the species were retained in the
correspondence analysis. This selection was performed separately on full and empty cell
fluxes.

Partial least square regression (PLSR) analysis was used to examine the relationships
between ecological flux vectors (full and empty diatom cells and faecal pellet fluxes as
columns of the X matrix, cups being the rows) and bulk geochemical properties (POC flux,
PON flux, BSi flux, POC:PON and BSi:POC molar ratio and columns in the Y matrix) of the
exported material. The principle of PLSR is to decompose both the X and Y matrix into their
principal components using principal component analysis and then use these principal
components to regress Y in X (Abdi, 2010). PLSR is capable of modeling response variables
from a large set of predictors. The same filter as for the correspondence analysis (full- and

empty -cell fluxes >10 % of the total mean flux) was applied.
3 Results
3.1 Chemical composition of the settling material

Time series of the chemical signature of the settling material are presented in Fig. 1
and export fluxes are reported in Table 1. POC and PON fluxes are already reported and
discussed in the companion paper (Rembauville et al., 2014). BSi fluxes exhibited the same
seasonal pattern as POC fluxes (Fig. 1c) with low fluxes (< 1 mmol m? d*) except during the
two intense events (2.60 + 0.03 and 2.19 + 0.10 mmol m™ d*, mean # standard deviation).
LSi fluxes were highest in in spring (>10 umol m? d™ in cups #1 to #4, October to December

2011, Table 1). The contribution of LSi to total particulate Si was 5 % and 10 % respectively
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in cups #1 (October/November 2011) and #12 (May to September 2012) and lower than 3 %
the remainder of the year. The BSi:POC molar ratio was highest at the beginning of the
season (between 2.18 + 0.19 and 3.46 £ 0.16 in the first three cups from October to December
2011, blue line in Fig. 1c) and dropped to 0.64 = 0.06 in cup #5 (end December 2011),
following the first export event. BSi:POC ratios were close in the two export events (1.62
0.05 and 1.49 £ 0.08). The lowest BSi:POC ratio was observed in autumn in cup #11 (0.29 £
0.01, February to May 2012). Similarly, the opal contribution to total mass flux was highest in
spring (70.8 % in cup #2, November 2011) and lowest in autumn (21.5 % in cup #11,

February to May 2012).
3.2 Diatom fluxes

Diatoms from 33 taxa were identified and their fluxes determined across the 11-months time
series. Fluxes are reported in Table 4 and Table 5 for full and empty cells, respectively. Full
and empty cell fluxes for the total community and for the taxa that are the major contributors
to total diatom flux (eight taxa that account for >1 % of total cells annual export) are
presented in Fig. 2. The full and empty cell fluxes for each diatom species or taxa are reported

in Table 4 and 5, respectively.

During spring (cups #1 to #3, October to December 2011) and autumn/winter (cups
#11 and #12, February to September 2012) the total flux of full cells was < 5 x 10° cells m™ d°
! (Fig. 2a). The total flux of full cells increased to 5.5 and 9.5 x 10 cells m? d™* (cups #4 and
#9, December and end January respectively) during two episodic (<14 days) sedimentation
events. The two largest flux events (cups #4 and #9) were also associated with significant
export of empty cells with respectively 6.1 x 10" and 2.9 x 10’ cells m? d™* (Fig. 2a). For
Chaetoceros Hyalochaete spp. resting spores (CRS), full cells fluxes of 4 x 10 cells m™? d*

and 7.8 x 10’ cells m™ d™* accounted for 76 % and 83 % of the total full cell flux during these
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two events, respectively (Fig. 2b), whereas a smaller contribution of Thalassiosira antarctica
resting spores (TRS) (2.7 x 10° cells m2 d*, 5 % of total full cells) was observed during the
first event (Fig. 2h). CRS also dominated (79-94 %) the composition of full cells in the
intervening period (cups #5-#8, December 2011 to January 2012), although the magnitude of
cell flux was moderate (9 x 10° — 2.5 x 10’ cells m™? d™*) by comparison (Fig. 2b). In cup #4
(December 2011), the empty cell flux contained 61 % of C. Hyalochaete spp. vegetative
empty cells and 27 % of unidentified Small centrics (<20 pum) empty cells. In cup #9 (end
January 2012), the total empty cells flux contained 60 % of C. Hyalochaete spp. vegetative

stage and only 2 % of Small centrics (<20 pm) empty cells.

Fragilariopsis kerguelensis, and Fragilariopsis separanda/rhombica (Fig. 2d and 2e)
were mostly exported from spring through the end of summer (cups #1 to #10, October 2011
to February 2012) with total (full + empty) fluxes < 3 x 10° cells m™ d**, a value ~20 times
lower than the highest CRS fluxes recorded. During this time, these species were represented
by >50 % of empty cells. In autumn and winter, (cups #10 and #11, February to May 2012),
these species were only represented by low fluxes (< 0.5 x 10°® cells m? d*) of empty cells.
Thalassionema nitzschioides spp. fluxes were highest in spring and early summer (cups #1 to
#4, October to December 2011) with total fluxes comprised between 3.5 x 10° and 6.7 x 10°
cells m? d* (Fig. 2g). The remainder of the year, total flux was < 2 x 10° cells m™ d™* and was
essentially represented by full cells. Pseudo-nitzschia spp. were mostly represented by full
cells (Fig. 2f) with the highest flux of 1.2 x 10’ cells m™? d™* observed in the second intense
export event (cup #9, end January 2012). Eucampia antarctica var. antarctica total fluxes
were always represented by >50 % of full cells (Fig. 2c). Total cell fluxes of Eucampia
antarctica var. antarctica gradually increased from <1 x 10° to 1.3 x 10° cells m? d* from
spring to summer (cups #1 to #9, October 2011 to January 2012) and then decreased to a

negligible flux in winter (cup #12, May to September 2012). This species was observed as
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both the lightly silicified, chain-forming, vegetative form and the highly silicified winter
growth stage form. Both forms were observed throughout the year without specific seasonal
pattern. Small centric species (<20 um) were essentially represented by empty cells (Fig. 2i).
Their total fluxes were <4 x 10° cells m™? d™, except in the first export event (cup #4,

December 2011) where their flux represented a considerable export of 1.7 x 10" cells m? d™.

Diatoms and sampling cup projection on the first two axes from the correspondence
analysis is presented in Fig. 3. Chi? distance in the correspondence analysis is based on
frequency distribution, therefore the results of the analysis must be considered as
representative of the community composition as opposed to cell flux. The first two factors
accounted for the majority (75.6 %) of total explained variance. Early in the season (cups #1-
#3, October to mid-December 2011), during the period of biomass accumulation in the
surface (Fig 1a), diatom fluxes were characterized by empty cells of T. nitzschioides spp. and
F. kerguelensis. Full TRS cells were observed in cup #3 (end November 2011) following the
initial bloom decline. The first major flux event (cup #4, December 2011) contained mostly
TRS, empty Small centrics (< 20 um) cells and empty C. Hyalochaete spp. cells. The summer
flux period (cups #5 to #8, December 2011 to January 2012) primarily consisted of CRS,
although E. antarctica var. antarctica, Pseudo-nitzschia spp, and Thalassiothrix antarctica
were present as full cells and Plagiotropis spp., Membraneis spp., Pseudo-nitzschia spp. as
empty cells. The second major flux event (cup #9, end January 2012) was tightly associated
with CRS and full Pseudo-nitzschia spp. cells. Subsequent cups (#10 and #11, February to
May 2012) were characterized by full cells of E. antarctica var. antarctica and Thalassiotrix
antarctica and empty cells of Corethron inerme, P. alata, F. separanda/rhombica and F.
kerguelensis. Winter fluxes (cup #12, May to September 2012) were similar to the initial three

cups characterized primarily by empty cells of small diatom taxa. The centralized projection
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in Fig. 3 of full F. kerguelensis and T. nitzschioides spp. highlights their constant presence

throughout the annual record.

The total empty:full cell ratio is presented in Fig. 2a (blue line). This ratio was highest
in spring and early summer (cups #1 to #4, October to December 2011), ranging between 1.1
and 2.4, suggesting more empty cells to full cells. The ratio was lowest, representing
considerably more full cells to empty cells in cups #5 to #10 (December 2011 to February
2012) with values between 0.1 and 0.4. In autumn (cup #11, February to May 2012), the
empty:full ratio increased to 0.7. In the winter cup #12 (May to September 2012), the total
amount of full diatom cells was very low and therefore we could not calculate a robust
empty:full ratio. Across the time-series certain diatom taxa were observed exclusively as
empty cells, notably Chaetoceros atlanticus f. bulbosum, and Corethron pennatum. For
diatom taxa present as full and empty cells we calculated an annually integrated empty:full
ratio (Fig. 4) and arbitrarily defined threshold values of 2 (representing species mainly
observed as empty cells) and 0.5 (representing species mainly observed as full cells),
respectively. In decreasing order, the diatom taxa exhibiting empty:full ratios >2 were
Thalassiosira lentiginosa, Small centrics (<20 um), Proboscia alata, Rhizosolenia
antennata/styliformis, Chaetoceros decipiens, Corethron inerme, Dactyliosolen antarcticus,
Large centrics (>20 um), and Asteromphalus spp. The diatom taxa displaying an empty:full
ratio <0.5 were Thalassiothrix antarctica, Rhizosolenia simplex, CRS, Eucampia antarctica
var. antarctica, Thalassiosira spp. and Navicula spp. Species or grouped taxa with ratio
values falling between the thresholds <2 and >0.5 (R. chunii, through to C. dichaeta in Fig. 4)
were perceived as being almost equally represented by full and empty cells when integrated

annually across the time series.

3.3 Faecal pellet fluxes
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The seasonal flux of faecal pellet type, volume and their estimated carbon flux are
summarized in Fig. 5 and Table 6. Total faecal pellet flux was <2 x 10° pellets m? d* in
spring (cups #1 to #3, October to December 2011). Cups #4 and #5 (December 2011) were
characterized by the highest fluxes of 21.8 x 10°and 5.1 x 10° pellets m™? d™* (Fig. 5a, Table
6). Faecal pellet numerical flux decreased gradually from mid-summer (cup #5, December
2011) to reach a minimal value in winter (140 pellets m? d™ in cup #12, May to September
2012). In spring (cups #1 to #3, October to December 2011), spherical and cylindrical shapes
dominated the numerical faecal pellet fluxes. Ellipsoid and tabular shapes were absent from
these spring cups. The first export event (cup #4, December 2011), was numerically
dominated by the spherical shaped pellets, however the remainder of the summer (cups #5 to
#10, December 2011 to February 2012) contained spherical, ovoid and cylindrical shapes in
comparable proportions. Ellipsoid shapes were observed from mid-summer to autumn (cups
#7 to #11, January to May 2012) but their overall contribution to pellet flux was low (<6 %,
Table 6). Rare tabular shapes were observed in summer (cups #6 and #8, December and
January 2012) and their contribution to numerical fluxes was highest in autumn and winter

(cups #11 and #12, February to September 2012).

The median faecal pellet volume showed a seasonal signal with a maximum peak >5.5
x 10° pm® in mid-summer (cups # 6 to #8, mid-December to January 2012) and values <4 x
10° um?® the remainder of the year (Fig. 5b). Concomitantly with the highest median volume,
the largest variance in faecal pellet size was also observed in the summer (highest

interquartile values in Fig. 5b).

Total faecal pellet carbon flux was lowest in spring (<0.05 mmolC m™ d in cups #1
to #3, October to December 2011, Fig. 5c, Table 6). The highest total faecal pellet carbon flux
of nearly 0.5 mmolC m™ d* was observed during the first export event in cup #4 (December

2011) and was essentially composed of spherical shapes (83 %, Table 6). For the remainder of
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the summer (cups #5 to #10, December 2011 to February 2012), total faecal pellet carbon flux
was between 0.03 and 0.15 mmolC m™ d* with a dominant contribution of cylindrical,
ellipsoid and tabular shapes. In autumn and winter (cups #11 and #12, February to September
2012), faecal pellet carbon fluxes of 0.13 and 0.06 mmolC m™ d™* were strictly dominated by

tabular shapes (>90 % to total faecal pellet carbon fluxes, Table 6).
3.4 Statistical analysis of biological and biogeochemical signatures

The B correlation coefficients of standardized variables obtained from the PLSR
analysis are presented as a heatmap in Fig. 6. The full cell fluxes of all diatom taxa, in
addition to spherical and ovoid and ellipsoid faecal pellet fluxes were positively correlated to
POC and PON fluxes. By contrast, empty cell fluxes of F. kerguelensis, P. alata, T.
nitzschioides spp., T. lentiginosa and cyclindrical, ellipsoid and tabular pellet fluxes were
either uncorrelated or negatively correlated with POC and PON fluxes. Full- and empty-cell
fluxes of all diatom taxa were positively correlated with BSi fluxes, although this correlation
was notably weak for empty cells of C. inerme, P. alata and T. lentiginosa. Only spherical
and ovoid faecal pellets were positively correlated with BSi fluxes. Full cells fluxes of CRS
and E. antarctica var. antarctica were the most negatively correlated with BSi:POC molar
ratio, whereas TRS, F. kerguelensis, T. nitzschioides spp. and T. lentiginosa full cells fluxes
were positively correlated. Spherical and ovoid faecal pellets were weakly and negatively
correlated with the BSi:POC molar ratio whereas the cylindrical, ellipsoid and tabular shapes
were more strongly negatively correlated to the BSi:POC molar ratio. All the biological

components exhibited weak or no correlations to the POC:PON molar ratio.

The first two latent vectors of the PLSR accounted for 61.3 % and 74.1 % of
cumulative variance in X (full and empty diatom and pellet fluxes) and Y (biogeochemical

properties). In order to visualize how the seasonal succession of flux vectors was related to
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the bulk geochemical properties of particles, the sampling cups, biological and chemical
factors were projected on the first two latent factors of the PLSR analysis (Fig. 7). Positively
projected on the first axis are the POC, PON and BSi fluxes, close to the export events
sampled in cups #4 (December 2011) and #9 (end January 2012). The closest biological
components comprise a complex assemblage of full and empty cells and spherical and ovoid
faecal pellet shapes. All the other cups are projected far from these two export events. The
second axis opposes the spring cups (#1 to #3, October to mid-December 2011) to the autumn
(#11, February to May 2012) and winter (#12, May to September 2012) cups. Empty frustules
of F. kerguelensis, T. lentiginosa and T. nitzschioides spp. are projected close to the spring
cups (#1 to #3, October to mid-December 2011) together with the BSi:POC molar ratio
whereas autumn (#11, February to May 2012) and winter cups (#12, May to September 2012)
are projected far from the BSi:POC molar ratio and close to the tabular and cylindrical faecal

pellet shapes.

3.5 Partitioning carbon fluxes among ecological vectors

We estimated the contribution of resting spores and faecal pellets to carbon flux, calculated
their cumulative values and compared them to measured values (Fig. 8a and 8b). A highly
significant correlation (Spearman rank correlation, n= 36, p = 0.84, p <0.001) was evident
between calculated and measured carbon flux suggesting that the main ecological flux vectors
observed in the sample were capable of explaining the seasonal variation in total POC flux.
Table 7 lists the contribution of each vector to the calculated flux. In cup #1 (October to mid-
November 2011), CRS and other diatoms dominated the calculated POC fluxes, with
respectively 25.3 % and 38.6 %. Diatoms other than spores dominated the calculated carbon
flux (35.4 %) together with cylindrical faecal pellets (36.4 %) in cup #2 (November 2011).
TRS dominated the POC fluxes (85.1 %) in cup #3 (November/December 2011). CRS strictly

dominated the calculated POC fluxes in summer (cups #4 to #10, December 2011 to February
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2012) with a contribution ranging from 46.8 % to 88.1 %. During the autumn and winter
(cups #11 and #12, February to September 2012), POC fluxes were almost exclusively
associated to tabular faecal pellets, 81 % and 93.3 %, respectively. At annual scale diatoms
resting spores (CRS and TRS), other diatoms and faecal pellets respectively accounted for
60.7 %, 5 % and 34.3 % of the calculated POC fluxes. Annual POC fluxes estimated from
ecological vectors considered here were slightly less than measured values (93.1 versus 98.2

mmol m™).
4 Discussion
4.1 The significance of resting spores for POC flux

Generally POC fluxes were <0.5 mmol m™ d™* with the notable exception of two pulsed (<14
days) export events of ~1.5 mmol m? d™ that accounted for ~40 % of annual POC export.
These two flux events were characterized by a noticeable increase and general dominance of
diatom resting spores. During both of these pulsed export events, cumulative Chaetoceros
Hyalochaete spp. resting spores (CRS) and Thalassiosira antarctica resting spores (TRS)
fluxes accounted for 66 % and 88 % of the measured POC flux, whereas total faecal pellet
flux accounted for 29 % and 5.2 %, respectively (Table 7). The combination of CRS and TRS
were responsible for 60.7 % of the annual calculated POC flux, a value ten times higher than
the contribution of other diatoms (5 %). We did not observe any full cells of the vegetative
stage of Chaetoceros Hyalochaete, a feature possibly related to its high susceptibility to
grazing pressure in the mixed layer (Smetacek et al., 2004; Quéguiner, 2013; Assmy et al.,
2013). Empty Chaetoceros Hyalochaete spp. cells were vegetative stages different in shape
from the resting spores. These empty frustules may be the remnants of vegetative stages
following spore formation. Alternatively, dissolution of the lightly silicified valves or girdle

bands of the vegetative cell could result in the rapid consumption of the cellular organic
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material in the upper water column and this may also explain the absence of full vegetative
cells in the sediment trap record. Our flux data reveal that small (10 to 30 um) and highly
silicified resting spores bypass the intense grazing pressure characterizing the base of the
mixed layer, and are the primary mechanism through which carbon and, to a lesser extent
silicon, is exported from the surface.

Numerous sediment trap studies have reported a strong contribution, if not dominance,
of CRS to diatom fluxes at depth in various oceanographic regions: firstly, in coastal
influenced regions (e.g. Antarctic Peninsula (Leventer, 1991), Bransfield Strait (Abelmann
and Gersonde, 1991), Gulf of California (Sancetta, 1995), the Omura Bay (Kato et al., 2003),
Santa Barbara basin (Lange, 1997), North Pacific Ocean (Chang et al., 2013) and the Artic
(Onodera et al., 2014)), secondly in upwelling-influenced regions (Eastern Equatorial Atlantic
(Treppke et al., 1996)) and finally in the open ocean in the subarctic Atlantic (Rynearson et
al., 2013). Similar to sediment trap observations, CRS are reported as dominant in surface
sediments of coastal regions (peri-Antarctic shelf and Antarctic sea ice (Crosta et al., 1997
Zielinski and Gersonde, 1997; Armand et al., 2005), the North Scotia Sea (Allen et al., 2005)
and east of Kerguelen Island (Armand et al., 2008b)), but also in upwelling-influenced
regions (the northeastern Pacific (Grimm et al., 1996), the northeast Pacific (Lopes et al.,
2006)) and finally in the open ocean (the North Atlantic, Bao et al., 2000). Moreover, the
annual POC export from the A3 station sediment trap at 289 m (98.2+4.4 mmol m? y*) falls
near annual estimates from deep sediment traps (>2000 m) located in the naturally fertilized
area downstream of the Crozet Islands (37-60 and 40-42 mmol m? y™*, Salter et al., 2012)
where fluxes were considered as mainly driven by resting spores of Eucampia antarctica var.
antarctica. Diatom resting spores are frequently observed in blooms heavily influenced by the
proximity of the coast. Major resting spores contribution to carbon fluxes was observed in

only one study in the open North Atlantic Ocean (Rynearson et al., 2013), but they are
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generally absent or very rare in open ocean sediment trap studies (Fischer et al., 2002;
Grigorov et al., 2014; Rigual-Hernandez et al., 2015). The frequent occurrence and
widespread distribution of diatoms resting spores in the neritic or coastal-influenced ocean

suggest their pivotal role in the efficient transfer of carbon to depth in these areas.

Chaetoceros resting spores have been reported to contain up to 10 times more carbon
than the vegetative forms (Kuwata et al., 1993) with no vacuole and high contents of lipids
and carbohydrates (Doucette and Fryxell, 1983; Kuwata et al., 1993). Moreover, CRS resist
grazing and have been found to lower copepods grazing pressure (Kuwata and Tsuda, 2005).
We suggest that diatom resting spores gather three essential characteristics for effective POC
export to the deep ocean: (1) they efficiently bypass the grazing pressure near the mixed layer
due to their morphological characteristics such as very robust frustules (CRS) or numerous
spines (TRS) (high export efficiency), (2) they are efficiently transferred to depth due to the
thick and dense frustule increasing sinking velocity and (3) their high carbon content is
protected from microbial degradation by the thick frustules (these last two points result in a
high transfer efficiency). The spatial distribution and formation of resting spores may
therefore be an integral ecological component defining the strength and efficiency of the
biological pump in specific regions. Nutrient depletion has been shown to trigger resting spore
formation in Chaetoceros Hyalochaete laboratory cultures (Garrison, 1981; Sanders and
Cibik, 1985; Kuwata et al., 1993; Oku and Kamatani, 1997) over relatively rapid timescales
(6 to 48 h, McQuoid and Hobson, 1996). Although Si(OH), depletion appears to be the most
likely biogeochemical trigger at the Kerguelen Plateau (from 24 pmol L™ in early spring to 2
pmol L™ in summer, (Mosseri et al., 2008; Closset et al., 2014)), other environmental factors
(iron or light availability) could influence resting spore formation. Notably, dissolved iron
concentration in the mixed layer rapidly decreases to 0.1~0.2 nmol L™ after the beginning of

the spring bloom at A3, however the vertical entrainment is much weaker in summer
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compared to spring (Bowie et al., 2014). Rynearson et al. (2013) reported the absence of
spores in the mixed layer despite a strict dominance into the trap samples. A resting spore
formation at some depth (possibly implying a light control) would explain the temporal
decoupling between the surface production tracked by the satellite in the surface layer (first
~20 meters) and the export events. Further work to establish seasonal dynamics of factors

linked to diatom life cycles and specifically the formation of resting spore is necessary.

4.2 Contribution of faecal pellets to POC flux

Although diatom resting spores are the primary vector for POC flux below the mixed
layer, faecal pellets were also important and accounted for 34.3 % of annual export. It has
been hypothesized that faecal pellets are the dominant flux component in High Biomass, Low
Export (HBLE) environments, where biomass is routed to higher trophic levels (Lam and
Bishop, 2007; Ebersbach et al., 2011). However, this hypothesis does not appear to be true for
the bloom of the central Kerguelen Plateau suggesting that faecal material is efficiently
reprocessed in the mixed layer, or that a significant part of the pellet flux is excreted below
the trap depth by vertically migrating zooplankton. Small spherical faecal pellets dominated
the annual numerical faecal pellet flux (53.8 %, Table 6). The short and intense export of
small spherical faecal pellets was concomitant with the first strong POC export in cup #4
(December 2011, Table 6). The significance of small spherical faecal pellets to POC flux is
somewhat uncharacteristic in comparison to other sediment trap records in shallow areas of
the Southern Ocean (Schnack-Schiel and Isla, 2005). They are possibly produced by small
cyclopoid copepods, like Oithona similis that are abundant in the POOZ (Fransz and
Gonzalez, 1995; Pinkerton et al., 2010). More specifically, O. similis represents >50 % of
mesozooplankton abundance at A3 in spring (Carlotti et al., 2015) has been observed at
station A3 in summer (Carlotti et al., 2008). Oithona species are known to be coprophagous

and play an important role in flux reprocessing (Gonzalez and Smetacek, 1994), which may
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partially contribute to the rapid flux attenuation observed by efficiently retaining carbon in the
mixed layer. This reprocessing feeding strategy might also explain the low faecal pellet flux
we observed (highest value of 21.8 x 10° pellet m d'*), which was two orders of magnitude
lower than the >5 x 10° pellet m™ d™ observed in neritic areas where euphausiids dominate
the mesozooplankton community (Bodungen, 1986; von Bodungen et al., 1987; Wefer et al.,

1988).

There were notable differences in faecal pellet type over the course of the season. The
transition from spherical and ovoid pellets in spring to larger cylindrical and tabular pellets in
summer presumably reflects shifts in dominant zooplankton species from small cyclopoid
copepods towards larger calanoid copepods, euphausiids and salps (e.g. Wilson et al., 2013).
Carlotti et al. (2015) report that mesozooplankton biomass doubled between October and
November 2011 and was three-fold higher in January 2005 (Carlotti et al., 2008). In spring,
Carlotti et al. (2015) observed that the small size fraction (300 — 500 pm) was numerically
dominated by Oithona similis (50 % of the total mesozooplankton assemblage), although the
larger size fractions dominated the mesozooplankton biomass (dominated by Clausocalanus
citer, and Rhicalanus gigas). This is consistent with the dominance of small spherical faecal
pellets and the lower contribution of cylindrical shapes we observed in spring and early
summer (cups #1 to #4, October to December 2011, Table 6). In summer (January 2005), the
mesozooplankton community was more diversified and comprised 21 % of small individuals
(Oithona sp and Oncea sp.), 20 % of medium-sized individuals (Clausocalanus sp and
Microcalanus sp.) and 21 % of large individuals (Calanus sp., Metrida sp., Paraeuchaeta sp.,
Pleuromama sp. and Rhincalanus sp.; Carlotti et al., 2008). As the median size of faecal
pellets increases, so does their relative contribution to carbon flux (Fig. 5b and 5d, Table 6).
Our observation of an increasing contribution of cylindrical faecal pellet shapes in summer

(cups #5 to #10, December 2011 to February 2012, Table 6) is consistent with the increasing
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contribution of large calanoid copepods to the mesozooplankton assemblages. We note that
pteropods showed the highest contribution to mesozooplankton assemblages at station A3 in
summer (16 % of total abundance, Carlotti et al., 2008). We associate this observation with
the large ellipsoid faecal pellet shape that was first observed in the sediment trap in cup #5
(end December 2011) and represented the highest contribution to faecal pellet carbon fluxes
in cup #9 (January/February 2012, Table 7). Tabular faecal pellets dominated the low POC
fluxes observed in the autumn and winter when chlorophyll a concentration was reduced to
background levels, although this interpretation should be taken with caution since a constant
and high carbon content was used for this shape. The increase in organic carbon content and
negative correlation between the abundance of cylindrical, ellipsoid and tabular faecal pellets
fluxes and the BSi:POC molar ratio suggests that large zooplankton producing these tabular
pellets (large copepods, euphausiids and salps) were not feeding directly on diatoms. During
the autumn and winter, microbial components other than diatoms must sustain the production
of these large zooplankton. Direct observation of faecal pellet content is beyond the scope of
the present study but would help to elucidate how seasonal trends of zooplankton feeding
ecology influence carbon and biomineral export. Moreover, dedicated studies are still needed
to document the seasonal dynamic of euphausiid and salp abundances over the Kerguelen

Plateau to compare them with our reported faecal pellet fluxes.
4.3 Diatom fluxes

The diatom fluxes (sum of empty and full cells) observed at the central Kerguelen
Plateau reached their maximum value of 1.2 x 10° cells m? d* during the two short export
events, which is equivalent to 2.4 x 10® valves m? d™. This latter value falls between the
highest values observed in POOZ (~10’ valves m™? d™* Abelmann and Gersonde, 1991; Salter
et al., 2012; Grigorov et al., 2014) and the SIZ (>10° valves m? d?, Suzuki et al., 2001;

Pilskaln et al., 2004). The diatom fluxes over the Kerguelen plateau are similar to the 2.5 - 3.5



680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

x 10° valves m? d™! measured at 200 m depth in a coastal station of the Antarctic Peninsula,
where CRS represented ~80 % of the phytoplankton assemblage (Leventer, 1991). Previous
studies report the presence of a resting spore formation strategy in diatom species as typically
associated with neritic areas (Smetacek, 1985; Crosta et al., 1997; Salter et al., 2012). During
the summer KEOPS1 cruise, a shift in plankton community composition was observed at
station A3 between January and February. The surface community initially dominated by
Chaetoceros Hyalochaete vegetative chains gave way to one dominated by Eucampia
antarctica var. antarctica, concomitant with increasing CRS abundance in the mixed layer
(Armand et al., 2008a). The abundance of dead cells (within chains or as empty single cells
and half cells) in the surface water column also increased from January to February,
suggesting intense heterotrophic activity. Surface sediments at station A3 contain, in
decreasing abundance, F. kerguelensis, CRS and T. nitzschioides spp. cells (Armand et al.,
2008b). These sedimentary distributions are consistent with the dominant species observed in
the sediment trap, F. kerguelensis and T. nitzschioides spp. being present throughout the year
and mostly represented by empty cells whereas CRS are exported during short and intense

events.

Eucampia antarctica var. antarctica resting spores dominated the deep (2000 m)
sediment trap diatom assemblages in the naturally fertilized area close to the Crozet Islands
with fluxes > 107 cells m™ d™* (Salter et al., 2012). We observed highest Eucampia antarctica
var. antarctica full cells fluxes of ~10° cells m™ d™* in summer, which represents <10 % of the
total cell flux. Both vegetative and resting stages were observed. Our results suggest that
Eucampia antarctica var. antarctica is unlikely to be a major driving vector for carbon fluxes
to depth over the central Kerguelen Plateau, in part because the community was not forming
massive highly-silicified, fast-sinking resting spores contrary to observations near the Crozet

Islands. Moreover their biogeographic abundance distribution from sea floor observations
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suggests they are not dominant in this region of the plateau (Armand et al., 2008b). The iron-
fertilized Crozet bloom is north of the Polar Front and dissolved Si(OH), concentrations were
depleted to 0.2 pmol L™ (Salter et al., 2007) compared to ~2 pumol L™ on the Kerguelen
Plateau (Mosseri et al., 2008). It is possible, along with differences in iron dynamics between
the two plateaus, that differences in nutrient stoichiometry favour bloom dynamics and resting
spore formation of Chaetoceros Hyalochaete populations surrounding the Kerguelen Islands.
Nevertheless, the increasing full cell flux of Eucampia antarctica var. antarctica from spring
to summer in the sediment trap time series is consistent with the observations of an increasing

abundance in the mixed layer at the station A3 in summer (Armand et al., 2008a).

Highest Pseudo-nitzschia spp. full cell fluxes were observed in summer,
concomitantly with the second export peak (cup #9, end January 2012). Pseudo-nitzschia
species are rarely found in deep sediment trap studies and are absent from sediment diatom
assemblages, presumably due to their susceptibility to water column dissolution (Grigorov et
al., 2014; Rigual-Hernandez et al., 2015). The species Pseudo-nitzschia hemii has been
reported to accumulate in summer in deep chlorophyll maximum in the Polar Frontal Zone
(Kopczynska et al., 2001). Such deep biomass accumulation is hypothesized to benefit from
nutrient diffusion through the pycnocline (Parslow et al., 2001). These general observations
are consistent with the peaks in Pseudo-nitzschia spp. fluxes we report in summer over the

Kerguelen Plateau.

Although their fluxes were very low, species of the Rhizosolenia and Proboscia
genera were mostly exported as empty cells at the end of summer and during autumn (cups #8
to #11, end January to May 2012), occurring in parallel with the full cell fluxes of the giant
diatom Thalassiothrix antarctica (Table 4). It has been suggested that these species belong to
a group of “deep shade flora” that accumulate at the subsurface chlorophyll maxima in

summer with their large frustules protecting them from grazing pressure in stratified waters
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(Kemp and Villareal, 2013). Interestingly these species were also found in deep sediment
traps located in a HNLC area south of the Crozet Plateau (Salter et al., 2012), as well as in
subsurface chlorophyll maximum in HNLC waters of the Southern Ocean (Parslow et al.,
2001; Holm-Hansen et al., 2004; Gomi et al., 2010). A subsurface chlorophyll maximum has
previously been observed at 120 m on the Kerguelen Plateau (also station A3) during summer
(Vitz et al., 2009) and appears to correspond to an accumulation of particles consisting of
aggregates of large diatom species (Jouandet et al., 2011). The fact that Rhizosolenia spp. and
Proboscia spp. were observed as empty cells whereas Thalassiothrix antarctica was mostly
represented by full cells suggest species-specific grazing on these communities. There appears
to be ecological differentiation within the “deep shade flora” that precludes describing a
single effect on export stoichiometry. Moreover, on the Kerguelen Plateau, these species are
not exported in “massive” proportions as the fall-dump hypothesis suggests (Kemp et al.,
2000). The physical and biogeochemical factors responsible for their production and export
are still to be determined, and should be investigated thoroughly given the potential
importance that these species might have for export fluxes on a global scale (Kemp et al.,

2000; Richardson et al., 2000; Kemp and Villareal, 2013).

4.4 Preferential carbon and silica sinkers

Unlike most previous sediment trap studies in the Southern Ocean, we used a counting
technique that facilitated the identification of carbon and siliceous components of exported
material. Although we lost a small degree of taxonomic resolution with this approach (see
methods), it allowed us to avoid unnecessary assumptions concerning carbon content of
exported diatoms and directly constrain the role of different species for carbon and silica

export.
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The annual BSi:POC ratio of the exported material (1.16) is much higher than the
usual ratio proposed for marine diatoms of 0.13 (Brzezinski, 1985). Moreover, the BSi:POC
ratio of the exported material in spring (2.1 to 3.4, cups #1 to #3, October to mid-December
2011) is significantly higher than the BSi:POC ratio of 0.32 = 0.06 in the mixed layer of the
same station during spring (Lasbleiz et al., 2014). Numerous chemical, physical, biological
and ecological factors can impact BSi:POC ratios of marine diatoms (e.g. Ragueneau et al.,
2006). However, the ten-fold differences in BSi:POC ratios of exported particles between
spring and summer is unlikely to result only from physiological constraints set during diatoms
growth (Hutchins and Bruland, 1998; Takeda, 1998). Previous comparisons in natural and
artificially iron-fertilized settings have the highlighted importance of diatom community
structure for carbon and silica export (Smetacek et al., 2004; Salter et al., 2012; Quéguiner,
2013; Assmy et al., 2013). The presence of different diatom species and their characteristic
traits (e. g. susceptibility to grazing, apoptosis, viral lysis) are all likely to influence the flux
of full and empty cells. Therefore, the net BSi:POC export ratio results from the net effect of
species specific Si:C composition (Sackett et al., 2014) and the subsequent species-specific
mortality pathway and dissolution. A significant correlation between BSi:POC and empty:full
cells ratio (Spearman rank correlation, n = 12, p = 0.78, p < 0.05) suggests the latter acts as a
first order control on the silicon and organic carbon export stoichiometry. Differences in
BSi:POC ratios between the mixed layer suspended particle stock and particles exported out
of the mixed layer may be explained by the dominant sedimentation of empty diatom frustules
that results from the grazing pressure by the zooplankton community and the intense carbon

utilization by heterotrophic microbial communities (Christaki et al., 2014).

We classified species that were observed exclusively as empty cells, or sinking with an
integrated empty:full ratio >2, as predominantly silica exporters and these included: C.

bulbosum, C. pennatum, P. truncata, R. antennata/styliformis, A. hookeri, A. hyalinus, C.
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decipiens, C. inerme, D. antarcticus, P. alata, T. nitzschioides spp., T. lentiginosa, and small
centric species (< 20 um). Although F. kerguelensis, T. nitzschoides spp. and T. lentiginosa
were present through the entire season, their fluxes were highly correlated with BSi:POC
ratios (Fig. 6) identifying these species as significant contributors to silica export. On the
contrary resting spores and species that sink with a major contribution of full cells (integrated
empty:full ratio <0.5) were identified as belonging to the preferential carbon sinkers: C.
Hyalochaete spp., E. antarctica var. antarctica, R. simplex and Thalassiothrix antarctica.
Among them, CRS and E. antarctica var. antarctica were the most negatively correlated to
the BSi:POC ratio and were identified as key species for carbon export (Fig. 6). These
observations are consistent with a previous study of natural iron fertilization that identified C.
pennatum, D. antarcticus and F. kerguelensis as major silica sinkers and CRS and E.
antarctica var. antarctica resting spores as major carbon sinkers downstream Crozet islands
(Salter et al., 2012). During the EIFEX artificial fertilization experiment C. Hyalochaete
vegetative stages were identified as major carbon sinker whereas F. kerguelensis was
considered as strong silica sinker (Assmy et al., 2013). Notably, resting spore formation was
not observed in the artificial experiment performed in the open ocean remote from coastal
influence, and carbon export was attributed to mass mortality and aggregation of algal cells
(Assmy et al., 2013). Nevertheless, a more detailed analysis of species-specific carbon and
silica content in the exported material is necessary to fully elucidate their respective roles on

carbon and silica export.

4.5 Seasonal succession of ecological flux vectors over the Kerguelen Plateau

Although sediment trap records integrate cumulative processes of production in the mixed
layer and selective losses during export, they provide a unique insight into the temporal
succession of plankton functional types and resultant geochemical properties of exported

particles characterizing the biological pump. The seasonal cycle of ecological vectors and
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associated export stoichiometry is summarized in Figure 7. The robustness of the relationship
between measured and calculated POC fluxes (Fig. 8b) suggests that the main ecological flux
vectors described from the samples are capable of predicting seasonal patterns of total POC
fluxes. At an annual scale the calculated POC fluxes slightly underestimate the measured
fluxes (93.1 versus 98.2 mmol m™). This might results from the minor contribution of full
cells other than the diatoms species considered, aggregated material, organic matter sorbed to

the exterior of empty cells and faecal fluff that was difficult to enumerate.

A scheme of phytoplankton and zooplankton communities succession in naturally-
fertilized areas of the Southern Ocean was proposed by Quéguiner (2013). Spring
phytoplankton communities are characterized by small, lightly silicified, fast growing diatoms
associated with small microphageous copepods. In summer, the phytoplankton community
progressively switches toward large, highly silicified, slow growing diatoms resistant to the
grazing by large copepods. In this scheme carbon export occurs mostly in end summer
through the fall dump. The species succession directly observed in our sediment trap samples
differs somewhat to the conceptual model proposed by Quéguiner (2013), although the
general patterns are similar. The diatom species exported in spring were F. kerguelensis, T.
nitzschioides spp., and small centric species (<20 um), whilst in summer the comparatively
very large (>200 um) species of Proboscia sp., Rhizosolenia sp. and Thalassiothrix antarctica
were observed. However we observe that these species constituting the spring fluxes are
exported almost exclusively as empty cells. The abundance of small spherical and ovoid
faecal pellet suggests an important role of small copepods in the zooplankton (Yoon et al.,
2001; Wilson et al., 2013), which was corroborated by the finding of dominant Oithona
similis abundances in the spring mesozooplankton assemblages at station A3 (Carlotti et al.,

2015). Therefore, our data suggests that spring export captured by the sediment trap was the
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remnants of a diatom community subject to efficient grazing and carbon utilization in, or at
the basis of, the mixed layer, resulting in a BSi:POC export ratio > 2 (Table 1).

The main difference in our observations and the conceptual scheme of Quéguiner,
(2013) is the dominance of Chaetoceros Hyalochaete resting spores to diatom export
assemblages and their contribution to carbon fluxes out of the mixed layer in summer. Resting
spores appear to efficiently bypass the “carbon trap” represented by grazers and might also
physically entrain small faecal pellets in their downward flux. In mid-summer, faecal pellet
carbon export is dominated by the contribution of cylindrical shapes. This appears to be
consistent with an observed shift toward a higher contribution of large copepods and
euphausiids to the mesozooplankton community in the mixed layer (Carlotti et al., 2008).
However, CRS still dominate the diatom exported assemblage. The corresponding BSi:POC
ratio decreases with values between 1 and 2 (Table 1). The fact that there are two discrete
resting spore export events might be explained by a mixing event that injected Si(OH), into

the surface allowing the development of a secondary Si(OH), limitation.

In the autumn and winter, diatom fluxes are very low and faecal pellet carbon export is
dominated by cylindrical and tabular contributions consistent with a supposed shift to
zooplankton communities dominated by large copepods, euphausiids, and salps (Wilson et al.,
2013). The low BSi:POC ratios characterizing export at this time suggest that these
communities feed primarily suspended particles (in the case of salps) and on micro- and
mesozooplankton or small diatoms, although direct measurements of faecal pellet content

would be necessary to confirm this.

5 Conclusion

We report the chemical (particulate organic carbon and nitrogen, biogenic silica) and

biological (diatom cells and faecal pellets) composition of material exported beneath the
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winter mixed layer (289 m) in a naturally iron-fertilized area of the Southern Ocean. Annually
integrated organic carbon export from the iron-fertilized bloom was low (98 mmol m?)
although biogenic silicon export was significant (114 mmol m™). Chaetoceros Hyalochaete
and Thalassiosira antarctica resting spores accounted for more than 60 % of the annual POC
flux. The high abundance of empty cells and the low contribution of faecal pellets to POC
flux (34 %) suggest efficient carbon retention occurs in, or at the base of the mixed layer. We
propose that in this HBLE environment, carbon-rich and fast-sinking resting spores bypass the
intense grazing pressure otherwise responsible for the rapid attenuation of flux. The seasonal
succession of diatom taxa groups was tightly linked to the stoichiometry of the exported
material. Several species were identified as primarily “silica sinkers” e.g. Fragilariopsis
kerguelensis and Thalassionema nitzschioides spp. and others as preferential “carbon sinkers”
e.g. resting spores of Chaetoceros Hyalochaete and Thalassiosira antarctica, Eucampia
antarctica var. antarctica and the giant diatom Thalassiothrix antarctica. Faecal pellet types
described a clear transition from small spherical shapes (small copepods) in spring, larger
cylindrical an ellipsoid shapes in summer (euphausiids and large copepods) and large tabular
shape (salps) in fall. Their contribution to carbon fluxes increased with the presence of larger

shapes.

The change in biological productivity and ocean circulation cannot explain the ~80
ppmv atmospheric pCO, difference between the preindustrial era and the last glacial
maximum (Archer et al., 2000; Bopp et al., 2003; Kohfeld et al., 2005; Wolff et al., 2006).
Nevertheless, a simple switch in ‘silica sinker’ versus ‘carbon sinker’ relative abundance
would have a drastic effect on carbon sequestration in the Southern Ocean and silicic acid
availability at lower latitudes (Sarmiento et al., 2004; Boyd, 2013). The results presented here

emphasize the compelling need for similar studies in other locations of the global Ocean that
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will allow identification of key ecological vectors that set the magnitude and the

stoichiometry of the biological pump.
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1365  Table 1. Sediment trap cup collection dates, seasonal attribution, particulate organic carbon (POC)
1366  and nitrogen (PON) fluxes, biogenic and lithogenic silicon (BSi and LSi) fluxes and molar ratios. POC
1367  and PON data from Rembauville et al. (2014).
Cup  Collect Season POC PON . . %
Cup ) . BSi Flux LSi flux
. closin ion Mass flux flux .
Cup  opening . flux (mmol m (umol m’ POC:PON BSi:POC
g time § (mmol (mmol )
date (mg m d) dY
date  (days) 2d?h m?d? m?d?
1 21/10/20 0411 Spring
11 2011 14 509 0.15 0.02 0.51 26.6 65.6 6.80 3.46
2 04/11/20  18/11 Spring
11 12011 14 28.1 0.14 0.02 0.30 18.0 70.8 6.09 2.18
3 18/11/20 02/12 Spring
11 2011 14 541 0.15 0.02 0.51 13.0 63.9 7.33 3.43
4 02/12/20  12/12 Summe
11 12011 10 p 261.3 1.60 0.23 2.60 20.9 66.9 6.95 1.63
5 12/12/20  22/12 Summe
11 /2011 10 r 231 0.34 0.05 0.21 44 62.4 6.87 0.64
6 22/12/20  01/01 Summe
1 /2012 10 r 748 051 0.08 0.37 8.2 329 6.70 0.72
7 01/01/20  11/01 Summe
12 12012 10 r 805 0.42 0.06 0.55 8.9 6.0 6.73 1.32
8 11/01/20  25/01 Summe
12 12012 14 r 598 0.34 0.05 0.50 54 565 6.94 1.48
9 25/01/20  08/02 Summe
12 /2012 14 r 238.7 1.47 0.20 2.19 7.2 61.7 7.38 1.49
10 08/02/20  22/02 Summe
12 12012 14 p 75.8 0.55 0.08 0.72 6.1 64.2 6.97 1.32
11 22/02/20  31/05 Autum
12 12012 99 n 244 0.27 0.03 0.08 15 215 8.09 0.29
12 31/05/20  07/09 Winter
12 12012 99 51 0.04 0.01 0.03 2.2 350 6.06 0.66
Annual export (mmol m? 98.2 136 114 1.85

1368

1369
1370

v



1371  Table 2. Chaetoceros resting spores (CRS) and Thalassiosira antarctica resting spores (TRS)
1372 measurement and biomass data from station A3 sediment trap covering cups #4 (December
1373 2011) to #11 (April 2012). For each variable, the range and the mean value (bold italic) is
1374  reported.
Cell Cell
Spore Number  Pervalvar Apical - Cell Volume/Carbon carbon carbon
type measured  axis (um)  axis (um) Shape VOIUTE relationship content content
(Um°) (pmolC (pgC
celld) celld)
31-85 72-174 Cylinder+ 1162~ 5-55 55662
CRS 63 - ' ' O CONes 1415 0.039 pmolC pm™ #
6 121 483 19 2217
25.6 — Cylinder + 14035 — _ 1(0.811 1og10(V)) - _ 672 -
TRS 57 10.2-26 35.3 two half 48477 c= 100,541) § 56-153 1839
208 32.6 sphere 35502 119 1428
1375  * As defined in Hillebrand et al., (1999)
1376 # Data representative of Chaetoceros pseudocurvisetus resting spore (Kuwata et al. 1993)
1377 8§ Equation from Menden-Deuer and Lessard, (2000), where C is the carbon content (pg C)
1378  and V is the cell volume (um®)
1379
1380
1381  Table 3. Faecal pellet measurement and biomass estimations from Station A3 sediment trap.
1382  For each variable, the range and the mean value (bold italic) are reported.
Faecal pellet FaigiLgillet
Faecal Number Major axis Minor axis Volume Volume Volurgre]/carb C(irrgglnccgre‘ltﬁa r:t content
_ ; :
pellet shape  measured (um) (a) (um) (b) equation (um°) relationship 1) (ngl[))eIIet
2.09x10° - 251x10°-
Spherical 4041 11-1069 4/3 7 (af2)® 697 - 6.39 x 10° 1.91 23
150 1.77 x 10° 5.3 10'35 0.06
1.34 x 10~ 1.60 x 10" —
Ovoid 2047 85-1132 10-802 4/3(;/2(;12/2) 4.45 x 10°-3.81 x 108 14 1272
314 154 3.90 x 10 0.036 mgC 11.7 x 103 0.14
mm* 4.89 x 10 - 5.87 x 10 -
Cylindrical 1338 106 - 6152 14-547 rb2pa  163%10°-145x10° 435 52
981 136 1.43 x 10’ 0.04 0.51
1.2 x107 -
Ellipsoid 54 301 - 3893 51-1051 4/325 2()az/2) 410 % 10°-2.25 x 10° 6.75 0.01-81
1329 413 1.19 x 10° 0.36 428
Constant, 119
Tabular 29 1gC pellet™ # 9.92 119
1383  * Gonzalez and Smetacek, (1994)
1384  # Wilson et al. (2013)

1385



1386  Table 4. Full diatoms cells flux (10° m™? d™*) from the station A3 sediment trap. Full cells of

1387 Chaetoceros Hyalochaete spp. were only found as resting spores.
Cup number Contribution
to annual flux
Species — taxa group 1 2 3 4 5 6 7 8 9 10 11 12 (%)
0 0.01 0 0.03 0 0 0 0 0.12 0 0 0 0.1
Asteromphalus spp.
Chaetoceros atlanticus 0 0 0 0 0 0 0 0 0.07 0 0 0 0.0
Cleve
Chaetoceros atlanticus f. bulbosus 0 0 0 0 0 0 0 0 0 0 0 0 0.0
Ehrenberg
Chaetoceros decipiens 0 0 002 0 0 0 0 0 0.07 0 0 0 0.0
Cleve
Chaetoceros dichaeta 0 0 0 0.07 0 0 0 0 0.26 0 0 0 0.1
Ehrenberg
0.70 0 195 3992 742 23.04 1437 1588 7829 2024 0.68 0 80.2
Chaetoceros Hyalochaete spp.
Corethron inerme 0 0 0 0 0 0 0 0 0.23 0 0 0 0.1
Karsten
Corethron pennatum 0 0 0 0 0 0 0 0 0 0 0 0 0.0
Grunow
Dactyliosolen antarcticus 0 0 0 0.05 0 0 0 0 0.02 0 0 0 0.0
Castracane
Eucampia antarctica var. 0.08 0.03 006 019 0.08 0.36 0.19 0.65 1.03 045 0.08 0.01 1.6
antarctica (Castracane) Mangin
Fragilariopsis kerguelensis 0.88 1.06 0 193 040 0.13 0.21 0.12 1.40 0 0 0 2.4
(O’Meara) Hustedt
Fragilariopsis separanda/rhombica 0.02 0.16 0 0.68 0.05 0.20 0.13 0.07 1.47 0 0 0 1.1
group
Guinardia cylindrus 0 0 0 0 0 0 0 0 0.07 0 0 0 0.0
(Cleve) Hasle
. 0 0 0 0.03 0 0 0 0 0 0 0 0 0.0
Leptocylindrus sp.
. 0.04 0.01 0 0.19 0 0 0.02 0.02 0.02 0 0 0 0.1
Membraneis spp.
0 0 0.04 0.64 0 0 0 0.29 0.58 0 0 0 0.6

Navicula spp.

Odontella weissﬂggii 0 0 0 0.08 0 0 0 0 0.05 0 0 0 0.0
(Grunow) Grunow

. 0.01 0 0 022 0.02 0.02 0 0.03 0.96 0.04 0 0 0.5
Pleurosigma spp.
Proboscia alata 0 0 0 0 0 0 0 0 0.09 0 0 0 0.0
(Brightwell) Sundrém
Proboscia inermis 0 0 0 0.03 0 0 0 0 0.33 0 0 0 0.2
(Castracane) Jordan & Ligowski
Proboscia truncata 0 0 0 0 0 0 0 0 0 0 0 0 0.0
(Karsten) Nothig & Logowski
. . 026 0.02 0.21 1.81 0.08 045 1.85 1.56 7.08 036 0.02 0 5.6
Pseudo-nitzschia spp.
Rhizosolenia antennata/styliformis | 0 0 0 0 0 0 0 0 0.05 0 0 0 0.0
group
Rhizosolenia chunii 0 0 0 0 0.05 0 0 0.03 0.07 0 0 0 0.1
Karsten
Rhizosolenia crassa 0 0 0 0 0 0 0 0 0 0 0 0 0.0
Schimper in Karsten
Rhizosolenia s[mplex 0 0 0 0 0 0 0 0 0.07 0 0 0 0.0
Karsten
Thalassi a nitzschioides spp. | 145 148 020 465 028 0.14 0.34 0.72 0.89 0.14 0.05 0.01 4.0
Pergallo & Pergallo
Thalassiosira lentiginosa 0.01 0 0 0 0 0 0 0 0 0 0 0 0.0
(Janisch) Fryxell
0 0.05 0 0.05 0 0 0 0 0.12 0.05 0 0 0.1

Thalassiosira spp.

Thalassiosira antarctica resting 0.04 0 2.19 2.65 0.17 0.14 0.13 0.14 0.12 0 0.01 0 2.1
spore (TRS) Comber




Thalassiothrix antarctica
Schimper ex Karsten

Small centrics (<20 pm)
Large centrics (>20 pm)

Total full cells

0.05 0 0 0.41 0 0

0 0 0.05  0.08 0 0

3539 2820 47.18 537.38 85.85 245.20

175.89

0.14 0.70 0 0 0

0 0.19 0.18 0 0

0 0.05 0 0 0

196.56 943.88 214.65 8.46 0.22

0.5

0.3

0.1

1388

1389




1390
1391

Table 5. Empty diatoms cells flux (10° m™? d™*) from the station A3 sediment trap.

Cup number

Contribution to

annual flux
Species — taxa group 1 2 3 4 5 6 7 8 9 10 11 12 (%)
0.02 0.02 0.09 0.08 0 005 0 003 005 0 0 0 0.3
Asteromphalus spp.
Chaetoceros atlanticus 0 0 0 0 0 0 0 0 0 0 0 0 0.0
Cleve
Chaetoceros atlanticus f. bulbosus | 0.01 0 0 0 0 0 0 0.02 0 002 0 0 0.0
Ehrenberg
Chaetoceros decipiens 0 0 0.02 0.24 0 0 0 0 0 0 0 0 0.2
Cleve
Chaetoceros dichaeta 0 0 0.06 0.07 0 0 0 0 0.05 0 0.01 0 0.2
Ehrenberg
0 0 045 3819 0 0 0 060 1823 0.18 O 0 41.2
Chaetoceros Hyalochaete spp.
Corethron inerme 0.01 0.01 0.04 0 0 002 0 0 023 031 006 0 0.9
Karsten
Corethron pennatum 0 0 0.02 0 0 0 0 0.02 0 0 0.01 0 0.1
Grunow
Dactyliosolen antarcticus 0 0 0 0.05 0 0 0 0.07 002 005 0 0 0.2
Castracane
Eucampia antarctica var. antarctica 0 0 0.04 025 006 0.05 006 009 028 0.11 004 0 1.0
(Castracane) Mangin
Fragilariopsis kerguelensis 225 046 084 1.02 026 063 088 1.17 1.17 145 0.16 0.03 9.4
(O’Meara) Hustedt
Fragilariopsis separanda/rhombica | 0.19 0.17 0.18 053 0.14 052 032 087 082 123 015 0 5.0
group
Guinardia cylindrus 0 0 0 0 0 0 0 0 0 0 0 0 0.0
(Cleve) Hasle
. 0 0 0 0 0 0 0 0 0 0 0 0 0.0
Leptocylindrus sp.
. 0 0 0.02 005 0.02 0.04 0.02 007 0.14 0.07 0.01 0 0.4
Membraneis spp.
. 0 0 0.13  0.36 0 0 0 012 0.12 0 0 0 0.5
Navicula spp.
Odontella weissflogii 0 0 0.02 0.10 0 0 0 0.02 0 002 0 0 0.1
(Grunow) Grunow
. 0.18 0.06 008 041 008 0 0.09 012 093 038 003 0 2.1
Pleurosigma spp.
Proboscia alata 0 0 0 0 0 0 0 0.03 0.05 034 0.01 0 0.5
(Brightwell) Sundrém
(Castracane) Jordan & Ligowski
Proboscia truncata 0 0 0.02 0 0 0 0 0 0 0.02 0 0 0.0
(Karsten) Nothig & Logowski
i . 059 0 0.12 059 009 0.04 099 075 526 034 002 0 7.4
Pseudo-nitzschia spp.
Rhizosolenia antennata/styliformis 0 0 0 0 0 0 0 002 002 013 0 0 0.2
group
Rhizosolenia chunii 0 0 0 0.03 0 0 0 002 002 020 002 0 0.4
Karsten
Rhizosolenia crassa 0 0 0 0 0 0 0 0 0 004 0 0 0.0
Schimper in Karsten
Rhizosolenia simplex 0 0 0 0 0 0 0 0.02 0 0 0 0 0.0
Karsten
Thalassionema nitzschioides spp. 433 197 539 207 0.19 009 047 0.12 072 0.18 0.03 0.01 13.2
Pergallo & Pergallo
Thalassiosira lentiginosa 0.25 0.06 0.10 0 0 0 0 0 0 0 0 0 0.4
(Janisch) Fryxell
.. 0.02 0.06 0.01 0 0 0 0 0 0 0 0 0 0.1
Thalassiosira spp.
0 0 0 0 0 0 0 0 0 0 0 0 0.0

Thalassiosira antarctica resting spore
(TRS) Comber




Thalassiothrix antarctica
Schimper ex Karsten

Small centrics (<20 pm)
Large centrics (>20 pm)

Total empty cells

048 0.44

0 0.03

834 328

296 16.87 028 0.13 0.17 024 0.65

0.01  0.20

10.57 61.20

1.12

1.59 3.01

0 0.16

443 2898

0.04

0.20

0.04

5.46

0.03  0.02

0.59 0.07

0.0

0.3
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1394  Table 6. Total faecal pellet (FP) flux, total faecal pellet carbon flux, median volume and
1395 carbon flux partitioned among faecal pellets types from station A3 sediment trap.
1396  Contribution to numerical faecal pellet flux is provided in normal text whereas the

1397  contribution to faecal pellet carbon flux is reported in bold italic.

Contribution (%)

Total FP C;T::rl] I:IZX Median
Cup  flux (nbm? I m2d volume Spherical Ovoid Cylindrical Ellipsoid Tabular
dY)x10°  (mmolm (10° )
53.3 19.7 27.0 0.0 0.0
1 1.39 0.02 2.07
36.8 18.6 44.6 0.0 0.0
36.5 29.7 339 0.0 0.0
2 1.75 0.04 3.55
224 213 56.3 0.0 0.0
62.7 373 0.0 0.0 0.0
3 0.72 <0.01 0.95
545 455 0.0 0.0 0.0
76.4 22.8 0.8 0.0 0.0
4 21.81 0.48 191
83.1 15.3 16 0.0 0.0
26.6 35.0 383 0.1 0.0
5 5.10 0.12 3.71
138 18.3 67.4 0.5 0.0
28.8 331 37.9 0.0 0.2
6 2.69 0.15 5.67
4.6 10.9 43.1 0.0 413
15.6 45.5 37.1 1.8 0.0
7 2.46 0.12 6.71
25 16.1 56.0 253 0.0
37.6 155 44.2 2.2 0.4
8 2.06 0.20 6.18
1.9 21 34.6 15.8 45.5
40.4 205 354 37 0.0
9 1.36 0.09 3.59
2.8 4.9 279 64.4 0.0
56.0 22.4 21.3 04 0.0
10 1.22 0.03 2.34
17.7 9.1 69.9 3.3 0.0
389 30.8 20.3 5.7 4.3
11 0.27 0.13 2.10
04 0.7 25 3.9 92.6
18.4 57.6 20.3 0.0 3.7
12 0.14 0.06 241
0.4 2.6 5.3 0.0 91.8
Annually integrated contribution 53.8 213 17.8 0.7 0.4
to faecal pellet flux 17.9 6.6 17.3 7.7 50.4

1398

1399



1400
1401
1402
1403

1404

Table 7. Measured and calculated POC fluxes, and POC flux partitioning among the major
identified ecological vectors of carbon exported out of the mixed layer at station A3.
Measured total POC flux from Rembauville et al. (2014). CRS: Chaetoceros Hyalocahete

resting spores, TRS: Thalassiosira antarctica resting spore.

Contribution to calculated POC flux (%)

Measured Calculated . . R . Total
POC flux POC flux Other Spherical Owvoid  Cylindrical  Ellipsoid  Tabular faecal

Cup 2 > CRS TRS - faecal faecal faecal faecal faecal
(mmol m (mmol m diatoms I I i i I pellet

dY) d?) pellet pellet pellet pellet pellet
1 0.15 0.05 25.3 8.1 38.6 10.3 5.2 12.5 0.0 0.0 28.0
2 0.14 0.06 0.0 0.0 35.4 14.5 13.7 36.4 0.0 0.0 64.6
3 0.15 0.31 121 851 1.4 0.8 0.6 0.0 0.0 0.0 1.4
4 1.60 1.62 46.8 194 39 24.8 4.6 05 0.0 0.0 29.8
5 0.34 0.29 48.0 6.9 3.3 5.8 1.7 28.2 0.2 0.0 41.8
6 0.51 0.63 69.7 2.7 3.2 11 2.7 10.5 0.0 10.1 24.4
7 0.42 0.43 63.1 35 5.8 0.7 4.4 154 7.0 0.0 275
8 0.34 0.56 54.4 2.9 6.8 0.7 0.8 12.4 5.7 16.3 35.9
9 1.47 171 86.8 0.8 72 0.1 0.3 1.4 3.3 0.0 52
10 0.55 0.44 88.1 0.0 4.3 14 0.7 5.4 0.3 0.0 1.7
11 0.27 0.14 9.1 1.2 2.2 0.3 0.6 2.2 34 81.0 87.5
12 0.04 0.06 0.0 0.0 0.5 0.4 2.6 5.2 0.0 91.3 99.5
Contribution to annuial 521 86 50 5.1 2.0 5.2 2.2 198 343

calculated POC flux (%)
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Figures captions.

Figure 1. a) Time series of the surface chlorophyll a concentration averaged in a 100 km
radius around the trap location. The black line represents the climatology calculated for the
period 1997/2013, whilst the green line corresponds to the sediment trap deployment period
(2011/2012). b) POC fluxes (grey bars) and C/N molar ratio (red line) of the exported
material, c) BSi flux (light blue bars) and BSi:POC ratio (blue line). Errorbars are standard

deviation on triplicates.

Figure 2. a) Total diatom cells fluxes (bars, left axis) and total empty:full cells ratio (blue
line, right axis). b) to h) Fluxes of diatom cells from selected species identified as major
contributors to diatom fluxes ( >1 % of total diatom fluxes). In b), full cells are Chaetoceros
Hyalochaete resting spores and empty cells are the vegetative stage. Full cell fluxes are

represented by grey bars whereas empty cell fluxes are represented by white bars

Figure 3. Factorial map constituted by the first two axes of the correspondence analysis
performed on the full and empty diatom cell fluxes. Red squares are cup projections with cup
numbers specified, blue circles are full cell projections, white circles are empty cell
projections. The size of the markers is proportional to their representation quality in this

factorial map.

Figure 4. Annual ratio of empty to full cells for species observed as both forms. The dashed
lines are the 0.5 and 2 ratio values. Chaetoceros Hyalochaete spp. full cells were only

observed as resting spores.

Figure 5. a) Faecal pellet numerical fluxes partitioned among faecal pellet types, b) boxplot
of faecal pellet volume. On each box, the central mark is the median, the edges of the box are
the first and third quartiles, the whiskers extend to the most extreme data points comprised in

1.5 times the interquartile distance. c) faecal pellet carbon fluxes partitioned between the five
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faecal pellet types. The two arrows represent the two strong POC export events (cup #4 and

#9, December 2011 and end January 2012, respectively).

Figure 6. Heatmap representation of [ correlation coefficients between the biological
variables (empty and full-cell diatom and faecal pellet type fluxes) and the chemical variables
(POC, PON, BSi, POC:PON and BSi:POC) resulting from the partial least square regression.
Blue circles represent full diatom cells, white circles are empty diatom cells. Brown circles
represent the faecal pellet type fluxes. The alphabetical labels within the symbols are used to
identify the variable projections shown in Fig. 7. CRS: Chaetoceros Hyalochaete resting

spores, TRS: Thalassiosira antarctica resting spores.

Figure 7. Projection of the cups (red squares) the biological factors (circles) and the chemical
factors (green diamonds) in the first two latent vectors of the partial least square regression.

Circled labels refer to the full and empty species listed in Fig. 6.

Figure 8. a) Grey bars in the background are measured POC fluxes, colored bars in the
foreground are calculated POC fluxes partitioned among the main ecological vectors
identified. b) Regression (r? = 0.72) between the measured and calculated POC fluxes. The
correlation is highly significant (Spearman rank correlation, n = 36, p = 0.84, p < 0.001).
Error bars were generated by increasing/decreasing the carbon/volume conversion factors by
50 %. Black dashed line is the 1:1 relation, red line is the regression line, red dashed lines
denotes the 99 % confidence interval. CRS: Chaetoceros Hyalochaete resting spores, TRS:

Thalassiosira antarctica resting spores.
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