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Abstract 1 

Boreal fires burn into carbon-rich organic soils, thereby releasing large quantities of trace gases 2 

and aerosols that influence atmospheric composition and climate. To better understand the 3 

factors regulating boreal fire emissions, we developed a statistical model of carbon 4 

consumption by fire for Alaska with a spatial resolution of 450 m and a temporal resolution of 5 

one day. We used the model to estimate variability in carbon emissions between 2001 and 2012. 6 

Daily burned area was mapped using imagery from the Moderate Resolution Imaging 7 

Spectroradiometer combined with perimeters from the Alaska Large Fire Database. Carbon 8 

consumption was calibrated using available field measurements from black spruce forests in 9 

Alaska. We built two nonlinear multiplicative models to separately predict above- and 10 

belowground carbon consumption by fire in response to environmental variables including 11 

elevation, day of burning within the fire season, pre-fire tree cover and the differenced 12 

normalized burn ratio (dNBR). Higher belowground carbon consumption occurred later in the 13 

season and for mid-elevation forests. Topographic slope and aspect did not improve 14 

performance of the belowground carbon consumption model. Aboveground and belowground 15 

carbon consumption also increased as a function of tree cover and the dNBR, suggesting a 16 

causal link between the processes regulating these two components of carbon consumption. 17 

Between 2001 and 2012, the median carbon consumption was 2.54 kg C m-2
. Burning in land 18 

cover types other than black spruce was considerable and was associated with lower levels of 19 

carbon consumption than for pure black spruce stands was generally higher. Carbon 20 

consumption originated primarily from the belowground fraction (median = 2.32 kg C m-2 for 21 

all cover types and 2.67 kg C m-2 for pure black spruce stands). Total carbon emissions varied 22 

considerably from year to year, with the highest emissions occurring during 2004 (69 Tg C), 23 

2005 (46 Tg C), 2009 (26 Tg C), and 2002 (17 Tg C) and a mean of 15 Tg C per year between 24 

2001 and 2012. Mean uncertainty of carbon consumption for the domain, expressed as one SD, 25 

was 0.50 kg C m-2. Uncertainties in the multiplicative regression model used to estimate to 26 

estimate belowground consumption in black spruce stands and the land cover classification 27 

were primary contributors to uncertainty estimates. Our analysis highlights the importance of 28 

accounting for the spatial heterogeneity of fuels and combustion when extrapolating emissions 29 

in space and time, and the need for of additional field campaigns to increase the density of 30 

observations as a function of tree cover and other environmental variables influencing 31 
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consumption. The daily emissions time series from the Alaskan Fire Emissions Database 1 

(AKFED) presented here creates new opportunities to study environmental controls on daily 2 

fire dynamics, optimize boreal fire emissions in biogeochemical models, and quantify potential 3 

feedbacks from changing fire regimes.   4 
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1 Introduction 1 

Fire is the most important landscape disturbance in the boreal forest (Chapin et al., 2000; 2 

Krawchuk et al., 2006). Increases in the extent and severity of burning in the last several decades 3 

have been reported for Alaska and Canada (Gillett et al., 2004; Kasischke and Turetsky, 2006; 4 

Kasischke et al., 2010; Turetsky et al., 2011). Fire regimes are expected to intensify (Amiro et 5 

al., 2009; Balshi et al., 2009; Yuan et al., 2012; de Groot et al., 2013) with the predicted 6 

accelerated warming for the boreal region during the remainder of the 21st century (Collins et 7 

al., 2013), although this may be mediated in part by changing vegetation cover (Krawchuk and 8 

Cumming, 2011; Mann et al., 2012; Kelly et al., 2013; Héon et al., 2014)Boreal fires have both 9 

positive and negative climate feedbacks (Randerson et al., 2006; Bowman et al., 2009; Oris et 10 

al., 2014; Rogers et al., 2015). Cooling is primarily caused increases in surface albedo from 11 

more exposed snow cover during spring in young stands (Jin et al., 2012; Rogers et al., 2013), 12 

and the influence of organic carbon aerosols on tropospheric radiation (Tosca et al., 2013). 13 

Emission of greenhouse gases and black carbon aerosols (Bowman et al., 2009), and the 14 

deposition of black carbon on snow and ice (Flanner et al., 2007) are the dominant warming 15 

feedbacks.  16 

The magnitudes of these feedbacks are tightly linked with the severity of the disturbance 17 

(Beck et al., 2011a; Turetsky et al., 2011; Jin et al., 2012). Severity is often referred to in a 18 

general way describing the amount of environmental damage that fire causes to an ecosystem 19 

(Key and Benson, 2006). In the context of mostly stand-replacing fires in boreal North America, 20 

severity is expressed as the degree of consumption of belowground organic matter. Differences 21 

in ground layer burn depths control the amount of carbon combusted, and impact post-fire 22 

succession trajectories and consequent albedo feedbacks (Johnstone and Kasischke, 2005; 23 

Johnstone et al., 2010; Jin et al., 2012). Heterogeneity in fuels, fuel conditions, topography and 24 

fire weather can result in different post-fire effects over the landscape (Rogers et al., 2015). 25 

Resolving the spatial heterogeneity in severity using post-fire remote sensing observations can 26 

improve emissions estimates (Michalek et al., 2000; Veraverbeke and Hook, 2013; Rogers et 27 

al., 2014) and more accurate carbon emissions estimates could lower the uncertainties in 28 

estimating the net climate feedback from boreal fires under the current and future climate (Oris 29 

et al., 2014). 30 
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Fire emissions are generally calculated as the product of burned area, fuel consumption and 1 

emission factors (Seiler and Crutzen, 1980). Fuel consumption represents the amount of 2 

biomass consumed by the fire, and gas-specific emission factors describe the amount of gas 3 

released per unit of biomass consumed by the fire. Examples of models building on this 4 

paradigm at continental or global scales include the Wildland Fire Emissions Information 5 

System (WFEIS, French et al., (2011, 2014)) and the Global Fire Emissions Database version 6 

3 (GFED3, van der Werf et al. (2010)), updated with contributions of small fires (GFED3s, 7 

Randerson et al. (2012)). Several similar approaches have been developed specifically for 8 

boreal forests (Kasischke et al., 1995; Amiro et al., 2001; Kajii et al., 2002; Kasischke and 9 

Bruhwiler, 2002; French et al., 2003; Soja et al., 2004; de Groot et al., 2007; Tan et al., 2007; 10 

Kasischke and Hoy, 2012). The quantification of fuel consumption in boreal emission models 11 

is often driven by empirical relationships between fire weather variables and combustion 12 

completeness that vary by fuel type (Amiro et al., 2001; de Groot et al., 2007; Ottmar, 2014). 13 

A defining characteristic of fire emissions in the boreal forest is that mass of fuel consumed in 14 

the ground layer (comprised of moss, lichens, litter, and organic soils) is larger than the 15 

consumption of aboveground biomass (McGuire et al., 2009; Boby et al., 2010; Kasischke and 16 

Hoy, 2012). Because of the seasonal thawing of the permafrost, the active layer becomes deeper 17 

and drier throughout the fire season and thus more prone to deeper burning (Lapina et al., 2008; 18 

Turetsky et al., 2011; Kasischke and Hoy, 2012). Based on this rationale, several authors have 19 

developed scenarios in which they assign ground fuel consumption values based on the 20 

seasonality of the burn (Kajii et al., 2002; Kasischke and Bruhwiler, 2002; Soja et al., 2004). 21 

The dryness of the forest floor depends both on the time within the season and local drainage 22 

conditions (Kane et al., 2007; Turetsky et al., 2011). Kasischke and Hoy (2012) incorporated 23 

this expert knowledge to derive emissions from a set of Alaskan fires by accounting for 24 

differential impacts of fire seasonality on several topographic classes.  25 

Several studies have demonstrated relatively strong relationships between post-fire remote 26 

sensing observations and ground layer consumption in boreal forest ecosystems (Hudak et al., 27 

2007; Verbyla and Lord, 2008; Rogers et al., 2014). Identification of such relationships may 28 

provide opportunities to constrain pyrogenic carbon emission estimates in boreal forest 29 

ecosystems at regional to pan-boreal scales (Ottmar, 2014). Quantifying relationships between 30 

field data of carbon consumption and pre- and post-fire remote sensing observations, in 31 
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combination with other environmental variables, may minimize the number of assumptions 1 

required to extrapolate emissions in time and space. In addition, observed variability in 2 

relationships between field observations and environmental variables may allow for a data-3 

driven approach for uncertainty quantification. Spectral changes after a fire have shown to be 4 

strongly related to field measurements of severity in a wide range of ecosystems (e.g. van 5 

Wagtendonk et al., 2004; Cocke et al., 2005; De Santis and Chuvieco, 2007; Veraverbeke and 6 

Hook, 2013), including the boreal forest (Epting et al., 2005; Allen and Sorbel, 2008; Hall et 7 

al., 2008; Soverel et al., 2010). Severity is often referred to as fire severity or burn severity 8 

(Lentile et al., 2006; Keeley, 2009) with the difference in definition between the two terms 9 

associated with the temporal dimension of fire effects. By definition fire severity measures the 10 

immediate impact of the fire, whereas burn severity incorporates both the immediate fire impact 11 

and subsequent recovery effects (Lentile et al., 2006; French et al., 2008; Veraverbeke et al., 12 

2010). In particular the differenced normalized burn ratio (dNBR) has become accepted as a 13 

standard spectral index to assess severity (López García and Caselles, 1991; Key and Benson, 14 

2006). dNBR is an index that combines near and short-wave infrared reflectance values 15 

obtained before and after a fire (Eidenshink et al., 2007). The spectral regions in dNBR are 16 

especially sensitive to the decrease of vegetation productivity and moisture content after the 17 

fire. Because of this, dNBR is a good indicator of aboveground biomass consumption, but may 18 

be less effective in estimating belowground consumption of boreal fires (French et al., 2008; 19 

Hoy et al., 2008; Kasischke et al., 2008). Other studies, however, have reported significant 20 

relationships between spectral indices, including dNBR, and belowground consumption 21 

measurements from field sites in boreal ecosystems (Hudak et al., 2007; Verbyla and Lord, 22 

2008; Rogers et al., 2014). Rogers et al. (2014) also found a relatively strong correlation 23 

between field measurements of aboveground and belowground consumption, which partly 24 

explained the observed relationship between dNBR and belowground consumption. Effective 25 

use of dNBR and other remote sensing observations requires careful integration with other 26 

driver data and calibration with field observations that span a wide range of environmental 27 

conditions. 28 

The day of burning within the fire season covaries with the depth of burning in the ground 29 

layer and this temporal information may aid prediction of belowground consumption (Turetsky 30 

et al., 2011; Kasischke and Hoy, 2012). Convolving burned area detection algorithms with 31 
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active fire hotspots from the multiple overpasses per day from the Moderate Resolution Imaging 1 

Spectroradiometer (MODIS) allows for the development of daily burned area estimates (Parks, 2 

2014; Veraverbeke et al., 2014). Daily burned area products provided evidence that vapor 3 

pressure deficit has an important influence on several aspects of fire dynamics including initial 4 

spread rate, daily variations in regional burned area, and fire extinction (Sedano and Randerson, 5 

2014). Kasischke and Hoy (2012) developed a daily fire emissions time series to investigate 6 

causes of year-to-year variability in carbon consumption for a regional subset of fires during 7 

high and low fire years.  8 

Daily burned area and emissions estimates may allow for advances in studies investigating 9 

the composition and transport of aerosols and greenhouse gases, fire behavior, or fire modeling. 10 

No fire emissions product calibrated using field observations currently exists for use in studying 11 

these processes with continuous spatial and temporal coverage and public availability. Hyer et 12 

al. (2007) found that emissions from boreal fires averaged over 30-day intervals resulted in a 13 

reduction of 80% of the variance compared to daily and weekly data in a fire aerosol transport 14 

simulation. The temporal resolution of emission data is especially important for boreal fires 15 

since they often reach most of their burned area in only a couple of days when the 16 

spatiotemporal patterns of ignitions and fire weather optimally coincide (Abatzoglou and 17 

Kolden, 2011; Sedano and Randerson, 2014). The representation of extreme fire weather 18 

periods and their influence on burned area in models may allow for more accurate predictions 19 

of interannual and decadal changes in the fire regime caused by climate warming (Jin et al., 20 

2014). High resolution emission time series may also improve knowledge about differences in 21 

composition of aerosols and trace gases originating from flaming and smoldering stages of 22 

combustion (Yokelson et al., 2013) as well as allowing for better prediction of human health 23 

impacts in downwind areas (Yao and Henderson). More fundamentally, daily burned area 24 

estimates are critical for quantitatively examining landscape and weather controls on fire spread 25 

rates and severity. 26 

In this paper we describe the creation of a high resolution time series of fire emissions 27 

appropriate for investigating many of the fine-scale fire dynamics questions described above. 28 

We created a continuous daily time series of fire emissions during 2001-2012 with a spatial 29 

resolution of 450 m for the state of Alaska. The combined time span, time step, spatial 30 
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resolution, spatial domain and calibration with field observations of this product makes it 1 

suitable for use in many atmospheric studies, and unique from other published estimates. To 2 

estimate carbon consumption at each location (kg carbon per m2 burned area), we developed 3 

multiplicative regression models that capture some of the variability in field measurements 4 

using gridded environmental variables, including post-fire remote sensing observations of 5 

severity.. Our approach also includes uncertainty estimates derived from the fit of our model 6 

with the field observations, and includes components associated with our scaling approach used 7 

to provide region wide spatial coverage. The derived daily burned area and carbon emissions 8 

product, referred to as the Alaskan Fire Emissions Database (AKFED), is the first wall-to-wall 9 

multi-year database with daily temporal resolution that is calibrated using field observations for 10 

Alaska and is publicly available (upon acceptance we will create a link here to data published 11 

on ORNL DAAC). In our analysis, we compared our model estimates with other regional and 12 

global biomass burning products from WFEIS and GFED3s. We also show that the set of field 13 

observations used does not adequately sample burned area in open forests with sparse tree 14 

cover. Since these forests tend to have lower levels of carbon consumption, adjusting for this 15 

bias yields lower regional means than what would be inferred directly from the existing set of 16 

observations. 17 

2 Spatiotemporal domain and data 18 

2.1 Spatiotemporal domain 19 

The spatial domain covers the area between 58° and 71.5° N, and 141° and 168° W. This 20 

represents almost the entire mainland of Alaska with exclusion of the southern part of the 21 

Alaska Peninsula and Southeast Alaska, west of British Columbia (Figure 1). The temporal 22 

domain of the study includes the years 2001-2012. Most Alaskan fires occur in the interior of 23 

the state, which consists of a mosaic of vegetation types (Figure S1). Black spruce forest 24 

dominates on cold, poorly drained, north-oriented or lowland sites, whereas white spruce and 25 

deciduous species (mainly aspen and birch) prevail on warmer, better drained, south-oriented 26 

sites without permafrost (Viereck, 1973; Bonan, 1989). Grass- and shrubland ecosystems occur 27 

in early successional stands, poorly drained sites, steep slopes and at and above the treeline. 28 

The vegetation mosaic in interior Alaska is constantly reshaped by the occurrence of fire and 29 

subsequent post-fire succession. Fewer fires occur in the tundra regions in the north and at the 30 
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western coastal areas of the state, however, the 2007 Anaktuvuk River fire on the North Slope 1 

is the largest tundra fire on record (Jones et al., 2009; Mack et al., 2011; Kolden and Rogan, 2 

2013).  3 

FIGURE 1 HERE 4 

2.2 Field data 5 

We assembled field data of depth of burn from three different publications (Boby et al., 6 

2010; Turetsky et al., 2011; Rogers et al., 2014). Due to limited data availability for other land 7 

cover types than black spruce (five plots in Rogers et al. (2014)), we focused on black spruce 8 

plots and we retained all plots burned since 2000 for which cloud-free one year-post fire dNBR 9 

observations were available in the Monitoring Trends in Burn Severity (MTBS, Eidenshink et 10 

al. (2007)) database, resulting in a total of 126 plots (Table S2). The location of the field plots 11 

is given in Figure 1. Boby et al. (2010) and Rogers et al. (2014) provided a direct estimate of 12 

the belowground carbon consumption representing 39 plots. Both studies sampled multiple soil 13 

cores (11 in Boby et al. (2010), and 6 in Rogers et al. (2014)) in a 2 m by 30 m transect in each 14 

plot. These studies estimated pre-fire carbon stocks from control sites that were chosen to match 15 

the conditions of the burned sites. These studies used measurements of adventitious roots 16 

(Kasischke and Johnstone, 2005; Kasischke et al., 2008) within the soil column in combination 17 

with bulk density and carbon concentrations to calculate the pre-fire soil carbon stock. 18 

Belowground carbon consumption was defined as the difference between the pre- and  post-fire 19 

carbon stocks. These plots, except for one in Boby et al. (2010), also included an estimate of 20 

aboveground carbon consumption. Boby et al. (2010) and Rogers et al. (2014) both estimated 21 

aboveground carbon stock using allometric equations and diameter-at-breast height 22 

measurements of individual trees. Both studies multiplied visual estimates of percentage 23 

consumption of the aboveground carbon pools to derive aboveground carbon consumption. 24 

Turetsky et al. (2011) aggregated depth of burn data from multiple methods including the 25 

adventitious roots technique, burned-unburned site pairings, and combustion rods, with varying 26 

numbers of measurements per site. For the Turetsky et al. (2011) plots, belowground carbon 27 

consumption was calculated from depth of burn measurements using separate, region wide 28 

mean soil-carbon accumulation curves for lowland, upland, and slopes with south (S), north 29 

(N), and east or west (EW) aspect (Figure S2). We used a digital elevation model (section 2.3.3) 30 
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resampled to 450 m resolution for assigning the topographic classes to the field plots. Concave 1 

flat (slope ≤ 2%) areas were classified as lowland (L), convex flat areas were as upland (U). 2 

Sloped terrain was categorized as N aspect (aspect ≥ 315° or < 45°), S aspect (aspect ≥ 135° 3 

and < 225°), and E or W aspect (aspect ≥ 45° and < 135°, or ≥ 225° and < 315°). More detailed 4 

description of the field sites and data acquisition can be found in the respective publications. 5 

We also note that the sampling approach used by Rogers et al. (2014) was designed to enable 6 

comparisons with 30 m geospatial layers. To account for potential georegistration errors their 7 

plots were therefore selected within 100 m by 100 m patches that were relatively homogeneous 8 

in pre- and post-fire characteristics. 9 

2.3 Geospatial data 10 

2.3.1 Alaska Large Fire Database (ALFD) 11 

The Alaska Large Fire Database (ALFD) currently contains fire perimeters for the state of 12 

Alaska from 1940 through the present (downloaded from 13 

http://afsmaps.blm.gov/imf/imf.jsp?site=firehistory, last accessed April 3, 2015). The database 14 

receives yearly updates. The reliability of the database increases through time as mapping 15 

technologies advanced; since the 1980s, consistent mapping with high quality and few 16 

omissions has been achieved (Kasischke et al., 2002, 2011). For our study, we extracted the fire 17 

perimeters of the years 2001-2012 from the ALFD (Figure 1). 18 

2.3.2 Active fire data 19 

The Global Monthly Fire Location Product (MCD14ML) contains geographic location and 20 

time for each fire pixel detected by MODIS on Terra (launched in December 1999) and Aqua 21 

(launched in May 2002). Additional information on brightness temperature, fire radiative 22 

power, scan angle and detection confidence is also provided. The product is based on a 23 

contextual active fire algorithm that exploits the strong emission in the mid infrared region from 24 

fires (Giglio et al., 2003, 2006). We extracted the fire detections from all confidence levels for 25 

our domain for the months May-September, the months of the fire season, for all years. MODIS 26 

on Terra experienced an extended outage during our study period from June 16 through July 2, 27 

2001 (Giglio et al., 2013). 28 
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2.3.3 Environmental variables 1 

Ground layer consumption by fire depends on the amount of available dry fuels, which is 2 

determined by thickness, density and moisture content of the organic layer. After an extensive 3 

literature review, we selected a set of environmental variables to predict ground layer 4 

consumption over the landscape (Table 1). The selected environmental variables were 5 

elevation, slope, northness (defined as the cosine of the aspect), tree cover, day of burning, and 6 

dNBR. 7 

TABLE 1 HERE 8 

Topography is a good proxy of site conditions for several reasons. Elevation influences 9 

organic layer thickness, carbon density, drainage and permafrost thaw by means of its control 10 

on climate. At higher elevations the seasonal permafrost thaw starts later (Kasischke and 11 

Johnstone, 2005; Kasischke and Hoy, 2012). Uplands generally have shallower organic layers 12 

with a slightly higher carbon density than lowlands (Kane et al., 2005, 2007; Turetsky et al., 13 

2011). Uplands are generally also better drained than lowlands (Barrett et al., 2010; Kasischke 14 

and Hoy, 2012). Steep terrain is better drained than flat land, but above a certain threshold 15 

steepness limits the establishment of trees resulting in shallower organic layers at steeper sites 16 

(Hollingsworth et al., 2006). In crown fire ecosystems, fire severity tends to increase with 17 

steepness when the wind direction aligns upslope (Rothermel, 1972; Pimont et al., 2012; 18 

Lecina-Diaz et al., 2014), and this may also affect ground layer consumption. N-oriented slopes 19 

are wetter and colder than S-faced slopes and have thicker, less dense organic layers (Kane et 20 

al., 2007; Turetsky et al., 2011). Here we derived elevation, slope and northness from the 21 

Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation 22 

Model Version 2 (ASTER GDEM 2, Tachikawa et al. (2011)). The ASTER GDEM 2 is a 30 m 23 

elevation model retrieved from ASTER stereo-pair images. 24 

Pre-fire tree cover is closely related to to site productivity and stand age, and thus influences 25 

organic layer thickness, density and moisture content (Kasischke and Johnstone, 2005; Beck et 26 

al., 2011b; Rogers et al., 2013). Tree cover generally increases with stand age and better 27 

drainage conditions (Beck et al., 2011b; Rogers et al., 2013). Tree cover also is directly related 28 

to the amount of biomass available for aboveground consumption, which has been shown to 29 

correlate reasonably well with belowground consumption within a single fire (Rogers et al., 30 
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2014). For the comparison with the field plots, we used 30 m tree cover data from the Landsat-1 

based tree cover continuous field product for the year 2000 (Sexton et al., 2013). For the 2 

statewide-extrapolation, tree cover was downloaded from the annual Terra MODIS Vegetation 3 

Continuous Fields Collection 5 product at 250 m resolution for the years 2000-2010 (MOD44B, 4 

Hansen et al. (2003)). The generation of the MOD44B product was discontinued after 2010, 5 

and we therefore used the tree cover layer of the year 2010 as pre-fire tree cover for the year 6 

2012. 7 

The day of burning in the season covaries with the mean depth of the active layer, and thus 8 

may be related to the amount of dry ground fuels available for burning (Turetsky et al., 2011; 9 

Kasischke and Hoy, 2012). We assigned the day of burning for each pixel based on the MODIS 10 

active fire observations. We found that the nearest neighbor variant of the inverse distance 11 

weighting technique, in which the pixel is assigned the value of the closest active fire detection 12 

excluding scan angles larger than 40°, performed best and with a within-one-day accuracy for 13 

most pixels (Figure S3). The resulting progression maps were binned with a daily time step, at 14 

local solar time.  15 

We investigated the dNBR as an explanatory variable in our carbon consumption model 16 

because extensive literature suggests that it may have some predictive power in boreal forest 17 

ecosystems. For the comparison with the field plots, 30 m dNBR data was retrieved from the 18 

Landsat-based Monitoring Trends in Burn Severity database (MTBS, Eidenshink et al. (2007)). 19 

For the statewide-extrapolation, we calculated NBR from MODIS surface reflectance data in 20 

the near infrared (NIR, centered at 858 nm) and short-wave infrared (SWIR, centered at 2130 21 

nm) bands: NBR = (NIR-SWIR) / (NIR + SWIR). We used the surface reflectance data 22 

contained in the 16-day Terra MODIS Vegetation Indices Collection 5 product at 500 m 23 

resolution for the years 2000-2013 (MOD13A1, Huete et al. (2002)). To account for cloudy 24 

observations in single MODIS composites, we created summer NBR composites using the five 25 

16-day composites between days of the year 177 and 256. We only used good data as indicated 26 

by the MOD13A1 quality flags. NBR values were calculated as the mean of all available good 27 

observations within the five composites. dNBR was calculated using the one-year pre-and post-28 

fire NBR layers. Within the MTBS database, we also only considered one-year post-fire dNBR 29 
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information. This minimized potential differences in the interpretation of dNBR values from 1 

different post-fire years (Veraverbeke et al., 2010; Rogers et al., 2014). 2 

The above six variables (elevation, slope, northness, tree cover, day of burning and dNBR) 3 

were targeted to develop the belowground carbon consumption model. dNBR and tree cover 4 

were used as predictors of aboveground carbon consumption. 5 

2.3.4 Land cover data 6 

We used the Fuel Characteristic Classification System (FCCS, Ottmar et al. (2007), Riccardi 7 

et al. (2007)) layer of the year 2001 at 30 m to represent land cover in the study area 8 

(downloaded from http://landfire.cr.usgs.gov/viewer/, last accessed April 3, 2014). The FCCS 9 

is a national effort by the U.S. Forest Service to provide a fuel type classification that is 10 

compiled from literature, inventories, photo series and expert opinion (Ottmar et al., 2007; 11 

Riccardi et al., 2007). For Alaska, the layer is available for the years 2001 and 2008. Since less 12 

than one percent of reburning occurred during the period of our study (2001-2012), we decided 13 

to only use the 2001 layer. We aggregated the fuel types into five land cover classes: black 14 

spruce, white spruce, deciduous, tundra-grass-shrub and non-vegetated (Table S1, Figure S1). 15 

Other than the National Land Cover Database in Alaska (Stehman and Selkowitz, 2010), the 16 

FCCS layer discriminates between black and white spruce fuel types. The uncertainty of the 17 

FCCS layer in Alaska has not been formally assessed. 18 

3 Methods 19 

AKFED provides daily burned area and carbon emissions for the state of Alaska between 20 

2001 and 2012 at 450 m resolution. Since unburned islands are not fully accounted for within 21 

perimeters (Kasischke and Hoy, 2012; Kolden et al., 2012; Rogers et al., 2014; Sedano and 22 

Randerson, 2014), and some small fires are not accounted for outside the perimeters (Randerson 23 

et al., 2012), we developed a burned area mapping approach that screened dNBR values within 24 

the ALFD perimeters and in the vicinity of active fire pixels outside the perimeters (section 25 

3.1).  26 

The carbon consumption model was formulated for black spruce based on the relationship 27 

between the observed carbon consumption at the field locations and the environmental 28 

variables. We extracted the pixel values of elevation, slope, northness, pre-fire tree cover and 29 
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dNBR at 30 m at the location of the field plots. The day of burning was assigned from the 1 

nearest active fire observation.  2 

To extrapolate the model in space and time, we used a spatial resolution of 450 m.  This is 3 

the multiple of 30 m closest to the exact 463 m native resolution of the MOD13A1 product used 4 

to derive the dNBR layers (Masuoka et al., 1998). This spatial resolution facilitated spatial 5 

averaging of 30 m DEM, tree cover, dNBR and land cover data. The decision to extrapolate the 6 

model at this resolution was driven by data availability. We aimed at complete spatial coverage. 7 

Even with current efforts such as MTBS and the Web-Enabled Landsat Data (WELD, Roy et 8 

al. (2010)), initial exploration of these datasets indicated that complete Landsat dNBR coverage 9 

for every burned pixel was still partly constrained by clouds, smoke, snow and gaps caused by 10 

the Landsat 7 scan line corrector failure.  11 

Elevation, aspect and northness were spatially averaged from the native 30 m resolution of 12 

the ASTER GDEM 2 to the 450 m resolution. Similarly, the MOD44B tree cover product was 13 

spatially averaged from its native resolution to the 450 m resolution. The day of burning was 14 

also obtained at this grid resolution. To account for other land cover types than black spruce, 15 

the aggregated FCCS product was rescaled to 450 m in a way that every pixel at 450 m 16 

contained the percentage of black spruce, white spruce, deciduous, tundra-grass-shrub and non-17 

vegetated land (Figure S1). All analyses were performed within the Albers equal area projection 18 

for Alaska (central meridian: 154°W, standard parallel 1: 55°N, standard parallel 2: 65°N, 19 

latitude of origin: 50°N) with North American Datum 1983 (NAD83). An overview of the 20 

workflow is given in Figure 2. 21 

FIGURE 2 HERE 22 

We compared the annual burned area and carbon emissions estimates derived from AKFED 23 

with those from WFEISv0.4 (French et al., 2014) and GFED3s (Randerson et al., 2012), two 24 

continental to global scale modeling systems. . Since WFEIS and GFED3s were not directly 25 

calibrated with region specific field data, comparisons with AKFED may be instructive for 26 

improving boreal carbon consumption in boreal forest ecosystems. We used the MCD64A1 27 

burned area product (Giglio et al., 2009) within the WFEIS emissions calculator. MCD64A1 28 

was also the burned area layer within GFED3s (Randerson et al., 2012). A small amount of 29 

burned area (8 %) associated with fires outside the MCD64A1 burned areas, are accounted for 30 
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in Alaska in the GFED3s approach (Randerson et al., 2012). AKFED burned area has 1 

conceptual similarities with this latter approach. 2 

3.1 Daily burned area mapping (450 m) 3 

Annual burned area maps at 450 m were derived by applying a threshold on the dNBR values 4 

of pixels within the perimeters of the ALFD and outside the perimeters but within 1 km of an 5 

active fire pixel. If any fraction of the 450 m pixel was covered by a fire perimeter polygon, 6 

then this pixel was considered in the perimeter. Pixels with a dNBR value larger than 0.15 were 7 

classified as burned. The dNBR threshold was determined based on the dNBR variability that 8 

exists within unburned pseudo-invariant pixels (100% barren pixels at 450 m, FCCS code 931). 9 

We found, as expected, that the mean dNBR was close to zero (0.01). The standard deviation 10 

of the distribution equaled 0.15. By selecting this value as our threshold for the burned area 11 

mapping, we aimed to minimize commission errors, however, we recognize that this may have 12 

incurred a small omission error for pixels that were only partially burned and/or burned with 13 

low severity. The threshold value we used was the same as the one applied by Sedano and 14 

Randerson (2014) who used a similar burned area mapping approach within ALFD perimeters. 15 

All burned pixels were assigned a day of burning from the detection time of the nearest active 16 

fire observation excluding observations with view zenith angles higher than 40° (Figure S3). 17 

3.2 Carbon consumption model (30 m) 18 

We aimed to separately predict below- and aboveground carbon consumption based on the 19 

relationships between field plot data and environmental variables at 30 m (elevation, slope, 20 

northness, pre-fire tree cover, day of burning and dNBR). We focused on modeling carbon 21 

consumption, however, we also reported the results of the depth of burn model because of this 22 

variable is widely measured and analysed in the literature (e.g. Barrett et al., 2010, 2011; 23 

Turetsky et al., 2011; Genet et al., 2013). We investigated two modeling techniques to formulate 24 

a carbon prediction model. The first technique was multiplicative nonlinear regression. This 25 

technique is based directly on the interpretation of empirical relationships that may exist 26 

between the environmental variables and the carbon consumption field data. Multiplicative 27 

nonlinear regression has demonstrated to be effective in a similar application to predict fire 28 

occurrence and size in Southern California (Jin et al., 2014). The second technique was gradient 29 
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boosting of regression trees. We applied this technique because previous work indicated that it 1 

may have value in predicting depth of burning in boreal black spruce forests (Barrett et al., 2 

2010, 2011). Gradient boosting is a machine learning technique, which produces a prediction 3 

model in the form of an ensemble of, in our case, multiple regression trees. We parameterized 4 

the gradient boosting of regression trees with the requirement that each leaf included at least 5 

10% of the data per leaf and using 50 weak learner trees. Both multiplicative nonlinear 6 

regression and gradient boosting of regression trees allow for nonlinear relationships between 7 

the dependent and independent variables, and interactions between the independent variables. 8 

We opted to use the multiplicative nonlinear regression model for our study because we found 9 

it to considerably outperform the gradient boosting model in predicting observations that were 10 

not used to train the models (Figure S4). 11 

3.3 Daily carbon emissions, 2001-2012 (450 m) 12 

Once optimized, we extrapolated the carbon consumption model over the spatiotemporal 13 

domain of the study at 450 m resolution. To do so, we first quantified the linear relationship 14 

between Landsat and MODIS dNBR and tree cover (Figure S5). The resulting regression 15 

equations were applied to the MODIS-derived dNBR and tree cover layers to allow direct 16 

application in the carbon consumption model that was optimized using Landsat data. 17 

Due to data paucity of carbon consumption observations in other land cover types than black 18 

spruce, we developed separate consumption models for these ecosystems that drew upon the 19 

data-driven approach for black spruce. Deciduous and white spruce stands generally have 20 

higher aboveground and lower belowground fuel loads (Kasischke and Hoy, 2012; Rogers et 21 

al., 2014). We assumed that carbon consumption in these land cover types was controlled by 22 

the same variables as from the black spruce consumption model. However, we multiplied the 23 

estimates derived from our black spruce-based equations by consumption ratios for above- and 24 

belowground deciduous and white spruce stands that were developed using the Consume 3.0 25 

fuel consumption model (Ottmar et al., 2006; Prichard et al., 2006) (Figure S6). Consumption 26 

estimates derived from the black spruce model were multiplied with the consumption ratios 27 

proportional to the land cover fractions within each pixel. For the state-wide extrapolation over 28 

pixels classified as tundra-grass-shrub and non-vegetated, we used the model derived for black 29 
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spruce. The mean tree cover value of all 30 m tundra-grass-shrub and non-vegetated pixels 1 

within the ALFD perimeters between 2001 and 2012 was 11% (standard deviation = sd = 14%). 2 

We also quantified the influence of applying the nonlinear multiplicative model (developed 3 

at 30 m resolution) using data with a spatial resolution of 450 m to enable state-wide coverage. 4 

For this analysis, we selected all cloud-free one-year post-fire observations of the large fire year 5 

2004 from MTBS. We co-registered these with all good-quality observations from the Landsat 6 

tree cover layer, the 30 m DEM, 30 m progression maps (derived using the nearest neighbor 7 

approach), and the 30 m land cover map. We then estimated carbon consumption at 30 m and 8 

averaged the resulting carbon consumption over 450 m pixels for those 450 m pixels that had 9 

complete 30 m dNBR and tree cover coverage. For these same pixels, we also first averaged all 10 

30 m input layers (dNBR, tree cover, DEM, progression, and land cover) to 450 m, and then 11 

estimated carbon consumption at 450 m resolution. 12 

3.4 Uncertainty 13 

We adopted a Monte Carlo approach to quantify uncertainties in AKFED. We identified four 14 

main sources of uncertainty. The first source originates from the unexplained variance in the 15 

black spruce consumption model. The uncertainty estimate from the black spruce consumption 16 

model was derived quantitatively from the regression model and varied from pixel to pixel as a 17 

function of the input variables. The other sources of uncertainty were related to assumptions 18 

and data required to extrapolate the model over Alaska. These included uncertainties in the 19 

spatial scaling of a model developed with 30 m data at 450 m resolution, the land cover 20 

classification, and assumptions made for deriving carbon consumption for other land cover 21 

types than black spruce. Uncertainties derived from the spatial scaling were quantitatively 22 

estimated using the approach described in section 3.3. For the land cover classification, because 23 

of a lack of quantitative information associated with the classification uncertainty, we assumed 24 

a best-guess standard deviation uncertainty of 20% of pixel-based the black spruce fraction. We 25 

also assigned a best-guess uncertainty (one sd) of 20 % of the value range for the factors 26 

developed to estimate carbon consumption in other land cover types than black spruce (Figure 27 

S6). We ran 1000 simulations at each pixel that burned between 2001 and 2012 in which we 28 

randomly adjusted the regression model estimates, the land cover fractions, and scaling 29 
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relationships using the uncertainty information described above. We conducted three separate 1 

Monte Carlo simulation analyses for belowground, aboveground and total carbon consumption. 2 

4 Results 3 

4.1 Carbon consumption model 4 

The relationship between the depth of burn and the individual environmental variables was 5 

strongest for dNBR and tree cover (𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2  = 0.25, p < 0.001), with both relationships 6 

modeled using exponential response functions (Figure S7). Depth of burn responded with a 7 

relatively strong Gaussian relationship to elevation (𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2  = 0.24, p < 0.001), with the 8 

deepest burning occurring in the mid-elevation range between 300 and 600 m. A weak 9 

relationship was found for slope (𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2  = 0.05, p < 0.05), and no relationship was observed 10 

for day of burning or northness. The strongest individual predictors for belowground carbon 11 

consumption were day of burning (𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2  = 0.09, p < 0.001), slope (𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑

2  = 0.08, p < 12 

0.01) and dNBR (𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2  = 0.06, p < 0.01). Northness (𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑

2  = 0.04, p < 0.05), elevation 13 

(𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2  = 0.04, p < 0.05), and tree cover (𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑

2  = 0.03, p < 0.05) had a weaker influence 14 

(Figure S8). The aboveground carbon consumption demonstrated stronger, also exponential, 15 

relationships with pre-fire tree cover (𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2  = 0.53, p < 0.001) and dNBR (𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑

2  = 0.23, 16 

p < 0.001) variables (Figure S9). 17 

The optimized multiplicative nonlinear model for the depth of burn and belowground carbon 18 

consumption in black spruce forest based on the field and 30 m data was formulated as: 19 

𝑑𝑒𝑝𝑡ℎ30𝑚 𝑜𝑟 𝐶𝑏𝑒𝑙𝑜𝑤𝑔𝑟𝑜𝑢𝑛𝑑,30𝑚 = 𝑐1 + 𝑐2 ∙ 𝑒𝑐3∙𝑑𝑁𝐵𝑅 ∙ 𝑒𝐶4∙𝑡𝑐𝑒𝑐5∙𝐷𝑂𝑌 ∙ 𝑒
−(𝑒𝑙𝑒𝑣−𝑐6)2

2∙𝑐7   (1) 20 

where 𝑐1,…,7 are the optimized coefficients, dNBR is the differenced normalized burn ratio, tc 21 

is the pre-fire tree cover, DOY is the day of the year and elev is the elevation. Two separate 22 

models were developed for depth of burn and belowground carbon consumption using equation 23 

1. The depth of burn model yielded a 𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2  of 0.40 with a median absolute residual of 3.65 24 

cm (p < 0.001) (Figure 3A). For belowground carbon consumption, the model and a 𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2  25 

of 0.29 with a median absolute residual of 1.18 kg C m-2 (p < 0.001) for belowground carbon 26 
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consumption (Figure 3C). Inclusion of slope and northness did not improve the performance of 1 

the two models. 2 

The aboveground carbon consumption in black spruce forest was modeled as a multiplicative 3 

exponential model of the 30 m dNBR and pre-fire tree cover variables: 4 

𝐶𝑎𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑,30𝑚 = 𝑐1 + 𝑐2 ∙ 𝑒𝑐3∙𝑑𝑁𝐵𝑅 ∙ 𝑒𝐶4∙𝑡𝑐      (2) 5 

where 𝑐1,…,4 are the optimized coefficients. This model had a 𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2  of 0.53 with a median 6 

absolute residual of 0.12 kg C m-2 (p < 0.001) (Figure 3E), with a performance similar to the 7 

individual relationship between the aboveground carbon consumption and pre-fire tree cover. 8 

In the mostly stand-replacing fires that occur in black spruce forest, dNBR did not contribute 9 

to the aboveground model. However, we decided to include dNBR to allow for variations in the 10 

severity of burning in other land cover types than black spruce, for example in deciduous stands 11 

which often burn less severely and frequently (Viereck, 1973; Cumming, 2001). We found no 12 

trends in the residuals of any of the models (Figure 3B, D and F). The environmental variables 13 

used in the carbon consumption models are shown for the spatiotemporal domain in Figure S10. 14 

FIGURE 3 HERE 15 

Applying the black spruce model at 450 m resolution introduced little systematic bias from 16 

the coarser spatial resolution (Figure S11). Using the consumption ratios derived for white 17 

spruce and deciduous cover (Figure S6) and slope and intercept from the 30 m to 450 m scaling 18 

analysis (Figure S11), below- and aboveground carbon consumption at 450 m resolution were 19 

calculated as: 20 

𝐶𝑏𝑒𝑙𝑜𝑤𝑔𝑟𝑜𝑢𝑛𝑑,450𝑚 = −0.005 + 1.015 ∙ (𝑓𝑟𝑏𝑠 + 0.66 ∙ 𝑓𝑟𝑤𝑠 + 0.31 ∙ 𝑓𝑟𝑑𝑒𝑐) ∙ 𝐶𝑏𝑒𝑙𝑜𝑤𝑔𝑟𝑜𝑢𝑛𝑑,30𝑚 (3) 21 

𝐶𝑎𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑,450𝑚 = 0.023 + 1.077 ∙ (𝑓𝑟𝑏𝑠 + 1.56 ∙ 𝑓𝑟𝑤𝑠 + 1.75 ∙ 𝑓𝑟𝑑𝑒𝑐) ∙ 𝐶𝑎𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑,30𝑚 (4) 22 

where frbs is the fraction of black spruce within the 450 m pixel, frws is the fraction of white 23 

spruce and frdec is the fraction of deciduous. The black spruce model was also applied to residual 24 

tundra-grass-shrub and non-vegetated parts of each pixel. Before application of equations 3 and 25 

4, the dNBR and tree cover from MODIS were first converted into their Landsat equivalent 26 

values using the equations from Figure S5. The total carbon consumption was calculated as the 27 

sum of the below- and aboveground carbon consumption. 28 

To assess the importance of the individual variables, we compared all possible multiplicative 29 

regression models with two or more input variables for the depth of burn and belowground 30 
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carbon consumption (Figure 4). For the depth of burn model, elevation was the most important 1 

explanatory variable. For example, 2-variables models combining elevation with day of burning 2 

and dNBR performed better than the 3-variables models that excluded elevation. For the 3 

belowground carbon consumption model, the day of burning variable was crucial. All 2-4 

variables models combining day of burning with any of the other variables performed better 5 

than the 3-variables models that excluded day of burning.  6 

FIGURE 4 HERE 7 

4.2 Daily burned area and carbon emissions, 2001-2012 8 

The total carbon emissions and uncertainty for the spatiotemporal domain are shown in 9 

Figures 5 and 6. Daily carbon emissions over the entire spatial domain were primarily driven 10 

by daily burned area (Figure 6), however, there was considerable spatial variability in carbon 11 

consumption (Figure 5). Annual burned area in Alaska from AKFED ranged between 37 and 12 

2295 kha per year between the years 2001 and 2012, resulting in a carbon emission range 13 

between 1 and 69 Tg per year (Figure 7A). 1% of the burned area was mapped from active fire 14 

detections outside the perimeters, whereas 18% of the pixels within the ALFD perimeters were 15 

mapped as unburned after dNBR screening. 2004 (2295 kha), 2005 (1669 kha), 2009 (1046 16 

kha) and 2002 (739 kha) were the largest fire years. More than 50% of the burned area between 17 

2001 and 2012 burned in 53 single days (Figure 6). Most of the burning occurred in July and 18 

August (Figure 7B). The seasonal pattern of carbon emissions generally followed the same 19 

seasonal pattern as the burned area. However, carbon consumption increased by a small amount 20 

later in the season. Mean annual carbon consumption increased slightly with total annual burned 21 

area (Figure 8) and mean carbon consumption per fire and fire size were positively correlated 22 

(r = 0.24, p < 0.001). Mean dNBR per fire was correlated with fire size (Spearman r = 0.63, p 23 

< 0.001) and dNBR averaged over the fire season was correlated with annual burned area 24 

(Spearman r = 0.73, p < 0.05). Most of the burned area occurred in black spruce and white 25 

spruce ecosystems (61%), followed by tundra-grass-shrub ecosystems (23%), deciduous forests 26 

(14%), and non-vegetated areas (2%), with an overall mean tree cover of 32%. 27 

FIGURE 5 HERE 28 

FIGURE 6 HERE 29 
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FIGURE 7 HERE 1 

FIGURE 8 HERE 2 

The median total carbon consumption in AKFED for all burned pixels between 2001 and 3 

2012 was 2.54 kg m-2, with the majority originating from belowground losses (median = 2.32 4 

kg C m-2) (Figure 9A). The median aboveground carbon consumption was 0.18 kg C m-2 . The 5 

median belowground carbon consumption was higher in burned pixels that had a vegetation 6 

cover of 100% black spruce (median = 2.67 kg C m-2) (Figure 9B). However, belowground 7 

carbon consumption estimates for black spruce were lower than those observed in the field data 8 

median = 3.1 kg C m-2). The field data also had a higher median elevation, tree cover and dNBR 9 

compared to the distribution of the burned area between 2001 and 2012 (Figure 10).  10 

FIGURE 9 HERE 11 

FIGURE 10 HERE 12 

Annual burned area from AKFED, WFEIS and GFED3s were fairly similar (Table 2). 13 

Relative to the AKFED burned area estimates between 2001 and 2010, WFEIS burned area 14 

estimates were about 10 % lower, and GFED3s estimates approximately 2 % lower. Annual 15 

carbon emissions estimates showed larger differences. WFEIS carbon emissions estimates were 16 

approximately 142 % higher than AKFED between 2001 and 2010, and GFED3s carbon 17 

emissions estimates were approximately 13 % lower than AKFED. Carbon consumption 18 

estimates of WFEIS were approximately 168 % higher than AKFED, whereas GFED3s carbon 19 

consumption estimates were approximately 12 % lower than AKFED between 2001 and 2010. 20 

No significant correlations were found between year-to-year variations in mean carbon 21 

consumption estimates from the different models. 22 

4.3 Uncertainties 23 

Uncertainty in total carbon consumption originated primarily from the belowground fraction 24 

(Figure 11). The region wide standard deviation of the 1000 simulations that included all 25 

uncertainty sources was 0.50 kg C m-2 for total carbon consumption. Region wide below- and 26 

aboveground uncertainties from all sources were 0.47 kg C m-2 and 0.14 kg C m-2. The black 27 

spruce model was the main source of uncertainty, followed by the land cover classification. The 28 
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scaling factors developed to derive carbon consumption in other land cover types than black 1 

spruce and spatial scaling introduced smaller uncertainties. 2 

FIGURE 11 HERE 3 

5 Discussion 4 

5.1 Burned area 5 

Our results corroborate previous work highlighting the importance of unburned islands, 6 

which amounted to 18% of the fire perimeters. This value is close to the estimates of 14 %, 7 

15%, 17 %, and 20 % reported by Kolden et al. (2012), Sedano and Randerson (2014), Rogers 8 

et al. (2014) and Kasischke and Hoy (2012) for fires in interior Alaska. Burned area and 9 

emissions peaked in July and August and extended later in the fire season than what has been 10 

previously reported for burning before the 2000s (Kasischke et al., 2002) (Figure 7B). This 11 

tendency towards late-season burning was found for the four largest fire years that occurred 12 

during the study period (2002, 2004, 2005 and 2009) (Figure 6) and can be attributed to the 13 

late-season occurrence of weather conditions favorable to fire spread during these large fire 14 

years (Hu et al., 2010; Sedano and Randerson, 2014).  15 

5.2 Environmental variables controlling carbon consumption 16 

5.2.1 Elevation 17 

Elevation was the most important variable in the multiplicative depth of burn model and 18 

contributed to the skill of the belowground carbon consumption model (Figure 4). Barrett et al. 19 

(2010, 2011) and Turetsky et al. (2011) demonstrated the explanatory power of topographic 20 

variables for belowground carbon consumption in black spruce forests. Kasischke and Hoy 21 

(2012) drew upon these findings and assigned seasonal trajectories of carbon consumption to 22 

three different topographic classes. The predictive power of elevation for belowground carbon 23 

consumption is likely explained by two effects. Elevation captures the spatial distribution of 24 

cold temperatures that limit the development of soils and black spruce establishment at the 25 

higher elevations (Figure S7A). Elevation also captures the fuel moisture controls resulting in 26 

generally wetter fuels at lower elevations. This moisture control is dynamic through the fire 27 



23 

 

season and this is captured in our model by interactions between elevation and day of burning 1 

(Figure 4). Inclusion of the northness and slope variables did not improve our model prediction. 2 

This contrasts with the findings of Barrett et al. (2010, 2011) who ranked slope and aspect, and 3 

derived drainage indicators, in the top predictors for depth of burn. It contrasts with Turetsky 4 

et al. (2011) who found differences in average carbon consumption among different aspect 5 

classes. As an individual variable, slope did display some explanatory power (Figure S7B and 6 

S8B), but did not contribute to the final model. The contrasting findings of this study compared 7 

to Barrett et al. (2010, 2011) and Turetsky et al. (2011) can partly be explained by the scale-8 

dependency of controls on carbon consumption. Here we developed our mulitplicative 9 

regression model treating all data points within and across different burns with equal weighting. 10 

With this assumption, the topographic variable explaining most of the variability in 11 

belowground carbon consumption (as a proxy of drainage condition and soil organic layer 12 

thickness) was elevation. At a more local scale, for example within one fire, differences in 13 

elevation may be smaller, and the variability in drainage conditions and hence belowground 14 

carbon consumption may be better captured by including slope and aspect variables. 15 

Hollingsworth et al. (2006) found a similar scale-dependency explaining the occurrence and 16 

abundance of black spruce types from local to regional scales. Further improvements of the 17 

model in future work could include fine scale drainage effects driven by slope and aspect. More 18 

field observations are needed to robustly separate these different topographic effects.  19 

5.2.2 Day of burning 20 

Day of burning within the fire season was the most important variable in the belowground 21 

carbon consumption model (Figure 4). Day of burning is used as a proxy for seasonal drying of 22 

the soil organic layer (Turetsky et al., 2011; Kasischke and Hoy, 2012; Genet et al., 2013). This, 23 

however, also depends on elevation as lower elevations will thaw and dry earlier than higher 24 

elevations. Because of typically drier conditions of the belowground fuel later in the season, 25 

late-season fires tend to have higher carbon consumption rates (Figures 6, 7B, S8D). We found 26 

the magnitude of this seasonal change to be smaller than previously reported by Turetsky et al. 27 

(2011) and implemented by Kasischke and Hoy (2012).. Replacement of day of burning and 28 

elevation with weather indices in future work may enable broadening the geographical scope 29 

of the current regional carbon consumption model to other regions of boreal North America. 30 



24 

 

This could include components from the Canadian fire weather index system, (Van Wagner, 1 

1987), such as the drought code, possibly with modifications that account for differences in 2 

topographic conditions (Waddington et al., 2012).  3 

5.2.3 Burn severity (dNBR) 4 

The utility of dNBR in the boreal region has been subject to much debate (French et al., 5 

2008). We found a relatively strong relationship between dNBR and aboveground carbon 6 

consumption (Figure S9A). The criticism on the use of dNBR, however, has focused on its 7 

ability to predict belowground carbon consumption (French et al., 2008; Hoy et al., 2008). Some 8 

authors have found relatively strong correlations between field measures of belowground 9 

consumption and dNBR (Hudak et al., 2007; Verbyla and Lord, 2008; Rogers et al., 2014). 10 

Barrett et al. (2011) also ranked dNBR in the top third predictors of a set of 35 spectral and 11 

non-spectral environmental variables. French et al. (2008) concluded that the use satellite-based 12 

assessments of burn severity, including dNBR, in the boreal region “need to be used judiciously 13 

and assessed for appropriateness based on the users’ needs”. We found here that, as an 14 

individual variable, dNBR was the top predictor of depth of burn in black spruce forests together 15 

with pre-fire tree cover (Figure S7). We also found that including dNBR in the model resulted 16 

in additional explained variance compared to models that excluded dNBR (Figure 4). In 17 

addition, dNBR and tree cover were found to vary at a finer spatial scale than elevation or day 18 

of burning (Figure S12), and their inclusion in the model as such likely improved the 19 

representation of the spatial heterogeneity in carbon consumption. Previous work has included 20 

variables as fire size and total annual burned area as predictor variables in pyrogenic carbon 21 

consumption model (Barrett et al., 2010, 2011; Kasischke and Hoy, 2012; Genet et al., 2013). 22 

The significant positive correlations between fire size and mean dNBR (Spearman r = 0.63, p 23 

< 0.001) and annual burned area and mean dNBR (Spearman r = 0.73, p < 0.05) provided 24 

additional support for the inclusion of the dNBR as a synergistic variable in our carbon 25 

emissions modeling framework. The advantage of using dNBR for capturing this variability 26 

compared to fire size or total annual burned area is that it enables independent assessment of 27 

carbon losses at each pixel. It also provides a more mechanistic underpinning for exploring 28 

relationships that emerge at the fire-wide or regional level, including the relationships described 29 

above between fire size and carbon consumption. 30 
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The relatively high correlations between depth of burn, and dNBR and tree cover suggest 1 

that crown fires in high density black spruce plots may contribute to deeper burning into the 2 

ground layer. Burning into the ground layer is primarily controlled by fuel moisture in the 3 

ground layer, which was modeled here as a function of elevation and day of burning. For a 4 

given moisture condition of the ground layer, determined by elevation and fire seasonality, 5 

dNBR thus adds complementary power for the prediction of the consumption of the ground 6 

layer. This may explain why the dNBR has performed well in studies that focused on one single 7 

fire in which the elevation and day of burning were relatively constant (Hudak et al., 2007; 8 

Verbyla and Lord, 2008; Rogers et al., 2014). When used over large areas and over a range of 9 

burn conditions, our results suggest the synergistic use of the dNBR with other environmental 10 

variables is essential improves model performance. This finding agrees with Barrett et al. (2010, 11 

2011), who found that a combination of spectral and non-spectral data optimized depth of burn 12 

prediction in black spruce forest. 13 

5.2.4 Tree cover 14 

This is the first study to evaluate the potential of tree cover as a predictor of carbon 15 

consumption in black spruce forests. The relatively strong relationship between tree cover and 16 

aboveground carbon consumption is intuitive as black spruce forest mostly experience stand-17 

replacing crown fires and tree cover is directly related to the amount of available biomass and 18 

the probability that the crown fire can spread from tree to tree. Its utility for predicting 19 

belowground carbon consumption is less obvious and more indirect. We included tree cover in 20 

our analysis since we hypothesized that it would be a good proxy of stand age and site 21 

productivity which directly relates to drainage conditions, and thickness and density of the 22 

organic layer (Kasischke and Johnstone, 2005; Beck et al., 2011b; Rogers et al., 2013). High 23 

intensity crown fires in dense black spruce plots also may provide more radiant heating (and 24 

drying) of the ground layer, enabling deeper burns. Significant relationships between tree cover 25 

and depth of burn (Figure S7E), and tree cover and belowground carbon consumption (Figure 26 

S8E) provided support for these mechanisms. 27 
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5.3 Comparison with previous work on spatially explicit carbon consumption 1 

modeling for boreal fires in Alaska 2 

Here we compare our estimates of carbon emissions and carbon consumption with those 3 

from Kasischke and Hoy (2012) and Tan et al. (2007) for the subset of years reported in these 4 

publications. For 2004, we estimated a total emission of 69 Tg pyrogenic carbon in our domain. 5 

This estimate is slightly higher than the estimate of 65 Tg C from Kasischke and Hoy (2012), 6 

and both our estimate and the estimate of Kasischke and Hoy (2012) are substantially lower 7 

than the estimate of 81 Tg carbon reported by Tan et al. (2007). AKFED and Kasischke and 8 

Hoy (2012) also yielded similar estimates for the small fire years 2006 and 2008. The two 9 

models had diverging predictions for 2007, however, with the domain-wide AKFED estimate 10 

of 5 Tg C substantially higher than the estimate of approximately 2 Tg C by Kasischke and Hoy 11 

(2012). The discrepancy can be explained in part by the inclusion of the large Anaktuvuk tundra 12 

fire within the AKFED domain, whereas the analysis by Kasischke and Hoy (2012) only 13 

considered fires in the boreal interior of Alaska.  14 

We also found close agreement in the regional burned area estimates from AKFED and 15 

Kasischke and Hoy (2012). For example for the large fire years of 2004 and 2005, AKFED 16 

estimated a burned area of 2295 and 1669 kha, compared to estimates of 2178 and 1492 kha 17 

from Kasischke and Hoy (2012). The close agreement between AKFED and the Kasischke and 18 

Hoy (2012) for burned area is be expected since they use similar input data. Both approaches, 19 

for example, use fire perimeter data in combination with spectral screening to estimate burned 20 

area.  21 

Carbon consumption estimates for the large fire year 2004 were fairly similar among 22 

estimates from Kasischke and Hoy (2012) (3.0 kg C m-2), Tan et al., (2007) (3.1 kg C m-2) and 23 

AKFED (3.0 kg C m-2). Both AKFED and Kasischke and Hoy (2012) estimated lower 24 

consumption values for the small fire years 2006, 2007 and 2008, although the estimates from 25 

Kasischke and Hoy (2012) (1.5-1.9 kg C m-2) were lower than AKFED (1.8-2.6 kg C m-2)  26 

Kasischke and Hoy (2012) used observations derived conceptually from observations reported 27 

by Turetsky et al. (2011) that indicated that ground layer consumption increased with fire 28 

season progression. We derived a similar relationship with day of burning using a different set 29 

of data and statistical approach (Figure 6 and 7B). We found that, in our application, the 30 
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nonlinear multiplicative regression model outperformed other statistical methods for 1 

extrapolating carbon consumption in space and time (Figure S4). Our depth of burn model 2 

achieved an 𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2  of 0.40, which is similar to the explained variance of 50 % in estimating 3 

relative loss of the organic layer by Genet et al. (2013). An important difference between these 4 

estimates is that Genet et al. (2013) aggregated multiple field locations within the same fire by 5 

topographic class. We aimed at preserving the within-fire variability by using spatially varying 6 

dNBR and tree cover observations as model drivers (Figure S11). The representation of these 7 

higher resolution dynamics in fuel and consumption variability may partly explain our slightly 8 

lower model performance. 9 

We further compared AKFED burned area, carbon consumption and emissions estimates 10 

with estimates from two larger scale models, WFEIS and GFED3s. French et al. (2011) 11 

compared 11 different estimates of burned area and carbon emissions for the 2004 Boundary 12 

fire. Fire-wide burned area estimates ranged between 185 kha and 218 kha, and carbon 13 

emissions between 2.8 Tg and 13.3 Tg. The burned area and carbon emissions estimates from 14 

AKFED were 205 kha and 6.0 Tg C – similar to the multi-model mean. Our carbon emissions 15 

estimate for this fire was slightly higher than estimates from WFEIS (5.3-5.7 Tg C) and field 16 

assessment by E. Kasischke (4.8 Tg C) in French et al. (2011). The difference between AKFED 17 

and the latter estimate is at least partly explained by differences in burned area, with the field 18 

assessment of E. Kasischke in French et al. (2011) reporting a total that was about 10 % lower 19 

than AKFED. GFED3 reported 207 ha and 4.64 Tg C emissions for this fire.  20 

Decadal-scale comparison between AKFED, WFEIS and GFED3s demonstrated fairly 21 

similar burned area estimates, although AKFED and GFED3s were slightly higher than WFEIS 22 

(Table 2). The similarity between the burned area from AKFED, WFEIS and GFED3s is not 23 

surprising since they operate with similar algorithms. All algorithms look at changes in a 24 

spectral index derived from MODIS surface reflectance imagery to map burned area. Burned 25 

area in GFED3s and WFEIS were from the MCD64A1 product (Giglio et al., 2009), 26 

complemented with small fire contributions outside the MCD64A1 burned area detections for 27 

GFED3s (Randerson et al., 2012). AKFED used active fire detections that occurred outside the 28 

fire perimeters to include contributions from small fires. The contribution from small fires that 29 
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were included in GFED3s and AKFED may explain the slightly higher burned area estimates 1 

than in WFEIS.  2 

Carbon consumption was not correlated between different models (Table 2). In addition, 3 

carbon consumption was slightly lower in GFED3s compared to AKFED, and significantly 4 

higher in WFEIS compared to AKFED. This suggests that GFED3s slightly underestimates 5 

carbon consumption from boreal fires, although the difference in mean carbon consumption 6 

between AKFED and GFED3s is with the range of the region-wide mean uncertainty estimate 7 

of 0.50 kg C m-2 (Figure 11). The comparison also indicates that region-wide WFEIS estimates 8 

are several fold higher than those from AKFED, GFED3s, or Kasischke and Hoy (2012). The 9 

high levels of carbon consumption in WFEIS for Alaska are consistent with the study of 10 

Billmire et al. (2014) that showed for the contiguous U.S. WFEIS estimates were about double 11 

of GFED3 estimates. Differences in the carbon emissions estimates between approaches result 12 

from differences in the methods and input data to quantify burned area, fuel type, and carbon 13 

consumption. Billmire et al. (2014) found that the difference between WFEIS and GFED3 14 

carbon emission estimates in the contiguous U.S. was primarily driven by the higher fuel loads 15 

assigned in WFEIS. This effect may also explain the discrepancy in Alaska, and further effort 16 

is needed to compare the different modelling approaches. These findings also highlight the need 17 

for synthesis and intercomparisons of the different data inputs required for emission modelling, 18 

including fuel load, combustion completeness, and emission factors. Such efforts are ongoing 19 

(van Leeuwen and van der Werf, 2011; van Leeuwen et al., 2014); van Leeuwen et al. (2013) 20 

for example assessed the impact of different sets of emission factors on CO mixing ratios. One 21 

constraint with large scale models is that their coarse spatial resolution does not allow direct 22 

comparison with field measurements. This gap may be filled by regional models like AKFED 23 

that are calibrated with field data at a higher spatial resolution and can be scaled to a coarser 24 

resolution. 25 

5.4 Uncertainties 26 

The domain wide mean uncertainty for carbon consumption was slightly lower than 20 % of 27 

the mean, and similar to fire-wide uncertainty reported by Rogers et al. (2014). Our approach 28 

integrated observed and best-guess uncertainty estimates for different aspects of our modeling 29 

system, including components originating from comparisons of our model with field 30 
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observations and other components associated with spatial scaling. Other studies reporting 1 

region wide carbon emissions and uncertainties from Alaskan fires have relied on scenarios in 2 

which uncertainties of different sources were assigned based on expert knowledge (French et 3 

al., 2004; Kasischke and Hoy, 2012). These studies report uncertainty levels in the range of 5 4 

to 30 %, expressed as the coefficient of variation (standard deviation/mean). For AKFED, the 5 

most important source of uncertainty originated from the belowground carbon consumption 6 

model for black spruce (Figure 11). This results is consistent with findings from French et al. 7 

(2004) and Kasischke and Hoy (2012) who both identified ground layer consumption as a major 8 

source of uncertainty within boreal forest ecosystems.  9 

While we identified and quantified four main sources and their relative importance within 10 

AKFED, other sources of uncertainty were not included in our analysis. These include the 11 

dNBR threshold used for burned area mapping and other aspects of our burned area algorithm, 12 

the assumption of the same controls on pyrogenic carbon consumption in non-black spruce 13 

ecosystems, consumption of woody debris, and uncertainties in field measurements. In places 14 

where uncertainties in burned area mapping are large, this variable can be the most important 15 

source of uncertainty (French et al., 2004; van der Werf et al., 2010; Kasischke and Hoy, 2012). 16 

We used three independent datasets (ALFD perimeters, and MODIS surface reflectance and 17 

thermal anomalies) to map burned area, including burned area outside ALFD perimeters (1 % 18 

of total burned area) and excluding unburned islands within the fire perimeters (18 % of 19 

perimeter area). We believe that this approach for mapping burned area was relatively robust 20 

and minimized uncertainties from this source.  21 

A more significant uncertainty in estimating region-wide fire emissions comes from a 22 

paucity of field observations in ecosystems other than black spruce. Here we assumed that the 23 

same environmental variables that controlled carbon consumption in black spruce ecosystems 24 

also operated for white spruce and deciduous forest, and grassland and shrub land. This 25 

assumption may not entirely be valid but cannot be verified until more field data becomes 26 

available for these cover types. Another important source of uncertainty originates from 27 

consumption of coarse woody debris. Consumption of coarse woody debris is difficult to 28 

quantify and was not explicitly accounted for in our approach. Carbon consumption in this pool 29 

is small compared to the consumption of the soil organic layers, but can amount up to 5 to 7 % 30 
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of the total consumption (Kasischke and Hoy, 2012). Thus, our model estimates may have a 1 

small low bias as a consequence of our lack of explicitly accounting for this pool. Field 2 

measurements of fuel loads of woody debris in unburned stands in function of stand age and 3 

their combustion in relation to fire weather conditions may allow for improved models of 4 

pyrogenic carbon consumption in boreal forest ecosystems.  5 

Finally, uncertainties within the set of available field data have not been systematically 6 

assessed. These may stem from different methods that were used to estimate depth of burn in 7 

the field (combustion rods, adventitious roots technique or unburned-burned site pairing) and 8 

assumptions used to convert depth of burn measurements to carbon loss (Rogers et al., 2014). 9 

For example, the carbon-depth curves used in this study for the Turetsky et al.(2011) data are 10 

based on multiple measurements per landscape class and have an inherent uncertainty (Turetsky 11 

et al., 2011). In addition, the source and spatial resolution of the DEM may add some additional 12 

uncertainty to conversion of the depth of burn observations to belowground carbon 13 

consumption for these field plots. While the Rogers et al. (2014) data were collected with the 14 

aim of making comparisons with 30 m geospatial layers, some of the other available 15 

observations may not have used the same criteria for homogeneity in surrounding areas, and 16 

thus may contribute to uncertainties when integrated with other geospatial data.  17 

5.5 Representativeness of the field data 18 

The state wide median belowground carbon consumption estimate of 2.32 kg C m-2 of this 19 

study is lower than the median values of the field data used in this study (Figure 9). The median 20 

belowground carbon consumption estimate increased to 2.67 kg C m-2 when only pure black 21 

spruce stands were considered (Figure 9B). This value was still considerably lower than the 22 

median of 3.10 kg C m-2 from the field data used in this study. The field data were, relative to 23 

the state wide distribution, disproportionally sampled in mid-elevation areas with high tree 24 

cover and high dNBR (Figure 10). This suggests that the field measurements of carbon 25 

consumption in black spruce forest here were biased towards areas that tend to have higher 26 

levels of carbon consumption. Part of this bias may be a consequence of many data being 27 

collected from burns during large and severe fire year 2004 (85 out of the 126 plots). We found 28 

that large fires years generally have higher carbon consumption estimates (Figure 8). This 29 

corroborates findings of Turetsky et al. (2011) and Kasischke and Hoy (2012), although the 30 
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relative increase of carbon consumption with higher annual burned area from AKFED was less 1 

than reported in these studies. We also found support for the finding of Duffy et al. (2007) and 2 

Beck et al. (2011a) that fire size and carbon consumption level are positively correlated. 3 

Several aspects of our analysis call for a more comprehensive field dataset to better constrain 4 

observation-driven empirical models of pyrogenic carbon consumption in boreal ecosystems. 5 

First, additional field efforts could focus on increasing the number of observations in black 6 

spruce ecosystems using pre-fire tree cover, post-fire dNBR, topographic conditions, and fire 7 

seasonality in the sampling design in an effort to better represent the distribution of burning 8 

conditions (Figure 10). Second, considerable uncertainty within AKFED originated from 9 

assumptions made to estimate carbon consumption in white spruce, deciduous, grassland, and 10 

shrub land ecosystems. Very little data on pyrogenic carbon consumption is currently available 11 

for these ecosystems and explicit targeting these ecosystems is needed to reduce uncertainties 12 

in future work. For white spruce and deciduous ecosystems we developed scaling factors using 13 

Consume 3.0 (Figure S6). For grassland and shrub land ecosystems we used the black spruce 14 

model because tree cover is one of our predictor variables and our model was calibrated for a 15 

range of tree cover between 14 and 64 %. Lower tree cover resulted in lower carbon 16 

consumption (Figure 7E) and this may justify the use of the model for non-treed ecosystems 17 

until consumption data within these ecosystems becomes available. Mack et al. (2011) 18 

estimated a mean carbon loss of 2.02 kg C m-2 with a standard error of 0.44 kg C m-2 for the 19 

Anaktuvuk River fire. In comparison, our model estimated a mean carbon consumption of 2.56 20 

kg C m-2 with a mean pixel-based uncertainty of 0.54 kg C m-2 for this event. 21 

Even with an abundance of high quality plot data along key axes of environmental 22 

variability, regional extrapolation requires accurate maps of land cover. To date, the FCCS 23 

classification is the only classification that for example distinguishes between black spruce and 24 

white spruce in Alaska. No formal accuracy assessment of this layer has been conducted, 25 

however, we found that, at its native 30 m resolution, 60 out of the 126 black spruce plots from 26 

the field dataset (section 2.2) were misclassified; 29 as white spruce, 14 as tundra-grass-shrub, 27 

12 as deciduous, and 5 as non-vegetated. We also found that of eight white spruce-aspen plots 28 

from Rogers et al. (2014), seven were classified as black spruce and one as shrub-grass-tundra. 29 

The sample size of the land cover ground truth data available was too small to robustly quantify 30 
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potential over- or underrepresentation of land cover types in the FCCS layer. An improved land 1 

cover characterization, including quantitative uncertainty estimates, is thus essential for 2 

reducing region-wide uncertainties. An underrepresentation of the black spruce cover in the 3 

FCCS would result in lower state wide average carbon consumption estimates and vice versa. 4 

While some land cover types, such as spruce and deciduous cover, are likely well separable 5 

from remote sensing based on spectral and phenological characteristics, more detailed 6 

distinctions, for example between black and white spruce, may be more challenging but not 7 

impossible with the combined use of structural and optical attributes (e.g. Goetz et al., 2010). 8 

More than a decade after the call from French et al. (2004) for more field data, including 9 

ecosystems that burn less regularly, more field measurements are still required to better 10 

constrain pyrogenic carbon consumption in boreal forest ecosystems. 11 

5.6 Future applications 12 

Databases of burned area, severity and emissions with high spatial and temporal resolution 13 

like AKFED are a necessity to advance several related fields in biogeosciences. They allow for 14 

a more thorough evaluation of models used to relate weather, fuels and topography to fire spread 15 

rates that were originally derived using laboratory measurements (Rothermel, 1972; Beer, 16 

1991). Spatially explicit burned area data with high temporal resolution will also allow for 17 

quantitative assessments of constraints on fire progression due to fuel discontinuities and fire 18 

weather (Krawchuk et al., 2006). Knowledge of these constraints on fire spread may prove 19 

valuable when predicting future fire regimes that will result from changes in fire weather, 20 

vegetation dynamics and inherent landscape heterogeneity. 21 

Fire emission databases with high temporal and spatial resolution also may enable 22 

improvements in our understanding of fire aerosol composition and decrease the large 23 

uncertainties that currently exist in fire emission factors of different gas species by enabling 24 

more accurate comparisons with in situ measurements. Fire emissions estimates and 25 

atmospheric transport models need to be convolved at high spatial and temporal resolution to 26 

capture interactions between emissions, transport, chemical transformation, and deposition of 27 

aerosol and trace gas species. In addition, fires in the boreal region are episodic and most of the 28 

burned area and emissions occur in a relatively short amount of time. High resolution time 29 
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series are therefore of paramount importance to infer and forecast possible health effects in 1 

populated areas exposed to smoke plumes (Hyer et al., 2007). 2 

6 Conclusions 3 

By integrating field and remote sensing variables at multiple scales, we developed a database 4 

of burned area and carbon emission by fire at 450 m spatial resolution and daily temporal 5 

resolution for the state of Alaska between 2001 and 2012. We found that, although most of the 6 

fires burned in black spruce forest, considerable burned area in white spruce forest, deciduous 7 

forest, and grassland and shrub land ecosystems contributed to lower region-wide carbon 8 

consumption estimates. This partly explained why the median carbon consumption of 2.54 kg 9 

C m-2 over the spatiotemporal domain was lower than that typically observed in black spruce 10 

ecosystems. However, even solely considering pure black spruce pixels, median carbon 11 

consumption was still lower than most field observations. This suggests that the available field 12 

data that were used in this study may have a bias toward high carbon consumption. We thus 13 

recommend caution in extrapolating these values over large areas without taking into account 14 

spatial heterogeneity in tree cover and other variables influencing fuels and combustion over 15 

the landscape. More comprehensive field databases of carbon consumption in black spruce and 16 

other ecosystems (e.g. white spruce, deciduous and tundra ecosystems) are required to better 17 

constrain region wide carbon emissions and lower uncertainties. Further improvements in land 18 

cover characterization are also required to remove potential biases that may originate from 19 

uncertainties in this layer. 20 

Our carbon consumption model was driven by four environmental variables: elevation, day 21 

of burning, differenced normalized burn ratio (dNBR) and pre-fire tree cover. At the regional 22 

level of our study, elevation controlled fuel moisture conditions and soil organic layer thickness. 23 

Day of burning within the fire season, in combination with elevation, was used to estimate the 24 

seasonal thawing of the permafrost and subsequent moisture content of organic soil layers. 25 

dNBR and tree cover explained additional model variance, and allowed to capture fine scale 26 

variability in carbonconsumption. While the use of dNBR as stand-alone indicator of 27 

belowground carbon consumption by fire in boreal ecosystems may have limitations, our model 28 

system benefited from its use in synergy with other environmental variables. Higher dNBR 29 

values were significantly related to deeper burning in soil organic carbon layers. The observed 30 
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relationships between belowground carbon consumption, dNBR and tree cover, suggest 1 

aboveground fuel consumption and heat release in may influence the drying of surface fuels, 2 

and vice versa, thus contributing to higher levels of carbon consumption. 3 

The Alaskan Fire Emissions Database (AKFED) is publicly available from 4 

sites.google.com/a/uci.edu/sander-veraverbeke/akfed and will be updated regularly. This data 5 

could further contribute to the knowledge on spatiotemporal patterns, controls and limits on fire 6 

progression, air pollution and exposure, and aerosol composition of boreal fires. 7 
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Table 1. Environmental variables selected to predict ground layer consumption by fire in black spruce forest. The pre-fire tree cover and dNBR layers were also used to 1 

predict the aboveground carbon consumption. 2 

variable rationale data 

elevation (m) Elevation influences soil organic layer thickness, carbon density, drainage conditions and seasonal 

timing of permafrost thaw (Kane et al., 2005, 2007; Kasischke and Johnstone, 2005; Barrett et al., 2010; 

Kasischke and Hoy, 2012) 

ASTER GDEM 2 (Tachikawa et 

al., 2011)  

slope (°) Slope regulates drainage conditions, organic layer thickness and fire behavior. Sloped terrain is 

generally better drained than flat terrain (Barrett et al., 2011). Steepness of the terrain regulates tree 

establishment (Hollingsworth et al., 2006) and fire spread rates and severity (Rothermel, 1972). 

derived from ASTER GDEM 2 

northness – cosine 

of aspect 

Northness regulates drainage conditions, organic layer thickness and carbon density. Wetness increases 

with northness, and solar insolation decreases with increasing northness. North-oriented slopes are 

wetter and colder than South-faced slopes and have thicker, less dense organic layers (Kane et al., 2007; 

Turetsky et al., 2011). 

derived from ASTER GDEM 2 

pre-fire tree cover 

(%) 

Pre-fire tree cover determines the available biomass for aboveground consumption. Aboveground 

consumption relates to belowground consumption (Rogers et al., 2014). Pre-fire tree cover is also a 

proxy of stand age, and thus of the thickness, density and wetness of the soil organic layer (Kasischke 

and Johnstone, 2005; Beck et al., 2011b; Rogers et al., 2013). 

tree cover continuous fields 

30 m: Sexton et al. (2013)  

250 m: Hansen et al. (2003) 

day of burning  Day of burning influences the dryness of the soil organic layer during the season (Turetsky et al., 2011; 

Kasischke and Hoy, 2012) 

derived from MODIS active fire 

data 

dNBR dNBR assesses pre-/post-fire changes in near and shortwave infrared reflectance, which relate to 

changes in vegetation abundance, charcoal deposition and soil exposure (López García and Caselles, 

1991; van Wagtendonk et al., 2004; Key and Benson, 2006) 

30 m: MTBS (Eidenshink et al., 

2007) 

500 m: derived from MODIS 

surface reflectance 

ASTER GDEM 2: Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model Version 2 (downloaded from 3 

http://reverb.echo.nasa.gov, last accessed April 3, 2015) 4 

dNBR: differenced Normalized Burn Ratio 5 

MODIS: Moderate Resolution Imaging Spectroradiometer 6 
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MTBS: Monitoring Trends in Burn Severity (downloaded from http://www.mtbs.gov/, last accessed April 3, 2015) 1 

Tree cover data downloaded from http://glcf.umd.edu/data/landsatTreecover/ (30 m), and http://reverb.echo.nasa.gov (500 m), MODIS surface reflectance data from 2 
http://reverb.echo.nasa.gov, MODIS active fire data from ftp://fuoco.geog.umd.edu/modis (all last accessed on April 3, 2015)3 
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Table 2. Annual burned area, carbon emisisons, and mean carbon consumption between 2001 and 2010 from the 1 
Alaskan Fire Emissions Database (AKFED), the Wildland Fire Emissions Information System (WFEIS), and the 2 
Global Fire Emissions Database version 3s (GFED3s). Values were extracted for the domain between 58° and 71.5° 3 
N, and 141° and 168° W. We used the MCD64A1 burned area product and the default parameters within the WFEIS 4 
emissions calculator (http://wfeis.mtri.org/calculator, last accessed April 3, 2015). We included both emissions from 5 
natural and agricultural fuels. 6 

 annual burned area (kha) annual C emissions (Tg) mean C consumption (kg/m2) 

year AKFED WFEIS GFED3s AKFED WFEIS GFED3s AKFED WFEIS GFED3s 

2001 61 0 2 1 0 0 1.89 / 2.57 

2002 739 595 636 17 46 15 2.27 7.74 2.44 

2003 200 188 200 5 10 5 2.74 5.24 2.51 

2004 2294 2253 2283 69 167 52 3.03 5.88 2.26 

2005 1660 1320 1538 46 102 38 2.76 7.75 2.47 

2006 47 68 86 1 3 2 1.76 4.75 2.40 

2007 200 130 165 5 8 5 2.63 6.55 2.80 

2008 37 24 34 1 2 1 2.37 7.32 1.86 

2009 1046 1054 1130 26 77 29 2.51 7.27 2.52 

2010 268 283 324 6 16 8 2.25 5.55 2.34 

2001-2010 655 592 634 18 43 15 2.72 7.29 2.40 

  7 
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 1 

Figure 1. Fires that occurred in the study area between 2001 and 2012 (yellow perimeters) from the Alaska Large Fire 2 

Database. The background tree cover map is the Moderate Resolution Imaging Spectroradiometer Vegetation 3 

Continuous Fields product (MOD44B, Hansen et al. (2003)) for the year 2000. The colored dots represent the location 4 

of field plots from Turetsky et al. (2011) (red), Boby et al. (2010) (blue) and Rogers et al. (2014) (green). Note that at 5 

the scale of the map, some field plot locations overlap due to their close proximity to each other. 6 
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 1 

 2 

Figure 2. Workflow used to obtain daily burned area and carbon emissions in the Alaskan Fire Emissions Database (AKFED). (dNBR: differenced normalized burn ratio) 3 
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 1 

 2 

Figure 3. Scatter plots between the observed and estimated (A) depth of burn, (C) belowground and (E) aboveground 3 

carbon consumption from the multiplicative nonlinear model, and corresponding regression residuals (B, D and F). 4 

The grey line represents the 1:1 line in the left panels, and the y = 0 line in the right panels. All models were significant 5 

at p < 0.001.   6 
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 1 

Figure 4. Relative importance of variables assessed from the nonlinear multiplicative models using all different 2 

combinations of two or more variables for (A) depth of burn and (B) belowground carbon consumption. Since only 3 

two variables were included in the aboveground carbon consumption model, no similar analysis was performed for 4 

aboveground carbon consumption. (dNBR: differenced normalized burn ratio, DOY: day of the year, tc: tree cover, 5 

elev: elevation)  6 
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 1 

Figure 5. Total pyrogenic carbon consumption map estimated from the Alaskan Fire Emissions Database between 2 

2001 and 2012..  3 
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 1 

Figure 6. Daily burned area, carbon consumption and emissions derived from the Alaskan Fire Emissions Database 2 

for the years 2001-2012.  3 
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 1 

Figure 7. (A) Inter- and (B) intra-annual variability in burned area and carbon emissions in Alaska. In (B), the mean 2 

monthly burned area and carbon emissions between 2001 and 2012 were plotted.  3 
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 1 

Figure 8. Relationship between annual burned area and mean annual carbon consumption. The error bars represent 2 

one standard deviation.  3 
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 1 

Figure 9. Distribution of (A) belowground, aboveground and total carbon consumption from the Alaskan Fire 2 

Emissions Database (AKFED) between 2001 and 2012, and (B) belowground carbon consumption of field data and 3 

AKFED . Data is plotted in the middle of interval boundaries on the x-axis.   4 
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 1 

Figure 10. Distribution of (A) day of burning, (B) elevation, (C) pre-fire tree cover, (D) differenced normalized burn 2 

ratio of field observations (n = 126) and region wide Alaskan Fire Emissions Database (AKFED) between 2001 and 3 

2012. The tree cover and differenced normalized burn ratio derived from the Moderate Resolution Imaging 4 

Spectroradiometer were converted to their Landsat-like values using the equations in Figure S5. Data is plotted in the 5 

middle of interval boundaries on the x-axis.. 6 
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 1 

Figure 11. Attribution of uncertainty sources in (A) belowground, (B) aboveground and (C) total carbon consumption 2 

estimates. The standard deviation of the consumption estimates from 1000 Monte Carlo simulations was calculated 3 

for each scenario. 4 

 5 
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