## Author's Response to Anonymous Referee 1

## **Anonymous Referee #1**

#### Received and published: 9 February 2015

This ms. deals with the potential effect of global warming resulted in enhanced stratification, nutrient limitation and pH increase due to ocean acidification (OA). All these stressors combined with U. V radiation affect yield quantum and primary production performance in P. tricornutum. These stressors are probably not restricted to one species but from this one we can learn about the physiological and biochemical reactions and responds to the variables studied, the enhanced activity of oxidative stress enzymes and the capability of repairing U. V damage.

A lot of work had been done. The experiments were carried out carefully and results validated by statistics methods. In my opinion, too much data was presented, which made the results and figures hard to follow. I would suggest deleting Fig. 4, which is the opposite of Fig. 2 and just mention it in 2 sentences.

Response: We appreciate the recognition of our work by the reviewer. Fig.4 shows non-photochemical quenching (NPQ) of cells that received different irradiance, which is calculated from  $F_m$  and  $F_m$ ', and this data provides important information to readers about how cells cope with different light stress (cells' energy dissipation ability or capacity),. We believe this figure conveys important information and that deleting it would affect the integrity of this manuscript.

Yes, substantial conclusions were reached, but the main conclusion is that what matters most - is nitrate concentrations and when combined with UV- B had an effect on chla, resulting in less primary production etc. It seems that supply of N is more crucial than  $CO_2$  for photosynthetic performance of P. tricornutum.

The methods are clear and anyone in the field can follow and repeat the experiments and calculations with no problem.

Other peoples work was quoted in the introduction section, and different results of various groups presented. The authors results as compared to others were discussed in the Discussion section.

The title and the abstract reflect the contents of the paper clearly.

I recommend accepting this ms.

Response: We appreciated the reviewer's supportive comment on our paper and are grateful for the referee's positive feedback.

There is a small typo correction – page 17683 first line after yield there is an n which should be deleted. Response: Corrected.

### Author's Response to Anonymous Referee 2

## Anonymous Referee #2

#### **General comment:**

The authors address the combined effect of ocean acidification, nutrient availability and presence of UV irradiation on the marine diatom Phaeodactylum tricornutum. Previous studies have considered the single effect of the tested factors on phytoplankton. This work goes a step further by analysing (using a set of appropriate and well described methods) the effects of the interactions between factors. According to the results presented, the expected suit of environmental changes might have important implications for primary production and biogeochemical cycling. Thus, the manuscript gives important insight on an actual subject, calling attention to the importance of species response to multiple stressors. Phaeodactylum tricornutum isn't a sensitive and typical diatom. However, existing information on this species provides a good basis to a study such as this with so many variables. Although, this manuscript reveals important data such as that ocean acidification and UVB showed a stronger effect under low nutrient concentrations, it would benefit from synthesizing and clarifying the most significant conclusions in the Abstract. Moreover, the manuscript would benefit from additional references in the introduction and discussion sections to support statements concerning the various effects of ocean acidification on natural communities and / or other diatoms. Response: We are glad to know the work is recognized as a good contribution to multiple stressors studies in relation to global climate change. We have added some further references and discussion in the introduction and discussion according to the suggestions (page 5, line 94-96; page 19-20, line 459-473). We have also added a statement to the Abstract that sets out the main conclusions in a clearer way (page 2, line 38-40).

## **Specific points:**

The title reflects the content of the paper. The Abstract of the manuscript could be more clear on the main results and their repercussions. Finally, figures have a considerable amount of information, becoming difficult to quickly understand.

Response: We have added a statement to the Abstract that sets out the main conclusions in a clearer way (page 2, line 38-40). We also have added one-line titles (page 37, line 847-848, 856, 865; page 38, 882-883,890-891) of the main features of each figure to the legend, which we feel will be help to improve understanding by the readers.

#### **Technical points:**

#### Introduction

• **P. 5, lines 81 to 85:** Introduce CO<sub>2</sub> range or the concentration of the referred enhanced CO<sub>2</sub> for comparison.

Response: The CO<sub>2</sub> concentrations of the studies referred to were added.

• **P.7, lines 111 to 121:** The connection between the sentences should be more fluid. Response: We re-worded the sentences according to the suggestions.

#### **Material and Methods**

• **P. 8, line 143 to 144:** Provide information on nitrate range during the 24h of incubations between dilutions. This will be useful to show nitrate limitation throughout the experiment.

Response: The referee makes a good point. According to our pre-experiment the initial nitrate concentration of 10  $\mu$ mol L<sup>-1</sup> could be totally consumed (0-10  $\mu$ mol L<sup>-1</sup>); and the initial nitrate concentration of 110  $\mu$ mol L<sup>-1</sup> treatment, the nitrate ranged from ca. 85-110  $\mu$ mol L<sup>-1</sup> during the culture. We have added the descriptions in page 7-8, line 169-177.

• **P. 9, line 165:** Subtitle "2.3 Radiation treatments" should be more ambiguous in order to include all treatments referred in the text (CO<sub>2</sub> and nitrate).

Response: We have changed the subtitle "Radiation treatments" to "Radiation treatments under the solar simulator".

• **P. 9, lines 171 to 175:** Facilitate understanding of the nomenclature given to the treatments by inverting their order of appearance in the text. Response: Corrected.

• P. 10, line 181: Specify "middle of the photic...".

Response: The light intensity of PAR level under solar simulator was ca. 190.11  $\mu$ mol photons m<sup>-2</sup> s<sup>-1</sup> which is close to 25-42% of incident surface solar PAR levels in the SCS (22-36 m depth in South China Sea, SEATS station), based on the vertical profiles of PAR at the SEATS station (Gao et al., 2012). We added the description in page 9, line 213-215 as suggested.

• **P. 12, lines 238 to 240:** Order of the parameters of subtitle 2.6 could follow their corresponding order in the subtitle.

Response: We re-ordered the subtitle to "Cells counts and chlorophyll a measurements" of 2.6 as suggested.

#### Discussion

• **P. 18, line 370 to 373:** Explain reasoning and potential causes for this statement. Response: As the reviewer pointed out, the statement that "OA appeared to counteract UVB-induced damage under  $NO_3^-$  replete conditions, but when combined with decreased availability of nitrate, it increased the diatom's sensitivity to UV radiation." could be explained as follows:

Many studies have shown that the sensitivity of cells to high levels of PAR and UV under OA condition could be stimulated and then induce higher inhibition of

photosynthesis or growth rate (Sobrino et al., 2008; Xu and Gao et al., 2012; Gao et al., 2012). However, this phenomenon is not always found in all species especially when the intensity of PAR or UV is not that high. For example, a recent study reported that the unicellular chlorophyte (*Dunaliella tertiolecta*) acclimated to high CO<sub>2</sub> under nutrient replete conditions could alleviate the stress induced by high PAR and UV (Garc  $\hat{\mathbf{a}}$ -G  $\hat{\mathbf{o}}$ mez et al., 2014). This could be due to the energy saving as a result of down-regulation of CCM activity. However, in the present study, we did not find that the synergistic effects of OA and UVR induced a higher inhibition at the light intensity of PAR+ UVA+UVB (44.11 + 14.19 + 0.75 Wm<sup>-2</sup>) used, than found under LC. This may be due to the light intensity of the cells. Furthermore, under high N the nutrient supply would be sufficient to support the repair processes of UV or high PAR induced damage.

We have made a description as the reviewer suggested on page 20, line 467-473.

• **P. 20, line 398:** UVR would be easier to read as presented in other parts of the text, specifically "UV radiation". Response: Corrected.

#### **Figure captions**

• **P. 36, Figure 1 (Line 734):** Replace "in *P.tricornutum*" by "of *P. tricornutum*" Response: Corrected.

• P. 36, Figure 1 (Line 735): a of Chl a should be in italic and one space after Chl a should be removed Response: Corrected.

• **P. 36, Figure 1 (Line 738):** Standard errors are commonly referred as SE not SD. Response: We apologise for this error in stating SE instead of SD. We should have used 'SD' throughout as all data are expressed as means +/- standard deviation. This correction has now been made.

• **P. 36, Figure 1 (Line 739):** Provide further information concerning the letters that indicate significant differences.

Response: To make a clear indication of significance, we changed the description from "Different letters indicated significant differences among different treatments at P < 0.05 level." into "Treatments with the same lowercase superscript letters, means the difference is not significant. In contrast, treatments with different lowercase superscript letters indicate the difference is significant (P < 0.05 level)." in page 34 line 783-785.

• P. 36, Figure 2 (Line 747): Explain meaning of dashed line.

Response: The dashed line indicates the time point at which the culture was moved from the solar simulator (P, PA and PAB) to the culture light level for recovery. We have

added a simple description of the dashed line in Page 37, line 861.

# List of changes

#### 1. Abstract

1)Page 2, line 31 "UVR," added

2)Page 2, line 38-40, "We conclude therefore that nutrient limitation makes cells more prone to the deleterious effects of UV radiation and that HC conditions (ocean acidification) exacerbate this effect." was added.

3)Page 2, line 43, delete "the"

#### 2. Introduction

1)Page 3, line 60, change "UV radiation" to "UVR"

2)page 4, line 87, add "(1000 µatm)"

3)page 4, line 88, add "(1000 µatm)"

4)page 4, line 88, add "(670 µatm)"

5) page 5, line 94-97, add "Recently, microcosm studies have shown that the species abundance and physiological responses (eg. Chl *a*, DNA damage, ROS, photosynthetic efficiency) could be regulated by nutrients and light availability under high CO<sub>2</sub> conditions (Neale et al., 2014; Sobrino et al., 2014)."

6) page 5, line 99, change "UV radiation" to "UVR"

7) page 6, line 123-124, add "Combined effects of nutrient levels and  $CO_2$  have been reported in many studies. For example,", change "P" to "p"

8) page 6, line 130-131, change "In the *dinoflagellate Karlodinium* veneficum" to "In some toxin producing species, for example the *dinoflagellate Karlodinium* veneficum"

9) page 6, line 134, change "UV radiation (UVR, 280-400 nm)" to "UVR (280-400 nm)"

10)page 6, line138, change "UV radiation" to "UVR"

11)page 7, line 150-151, deleting ", whose genome has been completely sequenced (http://genome.jgi-psf.org/Phatr2/Phatr2. home.html),"

#### 3. Materials and methods

1) page 7-8, line 169-177, add "According to the pre-experiment, the initial nitrate concentration of 10  $\mu$ mol L<sup>-1</sup> could be totally consumed (0-10  $\mu$ mol L<sup>-1</sup>); and the initial nitrate concentration of 110  $\mu$ mol L<sup>-1</sup> treatment, the nitrate ranged from ca. 85-110  $\mu$ mol L<sup>-1</sup> during the culture."

2) page 8, line 195, add "under the solar simulator"

3) page 8, line 197, change "UV radiation" to "UVR"

4) page 9, line 202, change "UV radiation" to "UVR"

5) page 9, line 203-204, change "1) PAB treatment, tubes wrapped with Ultraphan Film 295 (Digefra, Munich, Germany), so that the cells received wavelengths above 295 nm (PAR+UVA+UVB,)" to "1) P treatment, tubes wrapped with Ultraphan film

395 (UV Opak, Digefra), being exposed to PAR alone;"

6) page 9, line206-208, change "3) P treatment, tubes wrapped with Ultraphan film 395 (UV Opak, Digefra), being exposed to PAR alone" to "3) PAB treatment, tubes wrapped with Ultraphan Film 295 (Digefra, Munich, Germany), so that the cells received wavelengths above 295 nm (PAR+UVA+UVB)"

7) page 9, line 213-215, change "(close to the daytime mean photon flux in the middle of the photic zone)" to "which is close to the daytime mean photon flux in the middle of the photic zone (22-36 m depth in South China Sea, SEATS station)"

8) page 11, line 274, change "ncaused" to "caused"

9) page 12, line 282, change "Chlorophyll a measurements and cells counts" to "Cells counts and chlorophyll a measurements"

10) page 13, line 312, change "UV radiation" to "UVR"

11) page 13, line 318, change "UV radiation" to "UVR"

12) page 14, line 339, change "P" to "PAR"

13) page 16, line 377, change "UV radiation" to "UVR"

#### 4. Discussion

1) page 18, line 419, change "UV radiation" to "UVR"

2) page 18, line 426, change "UV radiation" to "UVR"

3) page 19-20, line 459-473, add "Many studies have shown that the sensitivity of cells to high levels of PAR and UV under OA condition could be stimulated and then induce higher inhibition rate of photosynthesis (Sobrino et al., 2008; Gao et al., 2012b; Xu and Gao, 2012). However, this phenomenon is not always found in all species especially when the intensity of PAR or UV is not that high. For example, a recent study reported that the unicellular chlorophyte (*Dunaliella tertiolecta*) acclimated with high CO<sub>2</sub> under nutrient replete conditions could alleviate the stress induced by high PAR and UV (Garc h-G mez et al., 2014). This could be due to the energy saving as a result of down-regulation of CCM activity. However, in the present study, we did not find that the synergistic effects of OA and UVR induced a higher inhibition at the light intensity of PAR+ UVA+UVB (44.11 + 14.19 + 0.75 Wm<sup>-2</sup>) used, than found under LC. This may be due to the light intensity of PAR or UVR not being high enough to exceed the energy dissipating capacity of the cells. Furthermore, under high N the nutrient supply would be sufficient to support the repair processes of UV or high PAR induced damage."

4) page 20, line 474, change "higher" to "greater"

5) page 20, line 475, change "reduced" to "decreased levels of"

6) page 20, line 482, change "Nitrogen" to "By impairing photosynthesis, nitrogen"

7) page 21, line 510, change "UV radiation" to "UVR"

#### 5. References

1) page 24, line 559, add "291-327,"

page 25, line 596-598, add "Garc á-Gómez, C., Gordillo, F. J., Palma, A., Lorenzo, M. R., and Segovia, M.: Elevated CO<sub>2</sub> alleviates high PAR and UV stress in the unicellular chlorophyte *Dunaliella tertiolecta*, Photochemical & Photobiological

Sciences, 13, 1347-1358, 2014."

3) page 27, line 629, add "329-350,"

4) page 29, line 673-676, add "Neale, P., Sobrino, C., Segovia, M., Mercado, J., Leon, P., Cortés, M., Tuite, P., Picazo, A., Salles, S., and Cabrerizo, M.: Effect of CO<sub>2</sub>, nutrients and light on coastal plankton. I. Abiotic conditions and biological responses, Aquat. Biol., 22, 25-41, 2014."

5) page 30, line 693, add "99-121,"

6) page 30-31, line 709-712, add "Sobrino, C., Segovia, M., Neale, P. J., Mercado, J. M., Garc á-Gómez, C., Kulk, G., Lorenzo, M. R., Camarena, T., van de Poll, W. H., Spilling, K., and Ruan, Z.:Effect of CO<sub>2</sub>, nutrients and light on coastal plankton. IV. Physiological responses, Aquat. Biol., 22, 77-93, 2014."

7) page 31, line 713-716, add "Sobrino, C., Ward, M. L., and Neale, P. J.: Acclimation to elevated carbon dioxide and ultraviolet radiation in the diatom *Thalassiosira pseudonana*: Effects on growth, photosynthesis, and spectral sensitivity of photoinhibition, Limnol. Oceanogr., 53, 494-505, 2008."

8) page 31, line 731-732, add "Xu, K. and Gao, K.: Reduced calcification decreases photoprotective capability in the coccolithophorid *Emiliania huxleyi*, Plant Cell Physiol., 53, 1267-1274, 2012."

#### 6. Tables

1) page 34, line 783-785, change "Different letters indicated significant differences among different treatments at P < 0.05 level." to "Treatments with the same lowercase superscript letters, means the difference is not significant. In contrast, treatments with different lowercase superscript letters indicate the difference is significant (P < 0.05 level)."

2) page 35, line 804-805, add "of superscripts"

3) page 35, line 806, delete "level"

4) page 36, line 824, add "of superscripts"

5) page 36, line 825, delete "level"

#### 7. Figures

1) page 37, line 847-848, add "Photosynthetic carbon fixation rates of *P. tricornutum* under different treatments."

2) page 37, line 848, change "in" to "of"

3) page 37, line 849, delete space

4) page 37, line 853, change "errors" to "deviation"

5) page 37, line 853, add "lowercase"

6) page 37, line 854, change "indicated" to "indicate"

7) page 37, line 856, add "The effective quantum yield of *P. tricornutum* under different treatments."

8) page 37, line 861, add "(the time of the switch to growth light levels is indicated by the dashed line)"

9) page 37, line 863, add "are"

10) page 37, line 865, add "UV induced inhibition of carbon fixation and PSII

# activity."

- 11) page 38, line 876, change "limited" to "NO<sub>3</sub> limited"
- 12) page 38, line 879, add "are"
- 13) page 38, line 880, change "indicated" to "indicate"

14) page 38, line 882-883, add "Non-photochemical quenching (NPQ) of *P. tricornutum* under different treatments."

15) page 38, line 890-891, add "Protein contents, SOD and CAT activities of *P. tricornutum* under different treatments."

| 1  | Nitrate limitation and ocean acidification interact with UV-B to reduce                     |
|----|---------------------------------------------------------------------------------------------|
| 2  | photosynthetic performance in the diatom Phaeodactylum tricornutum                          |
| 3  |                                                                                             |
| 4  | <b>Running Title:</b> Combined effects of NO <sub>3</sub> <sup>-</sup> , OA and UV          |
| 5  |                                                                                             |
| 6  | Wei Li <sup>1,2</sup> , Kunshan Gao <sup>1*</sup> , John Beardall <sup>3</sup>              |
| 7  |                                                                                             |
| 8  | <sup>1</sup> State Key Laboratory of Marine Environmental Science, Xiamen University        |
| 9  | (Xiang-An campus), Xiamen, Fujian, 361102 China                                             |
| 10 | <sup>2</sup> College of Life and Environmental Sciences, Huangshan University, 245041,      |
| 11 | Huangshan, China                                                                            |
| 12 | <sup>3</sup> School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia |
| 13 |                                                                                             |
| 14 | *Author for correspondence: ksgao@xmu.edu.cn (Kunshan Gao)                                  |
| 15 |                                                                                             |
| 16 |                                                                                             |
| 17 |                                                                                             |
| 18 |                                                                                             |
| 19 |                                                                                             |
| 20 |                                                                                             |
| 21 |                                                                                             |
| 22 |                                                                                             |
|    | 1                                                                                           |

# 23 Abstract

| 24 | It has been proposed that ocean acidification (OA) will interact with other                                                            |
|----|----------------------------------------------------------------------------------------------------------------------------------------|
| 25 | environmental factors to influence the overall impact of global change on biological                                                   |
| 26 | systems. Accordingly we investigated the influence of nitrogen limitation and OA on                                                    |
| 27 | the physiology of diatoms by growing the diatom Phaeodactylum tricornutum Bohlin                                                       |
| 28 | under elevated (1000 $\mu$ atm, HC) or ambient (390 $\mu$ atm, LC) levels of CO <sub>2</sub> with                                      |
| 29 | replete (110 $\mu$ mol L <sup>-1</sup> , HN) or reduced (10 $\mu$ mol L <sup>-1</sup> , LN) levels of NO <sub>3</sub> <sup>-</sup> and |
| 30 | subjecting the cells to solar radiation with or without UV irradiance to determine their                                               |
| 31 | susceptibility to UV radiation (UVR, 280-400 nm). Our results indicate that OA and                                                     |
| 32 | UVB induced significantly higher inhibition of both the photosynthetic rate and                                                        |
| 33 | quantum yield under LN than under HN conditions. UVA or/and UVB increased the                                                          |
| 34 | cells' non-photochemical quenching (NPQ) regardless of the $CO_2$ levels. Under LN                                                     |
| 35 | and OA conditions, activity of superoxide dismutase and catalase activities were                                                       |
| 36 | enhanced, along with the highest sensitivity to UVB and the lowest ratio of repair to                                                  |
| 37 | damage of PSII. HC-grown cells showed a faster recovery rate of yield under HN but                                                     |
| 38 | not under LN conditions. We conclude therefore that nutrient limitation makes cells                                                    |
| 39 | more prone to the deleterious effects of UV radiation and that HC conditions (ocean                                                    |
| 40 | acidification) exacerbate this effect. The finding that nitrate limitation and ocean                                                   |
| 41 | acidification interact with UV-B to reduce photosynthetic performance of the diatom P.                                                 |
| 42 | tricornutum implies that ocean primary production and the marine biological C pump                                                     |
| 43 | will be affected by OA under multiple stressors.                                                                                       |
|    |                                                                                                                                        |

删除的内容: the

46 Key words: CO<sub>2</sub>, diatom, multiple stressors, nutrients, ocean acidification,

47 photosynthesis, UV radiation

Abbreviations: DIC, dissolved inorganic carbon; NPQ, non-photochemical
quenching; SOD, superoxide dismutase; CAT, catalase; Inh<sub>UVR</sub>, inhibition due to UVR; *r*, repair rate; *k*, damage rate; CCMs, CO<sub>2</sub> concentrating mechanisms.

51

## 52 1 Introduction

53 Increasing atmospheric levels of CO2 and the associated dissolution of CO2 into 54 the oceans has resulted in ocean acidification (OA), with increased levels of pCO<sub>2</sub>,  $HCO_3^-$  and  $H^+$  and decreased  $CO_3^{2-}$  concentration. The acidity of surface oceans has 55 increased by 30% (lowered pH by 0.1 unit) since the Industrial Revolution and is 56 57 expected to increase by 100-150% (0.3-0.4 pH units) by the year 2100 (Orr et al., 2005). At the same time, increased sea surface temperatures are predicted to cause a 58 59 shoaling of the surface mixed layer, which in turn will lead to enhanced exposure to sunlight (both as photosynthetically active radiation (PAR) and as UVR). This 60 enhanced stratification will also decrease upward transport of nutrients from deeper, 61 62 nutrient rich layers, leading to more frequent/marked nutrient limitation (Cerme ño et 63 al., 2008). Global change is thus likely to cause changes in a multiplicity of factors 64 that influence phytoplankton growth and it is thus critical to examine OA in the context of interactive effects with these other environmental drivers (Boyd, 2011). 65 Increased availability of CO2 in seawater appears in some cases to bring a low 66 level of benefit to growth and photosynthesis of natural phytoplankton populations 67

删除的内容: radiation

| 69 | (Riebesell and Tortell, 2011) and references therein), though in most cases laboratory           |
|----|--------------------------------------------------------------------------------------------------|
| 70 | experiments have shown little effect of OA alone (Doney et al., 2009). However, the              |
| 71 | effects can differ according to changes in solar radiation and/or other physical or              |
| 72 | chemical factors (Gao et al., 2012a). Increased acidity of seawater may lead to                  |
| 73 | physiological stress (Pörtner and Farrell, 2008) and affect phytoplankton nutrient               |
| 74 | uptake (Beman et al., 2011; Shi et al., 2012). Therefore, OA could most likely result            |
| 75 | in differential effects on different photosynthetic organisms or under different                 |
| 76 | environmental conditions (Gao, 2011).                                                            |
| 77 | Diatoms account for about 20% of the total global primary production                             |
| 78 | and about 40% of that in the oceans (Granum et al., 2005). Early reports                         |
| 79 | suggested that growth of diatom species could be limited by the availability of $\mathrm{CO}_2$  |
| 80 | (Riebesell et al., 1993). However, the growth rate of diatom-dominated natural                   |
| 81 | phytoplankton populations was not affected by CO <sub>2</sub> enrichment to 800 µatm (Tortell,   |
| 82 | 2000), and not all diatom species were sensitive to seawater $pCO_2$ rise under                  |
| 83 | nutrient-replete conditions in a mesocosm study (Kim et al., 2006). In laboratory                |
| 84 | experiments, growth of Skeletonema costatum was not stimulated by elevated CO2                   |
| 85 | (800 µatm) (Chen and Gao, 2011). Phaeodactylum tricornutum grown under                           |
| 86 | nitrate-limited conditions also showed no enhancement of growth under high CO2_                  |
| 87 | (1000 µatm) (Li et al., 2012a). Nevertheless, in other work, the diatoms                         |
| 88 | <i>Phaeodactylum tricornutum</i> (1000 µatm) (Wu et al., 2010) and <i>Attheya</i> sp. (670 µatm) |
| 89 | (King et al., 2011) showed enhanced growth rate in nutrient replete conditions under             |
| 90 | elevated CO <sub>2</sub> levels. These variable findings reflect physiologically differential    |

| 91  | responses among different species or under different experimental or environmental           |   |
|-----|----------------------------------------------------------------------------------------------|---|
| 92  | conditions. Changes in light intensity can lead to enhanced, unaffected or inhibited         |   |
| 93  | growth rates under OA conditions, even for the same diatom species (Gao et al.,              |   |
| 94  | 2012b). Recently, microcosm studies have shown that the species abundance and                | _ |
| 95  | physiological responses (eg. Chl <i>a</i> , DNA damage, ROS, photosynthetic efficiency)      |   |
| 96  | could be regulated by nutrients and light availability under high CO <sub>2</sub> conditions |   |
| 97  | (Neale et al., 2014; Sobrino et al., 2014). Therefore, the effects of OA should be           |   |
| 98  | considered in the context of the influence of multiple factors, such as temperature,         |   |
| 99  | nutrient status, light and UVR (Boyd, 2011; IPCC, 2011; Gao et al., 2012a).                  | / |
|     |                                                                                              |   |
| 100 | Solar UVB radiation (280-315 nm), which is increasing due to interactions of                 |   |
| 101 | global change and ozone depletion (H äder et al., 2011), is known to damage DNA              |   |
| 102 | (Buma et al., 2003; Gao et al., 2008), lower photosynthetic rates (Helbling et al.,          |   |
| 103 | 2003), perturb the uptake of nutrients (Hessen et al., 2008) and alter morphological         |   |
| 104 | development (Wu et al., 2005) of phytoplankton. In contrast, under moderate levels of        |   |
| 105 | solar radiation, solar UVA radiation (315-400 nm) is known to stimulate                      |   |
| 106 | photosynthesis (Gao et al., 2007), signaling (Cashmore, 1998) and photo-repair of            |   |
| 107 | UVB-induced damage (Buma et al., 2003) in phytoplankton. Previously, it was shown            |   |
| 108 | that UV-induced inhibition of dinoflagellates was lower under nutrient replete               |   |
| 109 | conditions but higher under nutrient limitation, due to less efficient repair resulting      |   |
| 110 | from lowered nutrient availability (Litchman et al., 2002). Similar enhancement of           |   |
| 111 | UVB impacts under nutrient (N, P) limitation were shown for a green microalga,               |   |
| 112 | Dunaliaella tertiolecta (Shelly et al., 2002; Heraud et al., 2005). Recently, OA was         |   |

 删除的内容: a series

 删除的内容: y

 删除的内容: showed

 带格式的: 字体: 倾斜

 带格式的: 下标

删除的内容: radiation

| 117 | found to enhance UVB-induced damage to a red tide alga, <i>Phaeocystis globosa</i> ,                   |              |                      |   |
|-----|--------------------------------------------------------------------------------------------------------|--------------|----------------------|---|
| 118 | leading to a greater decrease in growth rate and photochemical yield under 1000 µatm                   |              |                      |   |
| 119 | CO <sub>2</sub> (Chen and Gao, 2011).                                                                  |              |                      |   |
| 120 | Marine phytoplankton often experience nutrient limitation in offshore waters;                          |              |                      |   |
| 121 | with progressive ocean warming, such limitation will be intensified due to decreased                   |              |                      |   |
| 122 | depth of the surface mixed layer (enhanced stratification) (Cerme ño et al., 2008).                    |              |                      |   |
| 123 | Combined effects of nutrient levels and CO <sub>2</sub> have been reported in many studies. For        |              | <b>带格式的:</b> 下标      |   |
| 124 | example, photosynthetic carbon fixation of the coccolithophorid Emiliania huxleyi                      |              | <b>删除的内容:</b> P      | _ |
| 125 | was enhanced under high light and low nitrogen conditions when the seawater $CO_2$                     |              |                      |   |
| 126 | concentration was raised to 2000 µatm (Leonardos and Geider, 2005). However,                           |              |                      |   |
| 127 | increased seawater CO <sub>2</sub> concentration also showed antagonistic effects with iron in         |              |                      |   |
| 128 | modulating (down- or up-regulating) primary production of marine phytoplankton in                      |              |                      |   |
| 129 | the Gulf of Alaska (a nutrient replete but low chlorophyll area) (Hopkinson et al.,                    |              |                      |   |
| 130 | 2010). In some toxin producing species, for example the dinoflagellate Karlodinium                     |              | <b>删除的内容:</b> t      |   |
|     |                                                                                                        | $\frown$     | 删除的内容: on            |   |
| 131 | veneficum, toxicity was enhanced under high CO <sub>2</sub> and low phosphate conditions (Fu           |              | 删除的内容: In the        |   |
| 132 | et al., 2010). However, to the best of our knowledge, there is little information                      | $\mathbb{N}$ | 删除的内容: take          |   |
|     |                                                                                                        |              | 删除的内容: as an example | e |
| 133 | concerning the combined effects of OA and NO <sub>3</sub> <sup>-</sup> limitation on diatoms and their | \            | 删除的内容: the,          |   |
| 134 | susceptibility to damage from solar UVR (280-400 nm).                                                  |              | 删除的内容: radiation     |   |
|     |                                                                                                        |              | 删除的内容: UVR,          | - |
| 135 | Nutrient availability can influence phytoplankton responses to UV and to                               |              |                      |   |
| 136 | CO2-induced seawater acidification. Theoretically, increased seawater acidity can                      |              |                      |   |
| 137 | perturb intracellular acid-base balance and thus lead to differential interactions                     |              |                      |   |
| 138 | between nutrients and solar $UV_{\mathbb{R}}$ . In this study, we hypothesize that reduced             |              | 删除的内容: radiation     |   |
|     |                                                                                                        |              |                      |   |

| 除的内容: | radiation |
|-------|-----------|

#### 149 availability of $NO_3$ under OA would affect the photosynthetic performance under

solar radiation with or without UVR. We used the diatom Phaeodactylum tricornutum.

删除的内容: , 删除的内容: whose genome has been completely sequenced (http: //genome.jgi-psf.org/Phatr2/Phatr2.

home.html),

带格式的:突出显示

152

150

151

## 153 2 Materials and methods

to test this hypothesis.

## 154 **2.1 Growth conditions**

- 155 The diatom *Phaeodactylum tricornutum* Bohlin (strain CCMA 106), isolated
- 156 from the South China Sea (SCS) and maintained in the Center for Collections of

157 Marine Bacteria and Phytoplankton (CCMBP) of the State Key Laboratory of Marine

- 158 Environmental Sciences (Xiamen University), was grown mono-specifically in
- 159 artificial seawater enriched with Aquil medium (Morel et al., 1979). Cells were
- 160 cultured in 500 mL vessels containing 250 mL medium under two levels of  $NO_3^-$  (110
- 161  $\mu$ mol L<sup>-1</sup>, HN; 10  $\mu$ mol L<sup>-1</sup>, LN) and aerated with ambient (outdoor) air (LC, 390

162  $\mu$ atm) or elevated (1000  $\mu$ atm, HC) CO<sub>2</sub> levels within a plant CO<sub>2</sub> chamber

163 (HP1000G-D, Ruihua instrument & equipment Co. Ltd, China). Gas flow rate was

- 164  $300 \text{ ml min}^{-1}$ , and the CO<sub>2</sub> concentrations varied by less than 3% of the target value.
- 165 The low NO<sub>3</sub><sup>-</sup> level of 10  $\mu$ mol L<sup>-1</sup> was based on its concentration range (ca. 0-20

166  $\mu$ mol L<sup>-1</sup>) in the oligotrophic SCS, from where the diatom strain was isolated.

167 Dilutions were made every 24 h, so that the seawater carbonate system was

- 168 maintained stable under each CO<sub>2</sub> level within the cell density range of  $6 \times 10^4$  to  $3 \times$
- 169  $10^5$  cells ml<sup>-1</sup> (exponential growth phase). <u>According to the pre-experiment, the initial</u>
- 170 <u>nitrate concentration of 10  $\mu$ mol L<sup>-1</sup> could be totally consumed (0-10  $\mu$ mol L<sup>-1</sup>); and the</u>

| 176 | initial nitrate concentration of 110 $\mu$ mol L <sup>-1</sup> treatment, the nitrate ranged from ca. 85-110                                         |       |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 177 | <u><math>\mu</math>mol L<sup>-1</sup> during the culture.</u> The cells were grown at 70 $\mu$ mol photons m <sup>-2</sup> s <sup>-1</sup> (cool     |       |
| 178 | white fluorescent tubes) under a 12L: 12D photoperiod for at least 10 generations                                                                    |       |
| 179 | before being used for the solar radiation treatments described below. Three                                                                          |       |
| 180 | independent cultures were grown at each condition.                                                                                                   |       |
| 181 |                                                                                                                                                      |       |
| 182 | 2.2 Determination of seawater carbonate system parameters                                                                                            |       |
| 183 | The pH in the cultures was determined daily during the light period with a pH                                                                        |       |
| 184 | potentiometric titrator (DL15, Mettler-Toledo, Schwerzenbach, Switzerland), which                                                                    |       |
| 185 | was calibrated with NBS (National Bureau of Standards) buffer solutions (Hanna).                                                                     |       |
| 186 | DIC (dissolved inorganic carbon) was estimated with an automatic system (AS-C3,                                                                      |       |
| 187 | Apollo Scitech) linked to an infrared gas detector (Li-Cor 7000, Li-Cor). DIC, pH,                                                                   |       |
| 188 | nutrient concentrations (phosphate, 10 $\mu$ mol L <sup>-1</sup> ; silicate, 100 $\mu$ mol L <sup>-1</sup> ), salinity (35)                          |       |
| 189 | and temperature (20°C) were used to calculate the parameters of the seawater                                                                         |       |
| 190 | carbonate system (HCO <sub>3</sub> <sup>-</sup> , CO <sub>3</sub> <sup>2-</sup> , CO <sub>2</sub> and TA) using the CO <sub>2</sub> system analyzing |       |
| 191 | software CO <sub>2</sub> SYS (Lewis and Wallace, 1998) as described previously (Li et al.,                                                           |       |
| 192 | 2012a). The carbonic acid dissociation constants ( $K_1$ and $K_2$ ) used were those of Roy                                                          |       |
| 193 | et al. (1993), and that for boric acid ( $K_B$ ) was from Dickson (1990).                                                                            |       |
| 194 |                                                                                                                                                      |       |
| 195 | 2.3 Radiation treatments <u>under the solar simulator</u>                                                                                            | 删除的内容 |
| 196 | To determine the effects of growth conditions on the sensitivity of carbon fixation                                                                  |       |
|     |                                                                                                                                                      |       |

删除的内容: radiation

and chlorophyll fluorescence to short-term exposure to UVR, P. tricornutum cells,

| 200 | grown under LC-LN (low CO <sub>2</sub> + low nitrate), HC-LN (high CO <sub>2</sub> + low nitrate),                         |
|-----|----------------------------------------------------------------------------------------------------------------------------|
| 201 | LC-HN (low $CO_2$ + high nitrate) and HC-HN (high $CO_2$ + high nitrate) conditions,                                       |
| 202 | were exposed for 1 h to different radiation treatments with or without UVR, as                                             |
| 203 | follows: 1) P treatment, tubes wrapped with Ultraphan film 395 (UV Opak, Digefra),                                         |
| 204 | being exposed to PAR alone; 2) PA treatment, tubes wrapped with Folex 320                                                  |
| 205 | (Montagefolie, Folex, Dreieich, Germany), receiving wavelengths above 320 nm                                               |
| 206 | (PAR+UVA); <u>3) PAB treatment, tubes wrapped with Ultraphan Film 295 (Digefra,</u>                                        |
| 207 | Munich, Germany), so that the cells received wavelengths above 295 nm                                                      |
| 208 | (PAR+UVA+UVB). The transmission spectra of the cut-off filters are available                                               |
| 209 | elsewhere (Zheng and Gao, 2009). Samples were placed at a distance of 1.2 m from a                                         |
| 210 | solar simulator (Sol 1200W, Dr. Hönle, Martinsried, Germany), so that the actual PAR                                       |
| 211 | light intensities to which the cells were exposed within the tubes (calculated taking                                      |
| 212 | into account the transmission properties of the quartz tubes and the filters) was 44.11                                    |
| 213 | Wm <sup>-2</sup> (ca. 190.11 $\mu$ mol photons m <sup>-2</sup> s <sup>-1</sup> ) which is close to the daytime mean photon |
| 214 | flux in the middle of the photic zone (22-36 m depth in South China Sea, SEATS)                                            |
| 215 | station), The corresponding UVA and UVB irradiances were 14.19 Wm <sup>-2</sup> (ca. 41.99                                 |
| 216 | $\mu mol$ photons $m^{-2}~s^{-1})$ and 0.75 $Wm^{-2}$ (ca. 1.89 $\mu mol$ photons $m^{-2}~s^{-1}).$ Irradiances            |
| 217 | were measured with a broad-band filter radiometer (ELDONET, Real Time Computer,                                            |
| 218 | Möhrendorf, Germany). After the radiation treatments, the cells were replaced under                                        |
| 219 | their growth light level (70 $\mu$ mol photons m <sup>-2</sup> s <sup>-1</sup> ) to examine the recovery of                |
| 220 | photosynthetic performance. During the incubations, the tubes were maintained in a                                         |
| 221 | water bath at 20 °C using a circulating cooler (Eyela, CAP-3000, Tokyorikakikai Co.                                        |

删除的内容: radiation

删除的内容: 1) PAB treatment, tubes wrapped with Ultraphan Film 295 (Digefra, Munich, Germany), so that the cells received wavelengths above 295 nm (PAR+UVA+UVB,)

删除的内容: 3) P treatment, tubes wrapped with Ultraphan film 395 (UV Opak, Digefra), being exposed to PAR alone

**删除的内容:**(

删除的内容:)

234 Ltd., Tokyo, Japan).

235

# 236 **2.4 Measurement of carbon fixation**

| 237 | The <sup>14</sup> C method was applied to measurements of marine photosynthetic carbon                         |
|-----|----------------------------------------------------------------------------------------------------------------|
| 238 | fixation (Nielsen, 1952), and has been detailed with modified protocols in many                                |
| 239 | publications (Holm-Hansen and Helbling, 1995; Gao et al., 2007). Cells were                                    |
| 240 | harvested in the middle of the light phase, diluted with freshly made medium                                   |
| 241 | equilibrated with the designated concentrations of CO2 to a cell concentration of 2-3 $\times$                 |
| 242 | $10^4$ cells ml <sup>-1</sup> and transferred to 35 ml quartz tubes. Each tube was injected with 100           |
| 243 | $\mu$ l-5 $\mu$ Ci (0.185 MBq) NaH <sup>14</sup> CO <sub>3</sub> solution (ICN Radiochemicals). Triplicate     |
| 244 | incubations were carried out for each treatment as mentioned above and, additionally,                          |
| 245 | 3 tubes were wrapped in aluminum foil and incubated as a dark control. The cells                               |
| 246 | were collected on Whatman GF/F glass filters either immediately after 1 h exposure                             |
| 247 | to the solar simulator or after a period of recovery under their growth light for another                      |
| 248 | hr. The filters were put into 20 ml scintillation vials, fumed with HCl for 12 h and                           |
| 249 | then dried for 6 h at 45 $^\circ\!\!\!\mathrm{C}$ to expel the non-fixed inorganic carbon as CO <sub>2</sub> . |
| 250 | Scintillation cocktail (3 mL of Tri-Carb 2800TR, Perkin Elmer®) was added to the                               |
| 251 | vials, and radioactivity in the vials counted with a liquid scintillation counter (LS                          |
| 252 | 6500, Beckman Coulter, USA). Carbon fixation rates were calculated from these                                  |
| 253 | counts and are presented on a per cell basis or per chl a.                                                     |
| 254 |                                                                                                                |

# 255 2.5 Measurement of Chlorophyll fluorescence

| 256 | For chlorophyll fluorescence measurements, cell collection and radiation                                 |
|-----|----------------------------------------------------------------------------------------------------------|
| 257 | treatments were carried out as described above. The effective quantum yield (yield)                      |
| 258 | was measured every 20 min either during the solar simulator exposure or during                           |
| 259 | recovery under the growth light level.                                                                   |
| 260 | The effective quantum yield (yield) and non-photochemical quenching (NPQ)                                |
| 261 | parameters were calculated according to Genty et al. (1990) as yield = $(F'_m - F_t) / F'_m$             |
| 262 | and NPQ = $(F_m - F'_m) / F'_m$ , respectively, where $F_m$ is the maximum fluorescence yield            |
| 263 | after 15 min dark adaptation, $\vec{F_m}$ is the light-adapted maximal chlorophyll                       |
| 264 | fluorescence yield measured during the exposures, and $F_t$ is the steady fluorescence                   |
| 265 | level during the exposures. The actinic light was set at the growth light level, and the                 |
| 266 | saturating pulse (5000 $\mu$ mol photons m <sup>-2</sup> s <sup>-1</sup> ) lasted for 0.8 s.             |
| 267 | Repair (r) and damage (k) rates during the 60 min exposure period in the presence                        |
| 268 | of UV were calculated using the Kok model (Heraud and Beardall, 2000): $P/P_{initial}$ =                 |
| 269 | $r/(k+r)+[k/(k+r)]e^{-(k+r)t}$ , where $P_{initial}$ and P were the yield values at beginning and at     |
| 270 | exposure time t.                                                                                         |
| 271 | During the recovery period, the exponential rate constant for recovery (R) was                           |
| 272 | calculated from the following equation: $y = y_0 + b \times [1 - exp(-R \times t)]$ , where y represents |
| 273 | the yield value at time t, $y_o$ is the starting value before recovery and b is a constant.              |
| 274 | The relative inhibitions of carbon fixation or yield caused by UVA or UVB were                           |
| 275 | calculated as follows:                                                                                   |
| 276 | $Inh_{UVR} = (P_{PAR} - P_{PAB}) / P_{PAR} \times 100\%;$                                                |
| 277 | $Inh_{UVA} = (P_{PAR} - P_{PA}) / P_{PAR} \times 100\%;$                                                 |

278  $Inh_{UVB} = Inh_{UVR} - Inh_{UVA};$ 

279 where  $P_{PAR}$ ,  $P_{PA}$  and  $P_{PAB}$  represent carbon fixation or yield values under PAR,

- 280 PAR + UVA, PAR + UVA + UVB treatments, respectively.
- 281

|     |                                                                                                     | - |
|-----|-----------------------------------------------------------------------------------------------------|---|
| 282 | 2.6 <u>Cells counts and chlorophyll <i>a</i> measurements</u> ,                                     |   |
| 283 | The cells were counted using a Z2 <sup>TM</sup> Coulter Counter (Beckman, USA). Where               |   |
| 284 | needed, we used the values for chlorophyll $a$ (chl $a$ ) contents of the cells grown under         |   |
| 285 | the same CO <sub>2</sub> and nitrate levels reported previously (Li et al., 2012a).                 |   |
| 286 |                                                                                                     |   |
| 287 | 2.7 Total protein content, superoxide dismutase (SOD) and catalase (CAT)                            |   |
| 288 | measurements                                                                                        |   |
| 289 | To determine the total protein content and activities of SOD and CAT, cells were                    |   |
| 290 | collected, in the middle of the light phase, onto a polycarbonate membrane (0.22 $\mu$ m,           |   |
| 291 | Whatman) under vacuum at a pressure of less than 0.1 Pa and washed into a 1 ml                      |   |
| 292 | centrifuge tube with phosphate buffer (pH 7.6). The enzyme extractions were carried                 |   |
| 293 | out in 0.6 ml phosphate buffer (pH 7.6) that contained 50 mM KH <sub>2</sub> PO <sub>4</sub> , 1 mM |   |
| 294 | Ethylene Diamine Tetraacetic Acid (EDTA), 0.1% Triton X-100 and 1% ( $w/v$ )                        |   |
| 295 | polyvinyl polypyrrolidone. The cells were broken by sonication in an ice-water bath                 |   |
| 296 | (4 °C), and the homogenized extract was centrifuged at 12000 g (4 °C) for 10 min                    |   |
| 297 | before the activities of SOD and CAT were tested with SOD and CAT Assay Kits                        |   |
| 298 | (Nanjing Jiancheng Biological Engineering Company, China). One unit of SOD was                      |   |
| 299 | defined as the amount causing a 50% inhibition of nitroblue tetrazolium (NBT)                       |   |

删除的内容:C

删除的内容: Chlorophyll *a* measurements and cells counts

| 303 | reduction (Wang and Wang, 2010). One unit of CAT activity was defined as the                           |        |           |
|-----|--------------------------------------------------------------------------------------------------------|--------|-----------|
| 304 | amount required to decompose 1 $\mu mol \; H_2O_2$ per second. The SOD and CAT activities              |        |           |
| 305 | were expressed as U mg <sup>-1</sup> protein and per $10^6$ cells (Fig. S1). The total protein content |        |           |
| 306 | was determined according to Bradford (1976) using bovine serum albumin as the                          |        |           |
| 307 | standard.                                                                                              |        |           |
| 308 |                                                                                                        |        |           |
| 309 | 2.8 Statistical analyses and calculations                                                              |        |           |
| 310 | One-way analysis of variance (ANOVA) was used, followed by a multiple                                  |        |           |
| 311 | comparison using a Tukey-test to establish differences among the treatments.                           |        |           |
| 312 | Interactive effects among $CO_2$ , $NO_3^-$ and $UV_{\mathbb{R}}$ on carbon fixation and yield were    | 删除的内容: | radiation |
| 313 | determined using a two- or three-way ANOVA to establish significant differences                        |        |           |
| 314 | among the variables.                                                                                   |        |           |
| 315 |                                                                                                        |        |           |
| 316 | 3 Results                                                                                              |        |           |
| 317 | 3.1 Carbon fixation                                                                                    |        |           |
| 318 | Carbon fixation was significantly inhibited by UVR in both HN and LN-grown                             | 删除的内容: | radiation |
| 319 | cells either based on per cell or chl $a$ (Fig.1). Under the HN conditions, the carbon                 |        |           |
| 320 | fixation rates of LC and HC cultures, compared to that of PAR alone treatment, were                    |        |           |
| 321 | inhibited by 29.4% ( $P = 0.0002$ ) and 36.7% ( $P < 0.0001$ ) in the presence of UVA (PA              |        |           |
| 322 | treatment: PAR+UVA), and by 47.7% ( $P < 0.0001$ ) and 46.1% ( $P = 0.0029$ ) with both                |        |           |
| 323 | UVA and UVB (PAB, PAR+UVA+B) (Fig. 1a and c). However, the carbon fixation                             |        |           |
| 324 | per cell in the LC grown cells was 10.0% ( $P = 0.0058$ ) higher in those exposed to PA,               |        |           |
|     |                                                                                                        |        |           |

and that based on chl *a* was higher under the PAR alone or PA treatments, by about 8.4% (P = 0.0253) and 17.9% (P = 0.005) compared to that of the HC-grown cells. For PAB treatments, there were no significant differences between the HC and LC-grown cells (Fig. 1a and c).

Under LN conditions, carbon fixation rates of LC and HC grown cells were 331 decreased by 14.7 % (P = 0.0039) and 1.1% (P = 0.8658) in the presence of UVA (PA) 332 and by 23.3% (P = 0.0019) and 27.3% (P = 0.0123) with UVA and UVB (PAB) 333 334 treatments, respectively (Fig. 1b and d), compared with that of PAR alone treatment. 335 That is, both UVA and UVB resulted in significant impacts in the LN-grown cells 336 under LC, but only UVB brought about significant reduction of the rate under HC. In the PA treatment, the HC-LN cells fixed carbon at a rate 21.7% (P = 0.0071) higher 337 338 than in the LC-LN cells (Fig. 1b), however, there were no significant differences between HC and LC cells in the PAR and the PAB treatments under N-limitation. 339 340 Under the LN level, the carbon fixation rate per chl *a* was about 30.8% (P = 0.01), 51.6% (P = 0.0013) and 24.0% (P = 0.03) higher in HC than in LC-grown cells (Fig. 341 342 1d).

343

#### 344 **3.2 Photochemical quantum yield**

When exposed to different irradiation treatments, photochemical quantum yields ('yield') in the cells grown under either HC or LN conditions showed similar patterns with those grown at LC and HN conditions (Fig. 2), decreasing rapidly during the initial 20 min and leveling off after 40 to 60 min. Under HN conditions, the yield in the HC-grown cells decreased to a similar level among the treatments (P, P = 0.1568; PA, P = 0.0879; PAB, P = 0.1341) as that in the LC-treatments (Fig. 2a and b). Under the LN condition, the yield decreased to much lower levels compared to those under HN treatments (Fig. 2c and d). Cells exposed to all treatments showed recovery of the yield, under their growth light (70 µmol photons m<sup>-2</sup> s<sup>-1</sup>), to approximately their initial levels in about 80 min (Fig 3).

355

### 356 **3.3 UVA and UVB induced inhibition of photosynthetic performance**

357 While UVA induced significantly higher (P = 0.0114) inhibition of photosynthetic 358 carbon fixation in the HC-HN but lower (P = 0.0038) in the HC-LN grown cells (Fig. 359 3a and b), it did not cause significant changes in the yield between the HC- and LC-360 grown cells (HN, P = 0.1375; LN, P = 0.0500) (Fig. 3c). While the contribution of UVB did not induce significant inhibition of either carbon fixation (P = 0.2308) or 361 362 yield (P = 0.5319) in the HN-grown cells, under both the HC and LC conditions (Fig. 3a and c), it caused significantly higher inhibition of the photosynthetic rate (by 363 203.3%, P = 0.0006) and the yield (by 76.8%, P = 0.0451) in the HC- than the LC-364 365 grown cells under  $NO_3^-$  limited conditions (Fig. 3b and d). Interactive effects among  $CO_2$ ,  $NO_3^-$  and radiation treatments on yield were significant (Table 1). 366 367 368 3.4 Repair, damage rates and constant for recovery rate

#### 508 5.4 Kepan, damage rates and constant for recovery rate

- 369 The HC-grown cells had higher rates of damage, k, than the LC-grown cells
- 370 under nitrogen limitation but not under N replete conditions (HN, P = 0.2109; LN, P

| 371 | = 0.0092). No effect was observed for repair rates $r$ (HN, $P = 0.1655$ ; LN, $P =$         |
|-----|----------------------------------------------------------------------------------------------|
| 372 | 0.5276). The repair:damage (r/k) ratios in the HC-grown cells showed a 21.0% (but            |
| 373 | statistically insignificant) increase under HN ( $P = 0.3450$ ) but decreased significantly  |
| 374 | by 31.1% under LN ( $P = 0.0320$ ) conditions, compared to the LC-grown cells,               |
| 375 | respectively (Table 2). Under the low PAR, the exponential rate constant for recovery        |
| 376 | (R) showed dependency on previous light treatments with lowered rate in the cells            |
| 377 | exposed to UVR, while HC stimulated the rate under the HN but not LN condition               |
| 378 | (Table 3). Obviously, the cells exposed to the radiation treatments with UVB took            |
| 379 | longer ( $P < 0.05$ ) to recover their photochemical yield, and pre-exposure to UVA had      |
| 380 | little ( $P > 0.05$ ) effect on the recovery; HC-HN-grown cells had faster ( $P < 0.05$ )    |
| 381 | photochemical recovery (Table 4).                                                            |
| 382 |                                                                                              |
| 383 | 3.5 Non-photochemical quenching (NPQ)                                                        |
| 384 | Non-photochemical quenching (NPQ) showed an opposite pattern of change to                    |
| 385 | yield during both the exposure and recovery periods (Fig. 4). Under HN conditions,           |
| 386 | HC treatments triggered the highest NPQ within 20 min (Fig. 4a), while NPQ reached           |
| 387 | its maximal values at 40 min under the ambient (LC) CO <sub>2</sub> level (Fig. 4b). Similar |
| 388 | trends were found in both the LN and HN grown cells regardless of the radiation              |
|     |                                                                                              |

treatments (Fig. 4). Both UVA and UVB caused additional (P < 0.05) rises in NPQ in 389

390 HN-grown cells regardless of the CO<sub>2</sub> levels (Fig. 4a and b). However, neither UVA

- 391 nor UVB induced significant (P > 0.05) change in NPQ in LN-grown cells, regardless
- of the CO<sub>2</sub> levels (Fig. 4c and d). Lower NPQ values were found in HN-grown cells 392

删除的内容: radiation

| 405 | 3.6 Protein content, SOD and CAT activities                                             |
|-----|-----------------------------------------------------------------------------------------|
| 404 |                                                                                         |
| 403 | also interactively, affected the NPQ (Table 1).                                         |
| 402 | ANOVA showed that both nitrogen levels and radiation treatments individually, and       |
| 401 | HC-HN grown cells declined faster ( $P = 0.0242$ ) than in LC-HN cells. Two-way         |
| 400 | difference ( $P > 0.05$ ) between HC- and LC-grown cells except that NPQ in the         |
| 399 | PAR+UVA+B treatment, relaxation of NPQ during the recovery period showed no             |
| 398 | to a rapid decline of NPQ with time. For the cells that were pre-exposed to the         |
| 397 | LN-grown cells. Transfer to the growth light level without UV, to allow recovery, led   |
| 396 | insignificant (LC, $P = 0.1150$ ; HC, $P = 0.1660$ ), increase of NPQ in HN compared to |
| 395 | UVB, however, resulted in an approximately 17.0% higher, but statistically              |
| 394 | compared with LN, under either PAR alone or PAR+UVA treatments. Addition of             |

| 406 | Protein contents were enhanced in HN cultures under both LC (3.21±0.98 pg                                           |
|-----|---------------------------------------------------------------------------------------------------------------------|
| 407 | cell <sup>-1</sup> ) and HC ( $3.38\pm1.35$ pg cell <sup>-1</sup> ) conditions, compared with LN grown cells (LC,   |
| 408 | $2.58\pm0.46$ pg cell <sup>-1</sup> ; HC, $2.28\pm0.68$ pg cell <sup>-1</sup> ), though statistically there were no |
| 409 | significant differences among the treatments ( $P = 0.4296$ ) (Fig. 5a). There was no                               |
| 410 | significant difference in protein content between LC and HC treatments at a given                                   |
| 411 | $NO_3^-$ concentration. However, $NO_3^-$ -limitation enhanced SOD (LC, by 62.5%, $P =$                             |
| 412 | 0.0004; HC, by 72.5%, <i>P</i> = 0.0007) and CAT (LC, by 67.5%, <i>P</i> = 0.0759; HC, by                           |
| 413 | 67.1%, $P = 0.0747$ ) activities in both LC and HC-grown cells, when based on protein                               |
| 414 | content (Fig. 5b and c), though such enhancement was insignificant $(P > 0.1)$ when                                 |
| 415 | normalized to per cell (Fig. S1).                                                                                   |

| 417 | 4 Discussion                                                                                      |  |
|-----|---------------------------------------------------------------------------------------------------|--|
| 418 | This study shows that nitrate limitation interacts with OA to affect the overall                  |  |
| 419 | impacts of solar UVR on the diatom <i>P. tricornutum</i> . OA and UVB caused                      |  |
| 420 | significantly higher inhibition of the photosynthetic rate and the quantum yield under            |  |
| 421 | LN than under HN conditions. Interactive effects of reduced nitrate availability and              |  |
| 422 | OA increased protein-based activity of superoxide dismutase (SOD) and catalase                    |  |
| 423 | (CAT) but decreased the rate of repair of PSII from UV-induced damage. OA                         |  |
| 424 | appeared to counteract UVB-induced damage under NO3 <sup>-</sup> replete conditions, but          |  |
| 425 | when combined with decreased availability of nitrate, it increased the diatom's                   |  |
| 426 | sensitivity to UV <mark>R</mark> .                                                                |  |
| 427 | Most diatoms have evolved CO <sub>2</sub> concentrating mechanisms (CCMs) as a                    |  |
| 428 | response to low availability of CO <sub>2</sub> in the present-day oceans (Raven et al., 2011).   |  |
| 429 | Increasing pCO <sub>2</sub> may, to some extent, benefit marine phytoplankton due to increased    |  |
| 430 | availability of CO <sub>2</sub> (Burkhardt et al., 2001; Rost et al., 2003). CCMs are known to be |  |
| 431 | down-regulated under a CO <sub>2</sub> level doubling that of the current ambient concentration,  |  |
| 432 | saving about 20% of the energy cost for active inorganic carbon acquisition in some               |  |
| 433 | diatoms (including P. tricornutum) (Hopkinson et al., 2011). Such a down-regulation               |  |
| 434 | of CCMs was equally obvious in <i>P. tricornutum</i> grown under nitrate-limited or replete       |  |
| 435 | conditions (Wu et al., 2010; Li et al., 2012a). However, this down-regulated CCM and              |  |
| 436 | its effects may be mediated by many other factors. A recent study found that different            |  |
| 437 | acclimation times (short term, 15-16 generations and longer term, 33-57 generations)              |  |

删除的内容: radiation

删除的内容: radiation

| 440 | to increased CO <sub>2</sub> and nitrate limitation may have different effects on the DIC and DIN                              |
|-----|--------------------------------------------------------------------------------------------------------------------------------|
| 441 | uptake rate in diatom Thalassiosira pseudonana, with short-term acclimated cells                                               |
| 442 | showing a linear correlation with changes in $fCO_2$ although this was not the case in                                         |
| 443 | long-term acclimated cells (Hennon et al., 2014). On the other hand, the                                                       |
| 444 | down-regulation of CCM operation was recently shown to decrease the growth of 3                                                |
| 445 | diatoms (Phaeodactylum tricornutum, Thalassiosira pseudonana and Skeletonema                                                   |
| 446 | costatum) under high levels of sunlight but to enhance it under low light (Gao et al.,                                         |
| 447 | 2012b). The growth rate of <i>P. tricornutum</i> under high CO <sub>2</sub> (1000 µatm) decreased at                           |
| 448 | light levels higher than 180 $\mu$ mol m <sup>-2</sup> s <sup>-1</sup> to be lower than that of the low CO <sub>2</sub> -grown |
| 449 | cells (Gao et al., 2012b). In the present study, under the near-saturation light level (ca.                                    |
| 450 | 190 $\mu$ mol photons m <sup>-2</sup> s <sup>-1</sup> of PAR), photosynthetic carbon fixation rate per chl <i>a</i> under      |
| 451 | the nitrate limited condition was higher in the HC-grown cells. Obviously, the nutrient                                        |
| 452 | limitation influenced the effects of OA.                                                                                       |
| 453 | UVR is known to damage photosynthetic pigments and proteins (for example D1                                                    |
| 454 | and Rubisco proteins) (Zacher et al., 2007) and therefore would reduce the                                                     |
| 455 | photosynthetic capacity of algae (H äder et al., 2011). UVA induced significantly                                              |
| 456 | higher inhibition of carbon fixation in HC-HN than in LC-HN grown cells, reflecting                                            |
| 457 | a synergistic effect of UVA and OA; however, for the same cells, UVB induced no                                                |
| 458 | greater inhibition of the photosynthetic carbon fixation in HC compared to LC cells,                                           |
| 459 | which is in contrast to the findings reported in another study (Li et al., 2012b). Many                                        |
| 460 | studies have shown that the sensitivity of cells to high levels of PAR and UV under                                            |
| 461 | OA condition could be stimulated and then induce higher inhibition rate of                                                     |
|     |                                                                                                                                |

| 462 | photosynthesis (Sobrino et al., 2008; Gao et al., 2012b; Xu and Gao, 2012). However,                      |                                |   |
|-----|-----------------------------------------------------------------------------------------------------------|--------------------------------|---|
| 463 | this phenomenon is not always found in all species especially when the intensity of                       | 删除的内容: hold                    |   |
| 464 | PAR or UV is not that high. For example, a recent study reported that the unicellular                     |                                |   |
| 465 | chlorophyte ( <i>Dunaliella tertiolecta</i> ) acclimated with high CO <sub>2</sub> under nutrient replete | <b>带格式的:</b> 字体:倾斜<br>带格式的: 下标 | _ |
| 466 | conditions could alleviate the stress induced by high PAR and UV (Garc á-Gómez et                         |                                |   |
| 467 | al., 2014). This could be due to the energy saving as a result of down-regulation of CCM                  | <b>带格式的:</b> 非突出显示             |   |
| 468 | activity. However, in the present study, we did not find that the synergistic effects of OA               |                                |   |
| 469 | and UVR induced a higher inhibition at the light intensity of PAR+ UVA+UVB (44.11 +                       |                                |   |
| 470 | 14.19 + 0.75 Wm <sup>-2</sup> ) used, than found under LC. This may be due to the light intensity of      |                                |   |
| 471 | PAR or UVR not being high enough to exceed the energy dissipating capacity of the cells.                  |                                |   |
| 472 | Furthermore, under high N the nutrient supply would be sufficient to support the repair                   |                                |   |
| 473 | processes of UV or high PAR induced damage. In the LN-grown cells, UVB induced                            |                                |   |
| 474 | greater inhibition of both carbon fixation and yield, probably due to a decreased                         | 删除的内容: higher                  | _ |
| 475 | repair/damage ratio (Table 2) and decreased levels of both chl a and other light                          | 删除的内容: reduced                 | _ |
| 476 | harvesting pigments (Li et al., 2012a), since the (re)synthesis of both proteins and                      |                                |   |
| 477 | UV-screening compounds depends on nitrogen availability (Beardall et al., 2009;                           |                                |   |
| 478 | Beardall et al., 2014). Such an inhibition by UVB in LN-grown cells was more                              |                                |   |
| 479 | pronounced under OA conditions (Fig. 3b and d), though UVB appeared to counteract                         |                                |   |
| 480 | the OA effect under the HN condition. When the cells are exposed to lower external                        |                                |   |
| 481 | pH, they would need additional energy to cope with the acid-base perturbation                             |                                |   |
| 482 | (Kanazawa and Kramer, 2002). By impairing photosynthesis, nitrogen limitation                             | 删除的内容: .                       |   |
|     |                                                                                                           | <b>删除的内容:</b> N                |   |
| 483 | could decrease the supply of energy, especially in the presence of UVB (Döhler,                           |                                |   |

| 489 | 1998). Though SOD and CAT normalized per cell showed no change in all treatments          |
|-----|-------------------------------------------------------------------------------------------|
| 490 | (Fig. S1), the fact that nitrogen limitation led to decreased protein contents per cell   |
| 491 | and with higher activity of SOD and CAT (based on protein content) implies that           |
| 492 | these enzymes are preferentially retained in the face of decreasing protein per cell and  |
| 493 | thus reflects an enhanced defense strategy (Fig. 5), so that reactive oxygen species      |
| 494 | (ROS) that were formed under N-limitation could be scavenged. The differential            |
| 495 | impacts of UVB on HN and LN-grown cells under the OA treatment could be due to            |
| 496 | differences in the repair and damage rates (Table 2) and differential stimulation of      |
| 497 | periplasmic proteins (Wu and Gao, 2009), which are important transporters of ions         |
| 498 | and play important roles in maintaining intracellular acid-base stability. On the other   |
| 499 | hand, $NO_3^-$ scarcity usually leads to an impaired PSII reaction center activity due to |
| 500 | decreased synthesis of key proteins, therefore, leading to decreased quantum yields of    |
| 501 | PSII (Geider et al., 1993). In this study, P. tricornutum showed much lower yield (Fig.   |
| 502 | 2c and d), as well as NPQ, in the nitrogen limited cells (Fig. 4 c and d), indicating     |
| 503 | smaller functional PSII reaction centers and a lower heat dissipating capability, when    |
| 504 | combined with the OA treatment, consistent with these cells having the highest            |
| 505 | damage and the lowest repair (Table 2). In the HN-grown cells, better recovery of         |
| 506 | both photosynthetic carbon fixation (data not shown) and photochemical performance        |
| 507 | (Table 3, 4) under the OA condition could be attributed to faster repair rate of PSII     |
| 508 | and related metabolic up-regulations.                                                     |
| 509 | The results from the present work suggest that nutrient limitation can alter the          |

删除的内容: radiation

effects of OA or UVR and their interactions. In the oligotrophic oceans, such as the

| 512                                                                                      | surface mixed layers of the South China Sea (SCS), where averaged total inorganic                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 513                                                                                      | nitrogen concentrations range from 0-20 µmol, UVB and OA can act synergistically                                                                                                                                                                                                                                                                   |
| 514                                                                                      | to bring about a higher inhibition of photosynthetic carbon fixation. Higher                                                                                                                                                                                                                                                                       |
| 515                                                                                      | UVB-induced inhibition of photosynthesis was found in pelagic low-nutrient waters                                                                                                                                                                                                                                                                  |
| 516                                                                                      | than in coastal waters in the SCS (Li et al., 2011). With enhanced stratification and                                                                                                                                                                                                                                                              |
| 517                                                                                      | reduced thickness of the upper mixed layer due to ocean warming, fewer nutrients                                                                                                                                                                                                                                                                   |
| 518                                                                                      | will be transported from deeper layers to the photic zones, and interactions of                                                                                                                                                                                                                                                                    |
| 519                                                                                      | enhanced nutrient limitation, OA and increased solar exposures will become the main                                                                                                                                                                                                                                                                |
| 520                                                                                      | drivers influencing marine primary production (Gao et al., 2012a). For the diatoms,                                                                                                                                                                                                                                                                |
| 521                                                                                      | such as <i>P. tricornutum</i> , OA and other ocean changes may result in transitions in their                                                                                                                                                                                                                                                      |
| 522                                                                                      | vertical and horizontal distributions and changes in phytoplankton community                                                                                                                                                                                                                                                                       |
| 523                                                                                      | structure.                                                                                                                                                                                                                                                                                                                                         |
| 524                                                                                      |                                                                                                                                                                                                                                                                                                                                                    |
| 525                                                                                      | Author contribution                                                                                                                                                                                                                                                                                                                                |
| 526                                                                                      | K.G. and W.L. conceived and designed the experiments, W.L. performed the                                                                                                                                                                                                                                                                           |
| 507                                                                                      |                                                                                                                                                                                                                                                                                                                                                    |
| 527                                                                                      | experiments. W.L., K.G. and J.B. analyzed the data and wrote the paper.                                                                                                                                                                                                                                                                            |
| 527<br>528                                                                               | experiments. W.L., K.G. and J.B. analyzed the data and wrote the paper.                                                                                                                                                                                                                                                                            |
| 527<br>528<br>529                                                                        | experiments. W.L., K.G. and J.B. analyzed the data and wrote the paper.                                                                                                                                                                                                                                                                            |
| 527<br>528<br>529<br>530                                                                 | experiments. W.L., K.G. and J.B. analyzed the data and wrote the paper. Acknowledgements This study was supported by National Natural Science Foundation (41120164007,                                                                                                                                                                             |
| <ul> <li>527</li> <li>528</li> <li>529</li> <li>530</li> <li>531</li> </ul>              | experiments. W.L., K.G. and J.B. analyzed the data and wrote the paper. Acknowledgements This study was supported by National Natural Science Foundation (41120164007, 41430967), by Joint project of NSFC and Shandong province (Grant No. U1406403),                                                                                             |
| <ul> <li>527</li> <li>528</li> <li>529</li> <li>530</li> <li>531</li> <li>532</li> </ul> | experiments. W.L., K.G. and J.B. analyzed the data and wrote the paper.<br>Acknowledgements<br>This study was supported by National Natural Science Foundation (41120164007,<br>41430967), by Joint project of NSFC and Shandong province (Grant No. U1406403),<br>Strategic Priority Research Program of CAS (Grant No. XDA11020302), Program for |

| 534 | (GASI-03-01-02-04) and China-Japan collaboration project from MOST                          |                                                                  |
|-----|---------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| 535 | (S2012GR0290). JB's work on climate change effects on algae has been funded by              |                                                                  |
| 536 | the Australian Research Council and his visit to Xiamen was supported by '111'              |                                                                  |
| 537 | project from Ministry of Education. We thank Yahe Li (Xiamen University, China) for         |                                                                  |
| 538 | her kind assistance during the experiments.                                                 |                                                                  |
| 539 |                                                                                             |                                                                  |
| 540 | References                                                                                  |                                                                  |
| 541 | Beardall, J., Sobrino, C., and Stojkovic, S.: Interactions between the impacts of           | <b>带格式的</b> :缩进:左侧: 0 厘米,<br>悬挂缩进: 2 字符,首行缩进: -2<br>字符,行距: 2 倍行距 |
| 542 | ultraviolet radiation, elevated CO <sub>2</sub> , and nutrient limitation on marine primary | <b>域代码已更改</b><br>带格式的:字体:小四                                      |
| 543 | producers, Photochem. Photobio. S., 8, 1257-1265, 2009.                                     | 带格式的:字体:小四                                                       |
| 544 | Beardall, J., Stojkovic, S., and Gao, K.: Interactive effects of nutrient supply and other  |                                                                  |
| 545 | environmental factors on the sensitivity of marine primary producers to                     |                                                                  |
| 546 | ultraviolet radiation: implications for the impacts of global change, Aquat. Biol.,         |                                                                  |
| 547 | 22, 5-23, 2014,                                                                             | 带格式的:字体:小四                                                       |
| 548 | Beman, J. M., Chow, CE., King, A. L., Feng, Y., Fuhrman, J. A., Andersson, A.,              |                                                                  |
| 549 | Bates, N. R., Popp, B. N., and Hutchins, D. A.: Global declines in oceanic                  |                                                                  |
| 550 | nitrification rates as a consequence of ocean acidification, Proc. Natl. Acad. Sci.         |                                                                  |
| 551 | U. S. A., 108, 208-213, 2011.                                                               |                                                                  |
| 552 | Boyd, P. W.: Beyond ocean acidification, Nat. Geosci., 4, 273-274, 2011.                    |                                                                  |
| 553 | Bradford, M. M.: A rapid and sensitive method for the quantitation of microgram             |                                                                  |
| 554 | quantities of protein utilizing the principle of protein-dye binding, Anal.                 |                                                                  |
| 555 | Biochem., 72, 248-254, 1976.                                                                |                                                                  |
| 556 | Buma, A. G. J., Boelen, P., and Jeffrey, W. H.: UVR-induced DNA damage in aquatic 23        |                                                                  |

| 557 | organisms. In: UV effects in aquatic organisms and ecosystems, Helbling, E. W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 558 | and Zagarese, H. E. (Eds.), The Royal Society of Chemistry, Cambridge, UK,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| 559 | <u>291-327, 2</u> 003.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 带格式的 |
| 560 | Burkhardt, S., Amoroso, G., Riebesell, U., and Sültemeyer, D.: CO <sub>2</sub> and HCO <sub>3</sub> <sup>-</sup> uptake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| 561 | in marine diatoms acclimated to different CO <sub>2</sub> concentrations, Limnol. Oceanogr.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| 562 | 46, 1378-1391, 2001.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 563 | Cashmore, A. R.: The cryptochrome family of blue/UV-A photoreceptors, J. Plankton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| 564 | Res., 111, 267-270, 1998.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| 565 | Cerme ño, P., Dutkiewicz, S., Harris, R. P., Follows, M., Schofield, O., and Falkowski,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| 566 | P. G.: The role of nutricline depth in regulating the ocean carbon cycle, Proc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| 567 | Natl. Acad. Sci. U. S. A., 105, 20344-20349, 2008.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| 568 | Chen, S. and Gao, K.: Solar ultraviolet radiation and CO <sub>2</sub> -induced ocean acidification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| 569 | interacts to influence the photosynthetic performance of the red tide alga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| 570 | Phaeocystis globosa (Prymnesiophyceae), Hydrobiologia, 675, 105-117, 2011.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| 571 | Döhler, G.: Effect of ultraviolet radiation on pigmentation and nitrogen metabolism of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| 572 | Antarctic phytoplankton and ice algae, J. Plant Physiol., 153, 603-609, 1998.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| 573 | Dickson, A. G.: Standard potential of the reaction: $AgCl(s) + \frac{1}{2}H_2(g) = Ag(s) + \frac{1}{2}H_2(g) + \frac{1}{2}H_2(g) = Ag(s) + \frac{1}{2}H_2(g) + \frac{1}{2$ |      |
| 574 | HCl(aq), and the standard acidity constant of the ion HSO <sub>4</sub> <sup>-</sup> in synthetic seawater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| 575 | from 273.15 to 318.15 K, J. Chem. Thermodyn., 22, 113-127, 1990.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| 576 | Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean acidification: The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| 577 | other CO <sub>2</sub> problem, Annu. Rev. Mar. Sci., 1, 169-192, 2009.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| 578 | Fu, F., Place, A. R., Garcia, N. S., and Hutchins, D. A.: CO <sub>2</sub> and phosphate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |

带格式的: 字体: 小四

| 579 | availability control the toxicity of the harmful bloom dinoflagellate Karlodinium              |  |
|-----|------------------------------------------------------------------------------------------------|--|
| 580 | veneficum, Aquat. Microb. Ecol., 59, 55-65, 2010.                                              |  |
| 581 | Gao, K.: Positive and negative effects of ocean acidification: Physiological responses         |  |
| 582 | of algae, Journal of Xiamen University (Natural Science), 50, 411-417, 2011.                   |  |
| 583 | Gao, K., Helbling, E. W., Häder, D. P., and Hutchins, D. A.: Responses of marine               |  |
| 584 | primary producers to interactions between ocean acidification, solar radiation,                |  |
| 585 | and warming, Mar. Ecol. Prog. Ser., 470, 167-189, 2012a.                                       |  |
| 586 | Gao, K., Li, P., Watanabe, T., and Helbling, E. W.: Combined effects of ultraviolet            |  |
| 587 | radiation and temperature on morphology, photosynthesis, and DNA of                            |  |
| 588 | Arthrospira (Spirulina) platensis (Cynophyta), J. Phycol., 44, 777-786, 2008.                  |  |
| 589 | Gao, K., Wu, Y., Li, G., Wu, H., Villafa ñe, V. E., and Helbling, E. W.: Solar UV              |  |
| 590 | radiation drives CO <sub>2</sub> fixation in marine phytoplankton: a double-edged sword,       |  |
| 591 | Plant Physiol., 144, 54-59, 2007.                                                              |  |
| 592 | Gao, K., Xu, J., Gao, G., Li, Y., Hutchins, D. A., Huang, B., Wang, L., Zheng, Y., Jin,        |  |
| 593 | P., Cai, X., H äder, D. P., Li, W., Xu, K., Liu, N., and Riebesell, U.: Rising CO <sub>2</sub> |  |
| 594 | and increased light exposure synergistically reduce marine primary productivity,               |  |
| 595 | Nat. Clim. Change., 2, 519-523, 2012b.                                                         |  |
| 596 | Garc á-Gómez, C., Gordillo, F. J., Palma, A., Lorenzo, M. R., and Segovia, M.:                 |  |
| 597 | Elevated CO <sub>2</sub> alleviates high PAR and UV stress in the unicellular chlorophyte      |  |
| 598 | Dunaliella tertiolecta, Photochem. Photobio. S., 13, 1347-1358, 2014.                          |  |
| 599 | Geider, R. J., Roche, J., Greene, R. M., and Olaizola, M.: Response of the                     |  |
| 600 | photosynthetic apparatus of Phaeodactylum tricornutum (Bacillariophyceae) to                   |  |
|     |                                                                                                |  |

带格式的: 字体: 小四

| 601 | nitrate, phosphate, or iron starvation, J. Phycol., 29, 755-766, 1993.                     |              |
|-----|--------------------------------------------------------------------------------------------|--------------|
| 602 | Genty, B., Harbinson, J., and Baker, N. R.: Relative quantum efficiencies of the           |              |
| 603 | two-photosystems of leaves in photorespiratory and non-photorespiratory                    |              |
| 604 | conditions, Plant Physiol. Bioch., 28, 1-10, 1990.                                         |              |
| 605 | Granum, E., Raven, J. A., and Leegood, R. C.: How do marine diatoms fix 10 billion         |              |
| 606 | tonnes of inorganic carbon per year?, Can. J. Bot., 83, 898-908, 2005.                     |              |
| 607 | Häder, DP., Helbling, E. W., Williamson, C. E., and Worrest, R. C.: Effects of UV          |              |
| 608 | radiation on aquatic ecosystems and interactions with climate change,                      |              |
| 609 | Photochem. Photobio. S., 10, 242-260, 2011.                                                | 带格式的: 字体: 小四 |
| 610 | Helbling, E. W., Gao, K., Gon çalves, R. J., Wu, H., and Villafa ñe, V. E.: Utilization of |              |
| 611 | solar UV radiation by coastal phytoplankton assemblages off SE China when                  |              |
| 612 | exposed to fast mixing, Mar. Ecol. Prog. Ser., 259, 59-66, 2003.                           |              |
| 613 | Hennon, G. M. M., Quay, P., Morales, R. L., Swanson, L. M., and Virginia Armbrust,         |              |
| 614 | E.: Acclimation conditions modify physiological response of the diatom                     |              |
| 615 | Thalassiosira pseudonana to elevated CO <sub>2</sub> concentrations in a nitrate-limited   |              |
| 616 | chemostat, J. Phycol., 50, 243-253, 2014.                                                  |              |
| 617 | Heraud, P. and Beardall, J.: Changes in chlorophyll fluorescence during exposure of        |              |
| 618 | Dunaliella tertiolecta to UV radiation indicate a dynamic interaction between              |              |
| 619 | damage and repair processes, Photosynth. Res., 63, 123-134, 2000.                          |              |
| 620 | Heraud, P., Roberts, S., Shelly, K., and Beardall, J.: Interactions between UV-B           |              |
| 621 | exposure and phosphorus nutrition. II. Effects on rates of damage and repair, J.           |              |
| 622 | Phycol., 41, 1212-1218, 2005.                                                              |              |

| 623 | Hessen, D. O., Leu, E., Færøvig, P. J., and Falk Petersen, S.: Light and spectral     |              |
|-----|---------------------------------------------------------------------------------------|--------------|
| 624 | properties as determinants of C: N: P-ratios in phytoplankton, Deep-Sea Res.          |              |
| 625 | Part II, 55, 2169-2175, 2008.                                                         |              |
| 626 | Holm-Hansen, O. and Helbling, E. W.: Técnicas para la medici ón de la productividad   |              |
| 627 | primaria en el fitoplancton. In: Manual de métodos ficológicos, Alveal, K.,           |              |
| 628 | Ferrario, M. E., Oliveira, E. C., and Sar, E. (Eds.), Universidad de Concepción,      |              |
| 629 | Concepci ón, Chile, <u>329-350, 1995.</u>                                             | 带格式的: 字体: 小四 |
| 630 | Hopkinson, B. M., Dupont, C. L., Allen, A. E., and Morel, F. M. M.: Efficiency of the |              |
| 631 | CO <sub>2</sub> -concentrating mechanism of diatoms, Proc. Natl. Acad. Sci., 108,     |              |
| 632 | 3830-3837, 2011.                                                                      |              |
| 633 | Hopkinson, B. M., Xu, Y., Shi, D., McGinn, P. J., and Morel, F. M. M.: The effect of  |              |
| 634 | $CO_2$ on the photosynthetic physiology of phytoplankton in the Gulf of Alaska,       |              |
| 635 | Limnol. Oceanogr., 55, 2011-2024, 2010.                                               |              |
| 636 | IPCC: Workshop Report of the Intergovernmental Panel on Climate Change                |              |
| 637 | Workshop on Impacts of Ocean Acidification on Marine Biology and                      |              |
| 638 | Ecosystems. Field, C. B., Barros, V., Stocker, T. F., Qin, D., Mach, K. J., Plattner, |              |
| 639 | GK., Mastrandrea, M. D., Tignor, M., and Ebi, K. L. (Eds.), IPCC Working              |              |
| 640 | Group II Technical Support Unit, Carnegie Institution, Stanford, California,          |              |
| 641 | United States of America, 2011.                                                       |              |
| 642 | Kanazawa, A. and Kramer, D. M.: In vivo modulation of nonphotochemical exciton        |              |
| 643 | quenching (NPQ) by regulation of the chloroplast ATP synthase, Proc. Natl.            |              |
| 644 | Acad. Sci., 99, 12789-12794, 2002.                                                    |              |

| 645 | Kim, J. M., Lee, K., Shin, K., Kang, J. H., Lee, H. W., Kim, M., Jang, P. G., and Jang,         |
|-----|-------------------------------------------------------------------------------------------------|
| 646 | M. C.: The effect of seawater CO <sub>2</sub> concentration on growth of a natural              |
| 647 | phytoplankton assemblage in a controlled mesocosm experiment, Limnol.                           |
| 648 | Oceanogr., 51, 1629-1636, 2006.                                                                 |
| 649 | King, A. L., Sañudo-Wilhelmy, S. A., Leblanc, K., Hutchins, D. A., and Fu, F.: CO <sub>2</sub>  |
| 650 | and vitamin $B_{12}$ interactions determine bioactive trace metal requirements of a             |
| 651 | subarctic Pacific diatom, The ISME journal, 5, 1388-1396, 2011.                                 |
| 652 | Leonardos, N. and Geider, R. J.: Elevated atmospheric carbon dioxide increases                  |
| 653 | organic carbon fixation by Emiliania Huxleyi (Haptophyta), under                                |
| 654 | nutrient-limited high-light conditions, J. Phycol., 41, 1196-1203, 2005.                        |
| 655 | Lewis, E. and Wallace, D. W. R.: Program developed for CO <sub>2</sub> system calculations. In: |
| 656 | ORNL/CDIAC-105, Carbon Dioxide Information Analysis Center, Oak Ridge                           |
| 657 | National Laboratory, US Department of Energy, Oak Ridge, Tennessee, 1998.                       |
| 658 | Li, G., Gao, K., and Gao, G.: Differential impacts of solar UV radiation on                     |
| 659 | photosynthetic carbon fixation from the coastal to offshore surface waters in the               |
| 660 | South China Sea, Photochem. Photobiol., 87, 329-334, 2011.                                      |
| 661 | Li, W., Gao, K., and Beardall, J.: Interactive effects of ocean acidification and               |
| 662 | nitrogen-limitation on the diatom Phaeodactylum tricornutum, PLoS One, 7,                       |
| 663 | e51590, 2012a.                                                                                  |
| 664 | Li, Y., Gao, K., Villafañe, V., and Helbling, E.: Ocean acidification mediates                  |
| 665 | photosynthetic response to UV radiation and temperature increase in the diatom                  |
| 666 | Phaeodactylum tricornutum, Biogeosciences, 9, 3931-3942, 2012b.                                 |

| 667 | Litchman, E., Neale, P. J., and Banaszak, A. T.: Increased sensitivity to ultraviolet         |
|-----|-----------------------------------------------------------------------------------------------|
| 668 | radiation in nitrogen-limited dinoflagellates: Photoprotection and repair, Limnol.            |
| 669 | Oceanogr., 47, 86-94, 2002.                                                                   |
| 670 | Morel, F. M. M., Rueter, J. G., Anderson, D. M., and Guillard, R. R. L.: Aquil: A             |
| 671 | chemically defined phytoplankton culture medium for trace metal studies, J.                   |
| 672 | Phycol., 15, 135-141, 1979.                                                                   |
| 673 | Neale, P., Sobrino, C., Segovia, M., Mercado, J., Leon, P., Cort és, M., Tuite, P., Picazo,   |
| 674 | A., Salles, S., and Cabrerizo, M.: Effect of CO <sub>2</sub> , nutrients and light on coastal |
| 675 | plankton. I. Abiotic conditions and biological responses, Aquat. Biol., 22, 25-41,            |
| 676 | 2014.                                                                                         |
| 677 | Nielsen, E. S.: The use of radioactive carbon ( $C^{14}$ ) for measuring organic production   |
| 678 | in the sea, Journal du Conseil, 18, 117-140, 1952.                                            |
| 679 | Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A.,                   |
| 680 | Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K.,                  |
| 681 | Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner,              |
| 682 | G. K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D.,         |
| 683 | Totterdell, I. J., Weirig, M. F., Yamanaka, Y., and Yool, A.: Anthropogenic ocean             |
| 684 | acidification over the twenty-first century and its impact on calcifying organisms,           |
| 685 | Nature, 437, 681-686, 2005.                                                                   |
| 686 | Pörtner, H. O. and Farrell, A. P.: Physiology and climate change, Science, 322,               |
| 687 | 690-692, 2008.                                                                                |
| 688 | Raven, J. A., Giordano, M., Beardall, J., and Maberly, S. C.: Algal and aquatic plant         |

| 689 | carbon concentrating mechanisms in relation to environmental change,                    |              |
|-----|-----------------------------------------------------------------------------------------|--------------|
| 690 | Photosynth. Res., 109, 281-296, 2011.                                                   |              |
| 691 | Riebesell, U. and Tortell, P. D.: Effects of ocean acidification on pelagic organisms   |              |
| 692 | and ecosystems. In: Ocean acidification, Gattuso, JP. and Hansson, L. (Eds.),           |              |
| 693 | Oxford University Press, New York, <u>99-121</u> , 2011.                                | 带格式的: 字体: 小四 |
| 694 | Riebesell, U., Wolf-Gladrow, D. A., and Smetacek, V.: Carbon dioxide limitation of      |              |
| 695 | marine phytoplankton growth rates, Nature, 361, 249-251 1993.                           |              |
| 696 | Rost, B., Riebesell, U., Burkhardt, S., and Sültemeyer, D.: Carbon acquisition of       |              |
| 697 | bloom-forming marine phytoplankton, Limnol. Oceanogr., 48, 55-67, 2003.                 |              |
| 698 | Roy, R. N., Roy, L. N., Vogel, K. M., Porter-Moore, C., Pearson, T., Good, C. E.,       |              |
| 699 | Millero, F. J., and Campbell, D. M.: The dissociation constants of carbonic acid        |              |
| 700 | in seawater at salinities 5 to 45 and temperatures 0 to 45 °C, Mar. Chem., 44,          |              |
| 701 | 249-267, 1993.                                                                          |              |
| 702 | Shelly, K., Heraud, P., and Beardall, J.: Nitrogen limitation in Dunaliella tertiolecta |              |
| 703 | Butcher (Chlorophyceae) leads to increased susceptibility to damage by                  |              |
| 704 | ultraviolet-B radiation but also increased repair capacity, J. Phycol., 38, 713-720,    |              |
| 705 | 2002.                                                                                   |              |
| 706 | Shi, D., Kranz, S. A., Kim, J. M., and Morel, F. M. M.: Ocean acidification slows       |              |
| 707 | nitrogen fixation and growth in the dominant diazotroph Trichodesmium under             |              |
| 708 | low-iron conditions, Proc. Natl. Acad. Sci., 109, E3094-E3100, 2012.                    |              |
| 709 | Sobrino, C., Segovia, M., Neale, P. J., Mercado, J. M., Garc á-Gómez, C., Kulk, G.,     |              |
| 710 | Lorenzo, M. R., Camarena, T., van de Poll, W. H., Spilling, K., and Ruan, Z.:           |              |
|     |                                                                                         |              |

| Effect of CO <sub>2</sub> , nutrients and light on coastal plankton. IV. Physiological      |
|---------------------------------------------------------------------------------------------|
| responses, Aquat. Biol., 22, 77-93, 2014.                                                   |
| Sobrino, C., Ward, M. L., and Neale, P. J.: Acclimation to elevated carbon dioxide and      |
| ultraviolet radiation in the diatom Thalassiosira pseudonana: Effects on growth,            |
| photosynthesis, and spectral sensitivity of photoinhibition, Limnol. Oceanogr.,             |
| 53, 494-505, 2008.                                                                          |
| Tortell, P. D.: Evolutionary and ecological perspectives on carbon acquisition in           |
| phytoplankton, Limnol. Oceanogr., 45, 744-750, 2000.                                        |
| Wang, M. and Wang, G.: Oxidative damage effects in the copepod Tigriopus                    |
| japonicus Mori experimentally exposed to nickel, Ecotoxicology, 19, 273-284,                |
| 2010.                                                                                       |
| Wu, H. and Gao, K.: Responses of a marine red tide alga Skeletonema costatum                |
| (Bacillariophyceae) to long-term UV radiation exposures, J. Photoch. Photobio.              |
| B, 94, 82-86, 2009.                                                                         |
| Wu, H., Gao, K., Villafañe, V. E., Watanabe, T., and Helbling, E. W.: Effects of solar      |
| UV radiation on morphology and photosynthesis of filamentous cyanobacterium                 |
| Arthrospira platensis, Appl. Environ. Microb., 71, 5004-5013, 2005.                         |
| Wu, Y., Gao, K., and Riebesell, U.: CO <sub>2</sub> -induced seawater acidification affects |
| physiological performance of the marine diatom Phaeodactylum tricornutum,                   |
| Biogeosciences, 7, 2915-2923, 2010.                                                         |
| Xu, K. and Gao, K.: Reduced calcification decreases photoprotective capability in the       |
| coccolithophorid Emiliania huxleyi, Plant Cell Physiol., 53, 1267-1274, 2012.               |
|                                                                                             |

| 1   |                                                                                      |
|-----|--------------------------------------------------------------------------------------|
| 733 | Zacher, K., Hanelt, D., Wiencke, C., and Wulff, A.: Grazing and UV radiation effects |
| 734 | on an Antarctic intertidal microalgal assemblage: a long-term field study, Polar     |
| 735 | Biol., 30, 1203-1212, 2007.                                                          |
| 736 | Zheng, Y. and Gao, K.: Impacts of solar UV radiation on the photosynthesis, growth,  |
| 737 | and UV-absorbing compounds in Gracilaria Lemaneiformis (Rhodophyta) grown            |
| 738 | at different nitrate concentrations, J. Phycol., 45, 314-323, 2009.                  |
| 739 |                                                                                      |
| 740 |                                                                                      |
| 741 |                                                                                      |
| 742 |                                                                                      |
| 743 |                                                                                      |
| 744 |                                                                                      |
| 745 |                                                                                      |
| 746 |                                                                                      |
| 747 |                                                                                      |
| 748 |                                                                                      |
| 749 |                                                                                      |
| 750 |                                                                                      |
| 751 |                                                                                      |
| 752 |                                                                                      |
| 753 |                                                                                      |
| 754 |                                                                                      |

| -   |                                                                                       |
|-----|---------------------------------------------------------------------------------------|
| 755 | <b>Table 1.</b> Interactive effects among $NO_3^-$ concentrations, $CO_2$ levels and  |
| 756 | radiation treatments. Two or three way ANOVA analysis of individual and               |
| 757 | interactive effects among $NO_3^-$ concentrations, $CO_2$ levels and radiation        |
| 758 | treatments. Stars indicate significance at $P < 0.05$ . Where "Ni" indicates nitrate, |
| 759 | "OA" CO2/pH, "Rad-Treat" radiation treatments, "Inh-C" inhibition of carbon           |
| 760 | fixation and "Inh- yield" inhibition of yield.                                        |

|                 |    |    |           | Ni & | Ni &      | OA &      | Ni, OA &  |
|-----------------|----|----|-----------|------|-----------|-----------|-----------|
| Parameter       | Ni | OA | Rad-Treat | OA   | Rad-Treat | Rad-Treat | Rad-Treat |
| Carbon fixation | *  | *  | *         | *    | *         |           | *         |
| Inh-C           | *  |    | *         |      | *         |           | *         |
| yield           | *  |    | *         | *    | *         |           |           |
| Inh- yield      | *  |    | *         | *    | *         |           |           |
| NPQ             | *  |    | *         |      | *         |           |           |
|                 |    |    |           |      |           |           |           |

删除的内容: \_ ----

•

| 779 | <b>Table 2.</b> The PSII damage (k) and repair (r) rate constants (min <sup>-1</sup> ) in <i>Phaeoductylum</i> |           |
|-----|----------------------------------------------------------------------------------------------------------------|-----------|
| 780 | tricornutum cells grown in LC-HN, LC-LN, HC-HN and HC-LN during the 60 min                                     |           |
| 781 | exposures to PAR+ UVA+UVB (44.11 + 14.19 + 0.75 Wm <sup>-2</sup> ). Parameters of repair                       |           |
| 782 | and damage rates were calculated based on Fig. 2 according to Heraud and Beardall                              |           |
| 783 | (2000). SD was for triplicate cultures. <u>Treatments with the same lowercase superscript</u>                  |           |
| 784 | letters, means the difference is not significant. In contrast, treatments with different                       | $\langle$ |
| 785 | lowercase superscript letters indicate the difference is significant ( $P < 0.05$ level).                      |           |

| _ |       | $R^2$ for fit | Repair rate(r)            | Damage rate(k)         | r/k                       |
|---|-------|---------------|---------------------------|------------------------|---------------------------|
| _ | LC-HN | >0.99         | $0.044 \pm 0.007^{a}$     | $0.068 \pm 0.007^{a}$  | 0.666±0.216 <sup>ab</sup> |
|   | HC-HN | >0.99         | 0.064±0.019 <sup>ab</sup> | $0.079 \pm 0.010^{ab}$ | 0.806±0.145 <sup>ab</sup> |
|   | LC-LN | >0.99         | $0.054 \pm 0.012^{ab}$    | $0.062 \pm 0.008^{a}$  | 0.854±0.138 <sup>a</sup>  |
|   | HC-LN | >0.99         | $0.059 \pm 0.005^{b}$     | $0.095 \pm 0.010^{b}$  | $0.588 \pm 0.073^{b}$     |

| <b>删除的内容:</b> it                         |
|------------------------------------------|
| <b>删除的内容:</b> ,                          |
| 删除的内容: instead                           |
| 删除的内容: Different letters                 |
| indicated significant differences        |
| among different treatments at $P < 0.05$ |
| level.                                   |

**Table 3.** The exponential rate constant for recovery (R, min<sup>-1</sup>) under growth light after

删除的内容: .

| 804 | 80 min exposure to solar radiation with or without UV. Different letters of |
|-----|-----------------------------------------------------------------------------|
|     |                                                                             |

805 <u>superscripts</u> indicate significant differences between the  $CO_2$  and  $NO_3^-$  treatments at P

< 0.05,

删除的内容: level

|     | LC-HN                     | LC-LN                    | HC-HN                 | HC-LN                     |
|-----|---------------------------|--------------------------|-----------------------|---------------------------|
| Р   | 0.038±0.006 <sup>ab</sup> | 0.029±0.011 <sup>b</sup> | $0.043 \pm 0.009^{a}$ | 0.038±0.002 <sup>ab</sup> |
| PA  | 0.028±0.002 <sup>a</sup>  | $0.023 \pm 0.007^{a}$    | $0.037 \pm 0.002^{b}$ | $0.027 \pm 0.008^{ab}$    |
| PAB | 0.019±0.002 <sup>a</sup>  | $0.024 \pm 0.001^{b}$    | $0.029 \pm 0.003^{c}$ | $0.021 \pm 0.003^d$       |
|     |                           |                          |                       |                           |

删除的内容:..

删除的内容: level

| 823 | <b>Table 4.</b> The recovery time to half maximal yield values under growth light after 80 |
|-----|--------------------------------------------------------------------------------------------|
|     |                                                                                            |

| 824 | min exposure to solar radiation with or without UV. Different letters of superscripts |
|-----|---------------------------------------------------------------------------------------|
|     |                                                                                       |

| 825 | indicate significant differences between the radiation treatments at $P < 0.05$ , |
|-----|-----------------------------------------------------------------------------------|
|     |                                                                                   |

|   |     | LC-HN                   | LC-LN                   | HC-HN                    | HC-LN                    |
|---|-----|-------------------------|-------------------------|--------------------------|--------------------------|
|   |     | (min)                   | (min)                   | (min)                    | (min)                    |
| - | Р   | 16.78±2.94 <sup>a</sup> | 20.81±5.93 <sup>a</sup> | 15.41±2.57 <sup>ab</sup> | 16.79±0.64 <sup>a</sup>  |
|   | PA  | 20.38±1.28 <sup>a</sup> | 23.36±4.47 <sup>a</sup> | 16.83±0.67 <sup>a</sup>  | 21.66±4.52 <sup>ab</sup> |
|   | PAB | 25.82±1.51 <sup>b</sup> | 22.73±1.25 <sup>a</sup> | $20.05 \pm 1.78^{b}$     | $24.64 \pm 1.57^{b}$     |

# 846 Figure captions

| 847  | Figure 1, Photosynthetic carbon fixation rates of <i>P. tricornutum</i> under different                                                        |              | 带格式的:字体:非加粗,检查拼<br>写和语法            |
|------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------|
| 0.40 |                                                                                                                                                |              | <b>带格式的:</b> 字体:非加粗,倾斜,<br>检查拼写和语法 |
| 848  | treatments, Photosynthetic carbon fixation rates of <i>P. tricornutum</i> cells represented as                                                 |              | 带格式的:字体:非加粗,非倾斜,<br>检查拼写和语法        |
| 849  | rates (a, b) per cell and (c, d) per chl <i>a</i> grown at ambient (390 µatm, LC) or elevated                                                  |              | <b>带格式的:</b> 字体:非加粗,检查拼<br>写和语法    |
| 850  | $CO_2$ (1000 µatm, HC) under $NO_3^-$ replete (110 µmol L <sup>-1</sup> , HN) (a, c) or limited                                                | $\mathbb{N}$ | <b>删除的内容:</b> in                   |
| 051  | condition (10 years) $\mathbf{L}^{-1}$ LNN (h, d) when even even to DAD (D) DAD (LNVA (DA) and                                                 |              | <b>带格式的:</b> 字体:倾斜,检查拼<br>写和语法     |
| 851  | condition (10 $\mu$ mor L , LN) (0, d) when exposed to PAR (P), PAR+0 VA (PA) and                                                              | ĺ            | 删除的内容:                             |
| 852  | PAR+UVA+UVB (PAB) for 60 min, respectively. Vertical bars indicate ±SD, the                                                                    |              | 带格式的:检查拼写和语法                       |
| 853  | means and standard deviation were based on 3 replicates. The different lowercase                                                               |              | 删除的内容: <mark>errors</mark>         |
| 054  |                                                                                                                                                |              | <b>带格式的:</b> 检查拼写和语法,突<br>出显示      |
| 854  | letters indicate, significant differences between different treatments at $P < 0.05$ level.                                                    |              | <b>删除的内容:</b> d                    |
| 855  |                                                                                                                                                |              |                                    |
| 856  | Figure 2. <u>The effective quantum yield of <i>P. tricornutum</i> under different treatments.</u>                                              |              | <b>带格式的:</b> 字体:非加粗,检查拼<br>写和语法    |
| 857  | Changes of effective quantum yield in <i>P. tricornutum</i> cells at ambient (390 µatm, LC)                                                    |              |                                    |
| 858  | or elevated CO <sub>2</sub> (1000 $\mu$ atm, HC) under (a, b) NO <sub>3</sub> <sup>-</sup> replete (110 $\mu$ mol L <sup>-1</sup> , HN) or (c, |              |                                    |
| 859  | d) limited (10 $\mu$ mol L <sup>-1</sup> , LN) when exposed to PAR (P), PAR+UVA (PA) and                                                       |              |                                    |
| 860  | PAR+UVA+UVB (PAB) for 60 min_and another 80 min under the growth light level_                                                                  |              | 删除的内容:                             |
| 861  | (the time of the switch to growth light levels is indicated by the dashed line),                                                               |              | 删除的内容: point                       |
|      |                                                                                                                                                |              | <b>删除的内容:</b> with                 |
| 862  | respectively. The irradiance intensities under solar simulator or growth light were the                                                        |              | 删除的内容:                             |
| 863  | same as mentioned above. Vertical bars are means ±SD, n=3.                                                                                     |              |                                    |
| 864  |                                                                                                                                                |              |                                    |
| 865  | Figure 3. <u>UV induced inhibition of carbon fixation and PSII activity.</u> UVA and UVB                                                       |              | <b>带格式的:</b> 字体:非加粗,检查拼<br>写和语法    |
| 866  | induced inhibition of (a, b) photosynthetic carbon fixation and (c, d) PSII of <i>P</i> .                                                      |              |                                    |
| 867  | tricornutum cells grown at ambient (390 µatm, LC) or elevated CO <sub>2</sub> (1000 µatm, HC)                                                  |              |                                    |

| 876 | under (a, c) NO <sub>3</sub> <sup>-</sup> replete (110 µmol L <sup>-1</sup> , HN) or (b, d) <u>NO<sub>3</sub><sup>-1</sup>imited condition (10 µmol</u>         |              | 删除的内容:1                                          |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------|
| 877 | L <sup>-1</sup> , LN) when exposed to PAR (P), PAR+UVA (PA) and PAR+UVA+UVB (PAB) for                                                                           |              |                                                  |
| 878 | 60 min, respectively. The irradiance intensity under solar simulator was the same as                                                                            |              |                                                  |
| 879 | mentioned above. Vertical bars <u>are</u> means $\pm$ SD, n=3, the different letters indicate                                                                   |              | <b>删除的内容:</b> d                                  |
| 880 | significant differences between different treatments at $P < 0.05$ level.                                                                                       |              |                                                  |
| 881 |                                                                                                                                                                 |              |                                                  |
| 882 | Figure 4. <u>Non-photochemical quenching (NPQ) of <i>P. tricornutum</i> under different</u>                                                                     | $\square$    | <b>带格式的:</b> 检查拼写和语法<br>带格式的:字体:倾斜,检查拼           |
| 002 | treatments NPO of <i>P</i> trigornutum grown at ambient (300 ustm $I(C)$ or elevated CO.                                                                        |              | 写和语法<br>带格式的:检查拼写和语法                             |
| 005 | treatments. Ar Q of F. Incornation grown at anotent (390 patin, EC) of elevated CO <sub>2</sub>                                                                 |              | 删除的内容: Non-photochemical                         |
| 884 | (1000 $\mu$ atm, HC) under (a, b) NO <sub>3</sub> <sup>-</sup> replete (110 $\mu$ mol L <sup>-1</sup> , HN) or (c, d) limited                                   | $\backslash$ | quenching (                                      |
| 885 | condition (10 $\mu$ mol L <sup>-1</sup> , LN) when exposed to PAR (P), PAR+UVA (PA) and                                                                         |              | <b>删除的内容:</b> )                                  |
| 886 | PAR+UVA+UVB (PAB) for 60 min and another 80 min under the growth light level,                                                                                   |              |                                                  |
| 887 | respectively. The irradiance intensities under solar simulator or growth light were the                                                                         |              |                                                  |
| 888 | same as mentioned above. Vertical bars means ±SD, n=3.                                                                                                          |              |                                                  |
| 889 |                                                                                                                                                                 |              |                                                  |
| 890 | Figure 5. Protein contents, SOD and CAT activities of <i>P. tricornutum</i> under different                                                                     |              | 带格式的:字体:非加粗,检查拼写和语法                              |
| 891 | treatments. (a) Protein contents, (b) SOD and (c) CAT activities (represented as per                                                                            |              | 带格式的: 字体: 非加租, 检查拼<br>写和语法<br>带格式的: 字体: 非加粗, 倾斜, |
| 892 | milligram protein ) of <i>P. tricornutum</i> grown at ambient (390 µatm, LC) or elevated                                                                        |              | 检查拼写和语法<br>带格式的:字体:非加粗,检查拼<br>写和语法               |
| 893 | CO <sub>2</sub> (1000 $\mu$ atm, HC) under NO <sub>3</sub> <sup>-</sup> replete (110 $\mu$ mol L <sup>-1</sup> , HN) or limited (10 $\mu$ mol L <sup>-1</sup> , |              |                                                  |
| 894 | LN). The different letters above each column indicate significant differences between                                                                           |              |                                                  |
| 895 | different treatments at $P < 0.05$ level. Vertical bars means ±SD, except the CAT value                                                                         |              |                                                  |
| 896 | in HC-LN for which there were only 2 replicates, other treatments used at least 3                                                                               |              |                                                  |
|     |                                                                                                                                                                 |              |                                                  |

replicates (n=3-7).



## 删除的内容: .

- •
- . .









Fig. 5