

Supplement of

Nitrate limitation and ocean acidification interact with UV-B to reduce photosynthetic performance in the diatom *Phaeodactylum tricornutum*

W. Li et al.

Correspondence to: K. Gao (ksgao@xmu.edu.cn)

Supplementary legends

Figure S1. SOD (A) and CAT (B) activities (represented as units per 10^6 cells) of *P. tricornutum* grown at ambient (390 µatm, LC) or elevated CO₂ (1000 µatm, HC) under NO₃⁻ replete (110 µmol L⁻¹, HN) or limited (10 µmol L⁻¹, LN). Except CAT value in HC-LN that had only 2 replicates, other treatments were at least 3 replicates (n=3-7).

Supporting information

SOD and CAT activities represented as per 10⁶ cells

When SOD and CAT were represented as per 10^6 cell, no significant differences were found between HN and LN treatments in both the LC (SOD, P = 0.5486; CAT, P = 0.8119) and HC (SOD, P = 0.4162; CAT, P = 0.9876) conditions. Though statistically no significant difference of SOD and CAT were found between HC and LC, it was worth mentioning that, HC treatments, the averaged SOD activity were decreased by 19.5% (P = 0.4259) and 13.0% (P = 0.5573), and decreased CAT activity by 24.2% (P = 0.3417) and 30.0% (P = 0.1425) in the HN and LN conditions, respectively, (Fig. S1).