
Soil moisture and land use are major determinants of soil microbial 

community composition and biomass at a regional scale in 

northeastern China 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

Linna Ma1, Chengyuan Guo 1, Xiaotao Lü3, Shan Yuan1, 2, Renzhong Wang 1,* 

1 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese 
Academy of Sciences, Beijing, 100093, China 

2 University of Chinese Academy of Sciences, Beijing, 100049, China 
3 State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese 
Academy of Sciences, Shenyang, 110164, China 

 
 

 

*Corresponding author 

Email: wangrz@ibcas.ac.cn  Tel: +86-10-62836550   Fax: +86-10-82595962 

 

 

Manuscript type: Research article 

Short running title: Regional patterns of soil microbial community composition  

Number of tables: 2   Number of figures: 5 

Supporting information: 1 

 

 

 

 

 

 1

mailto:wangrz@ibcas.ac.cn


Abstract 26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

Global environmental factors impact soil microbial communities, and further affect organic 

matter decomposition, nutrient cycling and vegetation dynamic. However, little is known about 

the relative contributions of climate factors, soil properties, vegetation types, land management 

practices and spatial structure on soil microbial community composition and biomass at large 

spatial extents. Here, we compared soil microbial communities using phospholipid fatty acid 

method across 7 land use types from 23 locations at a regional scale in northeastern China (850 × 

50 km). The results showed that soil moisture and land use changes exhibited the dominant 

effects on microbial community composition and biomass at the regional scale, while soil total C 

content and climate effects (expressed as a function of large-scale spatial variation) were weaker 

but still significant. Factors such as spatial structure, soil texture, nutrient availability and 

vegetation types were not important. Higher contributions of gram-positive bacteria were found 

in wetter soils, whereas higher contributions of gram-negative bacteria and fungi were observed 

in drier soils. The contributions of gram-negative bacteria and fungi were lower in heavily 

disturbed soils than historically disturbed and undisturbed soils. The lowest microbial biomass 

appeared in the wettest and driest soils. In conclusion, dominant climate and soil properties, 

commonly known to structure regional distributions of microbial communities, were not the 

most important drivers governing microbial community composition and biomass because of 

inclusion of irrigated and managed practices. In comparison, soil moisture and land use appear to 

be primary determinants of microbial community composition and biomass at the regional scale. 
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1 Introduction  47 
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Soil microbial community plays important roles in regulating organic matter decomposition, 

nutrient cycling, soil structural formation, and even plant interactions (Wardle et al., 2004; 

Harris et al., 2009). Meanwhile, it is subjected to the influences of environmental conditions, 

land use and spatial structure (Yang et al., 2013). Although there is a growing body of evidence 

indicates that climate, soil property, vegetation, spatial structure and land use as the most 

important determinants of the global and regional patterns in soil microbial communities (Kreft 

and Jetz, 2007; Nielsen et al., 2010; Zinger et al., 2011; Pasternak et al., 2013; Tsiknia et al., 

2014), teasing apart the contributions of multiple drivers on microbial community composition 

and biomass remains unclear. 

Regional climate factors exert major influences on distributions of microbial communities by 

determining temperature and soil water availability along topographic gradients (Hackl et al., 

2005; Carletti et al., 2009; Brockett et al., 2012). Drenovsky et al. (2010) and Brockett et al. 

(2012) found that soil water availability was an important determinant of microbial community 

composition, and fungal: bacterial biomass ratios decreased with increased soil water saturation 

at regional scales. In contrast, Hackl et al. (2005) showed that mean annual temperature was the 

major factor influencing microbial community composition in zonal forest, but soil water 

availability was most closely correlated with microbial community in azonal Austrian forests. 

Soil property has been found strongly correlate with soil microbial community structure and 

abundance at large spatial extents. Previous studies have reported that soil texture, organic 

matter content, N availability and pH exhibited the dominant effects on soil microbial 
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community composition, while climatic effects were weaker but still significant at regional 

scales (Šantrucková et al., 2003; Brockett et al. 2012; Yang et al. 2013; Tsiknia et al. 2014). For 

example, Tsiknia et al. (2014) reported that soil total organic C, pH and geographic distance 

being identified as the most important determinants of microbial community abundance at the 

watershed scale in Greece. Moreover, plant communities differing in species composition are 

likely to produce litter and that differ in their chemical composition, which may subsequently 

influence soil microbial community composition (Zhang et al., 2005a; Eskelinen et al., 2009). As 

a biotic driver, plants may also exert great effects on soil microbial communities by controlling 

allocation of belowground photosynthates (Kaiser et al., 2011).  
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Spatial structure influences the organization of community as a functional variable, other than 

the background in which biological and environmental factors act on community and ecosystem 

(Borcard et al., 1992). Recent researches have showed that strong autocorrelations were set 

between microbial groups, and geographic distance could explain a high proportion of microbial 

community variation (Tsiknia et al., 2014). However, Fierer and Jackson (2006) claimed that 

soils with similar environmental characteristics have similar bacterial communities regardless of 

geographic distance at continental scales. Using spatial trend surface analysis, Drenovsky et al. 

(2010) also found that spatial structure did not influence microbial community composition 

across three biogeographical provinces in Califorina. 

At regional scales, land use change is the major reason for spatial heterogeneity. It has been 

shown that land use changes would lead to great variation in soil microbial community 

composition in diverse ecosystems (Drenovsky et al., 2010), though their impacts depend on 
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many factors, including the original vegetation that is being replaced, and associated land 

management practices such as tillage, fallow periods, and related water and nutrient applications, 

such as irrigation and fertilization (Scanlon et al., 2007; Ma et al., 2013; Yang et al., 2013; Chen 

et al., 2014). In one study, Drenovsky et al. (2010) reported that distinct microbial communities 

were associated with land use types and disturbance at the regional scale in California. Tillage 

influences multiple soil physical and chemical properties, disrupts soil fungal hyphae (Evans and 

Miller, 1990), and alters microbial community composition (Ingram et al., 2008; Drenovsky et 

al., 2010). Recently, changes in land use have occurred in temperate area of northeast China as a 

result of expansion of farmlands and grazed rangelands at the expense of natural habitats, 

however, little is known about soil microbial community composition to land use changes at 

large spatial scales.  
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In this study we compare microbial community composition and biomass from 23 locations 

across 7 land use types (i.e. rangeland, artificial grassland, grazed rangeland, farmland, returned 

cropland, woodland, rice field) at a regional scale in Northeast China Transect (NECT). The 

NECT is identified as a mid-latitude semiarid terrestrial transect and is sensitive to climate 

change and disturbance, thus provides an ideal setting to investigate distribution patterns of soil 

microbial community. Our work specially aimed at teasing apart the contributions of climate, 

soil property, vegetation, spatial structure and land use on microbial community composition and 

biomass at the regional scale. We hypothesize that climate and soil properties are the primary 

drivers to affect soil microbial community composition and biomass because climatic gradient, 

especially precipitation, is one of the most notable features at this region (Wang et al., 2003).  
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2 Materials and Methods 110 
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2.1 Study locations 

The field study was conducted on a large spatial scale (43°12′ – 44°36′ N; 114°34′ – 124°18′ E) 

across Jilin province and Inner Mongolia (about 850 km from east to west, and 50 km from north 

to south) with 23 locations in North-east China Transect (NECT) (Table 1, Fig. 1). The NECT 

was identified as a core project of International Geosphere-Biosphere Programme (IGBP) which 

represents an array of regional-scale gradients on all continents that vary in major environmental 

variables (Koch et al., 1995). This area has a continental monsoon climate, with large seasonal 

temperature and precipitation gradients. Long-term (1950 – 2000) mean annual temperature, 

precipitation and radiative dry index at this large spatial scale range from approximately 1.3 – 

6.8 °C, 237 – 472 mm and 0.91 – 1.44, respectively. The elevation gradients range from 140 m 

to 1309 m (http: //www. worldclim. com; Zhang et al., 1997; Appendix S1). Mean soil total C, N 

and C: N varied 3.3-fold, 2.4-fold and 2.7-fold across the region. Overall, there were 7.4-fold 

and 2.8-fold differences in soil water content and water holding capacity, whereas soil origin and 

pH differed slightly (Appendix S1). 

Spatial climatic variability, especially precipitation, is one of the most notable features of the 

transect. Due to the large decrease in precipitation from the east (Jilin province) to the west 

(Inner Mongolia), vegetation vary gradually from moist meadows in the east to typical steppes 

and desert steppes in the west with farmlands, returned croplands and woodlands spread evenly 

across the gradient (Wang et al., 2003, 2011; Appendix S1). All farmlands were irrigated only 

several times (2 – 3 times) during the growing season, and rice field was flood-irrigated. The 
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large spatial region have remarkable variations in climate, land use types and vegetation types, 

which make it an ideal region for studying the primary factor that driving soil microbial 

community composition and biomass. A detailed description of land use types, vegetation types, 

soil properties can be found in Table 1, Appendix S1, Zhang et al. (1997) and Ni and Zhang 

(2000). 
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2.2 Soil samplings  

451 soil samples from 23 locations including 7 land use types were collected along the NECT in 

12 – 18 July, 2012. 6 – 16 soil core samples were collected randomly per site (100 × 100 m) for 

determination of soil microbial communities (Table 1). 

The samples were taken with a cylindrical soil sampler (5 cm inner diameter, 15 cm length) 

for the 0 – 15 cm layer, and then immediately preserved at 4 °C in a cooler for transport to the 

laboratory within one week of collection. The fresh samples were processed using a 2 mm sieve 

and manually cleaned of any visible plant tissues. Two subsamples of each sample were obtained; 

one was air dried for routine soil analyses and the other was stored at – 70 °C, for phospholipid 

fatty acids analysis. 

 

2.3 Soil microbial community analysis  

Phospholipid fatty acids (PLFAs) were extracted and quantified from 8.0 g (dry weight 

equivalent) soils using a procedure described by Bossio and Scow (1998). The separation and 

identification of extracted PLFAs were carried out according to the standard protocol of the 
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Sherlock Microbial Identification System V4.5 (MIDI) and a Gas Chromatograph (Agilent 6850, 

USA). “A: BωC” represents the number of carbons in the compound: the number of double 

bonds in the carbon chain, followed by double bond location from the methyl (ω) end of the 

molecule (Bossio and Scow, 1998). Cis and trans conformations are indicated by the suffixes c 

and t. The prefixes a and i indicate anteiso and iso branching; 10Me specifies a methyl group on 

the 10th carbon from the carboxyl end of the molecule; OH indicates a hydroxyl group; and cy 

indicates cyclopropane fatty acids. In addition, the fatty acids “sum” indicates imperfect peak 

separation occurs, and refers two or more fatty acids having the same retention time (Drenovsky 

et al., 2004).  
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Thirty-one fatty acids were included in the analyses. (1) branched fatty acids indicative of 

gram-positive bacteria: a13: 0, i14: 0, i15: 0, i16: 0, i17: 0 and a17: 0; (2) monounsaturated fatty 

acids indicative of gram-negative bacteria: 16: 1ω7c, 17: 1ω8c, 18: 1ω5c, 18: 1ω9t, 17: 0cy and 

19: 0cy (Frostegård et al., 1993, 1996); (3) saturated fatty acid (common in soil microorganism): 

14: 0, 15: 0, 16: 0, 17: 0, 18: 0 and 20: 0; (4) two fatty acids (18: 2ω6c, 18: 1ω9c) were chosen to 

represent the fungi (Frostegård et al., 2011); (5) actinomycetes was represented by 10Me 17: 0 

fatty acid. The fatty acids 14: 2ω6c and 14: 1ω8c were unique in three samples which were 

excluded in the data set. The ratio of 17: 0cy (17cy) to 16: 1ω7c (precursor) was used to as an 

indicator of physiological stress (Knivett and Cullen, 1965). The viable microbial biomass was 

calculated by summing concentration of all fatty acids detected in each soil samples (White et al., 

1979). Total percentages of fatty acid identified for each microbial group was calculated to 

represent their relative contributions to the total microbial biomass. The fungal: bacterial fatty 
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acid (gram-positive + gram-negative bacteria) was also included in the data analysis (Frostegård 

et al., 1996).  
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2.4 Soil property analyses 

Soil inorganic N (NH4
+-N + NO3

--N) was extracted with 2M KCl solution, and the extractant 

was determined using a flow injection autoanalyzer (FIAstar 5000, Denmark). Soil pH was 

measured at a soil: water ratio of 1: 2.5 with a pH electrode (PHS 29, China). Soil total C and N 

content were measured by elemental analyzer (Elemetaranalysator vario Max CN, Germany). 

Soil texture was determined by the optical size analyzer (Mastersizer 2000, England). 

Gravimetric soil water content was measured by oven-drying samples at 105 °C for 24 h. Soil 

water holding capacity was measured by Wilcox method (Wilcox, 1962). 

 

2.5 Statistical analyses 

Unconstrained ordination－correspondence analysis (CA) was used to compare soil microbial 

communities among samples (n = 451) using the Canoco for Windows 4.5 package (Ithaca, NY, 

USA). CA is an indirect gradient analysis method which can provide the basic overview of soil 

samples, and maximize the correlation between fatty acids and samples (Lepš and Smilauer, 

2003). Constrained ordination－canonical correspondence analysis (CCA) was used to represent 

the relationships among environmental factors (habitat, land management, spatial structure), 

sample patterns, and fatty acids distributions (Lepš and Smilauer, 2003). Qualitative factors were 

coded for the program using a set of ‘dummy factors’. That is, if a sample has a particular value 
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of the factor, then the corresponding dummy factor has the value 1.0, and the other dummy 

factors have a value of 0.0 for the same sample. 
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In order to separate the effects of environmental factors on microbial communities, the 

variation partitioning procedure with CCA were used in the analysis (Borcard et al., 1992). The 

environmental factors were divided into three groups: (1) habitat (mean annual temperature, 

mean annual precipitation, radiative dry index, elevation, soil texture, pH class, soil N 

availability, soil C and N content, soil C: N, water holding capacity); (2) land management 

(tillage, grazing, historically tillage, flooding); (3) spatial structure (x, y, xy, x2, y2, x2y, xy2, x3, 

y3). The third group consisted of nine terms, in which latitudinal (x) and longitudinal (y) 

coordinate were used to calculate a cubic trend surface. Spatial trend surface analysis is one of 

the quantitative ecological methods that study the relation between spatial structure and species 

abundance distribution in community (Legendre, 1990). The variation partitioning procedure 

decomposed the total variability into eight parts: individual effect of habitat (X1), land 

management (X2), spatial structure (X3), combined effects of habitat and land management (X4), 

combined effects of land management and spatial structure (X5), combined effects of habitat and 

spatial structure (X6), combined effects of the three groups of environmental factors (X7), and 

residual variation (X8). A complete explanation of these partitioning analyses can be found in 

Lepš and Smilauer (2003). 

Stepwise multiple linear analyses were used to determine the relationships of soil microbial 

community composition, biomass or contribution of each microbial group with environmental 

factors. Differences among the sites in soil microbial biomass and contribution of each microbial 
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group were tested using One-way ANOVAs. Data management and statistical analyses were 

performed using SPSS 17.0 software (SPSS, Chicago, IL, USA). 
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3 Results  

3.1 Variation of soil microbial communities 

The first axis of CA ordination explained 27.5 % of the variation in microbial community 

composition, mainly reflected soil moisture gradients and land disturbance intensity (Fig. 2a, b). 

Wetter soils (e.g. rice field, moisture rangeland) and heavily disturbed soils (e.g. farmland) with 

more branched fatty acids (gram-positive bacteria: a13: 0, i14: 0, i15: 0, i16: 0, i17: 0) and 

saturated fatty acids (14: 0, 15: 0, 16: 0, 17: 0, 18: 0, 20: 0) were positioned along the right side 

of the first axis. Drier soils, lightly and historically disturbed soils (e.g. dry rangeland, grazed 

rangeland, returned cropland) with more fungal (18: 2ω6c, 18: 1ω9c) and monounsaturated fatty 

acids (gram-negative bacteria: 16: 1ω7c, 16: 1ω9c, 17: 1ω8c, 18: 1ω5c, 18: 1ω9t) were plotted 

along the left side of the first axis.  

The second axis of CA ordination described 20 % of the variation of the composition, mainly 

associated with management practices and spatial variation (expressed as underlying effects of 

soil properties). In heavily disturbed habitat, the positions of flood-irrigated rice field and 

farmland were separated along the second axis (Fig. 2a).  

 

3.2 Relationship between microbial communities and environmental factors 

Soil microbial community composition across 7 land use types at the regional scale was 
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distinguished by environmental factors with the CCA ordination (Fig. 3a, b). The first axis 

explained 22 % of the variation in microbial community composition, mainly associated with 

water regime (i.e. soil water availability) and water holding capacity. The second axis described 

15.2 % of the variation, primarily related to management intensity (tillage > historically tillage 

or grazing). Climate factors (mean annual precipitation and temperature, radiative dry index, 

elevation) did not show strong relationships with distribution of microbial communities. Factors 

such as soil texture (sandy loam), soil inorganic N content and pH plotted near the origin, thus 

would not be the major drivers of microbial community composition (Fig. 3b).  
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3.3 Variation partitioning  

Forward selection of the three groups of environmental factors with CCA suggested that the soil 

microbial community composition was significantly related to the habitat (X1) (mean annual 

precipitation and temperature, radiative dry index, elevation, soil texture, pH, soil nutrient 

content, water holding capacity) and land management (X2) (tillage, grazing, historically tillage, 

flooding). The variation partitioning procedure showed that total explained variation of microbial 

community composition was 69.9 % (X1+X2+X3+X4+X5+X6+X7) and undetermined variation of 

it was 30.1 % (X8) (Fig. 4). The largest unique fraction in the explained variation was the effect 

of habitat (X1: 27 %), which had a strong overlap with land management (X4: 15 %). In addition, 

the land management effect was also considerable (X2: 13.4 %), whereas the unique effect of 

spatial structure (X3: 2.8 %) was very small and statistically not significant.  
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3.4 Soil microbial biomass and contributions of microbial group 257 
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Soil microbial biomass (i.e. total PLFAs) varied 2.4-fold across all the land use types at this 

region (P < 0.05, One-way ANOVAs; Fig. 5a). The highest value appeared in one of the 

rangelands (c. 35 nmol g-1), and the lowest value appeared in rice field (c. 16 nmol g-1). Total 

PLFAs in artificial grassland, grazed rangeland, farmland and returned cropland had 

intermediate values. 

Contribution of each microbial group across 7 land use types varied significantly, except that 

of actinomycetes. Higher contributions of gram-positive bacteria were found in wetter soils, 

whereas higher contributions of gram-negative bacteria and fungi were observed in drier soils. 

The contributions of gram-negative bacteria and fungi were lower in heavily disturbed soils than 

historically disturbed and undisturbed soils (P < 0.05, One-way ANOVAs; Fig. 5a-f). Similar to 

the variation of fungi, the highest fungal: bacterial PLFAs (c. 0.35) were appeared in one of the 

rangelands, and the lowest value occurred in rice field (c. 0.15) (Fig. 5g). Surprisingly, 17cy: 

precursor (used as an indicator of the anaerobic stress) across 7 land use types fluctuated 

disorderly at this regional scale (Fig. 5h). 

Stepwise multiple regression analysis demonstrated that 54 % of the variation in microbial 

community composition could be explained by soil moisture and tillage. Soil moisture, soil total 

C content and radiative dry index together accounted for 32 % of the spatial variation in total 

microbial biomass. Soil moisture alone contributed to 57 % and 57 % of the variation in the 

contributions of branched and monounsaturated PLFAs, respectively. In this region, radiative dry 

index, soil moisture and tillage together accounted for 77 % and 65 % of the variation in 
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contribution of fungal PLFAs and fungal: bacterial PLFAs. 38 % of the spatial variability in 

contribution of bacterial PLFAs could be attributable to the combination of precipitation, soil 

total C content, water holding capacity and tillage (Table 2). 
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4 Discussion 

Exploring the primary drivers regulating distributions of soil microbial communities and teasing 

apart relative contributions of multiple environmental factors (e.g. climate, soil texture, pH, soil 

organic matter content, vegetation type), land management practices and spatial structure on 

microbial community composition and biomass are important challenges in microbial ecology. 

In this study, soil moisture is a main control on microbial communities across 7 land use types at 

the regional scale, which explained 31 % of the variation in microbial community composition 

(Fig. 4; Table 2). Multivariate analysis show that increased proportion of gram-positive bacteria 

and decreased proportions of gram-negative bacteria and fungi were associated with sites with 

higher water content (Fig. 5). These findings are in agreement with the previous observations 

(Rinklebe and Langer, 2006; Entry et al., 2008; Clark et al., 2009; Drenovsky et al., 2010; Ma et 

al., 2014). The stress of drought likely facilitates fungi to survive better, because soil fungi rely 

on more aerobic conditions and are more tolerant to drought due to their filamentous nature 

(Zhang et al., 2005a). The aerobic filamentous fungi have variable hyphal networks that can 

relocate water and nutrient resource by cytoplasm translocation (Klein and Paschke, 2004). 

Instead, the predominance of bacteria over fungi indicates adaptation of the soil microbial 

communities to high water potential and limited aeration of the soils (Šantrucková et al., 2003; 

 14



Drenovsky et al., 2004).  299 
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It has been proposed that the ratio of cyclopropane fatty acids to its precursor can be used to 

indicate the levels of anaerobic and nutritional stress (Kieft et al., 1997; Drenovsky et al., 2010). 

For instance, Drenovsky et al. (2010) have reported that cyclopropane fatty acid: precursor (17cy: 

(16:1ω7c); 19cy: (18:1ω7c)) were significant high under conditions of low O2 concentration and 

high temperature. However, whether cyclopropane fatty acid is representative of aerobic 

conditions is debatable. Bossio and Scow (1998) found that the cyclopropane fatty acids were 

insensitive to water availability across a large-scale precipitation gradient in California. Similarly, 

our result also show that the 17cy: precursor responded to high water availability modestly at 

this region (Fig. 5h), whereas we do not know for sure what limits the cyclopropane formation. 

This insensitivity to anaerobic conditions in the soils contrasts with its widespread use an 

anaerobic marker. These findings suggest that cyclopropane fatty acids to its precursor are not 

generally useful as taxonomic indicators of respiratory type at large spatial scales.  

Distinct microbial community composition and biomass are associated with land disturbance 

levels and management practices at the regional scale in northeast China. Continuously farmed 

agriculture is widely occurring in various biomes across the world. Repeated tillage heavily 

disturbs soil physical properties, and decreases soil bulk density and water retaining capacity 

(Bescansa et al., 2006). This frequent disturbance in soil properties during tillage (and associated 

fertilization) could rapidly alter microbial community composition due to different competitive 

ability of specific microbial groups. The groups with the capacity of rapid adaptation to the 

frequently changing soil environment (e.g. bacteria) could take advantage of new resources in 
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disturbed habitats (Cookson et al., 2008; Sun et al., 2011). Consistent with other large-scale 

studies, conventional tillage soils had higher proportions of gram-positive bacteria, and had 

lower proportions of fungi in this study (Fig. 2b) (Galvez et al., 2001; Zhang et al., 2005a). The 

ability of gram-positive bacteria to sporulate may allow them with stand tillage or other 

anthropogenic disturbance. In contrast, fungi are sensitive to disturbance and their hyphae 

density would decrease significantly in response to tillage (Drenovsky et al., 2010). 
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Given the strong effects of heavy disturbance on soil microbial communities, it is interesting 

to find that microbial community composition in lightly and historically disturbed soils (i.e. 

grazed rangelands, returned croplands) were similar to those in undisturbed soils. These results 

are supported by observations in other studies (Bardgett and McAlister, 1999; Ingram et al., 

2008; Sun et al. 2011). Ingram et al. (2008) reported that light grazing showed no effect on soil 

C content and slightly increased gram-negative bacteria and fungi proportions. As the 

disturbance ceased, microbial biomass increased, probably because more time and resources 

were available for specific microbial groups which have slower growth rate (e.g. fungi) (Zhang 

et al., 2005b). However, Buckley and Schmidt (2003) reported that microbial community 

composition did not differ significantly between conventionally cultivated fields and fields that 

had been abandoned from cultivation for nine years. A possible explanation of this result is that 

long-term sustainable tillage altered soil physico-chemical structure and decreased nutrient 

availability, thus the recovery of soil properties to pre-agricultural levels may require decades or 

even centuries.  

Many previous studies have demonstrated that vegetation types, soil properties and spatial 
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structure can influence soil microbial community function and abundance through providing 

suitable habitats and food sources (Kourtev et al., 2003; Šantrucková et al., 2003; Han et al., 

2007; Chen et al., 2014), whereas our findings of microbial community composition were not 

related to these factors across this region. In the current study, soils were sampled in different 

vegetation types and soil organic matter content, but the microbial community composition were 

very similar at the same geographical location in natural habitats (e.g. meadow versus wood, 

data not shown) (Fig. 5). Similar trends were observed in heavily disturbed habitats, the 

distributions of microbial communities were depended on land disturbance levels and practices 

rather than agricultural plant species. For example, the farmland soils (e.g. corn, peanut, mung 

bean, red bean) in the same location clustered together in CCA ordination despite the different 

plant species that they represented (Fig. 2, 3, 5). These results were consistent with a recent 

study, Drenovsky et al. (2010) reported that microbial community composition was more 

strongly influenced by disturbance than by agricultural plant species in California. 
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Habitat factors and land management triggered complex interactive effects on soil microbial 

community composition at the regional scale in northeastern China, as the value of shared 

variance fraction was 15 % without considering the variation explained by all three components 

(Fig. 4). This was similar to the findings of Drenovsky et al. (2010) that environmental factors 

caused significantly interactions on microbial community composition at large spatial and 

temporal scales. The significant shared effects in our study could be attributed to the strong 

effects of land disturbance (e.g. flooding, irrigation, tillage) on soil properties that then affect 

microbial communities. The findings suggest that land management could partly controlled soil 
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environmental effects on microbial community composition and biomass at large spatial scales. 362 

363 
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367 

368 

369 

370 
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383 

  Inconsistent with the hypothesis, soil moisture and land use were the most important factors 

driving microbial community composition and biomass at the regional scale in northeastern 

China. In this study, soil moisture was determined not only by natural precipitation, but also by 

managed inputs, thus the effect of precipitation was weaker but still significant. In addition, 

factors such as spatial structure, soil texture, pH and vegetation types did not have significant 

relationships with microbial community composition and biomass. These findings will improve 

predictions of the ecological processes and consequences of ecosystems under global changes. 
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Table 1 Sample locations (1 – 23), coordinates of the sample location, land use types, 

vegetation types and number of replicates (n).  

Location No. Coordinate  Land use type Vegetation type n 

Baogedawula 1 43°56′N;114°34′E Rangeland Desert steppe 8 

Dabuxiletu 2 43°55′N;115°44′E Rangeland Desert steppe 8 

 2  Grazed rangeland Desert steppe 8 

Aqiwula  3 43°33′N;116°40′E Rangeland Steppe 10 

 3  Woodland Wood and shrub 8 

Dalainuori 4 43°16′N;117°09′E Rangeland Steppe 8 

Sanyi 5 43°12′N;117°18′E Woodland Wood and shrub 8 

Xinchengzi 6 43°27′N;118°04′E Rangeland Steppe 14 

 6  Returned cropland Alfalfa  8 

Xinfuzhilu 7 43°43′N;119°04′E Grazed rangeland  Steppe (site 1) 4 

 7   Steppe (site 2) 4 

Tianshan 8 43°50′N;119°55′E Rangeland Steppe  8 

 8  Returned cropland Almond  16 

Tianshan 9 43°50′N;120°15′E Rangeland Steppe  9 

 9  Returned cropland Almond  9 

Shaogen 10 43°38′N;120°47′E Rangeland Steppe (site 1) 8 

 10   Steppe (site 2) 8 

 10  Farmland Corn  8 

Molimiao 11 43°34′N;121°55′E Rangeland Steppe (site 1) 8 

 11   Steppe (site 2) 8 

 11  Farmland Corn  8 

Yuxin 12 43°34′N;121°59′E Rice field Rice  14 

Baixingtu 13 43°52′N;122°41′E Woodland Wood and shrub 8 

Baolongshan 14 43°56′N;122°42′E Rangeland Meadow (site 1) 7 

 14   Meadow (site 2) 6 

 14  Farmland Corn  8 

Jiamatu 15 44°01′N;122°56′E Rangeland Meadow (site 1) 8 

 15   Meadow (site 2) 8 

 15  Farmland Corn  8 

 15   Red bean  7 

Taipingchuan 16 44°21′N;123°14′E Rangeland Meadow  9 

 16  Rice field Rice 9 

Yaojingzinan 17 44°21′N;123°14′E Woodland Wood and shrub (site 1) 11 

 17  Woodland Wood and shrub (site 2) 10 

 17  Farmland Peanut  8 

Yaojingzi 18 44°34′N;123°29′E Rangeland Meadow (site 1) 8 

 18   Meadow (site 2) 7 

 24



 18  Farmland Peanut  8 

 18   Mung bean  8 

 18   Corn  8 

Yaojingzi 19 44°35′N;123°30′E Rangeland Meadow  14 

Yaojingzi 20 44°34′N;123°31′E Artificial grassland Meadow (site 1) 7 

 20   Meadow (site 2) 8 

 20  Farmland Corn  8 

Wulanaodu 21 44°36′N;123°48′E Rangeland Meadow (site 1) 8 

 21   Meadow (site 2) 8 

 21  Farmland Corn  7 

 21  Woodland Wood and shrub 9 

Chaganhua 22 44°35′N;124°16′E Rangeland Meadow (site 1) 8 

8 

Wulantuga 

22 

23 44°28′N;124°18′E 
Rangeland 

Meadow (site 2) 

Meadow  8 

 23  Farmland Corn  6 

 23   Peanut  6 

 23  Woodland Wood and shrub 8 

    Total 451

 

 

 

 

 

 

 

 

 

 

 

 

 25



Table 2 Results of stepwise multiple regression analyses. Independent variables: soil 
moisture (%), soil total carbon content (C, %), mean annual precipitation (MAP), 
radiative dry index (RDI), soil water holding capacity (WHC); Dependent variable: soil 
microbial community composition (SMCC), soil total PLFAs (i.e. microbial biomass, 
TPLFAs, nmol g-1), percentages of branched PLFAs (gram-positive bacteria) (BP, %), 
monounsaturated PLFAs (gram-negative bacteria) (MP, %), saturated PLFAs (common in 
microorganism) (SP, %), fungal PLFAs (F, %), bacterial PLFAs (B, %) and fungal: 
bacterial PLFAs (F: B). Negative values of parameter estimate refer negative 
relationships between the examined dependent variables and the independent variables. 

 Variable entered Parameter estimate Partial r2 Probability 

SMCC Soil moisture - 0.31 0.000 

 Tillage - 0.23 0.000 

TPLFAs Soil moisture 6.794  0.11 0.000  

 Soil total C 0.607 0.11 0.000 

 RDI -26.893 0.10 0.000 

BP Soil moisture  0.262  0.57 0.000  

 Tillage 1.783 0.06 0.000 

MP Soil moisture  -0.105 0.57  0.000 

 Tillage -3.800 0.17 0.000 

SP Soil moisture  0.329 0.49 0.000  

 RDI -3.796 0.09 0.000  

F RDI 7.074 0.57 0.000  

 Tillage -1.580 0.14 0.000 

 Soil moisture  -0.042 0.06 0.000 

B MAP -0.044 0.20 0.000 

 Soil total C  1.218 0.07 0.000 

 WHC 0.158 0.06 0.000 

 Tillage 1.514 0.05 0.001 

F:B RDI 0.142 0.42 0.000  

 Tillage -0.033 0.12 0.000 

 Soil moisture -0.002 0.11 0.000  
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Figure legends 

Fig. 1. Sample locations (1 – 23; see Table 1) at a regional scale in northeast China.   

 

Fig. 2. Ordination plots of correspondence analysis (CA) of all samples and fatty acids. (a) 

Ordination plot of 451 samples scores across 7 land use types (rangeland, artificial grassland, 

grazed rangeland, farmland, returned cropland, woodland, rice field); (b) Ordination plot of 31 

fatty acids scores. The fatty acids scores are near the points for samples in which they occur with 

the highest relative contributions.  

 

Fig. 3. Ordination plots of canonical correspondence analysis (CCA) of all samples and 

environmental factors. (a) Ordination plot of 451 samples scores across 7 land use types; (b) 

Ordination plot of habitat and management factors scores, in which spatial structure were run as 

covariates. Mean annual temperature (MAT), mean annual precipitation (MAP), radiative dry 

index (RDI), elevation, soil water content (SWC, including natural precipitation and managed 

inputs), soil inorganic N (IN), soil total C and N (C, N), soil C: N, total (T) PLFAs, water 

holding capacity (WHC) and soil pH were quantitative environmental factors, and soil texture 

(loamy sand, LS; sandy loam, SL), land management practices (tilled, historically tilled, grazed) 

were qualitative (nominal) environmental factors. Quantitative factors were plotted as vectors, 

and qualitative factors were plotted as centroids. 

 

Fig. 4. Variation partitioning procedure of microbial community composition, explained by 

habitat (mean annual temperature and precipitation, radiative dry index, elevation, soil texture, 

pH, soil C and N content, soil C: N, inorganic N, total PLFAs, water holding capacity), land 

management (tilled, historically tilled, grazed, flooded practices) and spatial structure (x, y, xy, 

x2, y2, x2y, xy2, x3, y3; the nine terms which latitudinal (x) and longitudinal (y) coordinate were 

used to calculate a cubic trend surface) factors. 
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Fig. 5. Soil microbial biomass (i.e. total PLFAs), percentages of branched PLFAs (gram-positive 

bacteria), monounsaturated PLFAs (gram-negative bacteria), actinomycetes (10Me), saturated 

PLFAs (i.e. common in microorganism), fungi (F), fungal: bacterial PLFAs (F: B) and 17cy: 

precursor across 7 land use types at a regional scale in northeastern China.  
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Fig. 2 

 

 

 

 

 

 30
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Fig. 5 

 



Appendix S1 Sample locations (1 – 23, see Fig. 1), land use types, land management practices, vegetation types, climatic indices and soil 

properties. MAP, mean annual precipitation (mm); MAT, mean annual temperature (°C); RDI, radiative dry index; ELE, elevation (m); TC, soil 

total C (%); TN, soil total N (%); SWC, soil water content (%); WHC, water holding capacity; IN, soil inorganic N content (mg kg-1); SL, sandy 

loam; LS, loamy sand. 

Location No. 
Land use 

type 

Management 

practices 
Vegetation type MAP MAT RDI ELE  pH 

Soil 

texture
C   N C: N SWC WHC IN 

Baogedawula 1 Rangeland Undisturbed Desert steppe 237 1.7 1.44 1092 7.7 LS 0.67 0.12 5.32 3 12 2.05 

Dabuxiletu 2 Rangeland Undisturbed Desert steppe 276 1.4 1.37 1158 7.8 LS 0.79 0.1 7.94 5 15 2.47 

 2 
Grazed 

rangeland 
Grazed Desert steppe 276 1.4 1.37 1158 7.9 LS 0.81 0.11 7.31 5 17 3.30 

Aqiwula  3 Rangeland Undisturbed Steppe 340 1.3 1.33 1239 8.8 SL 1.45 0.15 9.78 7 17 3.46 

 3 Woodland Undisturbed Wood and shrub 340 1.3 1.33 1239 7.8 SL 0.7 0.15 4.48 9 20 3.32 

Dalainuori 4 Rangeland Undisturbed Steppe 385 1.3 1.21 1309 8.1 LS 0.84 0.14 7.67 8 18 3.77 

Sanyi 5 Woodland Undisturbed Wood and shrub 380 2.3 1.21 1173 8 SL 1.11 0.14 7.94 9 22 7.70 

Xinchengzi 6 Rangeland Undisturbed Steppe 397 3.5 1.23 919 7.7 LS 1.52 0.15 10.07 10 22 4.08 

 6 
Returned 

cropland 

Historically 

tilled 
Alfalfa  397 3.5 1.23 919 7.7 SL 0.9 0.1 9.96 9 23 7.79 

Xinfuzhilu 7 
Grazed 

rangeland  
Grazed Steppe (site 1) 386 5.8 1.18 735 8.4 LS 0.97 0.11 8.95 8 25 5.87 

 7  Grazed Steppe (site 2) 386 5.8 1.18 735 8.3 LS 0.99 0.12 8.05 8 25 4.84 

Tianshan 8 Rangeland Undisturbed Steppe  386 5.8 1.18 513 8.3 LS 1.66 0.19 8.48 8 23 6.14 

 8 
Returned 

cropland 

Historically 

tilled 
Almond  386 5.8 1.18 513 8.2 SL 0.9 0.1 8.71 10 25 13.08 

Tianshan 9 Rangeland Undisturbed Steppe  388 5.8 1.18 413 8.2 LS 1.63 0.19 8.36 9 22 5.24 

 9 
Returned 

cropland 

Historically 

tilled 
Almond  388 5.8 1.18 413 8.2 SL 1.81 0.17 10.78 10 24 7.34 

Shaogen 10 Rangeland Undisturbed Steppe (site 1) 385 6.8 1.12 270 8 LS 0.85 0.11 7.66 12 25 5.14 
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 10  Undisturbed Steppe (site 2) 385 6.8 1.12 270 8.2 LS 1 0.11 9.36 11 25 4.58 

 10 Farmland Tilled Corn  385 6.8 1.12 270 8.6 LS 0.9 0.11 8.08 11 24 20.80 

Molimiao 11 Rangeland Undisturbed Steppe (site 1) 399 6.3 1.05 179 8.4 SL 1.05 0.12 8.85 12 25 7.52 

 11  Undisturbed Steppe (site 2) 399 6.3 1.05 179 8.4 SL 1.1 0.15 7.30 13 25 6.65 

 11 Farmland Tilled Corn  399 6.3 1.05 179 8.4 SL 1 0.11 9.13 10 25 6.34 

Yuxin 12 Rice field 
Periodically 

flooded 
Rice  397 6.3 1.02 211 7.8 SL 1.23 0.15 8.23 32 32 5.23 

Baixingtu 13 Woodland Undisturbed Wood and shrub 414 6 1.02 159 7.7 SL 0.97 0.12 8.08 13 28 8.85 

Baolongshan 14 Rangeland Undisturbed Meadow (site 1) 415 6 1 156 7.9 SL 1.3 0.13 9.02 13 26 8.45 

 14  Undisturbed Meadow (site 2) 415 6 1 156 7.8 SL 1.34 0.15 8.43 13 27 7.62 

 14 Farmland Tilled Corn  415 6 1 156 7.7 SL 1.3 0.11 11.92 12 27 6.24 

Jiamatu 15 Rangeland Undisturbed Meadow (site 1) 422 6 1 149 8.2 SL 1.73 0.17 10.20 14 27 6.08 

 15  Undisturbed Meadow (site 2) 422 6 1 149 8.3 SL 1.77 0.18 10.07 13 28 6.22 

 15 Farmland Tilled Corn  422 6 1 149 8.2 SL 1.22 0.17 7.19 11 25 10.34 

 15  Tilled Red bean  422 6 1 149 8.4 SL 1 0.17 5.56 10 25 18.35 

Taipingchuan 16 Rangeland Undisturbed Meadow  428 5.6 0.97 150 8.6 LS 1.02 0.13 8.07 18 31 7.37 

 16 Rice field 
Periodically 

flooded  
Rice  428 5.6 0.97 150 8.3 SL 1.18 0.12 9.83 35 35 8.93 

Yaojingzinan 17 Woodland Undisturbed 
Wood and shrub 

(site 1) 
435 5.4 0.97 150 7.9 SL 0.98 0.13 7.27 14 29 5.78 

 17 Woodland Undisturbed 
Wood and shrub 

(site 2) 
435 5.4 0.97 150 7.9 SL 1.16 0.16 7.27 13 28 5.78 

 17 Farmland Tilled Peanut  435 5.4 0.97 150 7.5 LS 0.9 0.15 5.97 10 30 3.23 

Yaojingzi 18 Rangeland Undisturbed Meadow (site 1) 435 5.4 0.97 159 7.8 SL 1.16 0.16 7.19 17 30 4.47 

 18  Undisturbed Meadow (site 2) 435 5.4 0.97 159 7.7 SL 0.82 0.11 9.43 18 30 5.25 

 18 Farmland Tilled Peanut  435 5.4 0.97 159 7.5 LS 1.03 0.13 7.96 17 30 4.75 

 18  Tilled Mung bean  435 5.4 0.97 159 7.6 SL 1.17 0.15 7.73 17 31 5.75 

 18  Tilled Corn  435 5.4 0.97 159 7.8 SL 1 0.12 8.69 20 32 5.95 

Yaojingzi 19 Rangeland Undisturbed Meadow  434 5.4 0.97 165 8.4 SL 2.21 0.23 9.66 23 34 8.38 
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Yaojingzi 20 
Artificial 

grassland 
Tilled Meadow (site 1) 433 5.4 0.97 140 8.1 SL 1.85 0.19 9.91 14 33 6.44 

 20  Tilled Meadow (site 2) 433 5.4 0.97 140 8.1 SL 1.9 0.19 9.98 12 33 5.62 

 20 Farmland Tilled Corn  433 5.4 0.97 140 8.1 SL 0.92 0.1 9.23 18 32 8.23 

Wulanaodu 21 Rangeland Undisturbed Meadow (site 1) 442 5.3 0.93 152 8.1 SL 1.25 0.16 7.89 22 33 4.23 

 21  Undisturbed Meadow (site 2) 442 5.3 0.93 152 8.1 SL 1.3 0.16 8.03 19 34 4.87 

 21 Farmland Tilled Corn  442 5.3 0.93 152 8.2 SL 1.74 0.24 7.02 20 32 4.12 

 21 Woodland Undisturbed Wood and shrub 442 5.3 0.93 152 7.5 SL 1.87 0.23 8.11 20 34 6.55 

Chaganhua 22 Rangeland Undisturbed Meadow (site 1) 467 5.1 0.93 202 8.5 LS 1.54 0.2 7.67 24 36 4.32 

 22  Undisturbed Meadow (site 2) 467 5.1 0.93 202 8.4 LS 1.42 0.19 7.44 22 36 5.01 

Wulantuga 23 Rangeland Undisturbed Meadow  472 5.1 0.91 291 8.5 SL 2.16 0.2 10.63 23 34 4.85 

 23 Farmland Tilled Corn  472 5.1 0.91 291 8.2 SL 1.73 0.24 7.36 22 33 7.75 

 23  Tilled Peanut  472 5.1 0.91 291 7.9 SL 1.72 0.23 7.76 22 32 3.52 

 23 Woodland Undisturbed Wood and shrub 472 5.1 0.91 291 7.8 SL 1.63 0.19 8.75 18 35 7.39 

 


