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Abstract 27 

 The long-term and large-scale dynamics of ecosystems are in large part determined by the 28 

performances of individual plants in competition with one another for light, water and nutrients. 29 

Woody biomass, a pool of carbon (C) larger than 50% of atmospheric CO2, exists because of 30 

height-structured competition for light. However, most of the current Earth System Models that 31 

predict climate change and C cycle feedbacks lack both a mechanistic formulation for height-32 

structured competition for light and an explicit scaling from individual plants to the globe. In this 33 

study, we incorporate height-structured competition for light, competition for water, and explicit 34 

scaling from individuals to ecosystems into the land model version 3 (LM3) currently used in the 35 

Earth System Models developed by the Geophysical Fluid Dynamics Laboratory (GFDL). The 36 

height-structured formulation is based on the Perfect Plasticity Approximation (PPA), which has 37 

been shown to accurately scale from individual-level plant competition for light, water and 38 

nutrients to the dynamics of whole communities. Because of the tractability of the PPA, the 39 

coupled LM3-PPA model is able to include a large number of phenomena across a range of 40 

spatial and temporal scales and still retain computational tractability, as well as close linkages to 41 

mathematically tractable forms of the model. We test a range of predictions against data from 42 

temperate broadleaved forests in the northern USA. The results show the model predictions agree 43 

with diurnal and annual C fluxes, growth rates of individual trees in the canopy and understory, 44 

tree size distributions, and species-level population dynamics during succession. We also show 45 

how the competitively optimal allocation strategy - the strategy that can competitively exclude 46 

all others - shifts as a function of the atmospheric CO2 concentration. This strategy is referred to 47 

as an evolutionarily stable strategy (ESS) in the ecological literature and is typically not the same 48 

as a productivity- or growth-maximizing strategy. Model simulations predict that C sinks caused 49 

by CO2 fertilization in forests limited by light and water will be down-regulated if allocation 50 
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tracks changes in the competitive optimum. The implementation of the model in this paper is for 51 

temperate broadleaved forest trees, but the formulation of the model is general. It can be 52 

expanded to include other growth forms and physiologies simply by altering parameter values.  53 

 54 

Key words: Allocation, Dynamic global vegetation model (DGVM), Evolutionarily stable 55 

strategy (ESS), Forest dynamics model, Perfect Plasticity Approximation (PPA), Plant 56 

competition, Succession, Vegetation dynamics 57 

58 
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1 Introduction 59 

Terrestrial ecosystems regulate biophysical exchanges of matter, energy and momentum between 60 

the atmosphere and land surface and affect long-term climate dynamics by regulating the 61 

atmospheric CO2 concentration ([CO2]; Chapin et al., 2008). Biogeochemical and biophysical 62 

interactions between terrestrial ecosystems and climate are now widely recognized as essential 63 

determinants of past and future climate change (Bonan, 2008). For this reason, global models of 64 

terrestrial ecosystems are critical, but highly uncertain, components of Earth system models 65 

(ESMs) that predict climate and climate change (Friedlingstein et al., 2006). 66 

In most ESMs, terrestrial vegetation is simulated by a Dynamic Global Vegetation Model 67 

(DGVM; e.g., Sitch et al., 2003; Foley et al., 1996) with global plant functional diversity 68 

represented by ~10 plant functional types (PFTs; from Prentice et al., 1992). Vegetation in each 69 

model grid cell (e.g., 1° latitude × 1° longitude) is modeled as a set of pools describing different 70 

plant tissues (e.g., leaves, fine roots, sapwood, heart wood) belonging to one or more PFTs (e.g., 71 

Sitch et al., 2008; Quillet et al., 2010). Mechanistic physiological and biophysical equations 72 

govern photosynthetic carbon gain, transpiration, respiration of all plant tissues, and uptake of 73 

water and (in some models) nutrients by fine roots. Model-specific rules (often empirically 74 

derived) are used to allocate C to the different pools and to determine which PFT(s) dominate 75 

each grid cell or sub-grid tile (Sitch et al., 2003; Potter et al., 1993; Foley et al., 1996). Dead 76 

plant tissues are sent to a decomposition submodel, which usually is a variant of the CENTURY 77 

model (Parton et al., 1987). Water availability is governed by a coupled hydrological model. 78 

Some DGVMs include dynamical models of important nutrients, such as nitrogen (Thornton et 79 

al., 2007; Zaehle and Friend, 2010; Gerber et al., 2010). In fully-coupled implementations, plant 80 

canopies exchange carbon, water, energy and momentum with the atmosphere through a 81 
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boundary layer above the canopy air space, and roots exchange matter and energy with one or 82 

more soil layers.  83 

Although we have a sophisticated understanding of some important fine-scale processes 84 

such as leaf-level photosynthesis, and a growing capacity to measure grid-scale fluxes and 85 

storage of carbon, most current ESMs lack a set of equations that explicitly scale physiological, 86 

population dynamic, and biogeochemical processes from individual plants to stands, 87 

communities, and grid cells. This may contribute to the high uncertainty about C sources and 88 

sinks predicted by the ESMs as revealed by model inter-comparison studies (Shao et al., 2013; 89 

Todd-Brown et al., 2013; Friedlingstein et al., 2014). For example, some models predict that CO2 90 

fertilization and climate change will create a large terrestrial C sink, whereas others predict a 91 

large C source, with the spread between models large relative to global anthropogenic fossil fuel 92 

emissions (Friedlingstein et al., 2006). 93 

Several DGVMs with explicit scaling have been developed from forest gap models 94 

(Friend et al., 1997; Sato et al., 2007; Haverd et al., 2014), which have been shown to scale from 95 

individual vital rates to stand dynamics with reasonable accuracy (Botkin et al., 1972; Pacala et 96 

al., 1996; Shugart and West, 1977), and are thus widely used to manage forests (e.g., Coates et 97 

al., 2003). Some gap models simulate height-structured competition among individual seedlings, 98 

saplings, and adult trees for light, as well as competition for below-ground resources. Because 99 

simulating every individual plant on Earth in this way is unfeasible, some models, such as 100 

HYBRID (Friend et al., 1993; Friend et al., 1997), LPJ-GUESS (Smith et al., 2001) and SEIB 101 

(Sato et al., 2007), simulate a sample of individuals in each grid cell that is small enough to 102 

allow reasonable run time, but large enough to dampen random fluctuations in the underlying 103 

stochastic population dynamics. An alternative approach was developed by Moorcroft et al. 104 
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(2001), who derived a set of integro-partial differential equations that approximately govern the 105 

dynamics of the first moment of the stochastic process (the mean population density of trees in 106 

the forest of each species and size) that is simulated in a gap model. Instead of averaging over 107 

the many individuals in a stochastic simulation, these equations directly predict the mean 108 

population densities of individuals of each species and size (height, diameter or biomass) that 109 

would have been produced by a gap model of a large stand with the same functional forms and 110 

parameter values. Medvigy et al. (2009) and Fisher et al. (2010) coupled the ED model into full 111 

DGVMs, and several efforts are now underway to build models derived from ED into ESMs.  112 

An important advantage of the DGVMs developed from gap-models, such as HYBRID, 113 

LPJ-GUESS, SEIB, and ED, is that they include the mechanistic function of stem wood. Trees 114 

use stem wood to overtop their neighbors when in competition for light, and to avoid being 115 

overtopped by their neighbors. The wood of living trees is the largest vegetation carbon pool 116 

(363±28 Pg C; Pan et al., 2011), equivalent to around half of the atmospheric carbon pool. 117 

Furthermore, a large fraction of soil organic matter (SOM) comes from wood litter. It is thus 118 

likely that predictions about the future of the terrestrial C sink will be improved in models that 119 

include the mechanistic function of wood. For example, to determine how the terrestrial C sink 120 

will change because of climate change and CO2 fertilization, one needs to predict changes in 121 

plant C allocation patterns. Because of the large difference in residence time of wood, leaves, 122 

and fine roots in forests, changes in allocation can drastically change carbon sinks (Zhang et al., 123 

2010; Luo et al., 2003). Theoretically, it has been shown that under water limitation, 124 

competitively optimal shifts towards greater fine-root allocation can lead to greatly diminished 125 

vegetation C sinks despite significant increases in productivity (Farrior et al., 2013). Thus, 126 

mechanistic predictions of whether allocation to wood will increase, decrease, or stay the same, 127 
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under the altered environmental conditions are critical. However, competitively optimal plant 128 

allocation has not, to our knowledge, been rigorously studied in any of the previous gap-model-129 

derived DGVMs. 130 

Despite the advantages of gap-model DGVMs, it is difficult to understand the behavior of 131 

these models because they are analytically intractable even under idealized conditions, such as 132 

constant climate, and so can only be studied using numerical simulations. For example, 133 

competitively optimal plant C allocation could only be studied in these models by relying on 134 

computational experiments that may be difficult to interpret in the absence of any theoretical 135 

guidance. The price of added complexity in a DGVM is that it increases the number of ways in 136 

which model errors can interact and cause misleading predictions (e.g., model equifinality), 137 

which are especially difficult to diagnose and understand if one cannot study the model 138 

analytically. This problem is particularly acute when developing an ESM, which has many 139 

interacting components. For this reason, height-structured competition was not included in the 140 

GFDL land model version 3 (LM3) (Shevliakova et al., 2009; Milly et al., 2014).  141 

In this paper, we present a new, biodiverse version of LM3 that includes height-142 

structured competition among plants for light, as well as competition for water. Future versions 143 

will include competition for nitrogen and phosphorus. The new model, LM3-PPA, is based on 144 

the Perfect Plasticity Approximation (PPA), a computationally simple and mathematically 145 

tractable model that scales from individuals to stand dynamics (Strigul et al., 2008). Like ED, the 146 

PPA allows one to derive integro-partial differential equations for the first moment of the 147 

stochastic process that defines an individual-based forest model (Strigul et al., 2008). But, unlike 148 

ED, these equations are analytically tractable under idealized conditions (e.g., constant climate). 149 

The PPA model closely matches the behavior of stochastic individual-based forest dynamics 150 
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models (gap simulators; Strigul et al., 2008). More importantly, it has been shown to predict 151 

species-level succession across different soils in the USA Lake States (Purves et al., 2008) and to 152 

accurately predict canopy structure in temperate and tropical forests (Bohlman and Pacala, 2012; 153 

Purves et al., 2007; Zhang et al., 2014). Dybzinski et al. (2011; 2013) and Farrior et al. (2013) 154 

have developed game theoretic versions of the PPA that use analytical methods to identify the 155 

most competitive allocation strategy (investment in fine roots, wood, and leaves) of trees 156 

competing for light, water, and nitrogen. Although these game theoretic models are 157 

physiologically simpler than most DGVMs, they yield quantitatively accurate predictions of net 158 

primary production (NPP) and plant allocation observed at Fluxnet sites (Luyssaert et al., 2007). 159 

These theoretical studies have guided the development of the new DGVM presented here, LM3-160 

PPA. 161 

Although the fast time-scale processes in LM3-PPA (e.g., exchanges of energy and 162 

matter between vegetation, atmosphere, and soil) render it analytically intractable, its close 163 

association with the stand-alone PPA model allows for a greater understanding of model 164 

behavior than is possible with other gap-model DGVMs, including how competition for multiple 165 

resources is expected to affect allocation of NPP among different plant tissues. Variation among 166 

individuals, species, or PFTs in how carbon is allocated to leaves, wood, fine roots, etc. is 167 

recognized as a key feature of next-generation DGVMs that aim to represent plant functional 168 

diversity (both within and between model grid cells) more accurately than the current suite of 169 

models (Scheiter et al., 2013; Wullschleger et al., 2014). LM3-PPA was specifically designed 170 

with allocational and other aspects of plant functional diversity in mind. 171 

In particular, we developed LM3-PPA to:  172 
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1) include the influence of height-structured competition for light on forest dynamics and 173 

dominant allocation strategies,  174 

2) improve the representation of feedbacks that alter ecosystem-level allocation to wood,  175 

3) include within-PFT biodiversity by allowing for multiple, competing variants or “species” 176 

that differ in their allocational strategy or other traits,  177 

4) improve the scaling from individuals to landscapes using macroscopic equations from the 178 

literature on individual-based forest models, and 179 

5) provide a global land model that can be solved analytically in idealized cases (e.g., constant 180 

climate). 181 

In what follows, we first present the equations that underpin the LM3-PPA model in their 182 

continuous (in time and plant size) form. The numerical machinery that is necessary to discretize 183 

and implement the model as a component of an ESM is described in technical appendices (A and 184 

B). The model structure allows for an arbitrary number of “species” (broadly defined to include 185 

different genotypes or PFTs), that may have fixed or plastic parameter values describing their 186 

physiological properties and how they allocate available carbon. We evaluate the model’s 187 

behavior at a series of organizational scales in a temperate forest: physiological (photosynthetic 188 

carbon gain), individual (stem diameter and height growth rates), population (size structure and 189 

population densities), community (species-level successional dynamics) and ecosystem (C 190 

storage, NPP); and at a series of temporal scales: diurnal, seasonal, interannual and centennial. 191 

We also introduce a prototype algorithm for determining the most competitive allocation strategy 192 

(i.e., the evolutionarily stable strategy, ESS) within a functional type. We use this ESS algorithm 193 

to evaluate the expected shift in C allocation between fine roots and woody tissues caused by the 194 

leaf-level water use efficiency benefits of CO2 fertilization and the impact of this shift on the 195 

predicted C sink.  196 
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 197 

2 Model Description and Simulation Tests 198 

2.1 The Coupled LM3-PPA Model 199 

Consider a spatial stochastic forest model in which each tree is represented as a discrete 200 

individual with x and y coordinates, stem diameter, height, biomass, crown area, leaf area per 201 

unit crown area (crown LAI), and fine root biomass. These individuals intercept light, shade 202 

smaller individuals in their vicinity, and take up soil water. The resulting fixed C, in excess of 203 

respiration costs, is allocated to new tissues, and so the plants grow and produce seeds. 204 

Individuals also die because of random events, such as windthrow, and suffer competitive 205 

mortality because of light and/or water shortage. Finally, seeds disperse and produce new 206 

seedlings. The model predicts the size-structured dynamics of each species (or PFT, etc.) by 207 

predicting the fate of each and every individual.  208 

This spatial stochastic process is analogous to the dynamics of the atmosphere resulting 209 

from the stochastic movement of every gas molecule. In the same way that one can derive the 210 

Navier Stokes equations from the stochastic process of molecular motion, it is possible to derive 211 

equations for the mean population densities of trees from a stochastic gap model. But because 212 

gap models are highly nonlinear, approximations must be used. One impediment to a tractable 213 

approximation has been the lack of a mechanistic and compact way of representing how the 214 

irregular spatial distribution of stems, which strongly affects the outcome of competition, results 215 

in a nearly continuous leaf canopy, which strongly affects gas exchange. ED, like the stochastic 216 

models from which it was derived (Shugart, 1984; Botkin et al., 1972), does so by simply 217 

partitioning space into adult-tree-sized cells and assuming that each individual’s crown covers all 218 

the area in its cell (Moorcroft et al., 2001). As there can be many individuals per cell, there can 219 
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be many overlapping canopies, and any tree that is not the tallest in the cell is not in full sun. The 220 

problem with this assumption is particularly evident in recently-disturbed gaps, which in reality 221 

may contain multiple trees that are all in full sun. 222 

In the forest gap simulator from which the PPA is derived (SORTIE with plastic crown 223 

shapes due to phototropism; Strigul et al., 2008), the crown of an open-grown tree of height Z is 224 

an envelope of leaves whose shape is defined by a function A(Z’,Z) that gives the crown area 225 

above height Z’. The potential crowns of trees in a closed-canopy forest overlap so that, from 226 

above, the canopy looks like a patchwork of non-overlapping territories, with each territory 227 

being the portion of a canopy tree’s crown that is in the sun (Mitchell, 1969). Strigul et al. (2008) 228 

studied the statistics of the places where the potential crowns of adjacent canopy trees join and 229 

showed that if tree growth was realistically plastic because of mild phototropism of apical 230 

meristems, then the standard deviation of these canopy-crown join-heights is an order of 231 

magnitude smaller than the mean join height. They derived approximate equations, taken in the 232 

limit of zero crown-join-height standard deviation, for the time evolution of the first moments of 233 

the stochastic process in the gap simulator; i.e., the function Ni(s,t) for each species-i in the 234 

model, which gives the expectation of a species’ population density for individuals of size s at 235 

time t. The derivation of these means used only the individual-level information in a gap 236 

simulator and thus scales from individual to stand. The approximation is called the Perfect 237 

Plasticity Approximation (PPA) because it is derived from the limit of extreme flexibility of 238 

crown shape in the horizontal by trees in pursuit of light.  239 

The PPA equations are a special case of a general size-structured demographic model 240 

governing the time evolution of the population density of individuals of species-i and size s, 241 

Ni(s,t) (Strigul et al., 2008; von Foerster, 1959). One should think of Ni(s,t) as the mean 242 



12 
 

population density of individuals per unit ground area in a stochastic gap model. It is the limit of 243 

the expectation of nist/(sxx) as s and x approach zero, where nist is the number of individuals 244 

of species-i with size between s and s+s at time t in a randomly chosen quadrat with ground 245 

area (x)
2
 in runs of a stochastic individual-based forest model (Strigul et al., 2008). In reality 246 

and in most of this paper, the size (s) of a tree is a vector describing its height, crown area, tissue 247 

pool sizes, etc. But for the moment, consider the simple case where there is only a single 248 

measure of size. The system of equations governing the time evolution of Ni(s,t) is usually 249 

written as a system of nonlinear advection equations (advection in s) with a boundary condition 250 

governing the recruitment of new individuals at the smallest size (Moorcroft et al., 2001; Strigul 251 

et al., 2008). But we write them here in a mathematically equivalent form as implemented in the 252 

LM3-PPA code.  253 

Population dynamics. LM3-PPA makes population dynamics predictions by simply 254 

simulating the birth, mortality, and growth of each age cohort of plants. The cohorts within the 255 

same place (tile within a grid cell, see Appendix A) interact with one another only indirectly by 256 

affecting resources levels – canopy trees shade understory trees, and all cohorts reduce available 257 

water. In addition, cohorts in the same place have indirect biophysical impacts on one another 258 

because they jointly affect the temperature and humidity of the sub-canopy airspace. These 259 

indirect effects are explained in later sections and a series of Appendices. Here, we describe the 260 

population dynamics assuming that the resource levels and biophysical conditions affecting a 261 

cohort are known. For each species (or PFT) i, the equation that governs the density of a cohort 262 

when it is born is: 263 

   dttsFtNtN tii

t

tiit ),()()( ,
0

,               (1) 
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where Nib(t) is the population density at time t of individuals in the same age cohort (species-i 264 

individuals at time t who were born at time b), and Nit(t) is the density of newborns at the time of 265 

their birth (when b = t); sib(t) is the size at time t of individuals born at time b; and Fi(s,t) is the 266 

rate of new seedling production at time t for an individual of species i and size s. Eq 1 simply 267 

sums the reproductive output of all cohorts of a given species to produce the initial density of the 268 

new cohort born at time t. We also need an equation for the loss of individuals in each cohort as 269 

it ages. After being born, individuals die at rate μi(s,t): 270 

  )(),(
)(

tNtts
dt

tdN
ibibi

ib   (2) 

Finally, we need an equation for the growth of individuals in each cohort. If gi(s,t) is the growth 271 

rate of individuals of species i and size s at time t, then:  272 

 ttsg
dt

tds
ibi

ib ),(
)(
  (3) 

Eqs 1-3 provide an efficient way to solve the model numerically, because one can simply 273 

discretize b and thus yield a set of ordinary differential equations that have much greater 274 

numerical stability than advection equations. The LM3-PPA model uses this numerical method 275 

and thus simulates a discrete number of cohorts.  276 

To convert Eqs 1-3 into the measures we need for a DGVM, we first divide each 277 

individual into 5 separate tissues or carbon (C) pools (leaf, fine root, sapwood, heartwood, and 278 

non-structural carbohydrates; Fig. S1 in Supplemental materials) and introduce allometric 279 

relationships to calculate the amounts of C in these five pools, as well as other measures of size, 280 

from three quantities: stem diameter (D(t)), crown LAI (l(t); leaf area per unit crown area), and 281 

carbon in the non-structural carbohydrate pool (NSC(t)). Stem diameter and crown LAI were 282 

chosen because these are easily observable, and NSC(t) because all plant carbon starts as non-283 
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structural carbohydrate. In this paper, stem diameter is assumed to equal diameter at breast 284 

height (DBH) in any comparisons with DBH data. With the three measures of size, s, the right 285 

hand sides (RHS) of Eqs (1-3) each become three separate equations - one for each measure of 286 

size. Also, because each cohort has a size vector, it is always possible to calculate the density of 287 

a species or PFT as a function of any measure of size, rather than as a function of birth date. In 288 

what follows, we switch to size-structured densities, Ni(s,t), whenever convenient. 289 

Vertical and horizontal spatial structure. Again, each cohort in LM3-PPA belongs to a 290 

species (or PFT, etc.) and has three time-evolving measures of size: stem diameter, D(t), crown 291 

LAI, l(t), and amount of carbon in the non-structural carbohydrate pool, NSC(t). We sometimes 292 

omit from the notation the time-dependence from D(t), l(t), and NSC(t), to keep the formulae 293 

easy to read. These measures are related to other important measures of size by species- or PFT-294 

specific allometric relationships. Height, Z(D), wood carbon mass, S(D) (including stem, 295 

branches, and coarse roots), and total crown area, ACR(D), are functions of diameter: 296 

 ZDDZ Z

)(  

 ZDDS ZW

 


2
25.0)(  

 cDDA cCR

)(  

(4) 

where c, Z, Λ, and ρW (wood carbon density; kg C m
-3

) are species- or PFT-specific constants; 297 

and θc and θZ are constant across species/PFTs (1.5 and 0.5 respectively), though these could be 298 

made species/PFT-specific if necessary. A cohort’s total leaf mass, L(D, l), is its total leaf area (l 299 

× ACR) times its species- or PFT-specific leaf mass per area, LMA, and − following the pipe 300 

model (Shinozaki et al., 1964) − fine root carbon mass, FR(D, l), and sapwood cross sectional 301 

area, Asw(D,L), are proportional to total leaf area: 302 
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LMADlAlDL CR )(),(   

SRADlAlDFR CRRL /)(),(   

)(),( DlAlDA CRCSASW   

(5) 

where φRL, SRA, and CSA are species/PFT-specific constants: φRL is the ratio of total root surface 303 

area to the total leaf area, SRA is specific root area, and CSA is an empirical ratio of target leaf 304 

area to sapwood cross-sectional area. Unless otherwise stated, units are: mass=kg C, area=m
2
, 305 

height=m, and diameter=m. All other size measures of structural pools can be calculated from 306 

these quantities. For example, heartwood carbon mass is: S(D) – Asw(D,l)Z(D)ΛρW.  307 

 Fine root spatial structure. Because the area covered by a tree’s root distribution is 308 

significantly larger than its crown area (Hruska et al., 1999), we assume that roots of competing 309 

individuals are uniformly distributed in the horizontal plane (Dybzinski et al., 2011 and refs 310 

therein). LM3 and LM3-PPA can be configured with an arbitrary number of vertical soil layers, 311 

with 20 layers in this study (see Appendix B for details). Each species or PFT has an empirical 312 

exponential depth distribution for its fine roots (Appendix B).  313 

Canopy structure. A critical quantity in the PPA model is the crown join height that 314 

separates the upper canopy from the understory Z1*:  315 

 



i Z

kii
k

dZZZAtZNk
*

),(),()1( *  (6) 

where k=1 for the top canopy layer,  is the proportion of each canopy layer that remains open 316 

due to spacing between individual tree crowns, Ni(Z,t) is the density (m
−2

) of trees of species i 317 

with height Z, and Ai(Zk*, Z) is the area (m
2
) of the portion of a tree’s crown at a height greater 318 

than or equal to Zk*. If the right hand side (RHS) of Eq 6, the collective crown area of all trees 319 

per unit ground area, is less than the fraction of ground area that could potentially be filled (1-η) 320 
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even for Z1
*
 =0, then plant density is too low to close the canopy. However, if the Z1* that solves 321 

Eq 6 is greater than zero, then the trees close the canopy, by definition filling the canopy with the 322 

sun-exposed portion of the crowns of individuals taller than Z1
*
. Plants that are shorter than this 323 

value, Z1
*
, are in the understory. In many temperate and boreal forests, the potential crowns of all 324 

individuals add up to less than two (do not fill a second canopy), and so Eq 6 has no solution for 325 

k>1. However, in some forests (e.g., tropical rainforests, and temperate forests with multiple 326 

understory layers), the sum of the crown areas of all individuals combined is typically 3 to 4 327 

times the land area (Bohlman and Pacala, 2012), in which case Eq 6 defines a Z2
*
 separating the 328 

first full understory from the second understory beneath it, a Z3
*
 separating the second from the 329 

third understory, and so on. 330 

Mathematical and computational tractability is greatly facilitated in the PPA model by the 331 

assumption that trees have flat-topped crowns (Strigul et al., 2008), which allows for accurate 332 

predictions of observed succession and canopy structure in broad-leaved temperate forests 333 

(Purves et al., 2008; Zhang et al., 2014) and vital rates and canopy structure in a Neotropical 334 

forest (Bohlman and Pacala, 2012). With a flat-topped crown, all the leaves of a tree are assumed 335 

to be in one layer, either in the upper canopy or in a single understory layer (Fig. A1 and Fig. 336 

S1a). We assume flat tops in LM3-PPA and thus use ACR(D) as the sole measure of crown area; 337 

i.e., Ai(Z’,Z(D)) = ACR(D) for all Z’<Z(D). Each cohort in LM3-PPA (and all of its leaves) 338 

belongs to exactly one canopy layer. Again, the upper canopy layer includes the tallest cohorts of 339 

trees whose collective crown area sums to the fillable ground area ([1-η] times the ground area; 340 

or less than this area if the canopy is not closed; Eq 6). Trees within the same layer do not shade 341 

each other. The trees in each understory layer are shaded by the leaves of all taller canopy layers 342 

(Appendix B). In LM3-PPA, the assumption of flat-topped crowns introduces a potential 343 
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problem that does not occur in simpler versions of the PPA model that lack physiological 344 

mechanisms. Specifically, the NSC pool can, in some cases, be quickly consumed when a tree 345 

enters the upper canopy from the understory because of the sudden increase in target leaf and 346 

fine-root biomasses. This increase would be more gradual with other crown shapes (e.g., 347 

rounded). To address this problem (which we view as a model artifact), we introduced a 348 

parameter to limit the rate of increase of target leaf mass (and therefore fine-root mass, given the 349 

pipe-model constraint) for cohorts that recently entered the upper canopy (see Eq A6 in 350 

Appendix A). 351 

 Fast time-scale exchanges of matter, energy, and momentum. Like other land models 352 

that are fully coupled to atmospheric models, LM3-PPA computes fluxes of matter, energy, and 353 

momentum between a plant’s surface and the bottom of the boundary layer in the atmosphere on 354 

the fast time scale of the atmospheric model (e.g., every thirty minutes in most implementations 355 

of LM3 and LM3-PPA). This requires a network of interacting equations that are similar among 356 

many land models, including:  357 

(i) Energy and mass balance equations that govern leaf, canopy air and soil 358 

temperatures, canopy vapor pressure deficit (VPD), wind speed in the canopy 359 

air space, and long- and shortwave radiation transfer.  360 

(ii) A photosynthesis model at the leaf level. 361 

(iii) A model of respiration for all plant tissues.  362 

(iv) A model of stomatal conductance and fine-root water uptake. 363 

(v) A model of soil water dynamics. 364 

(vi) A model of the decomposition of soil organic matter. 365 
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The fast time scale equations are described in Appendix B. They are identical to those in 366 

the version of LM3 used in the ESMs of GFDL (Dunne et al., 2012; Dunne et al., 2013), except 367 

for a few key differences. First, whereas LM3 has only a single cohort in any one place, LM3-368 

PPA has a multi-cohort canopy and fine root distribution that (a) can be composed of more than 369 

one species/PFT, (b) may have one or more complete understory canopies, and (c) always has a 370 

partially full lowest understory layer if it has one or more full canopies. Second, the respiration 371 

parameterization for sapwood has been updated in LM3-PPA. Observations show that the 372 

respiration rate of sapwood per unit of biomass decreases with sapwood biomass (Ryan et al., 373 

2004). Consistent with these observations, LM3-PPA assumes that respiration of sapwood is 374 

proportional to crown area, ACR(D).  375 

LM3-PPA handles radiation transfer through the crowns of each cohort in the same way 376 

that LM3 handles transfer through its single canopy. Radiation emanating from the bottoms of 377 

crowns in the same canopy or partial canopy layer is summed before hitting the next layer or the 378 

ground. All other calculations are made separately for each cohort, and summed where necessary. 379 

For example, sensible and latent heat fluxes from the leaves of each cohort into the sub-canopy 380 

airspace are summed in the energy balance for the air space. Appendix B documents the details 381 

of the fast-time scale calculations in LM3-PPA. 382 

 Growth and reproduction. In this section, we briefly describe the fecundity function (F) 383 

in Eq (1) and the growth functions on the RHS of Eq (3) for stem diameter, D(t), crown LAI, l(t), 384 

and amount of carbon in the non-structural carbohydrate pool, NSC(t). The derivations and 385 

detailed discussion of these expressions are in Appendix A. 386 

The carbon fluxes from the fast time scale equations (Appendix B) are summed over the 387 

diurnal cycle, to provide daily total carbon gain from photosynthesis, Ps(t), and loss from 388 
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respiration, Ra(t), for each cohort. This carbon is added to or taken from the cohort’s NSC pool 389 

once a day: 390 

)()()()( tGtGtRtP
dt

dNSC
FWFRLas      (7) 391 

where GL+FR(t) is the amount of carbon allocated to produce new leaves and fine roots minus the 392 

carbon retranslocated from senescing leaves and fine roots, and GW+F(t) is the carbon allocated to 393 

stem and seed production. 394 

Expressions for GL+FR(t) and GW+F(t) are derived in Appendix A. The derivations assume 395 

that a plant allocates carbon so that the LAI within its crown tracks a species- or PFT-specific 396 

target. This target crown-LAI differs between understory and canopy individuals and seasonally 397 

because of a phenology function, p(t), which is unchanged from LM3, except that it is updated 398 

daily rather than once per month as in LM3 and LM3V (Shevliakova et al., 2009; Milly et al., 399 

2014). Individuals also have a target root area per-unit crown area, which is equal to the target 400 

crown LAI multiplied by φRL (the ratio of total root surface area to total leaf area; see Eq 5). 401 

Finally, there is a target ratio of wood to seed production, and a species- or PFT-specific NSC 402 

target, which scales with target leaf mass and tracks a plant’s phenological state (Eq A2.4 in 403 

Appendix A). 404 

Our formulation for GL+FR(t) assumes that positive net production, )()( tRtP as  , is 405 

allocated first to leaves and fine roots if these are beneath their target levels. Carbon is 406 

retranslocated back to NSC if leaves are above target (i.e., at the end of the growing season, or if 407 

a cohort falls into the understory from the overstory). Carbon is allocated to wood and seeds 408 

from NSC only if NSC is above its target level. The formulation also includes parameters that 409 

limit the maximum rate at which NSC can be converted into leaves and fine roots and wood. 410 
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Appendix A shows how the assumptions about allocation can be combined with the 411 

allometric equations (Eqs 4-5) to produce differential equations for the growth of stem diameter 412 

and crown LAI. All other measures of plant size (e.g., fine root mass or leaf mass) can be 413 

calculated from NSC, diameter, and crown LAI using the allometric equations. 414 

Mortality and disturbance. In this section, we specify the mortality functions on the 415 

RHS of Eq (2). Mortality in the PPA reduces the population density of a cohort (i.e., by a 416 

fraction t in a time-step t if the individual mortality rate is ). In LM3-PPA, mortality is 417 

assumed to occur due to carbon starvation if a cohort’s NSC pool falls to zero. Because the target 418 

size of the NSC pool is assumed to be several times the size of the combined target leaf and fine-419 

root masses (see Eq A2.4 in Appendix A), trees rarely die of carbon starvation unless they 420 

experience prolonged drought (which was not simulated in the current study) or have chronic 421 

negative carbon balance due to shading. In addition to carbon starvation, each species/PFT has a 422 

canopy-layer-specific background mortality rate that is assigned from the literature (Runkle, 423 

2000). These background rates are assumed to be size-independent for upper-canopy trees ( 0C424 

in Table 1), but size-dependent for understory trees according to: 425 

mU = mU0
1+10e-30D

1+ 2e-30D
     (8) 426 

This functional form reduces mortality by a factor of 5 between germination and adulthood (Fig. 427 

1a). It accounts for the additional sources of non-starvation mortality facing small individuals, 428 

including herbivory by large mammals and branch-fall. 429 

For all canopy layers, the background mortality rate is assumed to be independent of the 430 

physiological state of the focal individual and the density of competing individuals, as these 431 

physiological and competitive effects are already accounted for by mortality due to carbon 432 
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starvation. We also evaluated an alternative assumption for canopy trees in this paper, in which 433 

the mortality rate of large trees increases with size (see Section 2.2.2 below). 434 

Stand-level disturbances (e.g., due to insect outbreaks, windstorms, fire, or land use) may 435 

be implemented in LM3-PPA using the land-use tiling scheme described below and in Appendix 436 

A, but were not implemented in the simulations presented in this paper.  437 

Grid structure, sub-grid-scale heterogeneity, and relation to LM3. Like LM3, LM3-438 

PPA is implemented on a flexible grid, whose cell size can be specified independently of the 439 

atmospheric model’s grid. LM3-PPA also includes LM3’s dynamic tiling scheme for land use, 440 

stand-level disturbance, and subgrid-scale heterogeneity (Shevliakova et al., 2009). As explained 441 

in Appendix A, the tiling scheme can be used to implement the ED approximation for canopy 442 

gap dynamics (Moorcroft et al., 2001), but this feature was not used in the simulations presented 443 

in the current paper. 444 

The critical difference between LM3 and the LM3-PPA model described in this paper is 445 

that each tile in LM3-PPA can contain an arbitrary number of cohorts who compete with one 446 

another for light and water. Each cohort belongs to a single species or PFT, but different cohorts 447 

within the same tile can be from different species/PFTs. Thus, there is competition for light and 448 

water among cohorts belonging to the same species/PFT (intraspecific competition), as well as 449 

among cohorts belonging to different co-occurring species/PFTs (interspecific competition). 450 

Coexistence of multiple species/PFTs is not assumed, but rather is a possible emergent outcome 451 

of the individual-level processes that determine the community dynamics. 452 

 453 
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2.2 Model evaluation and simulation tests  454 

The model was evaluated in temperate deciduous forest in Wisconsin, USA. A variety of data are 455 

available in this region to evaluate the model’s behavior, including forest inventory data from the 456 

U.S. Forest Inventory and Analysis (FIA) database (http://www.fia.fs.fed.us/), biometric data 457 

(Curtis et al., 2002), and eddy-covariance data (Desai et al., 2008). Furthermore, there are clear 458 

patterns of forest succession among some of the dominant tree species in the region (see below), 459 

which facilitates tests of predicted successional dynamics. Meteorological inputs were extracted 460 

from the Sheffield et al. (2006) 1° latitude × 1° longitude, three-hourly, 1948-2008 climate 461 

reanalysis data set for the grid cell containing the Willow Creek Ameriflux site (Desai et al., 462 

2008). We forced the model with the Sheffield reanalysis data rather than the meteorological 463 

data from the Ameriflux site because some model tests (e.g., forest size structure and 464 

successional chronosequences) were performed at a regional scale (see details below). 465 

Models such as LM3-PPA are inevitably tuned during development so that they 466 

reproduce realistic behavior. We tuned physiological aspects of the model (photosynthesis, 467 

respiration, and NSC dynamics) to produce the observed magnitude of NPP, and a single 468 

parameter affecting diameter growth rates (the taper constant, Λ). We also tuned the size-469 

dependence of background mortality (Fig. 1a) for small seedlings and saplings to reconcile large 470 

observed abundances of germinating seedlings with low observed abundances of saplings. We 471 

did not tune emergent behaviors such as differences among the growth rates of canopy and 472 

understory trees, differences among the growth rates of trees of different species, population 473 

densities of individuals above 0.1 m in diameter, successional turnover, and patterns of carbon 474 

storage. In what follows, comparisons of predicted and actual NPP should be viewed as 475 

demonstrations that the model is capable of exhibiting realistic behavior, because physiological 476 

http://www.fia.fs.fed.us/
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aspects of the model were tuned. However, comparisons involving variation among individuals 477 

in whole-tree growth rates, population densities and size structure for individuals above 0.1 m in 478 

diameter, and successional and ecosystem dynamics should be viewed as tests of emergent 479 

predictions of the model.  480 

 481 

2.2.1 One- vs. three-species simulations  482 

We implemented the model with three tree species − trembling aspen (Populus tremuloides 483 

Michx.), red maple (Acer rubrum L.), and sugar maple (Acer saccharum Marsh.) – to evaluate 484 

the model’s capacity to capture successional dynamics and to quantify how successional 485 

diversity affects model behavior compared to one-species simulations. The three species are 486 

common in eastern North America and at the Willow Creek site in particular, and they differ in 487 

their successional status and shade tolerance (Burns and Honkala, 1990): trembling aspen is a 488 

pioneer species with high growth rate, high mortality rate, and low shade tolerance; sugar maple 489 

is a late successional species with low growth rate, low mortality rate, and high shade tolerance; 490 

and red maple is an intermediate species. These three species are not intended to fully 491 

characterize the Willow Creek or other temperate tree communities, and in this paper we do not 492 

attempt to determine the optimal number of species or functional types for ESM applications. In 493 

addition to the three-species simulations designed to evaluate successional dynamics and 494 

perform model-data comparisons at Willow Creek, we also performed a series of competition 495 

experiments with multiple functional variants defined by their allocational strategy (see Section 496 

2.3, below) as an initial exploration of an axis of functional variation that could be incorporated 497 

into future global applications. We estimated model parameters for the three Willow Creek 498 
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species using data from the literature (Table 1). Most of the other parameter values (Table 1 and 499 

Tables C1- C3 in Appendix C) were taken directly from LM3.  500 

We compared carbon and population dynamics of runs with one species (sugar maple) 501 

and all three species. Simulations were initialized with a number of small seedlings for each 502 

species (Table 1 and C4) and run for 1000 years. Runs simulating species succession were 503 

initialized with abundances and size distributions of each species from early-successional FIA 504 

plots (plots less than 10 years of age, Table C4). We examined model predicted population 505 

densities; size distributions; annual GPP and NPP; growth rates of diameter at breast height 506 

(DBH), foliage biomass, stems, and fine roots; and total C storage. 507 

We compared model output both to published data of GPP, NPP, plant DBH growth rates, 508 

and forest composition at the Willow Creek Ameriflux site and to FIA data on mesic soils from 509 

the Laurentian Mixed Forest Ecoprovince (Cleland et al., 2007), which spans northern Michigan, 510 

Wisconsin, and Minnesota, USA and includes the Willow Creek site. Hereafter, we refer to this 511 

ecoprovince as the “northern Lake States”. Each FIA plot includes measurements on only 0.067 512 

ha distributed over a 0.4 ha area; thus, data from many plots must be aggregated by stand age 513 

class to estimate successional patterns of biomass, density, and size distribution.  514 

 515 

2.2.2 Sensitivity of LM3-PPA to alternative assumptions: mortality, allometry, and gap-516 

dynamics   517 

Runs of LM3-PPA predict realistic size distributions for a few hundred years of succession, but 518 

produce unrealistically large trees in old growth forests (see results below). Although there are 519 

only a few unrealistically large trees, they are so large that they store considerable carbon and 520 

skew predictions. We have encountered this problem before when working with forest gap 521 
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simulators (e.g., SORTIE; Pacala et al., 1996), and we hypothesize two possible causes. First, 522 

although LM3-PPA assumes constant size- and density-independent death rates of canopy trees 523 

(aside from carbon starvation, which rarely occurred for canopy trees in the simulations 524 

presented here), many studies have documented increased mortality as trees become very large 525 

(Runkle, 2000). Xu et al. (2012) found that increases in mortality rate could explain the declining 526 

rate of biomass accumulation in an old growth temperate forest. We thus compared H0, the 527 

baseline LM3-PPA model with constant canopy tree mortality rates, with H1, the same model 528 

with upper-canopy mortality rates that increase with tree size as shown in Fig. 1a. Second, the 529 

allometry and respiration assumptions in LM3-PPA predict that a canopy tree’s DBH growth rate 530 

increases monotonically to an asymptote as a tree becomes large. This prediction is supported by 531 

dendrochronological studies for the first one or two centuries, but actual growth rates 532 

subsequently decline in very old trees (Sillett et al., 2010). We compared output from H0 and H2, 533 

in which DBH growth rates decline for very old trees, as reported in dendrochronological studies. 534 

Rather than prescribing an arbitrary growth curve, the DBH growth rate decline results from a 535 

modified crown-area allometry in H2, in which crown area becomes constant after a tree reaches 536 

0.8 m in DBH (C. Canham, unpublished data), rather than continuing to increase with diameter 537 

according to the crown area allometry in H0 (see Eq 4). The modified allometry in H2 results in 538 

declining DBH growth rate for DBH > 0.8 m because leaf area (and thus potential C gain) 539 

plateaus. All else equal, this causes sapwood volume growth to plateau, which causes decreasing 540 

diameter growth (because the volume is “stretched” around a growing circumference and along 541 

an increasing height).  542 

Finally, the mathematical approximation behind the PPA leads to a sharp separation 543 

between canopy and understory; i.e., a single height at any one time separating all canopy trees 544 
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from all understory trees in a given stand (or subgrid cell tile in LM3-PPA). The PPA thus 545 

predicts that old growth recruitment into the canopy comes exclusively from saplings that have 546 

spent a long time in the understory (advance regeneration). While this is true for shade tolerant 547 

species, it is not true for pioneers that exploit large gaps in old growth forests. Section 5 of 548 

Appendix A describes how the subgrid-scale tiling scheme in LM3-PPA could be used to 549 

simulate gap dynamics (which were not implemented in the simulations presented in this paper). 550 

We suspect that this change will be necessary to maintain successional diversity indefinitely in 551 

old growth, but we do not expect that gap phase dynamics would substantially affect old growth 552 

carbon storage because most trees in old growth belong to shade tolerant species. To check this 553 

supposition, we compared runs of the baseline model with identical runs of H3 – a model in 554 

which understory cohorts were drawn at random (independent of size) to fill space in the canopy 555 

opened by canopy tree mortality. Comparisons between the three alternative models (H1-H3) 556 

and the baseline model (H0) were based on simulations with one species (sugar maple). 557 

 558 

2.2.3 Comparison with a standard biogeochemical model  559 

To explore how incorporating individual-level competition and successional diversity into land 560 

models affects carbon accumulation in vegetation and soil, we compared the LM3-PPA 561 

predictions to those of a CENTURY-like standard biogeochemical (BGC) model (Fig. S1b) as 562 

described in Parton et al. (1987) and Luo et al. (1999). Like most current DGVMs and land 563 

surface models, the standard BGC model that we implemented was formulated at the level of the 564 

grid cell without explicitly scaling from individual plants to ecosystem-level dynamics. In such 565 

models, photosynthesis and respiration submodels simulate the net influx of C (NPP) at the level 566 

of the grid cell. NPP is then allocated to grid-cell level plant C pools and, after senescence, plant 567 
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carbon moves through litter and soil pools before returning to the atmosphere. Carbon allocation 568 

coefficients and residence times in the various pools determine total carbon storage (Weng and 569 

Luo, 2011). We chose this BGC model because all of its C pools – leaves, fine roots, sapwood, 570 

heartwood, labile soil carbon, and recalcitrant soil carbon – can be precisely matched to 571 

quantities predicted by LM3-PPA. The BGC model simulations were forced with the NPP 572 

produced by the single-species runs of  LM3-PPA, and so differed only in the patterns of 573 

allocation and residence times assumed in the standard BGC model and those that emerged by 574 

aggregating finer-scale patterns in LM3-PPA.  575 

 576 

2.3 Competitive allocation strategies at different CO2 concentrations 577 

A competitively optimal allocation strategy is the one that can competitively exclude all others. 578 

This can be significantly different from the allocation strategy that most effectively uses 579 

available resources (i.e., the optimal monoculture strategy). The analytical model derived by 580 

Farrior et al. (2013; in revision) predicts that increased leaf-level water use efficiency from CO2 581 

fertilization should cause a shift in the competitively optimal allocation strategy among fine roots, 582 

leaves, and wood, which in turn causes the changes in carbon storage described in the Discussion 583 

of this paper. We simulated competition among red maple variants with different target fine root 584 

biomasses under each of two atmospheric CO2 concentrations [CO2] in LM3-PPA: 280 ppm for 585 

preindustrial and 560 ppm for doubled [CO2]. All runs shared the same meteorological forcing. 586 

All red maple variants shared all parameters except for the ratio of fine root to leaf surface area 587 

(φRL) for canopy individuals. Because the target crown LAI of a canopy tree (lC
*
) was constant 588 

across red maple variants – and because the amount of carbon allocated to wood depends on the 589 

amount of NSC not taken by leaves and fine roots (see Appendix A) – variation in canopy-tree 590 
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φRL among variants had little effect on leaf allocation but strong effects on fine-root and wood 591 

allocation. Across different monocultures that differ only in φRL, fine-root allocation should 592 

increase and wood allocation should decrease with increasing φRL, at least in the region of 593 

parameter space near the competitive optimum. Note that this fine-root vs. wood allocational 594 

tradeoff is not necessarily apparent when comparing allocational types in competition with each 595 

other. For example, relatively high φRL may offer a competitive advantage if trees are water-596 

limited, which could increase carbon gain and fractional wood allocation compared to less 597 

competitive types with lower values of φRL that have little NSC available for wood growth. 598 

We performed three sets of experiments with different canopy-tree variants with φRL 599 

ranging from 0.5 to 1.0 (understory φRL was 0.8 for all variants). Each experiment was performed 600 

at both preindustrial and doubled [CO2] (Table 3): 601 

(1) Polyculture runs were initiated with five variants (φRL = 0.5, 0.6, 0.7, 0.8 and 0.9) all having 602 

the same initial population density (250 seedlings ha
-1

). Polyculture runs simulated competition 603 

among the five variants for 500 years to identify the most competitive strategy. 604 

(2) Monoculture runs were performed for each of the five above variants (φRL = 0.5, 0.6, 0.7, 605 

0.8 and 0.9) to identify the most productive strategy in monoculture. Each run simulated the 606 

dynamics of a single variant for 500 years. 607 

(3) Invasion runs were performed for six pairwise combinations of four variants (φRL =  0.6, 0.7, 608 

0.9, and 1.0) (see Table 3 for details of the combinations at the two [CO2] levels) to confirm the 609 

identity of the most competitive strategy identified in the polyculture runs. Each invasion run 610 

included two different variants: a “resident” variant and an “invader” variant. We first ran the 611 

model with only the resident present for 400 years, which was long enough for it to come close 612 

to an equilibrium state. At the beginning of year 401, we converted 5% of the population in each 613 
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resident cohort into a new invader cohort by changing φRL. We then ran the model for a further 614 

240 years to get the DBH growth rates of invaders. To determine if a φRL = X was an 615 

evolutionarily stable strategy (ESS, a strategy that cannot be invaded when in monoculture) we 616 

examined runs in which the resident had φRL = X and the invader had φRL = X ± δ. We also 617 

verified that the ESSs at the two CO2 concentrations are convergence stable (Geritz et al., 1998) 618 

by examining runs in which the resident had φRL = X ± δ (with δ = 0.1 or 0.2) and the invader 619 

had φRL = X. 620 

 621 

3 Results 622 

3.1 GPP, NPP, tree growth rates and abundances  623 

Below, we focus on annual to successional time scales because diurnal and seasonal patterns are 624 

caused by the structure of the biophysical parameterizations in LM3-PPA (Appendix A and B), 625 

which are identical to those in LM3, have been under development for more than a decade, and 626 

are reviewed elsewhere (Shevliakova et al., 2009; Milly et al., 2014). Predicted diurnal and 627 

seasonal patterns of GPP, NPP and evapotranspiration by the model are shown in Fig. S2 in 628 

Supplemental materials. 629 

The model-simulated annual GPP and NPP for the Willow Creek Ameriflux site are close 630 

to estimates from eddy covariance and biometric data collected at the same site (Fig. 2a; Desai et 631 

al., 2008; Curtis et al., 2002). NPP in the model was 48% of GPP at the approximate steady state. 632 

The slight decline of GPP after forest closure was caused by self-thinning (Fig. S3a). Model 633 

predictions in Fig. 2 are taken from the monoculture sugar maple runs, but the three-species runs 634 

predicted very similar values after the first 20 years (Fig. S4).  635 
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The allocation of NPP to leaves, fine roots, and woody biomass predicted by LM3-PPA is 636 

roughly similar to the measurements in Curtis et al. (2002), with the allocation to wood being too 637 

high, and the allocation to leaves and roots too low (Fig. 2b). We did not tune the model to better 638 

predict the allocation data at Willow Creek, in part because the difference between the model and 639 

data could be caused by the fact that we simulated only one or three of the ~10 species at Willow 640 

Creek. Because the allocation scheme assumes that NSC is allocated preferentially to the leaf 641 

and fine root targets, interannual variation of sapwood and seed production is greater than that of 642 

leaves and fine roots (Fig. 2b).  643 

DBH growth rates in the canopy layer are much higher than in the understory (Fig. 2c) 644 

because of shading (Fig. S2a in Supplemental materials). The predicted DBH growth rates of 645 

upper-canopy trees agree well with those derived from FIA data (Zhang et al., 2014) for all three 646 

species (Fig. 3). Predicted understory growth rates for sugar maple also agree well with estimates 647 

from FIA data, but predicted understory growth rates for red maple and trembling aspen are 648 

lower than estimates from FIA data (Fig. 3).  649 

With initial population densities taken from early-successional FIA plots (Table C4), the 650 

LM3-PPA model correctly predicts the subsequent successional turnover of trembling aspen, red 651 

maple, and sugar maple (compare Fig. 4a and b). The transition from trembling aspen to sugar 652 

maple dominance is caused primarily by low survivorship of aspen in the understory, which was 653 

due to a combination of growth suppression from shading (which keeps cohorts in small size 654 

classes, where understory mortality rates are highest; Fig. 1a) and aspen’s relatively high 655 

background rate of understory mortality (Table 1 and Eq 8). Mortality due to carbon starvation 656 

rarely occurred in our simulations, although this may simply reflect our parameterization of 657 

mortality, which attributes high rates of mortality in small size classes to “background mortality” 658 
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(Fig. 1a), with “starvation mortality” occurring in our model only if NSCs drop to zero. The 659 

timing of the transition from aspen to sugar maple is set primarily by the longevity of aspen 660 

canopy trees. 661 

The model-predicted size distributions of both numbers and biomass for stands at 40-60 662 

years and 80-100 years are also qualitatively similar to FIA data (Fig. 5), despite significant 663 

quantitative differences in tree numbers. These differences are likely to be caused primarily by a 664 

combination of model error, the fact that our simulations included only a subset of species in the 665 

FIA plots, and differences between the initial conditions of early successional plots today (which 666 

were used to initialize the simulations) and those 40-100 years ago (when succession began in 667 

the 40-100 year-old FIA plots).  668 

The number of small trees in the baseline LM3-PPA model (H0; see Fig. 1 and Table 2) 669 

is significantly reduced near the late-successional equilibrium (Fig. 6a; mean model state from 670 

600-1000 years). Moreover, the size distribution predicted for these old growth forests has 671 

considerable biomass in trees larger than 1.2 m in diameter, which is unrealistic for these species 672 

(Fig. 6c). The alternative model H1 (high mortality rate for large trees) removes the 673 

unrealistically large trees. Like H1, cessation of crown area expansion at high DBH (H2) reduces 674 

the predicted number of very large trees. H2 also predicts a decline in DBH growth rate as trees 675 

become very large (Fig. S6 in Supplemental materials), which is consistent with observations 676 

(Sillett et al., 2010; Lorimer et al., 1999). The random selection of understory trees to fill canopy 677 

layer gaps (H3) has little impact on size and biomass distributions (Fig. 6). GPP and NPP (Fig. 678 

S7a), and allocation of NPP to leaves, fine roots, and sapwood (Fig. S7b) simulated with the 679 

three alternative assumptions were close to those simulated by the default model (H0). The 680 

assumption of high mortality rates of very large trees (H1) led to reduced woody biomass since 681 
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this assumption increased the mean turnover rate of wood, but it did not significantly affect 682 

equilibrium soil C. Assumptions H2 and H3 had little impact on C storage in wood or in the soil 683 

(Fig. S7c).  684 

 685 

3.2 Effects of vegetation dynamics on vegetation and soil C storage 686 

Comparisons of the predictions of LM3-PPA to those of the standard BGC model (Fig. S1b), 687 

forced with the same GPP and NPP from LM3-PPA, highlight the effects of successional 688 

diversity on carbon storage. The single species runs of LM3-PPA include a dominant species for 689 

the region (sugar maple), which is dominant precisely because it is a long-lived late-successional 690 

species (Burns and Honkala, 1990). Parameters for the standard BGC model were chosen to be 691 

consistent with the one-species LM3-PPA model, and so, as expected, the BGC model and the 692 

single-species runs of LM3-PPA predict similar patterns of biomass and soil carbon storage (Fig. 693 

7a and b).  694 

In contrast, the three-species runs of LM3-PPA are dominated early in succession by a 695 

pioneer species (trembling aspen), which is short-lived, perhaps because its low wood density 696 

trades resistance to disease and windthrow for rapid height growth (Burns and Honkala, 1990). 697 

As a result, three-species runs of LM3-PPA predict lower carbon storage in the woody biomass 698 

C pool (Fig. 7a) and higher soil carbon (Fig. 7b) early in succession than the standard BGC 699 

model or the single-species runs of LM3-PPA. The woody biomass C pool with one species 700 

needs ~300 years to reach equilibrium, whereas the three-species runs needed more than 500 701 

years (Fig. 7a).   702 

 In the standard BGC model, the turnover rate of the woody biomass carbon pool was set 703 

as the mean mortality rate of sugar maple trees in the canopy layer (0.012 yr
-1

). In contrast, in the 704 
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LM3-PPA simulation with one species, there was a peak in the biomass turnover rate because of 705 

the self-thinning of trees that had been pushed into the understory after canopy closure (red 706 

dashed line in Fig. 7c). In the LM3-PPA simulation with three species, the biomass turnover 707 

rates were much higher early in succession than in the single-species run because the mortality 708 

rates of aspen, and to a lesser extent red maple, are higher than that of sugar maple (green dashed 709 

line in Fig. 7c). The peak in the biomass turnover rate in the three-species run early in succession 710 

is caused by self-thinning following canopy closure, which occurs at a younger stand age than in 711 

the single-species run. As the models approached their equilibrium states, the carbon in biomass 712 

and soil pools converged because the inputs (NPP) and the residence times in biomass and soil C 713 

pools converged (Fig. 7). 714 

 715 

3.3 Competitively optimal allocation strategy at different atmospheric CO2 levels 716 

After 500 years of competition among five allocation strategies of red maple (with the ratio of 717 

crown LAI to fine root area, φRL, ranging from 0.5 to 0.9 for upper-canopy trees) in the 718 

“polyculture runs”, the variant with φRL=0.7 had the highest basal area at preindustrial [CO2] 719 

(280 ppm), whereas φRL=0.9 had the highest basal area at doubled [CO2] (560 ppm) (Fig. 8). 720 

These results suggest that φRL=0.7 and φRL=0.9 are approximate competitive optima at 280 ppm 721 

and 560 ppm, respectively. The precision of the approximations is limited by the resolution of 722 

the experiments (five discrete values of φRL). 723 

These approximate competitive optima were confirmed to be approximate ESSs by two-724 

species “invasion runs” in which an equilibrium monoculture of one variant (a species with a 725 

given value of φRL) competed against an invading alternative variant (a species with a different 726 

value of φRL) that was initially rare. At [CO2] = 280 ppm, φRL=0.7 was the competitively optimal 727 
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strategy since it could not be invaded by any other variant and could invade all other variants 728 

(i.e., the convergence-stable ESS; Geritz et al., 1998); and at [CO2] = 560 ppm φRL=0.9 was the 729 

competitively optimal strategy (Fig. 9). 730 

Using the results in Farrior et al. (2013; in revision), it is possible to show mathematically 731 

that − for the case considered here, where understory traits are constant across species/PFTs – the 732 

competitive optimum (ESS) reduces to the strategy with the highest woody NPP when in the 733 

canopy and when in competition with the other strategies. Note also, that species rankings of 734 

lifetime reproductive success, woody NPP, and DBH growth rate are equivalent here because all 735 

variants share the same other vital rates, wood density, and stem allometry. In the polyculture 736 

simulations, the strategy with the highest woody NPP or DBH growth rate in the canopy (over 737 

the last 60 simulation years) was φRL=0.7 at preindustrial [CO2], and φRL=0.9 at doubled [CO2] 738 

(Fig. 10), which further confirms the CO2-induced allocational shift implied by the results 739 

described above. The mechanisms causing this allocational shift under elevated [CO2] are 740 

explored in detail in the Discussion. Here, we simply note that these results imply that woody 741 

carbon sinks caused by elevated [CO2] will be reduced by competitively optimal shifts in 742 

allocation away from long-lived woody tissues and toward short-lived fine roots, either because 743 

of an evolved plastic response or because a species or genotype with a larger φRL will become 744 

competitively dominant under elevated [CO2] (Farrior et al., 2013).  745 

In contrast, among the “monoculture runs”, the strategies with the highest canopy woody 746 

NPP and DBH growth rates were φRL=0.6 and φRL=0.7 for preindustrial and doubled [CO2], 747 

respectively (Fig. 10). Both of these monoculture optima have higher allocation to wood and less 748 

allocation to fine roots than monocultures of the corresponding competitive optima (φRL=0.7 and 749 

φRL=0.9 at preindustrial and doubled [CO2], respectively). Note that in Fig. 10, competitively 750 
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optimal growth rates are sometimes higher than those for the monoculture optima. This is 751 

because the competitively optimal growth rates in Fig. 10 are from polyculture runs, where 752 

individuals of the most competitive strategy have access to more water than in a monoculture of 753 

their own strategy; i.e., in polyculture, individuals of the most competitive strategy compete 754 

against individuals whose fine-root density is lower than that of the most competitive strategy.  755 

To understand how differences between the monoculture and competitive optima arise, 756 

consider the following example. Under preindustrial [CO2], φRL=0.7 had higher DBH growth rate 757 

than φRL=0.6 when invading a monoculture in which light and water availabilities were 758 

determined primarily by φRL=0.6. For this reason, the model predicts that φRL=0.7 will 759 

competitively exclude φRL=0.6, even though it will have a lower equilibrium growth rate once it 760 

has taken over the stand (because φRL=0.7 has a lower growth rate in conditions created by 761 

φRL=0.7 than φRL=0.6 has in conditions created by φRL=0.6). These differences between the 762 

competitive (polyculture) and non-competitive (monoculture) optima illustrate that plant 763 

strategies predicted by naïve (e.g., productivity-maximizing) optimization algorithms are often at 764 

odds with predictions from game-theoretic (ESS) competitive optimization (McNickle and 765 

Dybzinski, 2013; Farrior 2014).  766 

Fig. 11 contains additional results that will be used in the Discussion to explain the 767 

predicted allocational shift caused by elevated [CO2]. It reports the percentage difference 768 

between two runs of a monoculture of φRL=0.7 at [CO2]=560ppm and at preindustrial [CO2] for 769 

each of five quantities. A doubling of [CO2] increased the fraction of each growing season in 770 

which canopy trees were water-saturated (defined as the fraction of days during the growing 771 

season in which water supply was greater than or equal to demand at 2:00 p.m. over the final 60 772 

years of a 500-year run) by 21%. The water use efficiency (WUE; GPP per unit transpiration) of 773 
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canopy trees during the water-limited period (days in which water supply was less than demand 774 

at 2:00 p.m.) increased by 79%. The change in the length of the water-saturated period is 775 

relatively small (21% increase, compared to a 79% increase in WUE during the water-limited 776 

period) because of biophysical feedbacks in the model. Specifically, although a doubling of [CO2] 777 

decreased transpiration by 4.55% for the whole tile, this change was offset by a 1.78% increase 778 

in the sum of evaporation and runoff. In absolute terms, the decrease in transpiration was 10.1 779 

mm/yr, while the increase in evaporation plus runoff was 10.2 mm/year, which canceled the 780 

effect of increased [CO2] on mean growing-season soil moisture (152.49 mm at preindustrial 781 

[CO2] and 152.91 mm at doubled [CO2]).  782 

 783 

4 Discussion 784 

4.1 Overview 785 

In this paper, we describe the biophysical coupling between the height-structured PPA forest 786 

dynamics model and the GFDL LM3 land model. The new model, LM3-PPA, was developed for 787 

future Earth system model (ESM) simulations in which vegetation dynamics are based on 788 

individual-level resource competition among size-structured cohorts of plants belonging to 789 

multiple species or PFTs. Our paper describes (1) the details of the biophysical coupling between 790 

LM3 and PPA, (2) preliminary model evaluation for a single site in the northeastern USA, (3) 791 

simulation experiments involving multiple allocational types at different atmospheric CO2 792 

concentrations, and (4) an interpretation of these competition experiments based on a 793 

mathematically tractable version of the PPA model. LM3-PPA is among the first land models to 794 

represent individual-level resource competition − including height-structured competition for 795 

light – and is the only land model to date that is closely tied to a mathematically tractable forest 796 
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dynamics model, which affords a greater level of understanding of land model behavior than 797 

would be possible otherwise. Our paper is novel because we present novel land-model 798 

predictions of how resource competition affects allocation to wood (a long-lived C pool) vs. fine 799 

roots (a short-lived C pool) at different CO2 levels, and because we show how these land-model 800 

predictions can be understood in the context of analytical predictions derived from a 801 

mathematically tractable version of the PPA model, as explained in Section 4.5 below.  802 

 803 

4.2 Model evaluation 804 

The comparisons between the model’s predictions and data at various scales (Figs. 2-5, and Fig. 805 

S5 in Supplemental materials) are intended as an initial evaluation and validation of LM3-PPA. 806 

The comparisons show that the model produces reasonable fast time-scale carbon and water 807 

dynamics (Supplemental materials) as well as reasonable annual values for GPP and NPP (Fig. 808 

2). The model also makes realistic predictions of individual growth rates, population structure 809 

(Fig. 5), and forest succession (Fig. 4). These comparisons must be evaluated in light of the 810 

tuning of the physiological model to produce observed NPP, the tuning of a single parameter 811 

affecting diameter growth, and the tuning of the elevated mortality of seedlings and small 812 

saplings.  813 

The model formulation predicts tree- and ecosystem-level allocation patterns that are 814 

supported by a number of empirical studies. In LM3-PPA, the ratio of NPP to GPP and the 815 

fraction of NPP allocated to the three main plant structural C pools (foliate, fine roots, and wood) 816 

are not assumed to directly depend on tree size and stand age. Nonetheless, foliage and fine root 817 

biomasses equilibrate in the model more than an order of magnitude more quickly than woody 818 

biomass. Experimental studies have indeed found that leaves and fine roots reach equilibrium 819 
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quickly, long before total biomass reaches equilibrium (Goulden et al., 2011). Studies have also 820 

found that the ratio of autotrophic respiration to GPP is independent of age (Ryan et al., 2004), 821 

which is consistent with our model. Note that this is contrary to the expectation that maintenance 822 

respiration of stems should increase with tree size if it is proportional to sapwood biomass. 823 

Instead, LM3-PPA assumes that stem maintenance respiration is proportional to crown area, 824 

which – like fine root surface area – is assumed to be proportional to DBH
1.5

 (see Dybzinski et 825 

al., 2011; Farrior et al., 2013). This is consistent with the finding that bole respiration per unit of 826 

biomass decreases with age (Ryan et al., 2004). Also, it is possible to show that if NPP and 827 

crown area are proportional to DBH
1.5

, and both DBH growth rate and fractional allocation of 828 

NPP to wood are size-independent, then wood biomass should be proportional to DBH
2.5

, as it is 829 

in the model and in empirical reports (e.g., Jenkins et al., 2003; Wang, 2006).  830 

Because LM3-PPA is based on macroscopic equations from gap simulators (Strigul et al., 831 

2008), forest inventory data can also be used to evaluate the model. LM3-PPA was tuned to 832 

reproduce canopy tree growth rates for three tree species near Willow Creek, but was not tuned 833 

to fit understory growth rates, which therefore provide useful tests of model performance. 834 

Observed understory growth rates for the two least shade-tolerant species were under-predicted 835 

(Fig. 3; note that uncertainties in mean growth rates are much smaller than the variances in the 836 

growth observations shown by the error bars in Fig. 3). One likely reason for this model-data 837 

discrepancy is that shade intolerant species such as trembling aspen tend to experience darker 838 

understory conditions in our simulations (which assume homogeneous light conditions within 839 

each understory layer) than in real forests, where saplings of shade intolerant species tend to 840 

occur in unusually bright understory locations (Lichstein et al., 2010; Davies, 2001; Clark and 841 

Clark, 1992; Poorter and Arets, 2003).  842 
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LM3-PPA also predicts the observed successional turnover of trembling aspen, red maple 843 

and sugar maple and size structure in the forests of the northern Lake States, USA (Figs 4 and 5; 844 

see also Woods, 2000; Purves et al., 2008). The model’s ability to make detailed 100-year 845 

predictions that are consistent with data from successional chronosequences is not surprising 846 

because forest simulators have been succeeding in this type of prediction for decades. However, 847 

it does reaffirm the value of constructing a DGVM from the scaling algorithms in forest gap 848 

simulators.  849 

Although LM3-PPA successfully captures the main features of secondary forest 850 

succession in the northern Lake States, USA (as does the PPA model; Purves et al. 2008), we 851 

would not expect LM3-PPA to maintain successional diversity indefinitely in old-growth forests. 852 

This is because LM3-PPA (like the PPA model) does not represent the gap-scale disturbances 853 

that shade-intolerant species require for persistence in old-growth. Future implementations of 854 

LM3-PPA may include the gap-dynamics approximation from the ED model (Moorcroft et al., 855 

2001), which should allow successional diversity to be maintained in old-growth, and which may 856 

also capture other forms of spatial heterogeneity (e.g., the presence of emergent trees in some 857 

tropical forests). As explained in Section 5 of Appendix A, the ED gap-age approximation is 858 

already built into the LM3-PPA model code (but was not used in the simulations presented here). 859 

 860 

4.3 Alternative assumptions about effects of size and age on growth and mortality.  861 

In the baseline LM3-PPA model (H0 in Table 2), canopy tree mortality rates are constant and 862 

independent of tree size and age, and canopy tree diameter growth rates remain roughly constant 863 

after approaching an asymptote when trees are still small (see text below Eq. 17). As a result, the 864 

model predicts unrealistically large trees in old forests (Fig. 6). Although this is a common 865 
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problem of forest simulators, it is often not very important in regions of the world where little 866 

old-growth remains (e.g., the temperate zone) or where stand-replacing natural disturbances are 867 

relatively common (e.g., fire-prone boreal forests). We explored alternative assumptions about 868 

growth and death rates of very large trees in this paper, primarily because LM3-PPA will 869 

ultimately need to perform in regions, such as the wet tropics, where old growth forests are more 870 

common. Of the hypotheses examined (H0-H3), size-dependent decrease in the exponent relating 871 

crown area and diameter (H2) provides the best mix of empirical support and ability to produce 872 

realistic size distributions. Note, however, that none of the alternative assumptions about large 873 

trees has a large effect on predicted ecosystem-level carbon fluxes or storage in 600-1000 year-874 

old forests that are at quasi-equilibrium (Fig. S7). 875 

 876 

4.4 Effects of vegetation structure and successional diversity on C dynamics  877 

For the tests that we have applied to date, the extra structure and diversity in LM3-PPA has 878 

relatively little effect on diurnal patterns of fluxes or annual NPP and GPP, but does affect long-879 

term carbon accumulation. The successional effects of size structure are best seen in the three-880 

species run in Fig. 7c (green dashed line), where the biomass turnover rate first climbs by ~30% 881 

and then falls by more than a factor of 3 over the first 200 years of succession because of the 882 

successional transition from aspen, which has a high mortality rate, to sugar maple, which has a 883 

low mortality rate. As a result, carbon accumulation in the three-species run of LM3-PPA is 884 

significantly lower than that in the single-species run for more than 200 years (Fig. 7a).  885 

The woody carbon accumulation rate after t years of succession in a simple 886 

biogeochemical box model is approximately 
t

wNPP   e (where w is the fraction of NPP 887 

allocated to wood and μ is the annual tree mortality rate) (Weng et al., 2012). Thus, the biomass 888 
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growth rate in the standard BGC model exponentially decays over time to yield the asymptotic 889 

biomass accumulation curve in Fig. 7a (solid line). In contrast, in the PPA, an even-aged cohort 890 

of shade-intolerant saplings will self-thin so that the sum of their crown areas equals the area of 891 

the disturbance they are competing to fill. That is, the number of individuals in the cohort, n(t), 892 

tends to be proportional to the reciprocal of an individual’s crown area, ACR(D(t)). Since total 893 

biomass is simply individual biomass, b(D(t)), multiplied by n(t), total stem biomass tends to be 894 

proportional to b(D(t))/ACR(D(t)), which − given the allometric constants for wood biomass, 895 

S(D(t)), and ACR(D(t)) − is simply proportional to diameter, D(t) (see Eq. 4). Finally, because 896 

diameter grows at an approximately constant rate after saplings reach ~10 cm in diameter 897 

(around year 30 in Fig. 2c), LM3-PPA predicts linear biomass growth for an extended period 898 

when shade intolerant species are present, like the green dashed line in Fig. 7a, and as observed 899 

in real chronosequences (Yang et al., 2011) . 900 

 901 

4.5 Competitive optimization and ecosystem C storage 902 

When [CO2] doubles from 280 to 560 ppm, the most competitive strategy in LM3-PPA shifts 903 

toward trees with greater allocation to fine roots and less allocation to wood (Figs. 8-10). This is 904 

important because it would reduce the carbon sink caused by CO2 fertilization. Thus, competitive 905 

optimization provides a way to discover carbon cycle feedbacks that involve changes in 906 

ecosystem-level allocation. 907 

Elevated [CO2] leads to greater leaf-level or intrinsic water use-efficiency (WUE; carbon 908 

fixation per unit transpiration) in LM3-PPA, as observed in CO2 enrichment experiments (Norby 909 

and Zak, 2011). Higher leaf-level WUE in LM3-PPA increases leaf productivity during the 910 

water-limited period of the growing season, while also decreasing the proportion of the growing 911 
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season that plants spend in water limitation. These two responses to increased [CO2] have 912 

opposing effects on the most competitive fine-root allocation strategy (i.e., the evolutionarily 913 

stable strategy, ESS; Farrior et al., 2013; Farrior et al., in revision). ESS root allocation increases 914 

with increasing productivity (due to high water availability or high water use efficiency) during 915 

the water-limited period (up until the point where plants are water-saturated, and thus no longer 916 

water-limited) for competitive reasons related to “the tragedy of the commons” for water use in 917 

plants (Gersani et al., 2001; Zea-Cabrera et al., 2006; Farrior et al., 2013). In contrast, ESS root 918 

allocation decreases as the length of the water-saturated period increases because roots represent 919 

a respiratory sink when plants are water saturated. The net effect of an increase in [CO2] on the 920 

ESS depends on the quantitative balance between these two opposing forces (Farrior et al., in 921 

revision), and thus depends on the full suite of biophysical feedbacks present in a model like 922 

LM3-PPA that must exchange matter, energy and momentum with the atmosphere. In the case 923 

study presented here, increased evaporation and runoff largely compensate for reduced 924 

transpiration under elevated [CO2], so that [CO2] has little effect on  mean soil moisture or the 925 

total number of hours each growing season during which plants are water saturated (Fig. 11). In 926 

contrast, increased evaporation and runoff under elevated [CO2] do not attenuate the expected 927 

increase in leaf productivity (due to increased WUE) during the period when water is limiting. 928 

The upshot, in our case study, is that of the two opposing forces on ESS fine-root allocation – (1) 929 

a decrease in root allocation due to an increased period of water-saturation, vs. (2) an increase in 930 

root allocation due to increased leaf productivity during the water-limited period − the latter 931 

effect dominates, and the most competitive strategy shifts to one with greater allocation to fine 932 

roots (Figs. 8-10). This result has now focused our attention on the strength of the biophysical 933 

feedbacks in LM3 and LM3-PPA, which might be too strong. The important point here is that we 934 
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know what to focus on only because of the understanding afforded by the connection between 935 

LM3-PPA and the analytically tractable PPA model (Farrior et al., 2013; Farrior et al., in 936 

revision). We understand the predicted feedback in LM3-PPA involving [CO2], water, fine-root 937 

allocation and carbon storage only because the model may be interrogated analytically.  938 

 939 

4.6 Future challenges 940 

In this paper, we do not provide parameter values needed to implement LM3-PPA at the global 941 

scale using PFTs or more flexible trait-based approaches (e.g., Scheiter et al., 2013; 942 

Wullschleger et al., 2014). The PPA has previously been applied to other temperate forest types 943 

that include conifers (e.g., Purves et al., 2008; Strigul et al., 2008), as well as tropical forests 944 

with more than two canopy layers (Bohlman and Pacala, 2012); and we are currently developing 945 

parameter values for non-tree vegetation types, such as shrubs and grasses (Weng et al., 946 

unpublished). The formalism we describe in this paper requires no structural changes to work in 947 

non-forested ecosystems, including those with open canopies or with no competition for light 948 

(i.e., because of severe water limitation). Furthermore, as explained in Appendix A, the current 949 

version of the LM3-PPA code can already accommodate land use change, secondary forest 950 

management, stand-replacing disturbance, and the ED approximation for canopy gap dynamics, 951 

which is required to maintain successional diversity in old growth forests with low rates of stand-952 

replacing disturbance. In summary, LM3-PPA can, in principle, be extended to global-scale 953 

simulations in fully-coupled ESM experiments with little modification to the processes already 954 

encoded in the model.  955 

 In addition to developing parameterizations for global-scale applications, another 956 

important area for future work is to better understand the transient dynamics of vegetation 957 



44 
 

response to global change. Our results suggest potentially important effects of allocational shifts, 958 

driven by competition among plants for light and water under elevated CO2, on terrestrial carbon 959 

balance. However, our competition experiments were designed only to identify the eventual 960 

outcome of competition under a given set of conditions, and are therefore agnostic about the rate 961 

and pathway of response. In reality, allocational shifts could be potentially rapid (e.g., tracking 962 

environmental conditions on an annual time scale) if individual plasticity were sufficient 963 

(Franklin et al., 2012), would occur over intermediate time scales (e.g., decadal) if allocational 964 

shifts required shifts in relative abundances of species already present within a landscape, and 965 

would be even slower if allocational shifts required long-distance migration by dispersal-limited 966 

species (Lischke et al., 2006; Snell et al., 2014) and/or the evolution of novel types (Valladares et 967 

al., 2007). Empirical evidence suggests that intraspecific variation in allocation is often sufficient 968 

to accommodate the shift in competitively optimal allocation predicted by LM3-PPA under a 969 

doubling of atmospheric CO2 (R. Dybzinski, unpublished analysis), and Free-air CO2 970 

Enrichment (FACE) experiments demonstrate considerable individual plasticity in allocation to 971 

leaves, wood, and fine roots (Jackson et al., 2009; McCarthy et al., 2010; Norby and Zak, 2011; 972 

Iversen et al., 2012). However, there are clearly limits to plasticity (Valladares et al., 2007), and 973 

it is unknown if the plastic responses of individuals to environmental change (which evolved 974 

over the last ~20 million years under relatively low atmospheric CO2 concentrations; Zachos et 975 

al., 2001) would be the competitively optimal responses under future novel conditions. A key 976 

challenge, then, is to better understand the transient dynamics that ecosystems will undergo as 977 

they approach competitive equilibria from different initial conditions. 978 

 979 
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5 Conclusions   980 

We present a model, LM3-PPA, which simulates vegetation dynamics and biogeochemical 981 

processes by explicitly scaling from individual plants to ecosystems using the Perfect Plasticity 982 

Approximation (PPA). The model is formulated to be the land surface component of an Earth 983 

System Model. It includes height-structured competition for light and root allocation-dependent 984 

competition for below-ground resources (water in this study). The partitioning of space by plant 985 

crowns following the rules of the PPA to form canopy layers simplifies the simulation of light 986 

competition among trees and allows the LM3-PPA model to predict forest succession with an 987 

explicit description of the size distributions of individuals within each species or functional type, 988 

in addition to the predictions of  carbon fluxes of an ecosystem (GPP, NPP, and Ra), the 989 

dynamics of soil organic matter and decomposition (heterotrophic respiration, Rh), 990 

evapotranspiration, and soil hydrology. Because of the tractability of the PPA, the coupled LM3-991 

PPA model is computationally efficient (relative to existing alternatives to modeling height-992 

structured, individual-level competition within ESMs) and retains close linkages to 993 

mathematically tractable special cases (e.g., constant climate).  994 

Comparisons of model simulations with data show that the model makes reasonable 995 

predictions for diurnal and annual carbon and water fluxes, growth rates of individual trees, and 996 

population sizes and species turnover during succession. The model marginally under-predicts 997 

the growth rates of shade intolerant species in the understory and seriously over-predicts of 998 

abundances of very large trees in old growth. The overestimate of large trees can be corrected by 999 

adding either size specific mortality or size specific crown area allometry, both of which are 1000 

supported by some studies. The model also shows that within-functional-type successional 1001 

diversity has significant ecosystem-level effects at time scales up to a century or more. Finally, 1002 
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simulation experiments show that the dominant competitor’s root-leaf-stem allocation pattern 1003 

shifts as a function of the atmospheric CO2 concentration and predict that carbon sinks caused by 1004 

CO2 fertilization in forests limited by light and water will be down-regulated if allocation tracks 1005 

changes in the competitive optimum. These results indicate that the ecological strategies 1006 

functioning at the scales of individuals and communities, which are usually missing in ESMs, 1007 

have strong impacts on biogeochemical processes and their responses to climate changes. 1008 

The implementation of the model in this paper is for temperate broadleaved forest trees, 1009 

but the formulation of the model is general and can be expanded to include other growth forms 1010 

and physiologies. The model can accommodate an arbitrary number of functional types, species 1011 

and/or genotypes in competition with one another across the terrestrial regions of the globe. 1012 
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Parameter  Definition and unit 

Trembling aspen 

(Populus 

tremuloides) 

Sugar maple 

(Acer saccharum) 

Red maple 

(Acer rubrum) 

N0
*
 

Initial density 

(individuals ha
-1

) 
1500 200 70 

Λ taper factor of trees 0.65 0.65 0.65 

αZ 
Scaling parameter of 

tree height with DBH 
36.01 36.41 36.41 

αC 
Scaling parameter of 

crown area with DBH 
140 150 150 

φCSA 

Ratio of sapwood 

cross section area to 

target leaf area 
2.510

-4
 2.510

-4
 2.510

-4
 

 φRL 

Ratio of fine root 

surface area to leaf 

area 

0.8 0.8 0.8 

 LMA 
Leaf mass per unit of 

area (kg C m
-2

) 
0.0445 0.035 0.038 

l
*
 target crown LAI 3.0 3.8 3.5 

µC0 

Background mortality 

rate (yr
-1

) of canopy 

trees 

0.065 0.012 0.020 

µU0 

Minimum 

background mortality 

rate (yr
-1

) of 

understory trees (see 

Table 2) 

0.162 0.049 0.081 

Vcmax, 0 

maximum rate of 

carboxylation at 25° 

C 

(mol CO2 m
-2

 s
-1

) 

30.0 E-6 22.0 E-6 25.0 E-6 

fWF 

Conversion rate of C 

in NSC to woody 

tissues and seeds 

(fraction d
-1

) 

3.42510
-3

 1.09610
-3

 1.09610
-3
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ρW 
wood density  

(kg C m
-3

) 
230 265 255 

*
Initial densities in Table 1 are approximate and are summed across size classes. See Table C4 in 1296 

Appendix C for details of the initial size distributions used in the simulations. 1297 

1298 
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Table 2.  Parameters for alternative assumptions regarding crown-area allometry and 1299 

mortality of large trees, and gap dynamics (canopy-space-filling). Model H0 is the baseline 1300 

LM3-PPA model, and H1-H3 are alternative models.  1301 

Model θC,D<0.8m θC,D≥0.8m µC Gap dynamics 

H0 1.5 1.5 
C  Tallest 

H1 1.5 1.5 

















 )(15

)(15

1

101
C

C

DD

DD

C
e

e




  
Tallest 

H2 1.5 0.0 
C  Tallest 

H3 1.5 1.5 
C  Randomly selected 

Notes: 1302 

θC,D<0.8m and θC,D≥0.8m are the exponents in the crown area allometry (Eq 4) for trees with DBH < 1303 

0.8 and ≥ 0.8 m, respectively. 1304 

CD = 1.0 m 1305 

The “gap dynamics” algorithm labeled “Tallest” is the standard PPA assumption, in which the 1306 

tallest understory trees fill the space vacated by the death of canopy trees (H0-H2, Strigul et al., 1307 

2008). The alternative assumption (“Randomly selected”) selects understory trees at random 1308 

(regardless of their height) to fill this vacated space (H3). 1309 

 1310 

1311 
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Table 3.  Experimental design for model runs used to identify fine-root allocation strategies 1312 

that are competitively optimal (evolutionarily stable strategies, ESSs) and that maximize 1313 

wood production in monoculture. In these experiments, the plant functional types (PFTs) 1314 

varied only in the ratio of fine-root surface area to leaf area (φRL). Because all PFTs shared the 1315 

same target crown LAI, the parameter φRL primarily controls allocation to fine roots and wood. 1316 

 Model 

runs 

Initial PFT(s) 

(φRL) 

Initial density 

(seedling ha
-1

) 

Invading PFT 

(φRL) 

[CO2] 

(ppm) 

Polyculture 2 0.5, 0.6, 0.7, 

0.8, 0.9 

50 for each 

PFT 

none 280/ 

560 

Monoculture 2 per 

PFT 

0.5, 0.6, 0.7, 

0.8, 0.9 

250 none 280/ 

560 

Invasion 1 0.6 250 0.7 280 

 2 0.7 250 0.6 

0.9 

280 

 1 0.7 250 0.9 560 

 2 0.9 250 0.7 

1.0 

560 

  1317 
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Figure legends 1318 

Figure 1. Scaling of mortality rates (a) and tree height and crown area (b) with DBH in 1319 

four alternative versions of the LM3-PPA model (H0-H3; see Table 2). 1320 

In panel a, the solid line shows the mortality rates of understory trees (same for H0-H3); the 1321 

dashed line shows the mortality rates of canopy trees in H0, H2, and H3; and the dotted line is 1322 

for canopy trees in H1. In panel b, the solid line is tree height (same for H0-H3); the dashed line 1323 

shows crown area in H0, H1, and H3; and the dotted line is crown area in H2. 1324 

 1325 

Figure 2. GPP, NPP, allocation, and DBH growth rate 1326 

Panel a shows GPP (closed circles) and NPP (open circles) simulated by LM3-PPA for one 1327 

species (sugar maple) in the 1° × 1° grid cell containing the Willow Creek Ameriflux site in 1328 

Wisconsin, USA. The red open circles with error bars are GPP estimates from the Willow Creek 1329 

eddy flux data (Desai et al. 2005). The red open diamond is NPP estimated from biometric data 1330 

at Willow Creek (Curtis et al. 2002). Panel b shows the simulated allocation of NPP to leaves, 1331 

fine roots, woody tissues (including stems, branches, and coarse roots), and seeds. The green 1332 

open circle, red open triangle, and black open circle are NPP of wood, fine roots, and leaves, 1333 

respectively, estimated from biometric data (Curtis et al. 2002). Panel c shows the DBH growth 1334 

rates of canopy trees (closed circles) and understory trees (open circles) simulated for sugar 1335 

maple. The red circle and diamond show growth rates of canopy and understory trees for sugar 1336 

maple in the northern Lake States, USA estimated from FIA forest inventory data (Zhang et al. 1337 

2014). The error bars represent one standard deviation. 1338 

 1339 
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Figure 3. Simulated vs. observed DBH growth rates of three tree species in the upper 1340 

canopy and the understory.  1341 

Circles, triangles, and diamonds are for Populus tremuloides, Acer saccharum, and  A. rubrum, 1342 

respectively. Closed and open symbols are for upper-canopy (“Top”) and understory (“Under”) 1343 

trees, respectively. The FIA data used to estimate observed growth rates are from the northern 1344 

Lake States (Michigan, Wisconsin, and Minnesota), USA. Canopy growth rates were estimated 1345 

by combining trees with a reported crown class of "dominant" or "co-dominant", and understory 1346 

growth rates were estimated from trees with a crown class of "overtopped" (Zhang et al., 2014).  1347 

 1348 

Figure 4. Forest succession 1349 

Panel a shows simulated forest succession for three species (Populus tremuloides, Acer 1350 

saccharum, and A. rubrum), with parameters and initial densities in Table 1. Panel b shows the 1351 

successional dynamics estimated from FIA inventory data in the northern Lake States, USA. The 1352 

basal areas of the three species are normalized relative to the maximum of their summed basal 1353 

areas because the three species in the model runs account for only approximately one half of the 1354 

total basal area in the data. This normalization only changes the y-axis scale. The non-1355 

normalized predictions and data are in Fig. S5, Supplemental materials.  1356 

 1357 

Figure 5. Distributions of tree size (a) and biomass (b) in different stand age classes. 1358 

Black signs with dashed lines are from the FIA data of the northern Lake States, USA, and blue 1359 

signs with solid lines are from the three-species LM3-PPA simulations in Fig. 4a. 1360 

 1361 
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Figure 6. Simulated distributions of tree size and biomass at quasi-equilibrium in one-1362 

species (Acer saccharum) LM3-PPA simulations under alternative models assumptions 1363 

(H0-H3). 1364 

Size and biomass distributions are averaged over the last 400 years of 1000-year simulations. a: 1365 

Tree density of trees in 10-cm DBH bins. b: Total tree density and basal area, summed over the 1366 

size distribution in panel a. The error bars represent one standard deviation. c: Woody biomass in 1367 

10-cm DBH bins. Different colors in the figure refer to differ alternative model assumptions (see 1368 

Table 2 and Fig. 1 for details): H0 is the baseline LM3-PPA model; H1 assumes that mortality 1369 

rate increases with size for large trees; H2 assumes a maximum individual crown area, which 1370 

causes a decline in DBH growth rate for large trees; and H3 assumes that open canopy space is 1371 

filled by randomly chosen understory trees, rather than the tallest understory trees as in the PPA 1372 

model. 1373 

 1374 

Figure 7. Simulated dynamics of biomass (a), soil carbon (b), and biomass turnover rate (c) 1375 

in LM3-PPA and in a standard biogeochemical cycle (BGC) model that does not represent 1376 

individual-level processes. 1377 

LM3-PPA was simulated with either one species (Acer saccharum) or all three species in Table 1 1378 

and Fig. 4a. The standard BGC model is summarized in Fig. S1b in Supplemental materials. 1379 

 1380 

Figure 8. Competition among PFTs that differ only their allocation to fine roots.  1381 

Competition experiments were performed at two atmospheric CO2 concentrations, 280 ppm (a) 1382 

and 560 ppm (b). In each experiment, a simulation was initialized with equal seedling densities 1383 
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of five PFTs that differed only in their ratio of fine-root area to leaf area (φRL). Because all PFTs 1384 

shared the same target crown LAI, φRL primarily determines allocation to fine roots and wood. 1385 

 1386 

Figure 9. DBH growth rates of residents and invaders in pairwise invasion simulations. 1387 

This figure shows DBH growth rates in pairwise competition experiments at (a) pre-industrial 1388 

[CO2] (280 ppm) and (b) doubled [CO2] (560 ppm) for residents (black bars) and invaders (gray 1389 

bars) that differed only in their fine-root allocation (φRL; see Fig. 8 legend for explanation). In 1390 

each experiment, the resident type was simulated for 400 years in monoculture, and then a small 1391 

fraction of its density was converted to the invading type. The competitive optimum (φRL = 0.7 1392 

and φRL = 0.9 at 280 ppm and 560 ppm, respectively) is the type (φRL) that cannot be invaded and 1393 

can invade all other types (i.e., the convergence-stable evolutionarily stable strategy, ESS).  1394 

 1395 

Figure 10. Woody NPP and DBH growth rates in monoculture and polyculture models 1396 

runs at (a-b) [CO2] = 280 ppm, and (c-d) [CO2] = 560 ppm.  1397 

PFTs differed only their allocation to fine roots (φRL; see Fig. 8 legend for explanation). The 1398 

optimal monoculture is defined as the type with the highest woody NPP (which, given the 1399 

allometries in LM3-PPA, is also the type with the highest DBH growth rate) when grown in 1400 

monoculture. In this figure, the competitive optimum is identified as the type with the highest 1401 

woody NPP (or highest DBH growth rate) in polyculture model runs. Figures 8-10 present 1402 

multiple ways to identify the competitive optimum (i.e., the convergence-stable ESS), and all 1403 

yield consistent results: φRL = 0.7 and φRL = 0.9 at 280 ppm and 560 ppm, respectively. 1404 

 1405 
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Figure 11. Changes in wet period length, water use efficiency (WUE), hydrological fluxes, 1406 

and soil moisture due to a doubling of atmospheric CO2 concentration. 1407 

The bars show the percentage differences between LM3-PPA run with a single PFT (φRL=0.7) at 1408 

[CO2] = 560 ppm and at preindustrial [CO2] (280 ppm). The “Wet season” bar shows the effect 1409 

of a doubling of preindustrial [CO2] on the fraction of each growing season in which canopy 1410 

trees in the monoculture simulation are water-saturated (defined as the fraction of days during 1411 

the growing season in which water supply was greater than or equal to demand at 2:00 p.m. over 1412 

the final 60 years of a 500-year run). The “WUE” bar shows the change in the water use 1413 

efficiency of canopy trees during the water-limited period (days in which water supply was less 1414 

than demand at 2:00 p.m.). The “Transp” and “Evap+Runoff” bars show the changes in water 1415 

transpired by plants and lost via evaporation and runoff over the last 60 years of the model runs; 1416 

when expressed in absolute amounts (mm yr
-1

), the decrease in transpiration and the increase in 1417 

evaporation plus runoff almost exactly cancel each other (see section 3.3 in Results). The “Soil 1418 

moisture” bar shows change in growing-season mean soil moisture at doubled CO2.  1419 

 1420 

  1421 
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Figure 1 1422 
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Figure 2  1426 
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Figure 3  1430 
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Figure 4  1434 
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Figure 5  1438 
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Figure 6 1442 
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Figure 7  1446 

 1447 

 1448 

  1449 

c

Year

0 100 200 300 400 500

B
io

m
a
s
s
 t
u
rn

o
v
e
r 

ra
te

(f
ra

c
ti
o
n

 y
r-1

)

0.00

0.02

0.04

0.06

b

S
o
il 

c
a
rb

o
n

(k
g

 C
 m

-2
)

0

2

4

6

8

a

B
io

m
a
s
s

(k
g

 C
 m

-2
)

0

5

10

15

20

BGC

One species 

Three species 



71 
 

Figure 8 1450 
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Figure 9 1454 
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Figure 10  1458 
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Figure 11  1462 
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