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Abstract 12 

Marine ecosystems are increasingly stressed by human-induced changes. These ocean drivers – 13 

including warming, acidification, deoxygenation and perturbations to biological productivity - 14 

can co-occur in space and time, but detecting their trends is complicated by the presence of noise 15 

associated with natural variability in the climate system.  Here we use Large Initial-Condition 16 

Ensemble Simulations with a comprehensive Earth System Model under a historical/RCP8.5 17 

pathway over 1950-2100 to consider emergence characteristics for the four individual and 18 

combined drivers. Using a one-standard deviation (67% confidence) threshold of signal-to-noise 19 

to define emergence with a 30 yr trend window, we show that ocean acidification emerges much 20 

earlier than other drivers, namely during the 20th century over most of the global ocean.  For 21 

biological productivity, the anthropogenic signal does not emerge from the noise over most of the 22 

global ocean before the end of the 21st century.  The early emergence pattern for sea surface 23 

temperature in low latitudes is reversed from that of subsurface oxygen inventories, where 24 

emergence occurs earlier in the Southern Ocean. For the combined multiple-driver field, 41% of 25 

the global ocean exhibits emergence for the 2005-2014 period, and 63% for the 2075-2084 26 

period. The combined multiple-driver field reveals emergence patterns by the end of this century 27 

that are relatively high over much of the Southern Ocean, North Pacific, and Atlantic, but 28 
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relatively low over the tropics and the South Pacific.  For the case of two drivers, the tropics 1 

including habitats of coral reefs emerges earliest, with this driven by the joint effects of 2 

acidification and warming.  It is precisely in the regions with pronounced emergence 3 

characteristics where marine ecosystems are expected to be pushed outside of their comfort 4 

zone determined by the degree of natural background variability to which they are adapted.  The 5 

results here also have implications for optimization of the ocean observing system. 6 

 7 

1 Introduction 8 

An important priority in climate research is to understand the potential vulnerabilities of marine 9 

ecosystems in the face of anthropogenic climate change (e.g. Doney et al., 2012).  Over the last 10 

decade, multiple drivers of marine ecosystems such as ocean warming, ocean acidification, 11 

nutrient stress and low oxygen levels have been identified to be among those of greatest concern 12 

(e.g. Gruber, 2011; Hall et al., 2013). We have chosen to use “drivers” rather than “stressors” as 13 

some drivers (for example temperature) can be beneficial to some organisms or processes.  On a 14 

global scale, the development of these drivers is largely a consequence of the increase in 15 

atmospheric CO2 and the associated climate change. The oceanic response to these changes, 16 

namely the oceanic uptake of excess heat and anthropogenic CO2 causes ocean warming and 17 

ocean acidification, i.e. a decrease in both oceanic pH and in the saturation state of seawater with 18 

regard to mineral calcium carbonate (Doney et al. 2009). The warming of the ocean tends to 19 

stratify the upper ocean (Sarmiento et al. 1998), leading to a reduced supply of nutrients to the 20 

euphotic zone (Bopp et al. 2001, Steinacher et al. 2010), but also to a reduced resupply of oxygen 21 

to the ocean’s interior (Frölicher et al., 2009; Keeling et al., 2010), causing a loss of oxygen 22 

there. The magnitude of these global drivers will likely continue to grow, given current trends in 23 

fossil fuel CO2 emissions and the strong inertia within the global community with respect to 24 

efforts to decarbonize (Friedlingstein et al., 2014).  25 

 26 

The detection of secular trends in driver fields on regional- to global-scales is complicated by the 27 

presence of natural variability in the climate system, as has been shown for dissolved oxygen by 28 

Frölicher et al. (2009).  The presence of background natural variability motivates the introduction 29 
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of the concept of emergence to identify where the signal (the secular trend) becomes larger than 1 

the noise (the background natural variability). Identifying and understanding when and where the 2 

secular trends in ocean drivers emerge above the noise is important for two reasons.  The first 3 

reason is that emergence characterizes when the secular trend becomes evident or perceptible for 4 

the local marine species relative to the background variability to which they have adapted.  Here 5 

emergence becomes a measure of perceptible changes for the ecosystems.  The second reason is 6 

that understanding of the emergence of multiple drivers will be important for optimizing the 7 

design of the ocean observing system.  Inferring trends in drivers from Repeat Hydrography is 8 

complicated by natural variability in the ocean (Rodgers et al., 2009), and natural variability can 9 

also complicate trend detection using time series data (Henson et al., 2014). 10 

 11 

Previous studies exploring the concept of emergence have largely focused on physical state 12 

variables of the atmosphere and ocean, such as temperature, precipitation and sea level (e.g. 13 

Diffenbaugh and Scherer, 2011; Hawkins and Sutton, 2012; Mahlstein et al., 2012; Mora et al., 14 

2013; Lyu et al., 2014). Mora et al. (2013), for example emphasized that the tropics, which hold 15 

the worlds greatest diversity of marine species, will exhibit emergence in ocean warming ten 16 

years earlier than any of the other global ocean regions. Far less attention has been devoted to 17 

date to signal-to-noise ratios in ocean biogeochemistry, a notable exception being the study of 18 

Keller et al. (2014). 19 

 20 

Here we introduce a new suite of Large Initial-Condition Ensemble Simulations using a 21 

comprehensive Earth System Model to understand the local emergence characteristics of the 22 

ocean ecosystem drivers sea surface temperature (SST), sea water saturation state with respect to 23 

aragonite (Ωarag), a mineral phase of calcium carbonate, oxygen levels (O2), and net primary 24 

productivity (NPP) over an interdecadal (30 yr) timescale.  The ocean state as expressed in SST 25 

exhibits pronounced decadal-to-interdecadal variability (Zhang et al., 1997), and variations on 26 

this timescale are well documented for oxygen (Emerson et al., 2004; Mecking et al., 2008; 27 

Kouketsu et al., 2010; Takatani et al., 2012).  This has also been considered for the case of 28 

phytoplankton in the study of Martinez et al. (2009).   29 
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In opting to use a suite of Large Initial-Condition Ensemble Simulations, we emphasize in 1 

particular the uncertainty in estimates of emergence due to natural variability inherent in the 2 

climate system. Deconvolving the signature of the forced response from the background natural 3 

variability with one coupled model requires Large Initial-Condition Ensemble Simulations.  Only 4 

with a sufficiently large number of ensemble members can the effects of natural variability be 5 

removed by averaging over the ensemble members. With a single model run of a coupled climate 6 

model one is forced to estimate noise either from simulated pre-industrial variability or through 7 

high-pass filtering of a scenario run (e.g. Deser et al., 2014). The problem is that the forced 8 

response is in general imbedded in a stochastic dynamical system that exhibits variability on all 9 

timescales.  Additionally, the amplitude of major modes of variability such as El Nino-Southern 10 

Oscillation (ENSO) is not stationary in their amplitude over climate change timescales 11 

(Timmermann et al., 1999). The ensemble approach to coupled modeling thereby offers an 12 

important opportunity when applied to the case of ecosystem drivers (Frölicher et al., 2009). 13 

 14 

2 Methods 15 

2.1 Model and simulations 16 

We conducted 30 ensemble simulations over the 1950-2100 period following historical and 17 

RCP8.5 concentration pathways (van Vuuren et al., 2011). All 30 ensemble members are run 18 

with the same coupled Earth System Model developed at the Geophysical Fluid Dynamics 19 

Laboratory (Dunne et al., 2012; Dunne et al., 2013): GFDL’s ESM2M. The physical state model 20 

underlying ESM2M is the updated version of the coupled model CM2.1 (Delworth et al., 2006), 21 

consisting of the 1-degree version of the MOM4p1 ocean model (Griffies, 2009) coupled to an 22 

approximately 2-degree configuration of the AM2 atmospheric model (Anderson et al., 2004).  23 

The ocean biogeochemical model is Tracers of Ocean Phytoplankton and Allometric 24 

Zooplankton code version 2 including 30 tracers to represent cycles of carbon, oxygen, and the 25 

major macronutrients and iron (Dunne et al., 2010).  26 

 27 



 5 

The initial conditions for the 30 ensemble members for January 1st 1950 differed in the initial 1 

state of the atmosphere/land/ocean/sea ice components of the Earth System Model. This was 2 

accomplished by using model state snapshots for the ends of days 1-29 in January 1950 as the 3 

initial model states for January 1st 1950 for each of the ensemble members 2-30. As has been 4 

shown by Wittenberg et al. (2014) using significantly smaller initial perturbations to the ocean 5 

component only with nearly the same underlying physical coupled model, our initial condition 6 

perturbations lead to a randomization of the ENSO state amongst the individual ensemble 7 

members within five years. Given that decadal modulations of ENSO are the most pronounced 8 

driver of decadal physical variability in this coupled model, decadal variability will be 9 

randomized amongst the individual ensemble members.  10 

 11 

The four drivers considered in this study are (i) surface Ωarag , (ii) SST, (iii) subsurface O2 12 

vertically integrated from 100m to 600m, and (iv) NPP vertically integrated over the top 100m. 13 

Our focus on subsurface O2 concentrations is intended to characterize regimes ranging from 14 

oxygen minimum zones to the main thermocline of polar and circumpolar regions.   15 

 16 

2.2 Confidence intervals and detection of time of emergence 17 

In order to quantify emergence characteristics, it is necessary to specify a timescale over which 18 

trends are calculated.  We use decadal trends considered over 30 yr intervals on a gridpoint-by-19 

gridpoint basis to quantify signal-to-noise ratios for each of the four drivers.  The signal is the 20 

trend obtained using the ensemble-mean, and the noise is the standard deviation of the 30 yr 21 

trends for the individual ensemble members. The signal-to-noise ratio is thereby calculated as the 22 

ratio of these two terms, and thereby associated with this specific timescale.  The choice of a 30 23 

yr trend window is motivated by the approximate length of relatively continuous elements of the 24 

global observing system and by the timescale of important natural variability events such as the 25 

Pacific Decadal Oscillation. Given that our model runs span 1950-2100, and our choice of 30 yr 26 

trends, signal-to-noise can effectively be calculated over each year spanning the period 1965-27 

2085.  28 
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 1 

Central to our analysis is the model-derived quantification of confidence intervals for trend 2 

detection. We assume that the 30 yr trends for the 30 individual ensemble members are normally 3 

distributed. For a given time-window (30 yr), the signal-to-noise ratio (SNR) is calculated using 4 

the relationship between the ensemble mean TREND and the standard deviation (σnoise) of the 5 

trends of the various ensemble members, which we denote as NOISE: 6 

 7 

SNR = TREND / NOISE.       (1) 8 

 9 

Here we focus on a threshold of one for SNR, representing a confidence interval of 67% for 10 

emergence.  In other words, the threshold of one is used to characterize when the “signal” of 11 

anthropogenic climate change rises above the “noise” of natural background variability.  12 

However, the sensitivity to a choice of two (95% confidence) for the threshold will also be 13 

considered. We choose two time intervals over which we consider average confidence intervals:  14 

the first is for the most recent decade 2005-2014, and the second is the decade 2075-2084 15 

towards the end of the 21st century.  The confidence intervals are calculated using 30 yr trends 16 

year-by-year over each of the 10 yr intervals before considering 10 yr averages over the 17 

respective intervals.  An averaging interval of 10 yr was sufficient to remove noise present in 18 

analysis for individual years in the confidence intervals, presumably due to the fact that even with 19 

30 ensemble members the modes of variability aren’t sufficiently randomized.   20 

 21 

Additionally, we also consider the sensitivity of the confidence intervals to the choice of the 22 

width of the trend window.  To that end, confidence intervals are also considered for the case of a 23 

10 yr window.  From the spectral SST characteristic of the underlying coupled 24 

(atmosphere/ocean) model, it has been shown earlier studies that SST variability is more 25 

pronounced over 10 yr timescales than over 30 yr timescales (Fig. 2 in Wittenberg (2009) and 26 

Fig. 7 in Dunne et al. (2012)).  Thus one may well expect that the signal-to-noise ratio 27 

characteristics for the ecosystem drivers reflect these underlying dynamical drivers of variability, 28 

at least in the equatorial Pacific.  Thus our sensitivity analysis is intended to offer insight into 29 
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both of our primary interests described in the Introduction, namely identification of perceptible 1 

changes for ecosystems and optimization of the observing system.  2 

 3 

Our analysis also includes diagnostics of Time of Emergence (ToE).  In contrast to the 4 

confidence interval diagnostic for fixed time intervals, ToE requires that we first specify a fixed 5 

threshold (here we choose 67%) for confidence intervals and then calculate the time (year) at 6 

which that is satisfied on a gridpoint-by-gridpoint basis for each driver.  For consistency, a 30 yr 7 

trend window is used here as well in the calculation of ToE.   8 

 9 

3 Results 10 

3.1 Temporal hierarchy of global and regional emergence of individual drivers 11 

We start the analysis with the temporal hierarchy of emergence for the globe as well as for 12 

various regions, such as the Southern Ocean (90-45°S), the southern subtropics (45-15°S), the 13 

equatorial band (15°S-15°N), the northern subtropics (15-45°N), and the subpolar and polar 14 

Northern Hemisphere (45-90°N) (Fig. 1). For each driver, the signal-to-noise ratio was calculated 15 

gridpoint-by-gridpoint, and then the area-weighted mean of this quantity were considered by 16 

region year-by-year (solid lines in Fig. 1). There is a distinct hierarchy in the emergence of the 17 

drivers on a global scale (Fig. 1a), with Ωarag (red line in Fig. 1a) already having risen above the 18 

one-standard deviation (67%, black solid vertical axis in Fig.1a) level by the beginning of the 19 

period considered (by 1965). This is followed by SST (green line in Fig. 1a), which globally 20 

emerges from the 67% confidence level by the year 2000. O2 inventories rising above the 67% 21 

confidence interval by approximately 2060 (blue line in Fig. 1a), whereas NPP remains below 22 

the 67% confidence level over the entire time period (purple line in Fig. 1a). 23 

 24 

The regional behavior of the four drivers is shown in Fig. 1b-f. Overall, the hierarchy found in 25 

the global analysis tends to be reproduced on a regional scale but with a few notable exceptions. 26 

First, the Southern Ocean differs from the other regions in that the O2 inventories (blue solid line 27 

in Fig. 1b) are more detectable than SST (green solid line in Fig. 1b) over the duration. 28 
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Additionally, the subtropical SST tends to emerge from the 67% confidence interval by 1990-1 

2010 (green solid lines in Fig. 1c-e), with this not being the case for the Southern Ocean and the 2 

Northern subpolar/Arctic regions (green solid lines in Fig. 1b,f). The commonality is that Ωarag  is 3 

above the 67% confidence interval in all regions for the duration of the analysis period, whereas 4 

the NPP signal remains below the 67% confidence level for the duration of the analysis period in 5 

all regions, with the exception of the southern subtropics for the period post-2070. 6 

 7 

3.2 Local emergence confidence intervals for individual drivers 8 

We next consider the spatial distributions of the confidence level that the signal (ensemble mean) 9 

in the four drivers has emerged from the natural variability (standard deviation among the 30 10 

ensemble members) for two different time periods: 2005-2014 (Fig. 2) and 2075-2084 (Fig. 3). 11 

For Ωarag it is found that 99.8% of the global domain exhibits the signal emerging above the noise 12 

with more than 67% certainty (Fig. 2a). This indicates that a global observing platform of 30 yr 13 

duration would be able to detect trends nearly everywhere. The reasons for the early emergence is 14 

that changes in surface Ωarag are mainly dictated by the increase in surface DIC, which closely 15 

follows atmospheric pCO2 trends (e.g. Keller et al. 2014). For SST (Fig. 2b), 74.8% of the global 16 

surface ocean has emerged with 67% certainty from the noise. Especially the lower latitudes tend 17 

to have emerged with high confidence by 2005-2014, whereas the Southern Ocean south of 45°S 18 

and the northern subpolar and Arctic regions reveals only few confidence that they have emerged 19 

by 2005-2014. For O2 inventories, 22.6% of the global ocean has emerged with 67% certainty 20 

from the noise (Fig. 2c).  For NPP, only 14.8% of the global ocean has emerged with 67% 21 

certainty over 2005-2014 (Fig. 2d).  Interestingly, the pattern for the O2 inventories shown in 22 

Fig. 2c reveals emergence over important parts of the Pacific and Atlantic sectors of the Southern 23 

Ocean (defined as the region to the south of 45°S), in contrast to what is seen in SST. The lower 24 

latitudes reveal relatively little emergence by 2005-2014, but there are small areas within the 25 

subtropics of the North Pacific with emergence. For the case of NPP (Fig. 2d), there is very little 26 

evidence of emergence by 2005-2014 over most of the global domain, although the Equatorial 27 

Pacific Cold Tongue regions, parts of the Equatorial Atlantic, and the Agulhas regions show 28 
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marginal emergence. This indicates that even with complete 30 yr time series for global NPP, it 1 

would not be possible in most regions to identify a significant secular trend. 2 

 3 

Next we consider in Fig. 3 the confidence intervals calculated over 2075-2084.  The patterns 4 

shown in Fig. 3 largely reinforce what was seen in Fig. 2, although clearly the emergent 5 

structures have expanded.  Not surprisingly, Ωarag (Fig. 3a) now stands emerged over 100% of 6 

the global surface area with 67% certainty at the end of the 21st century, consistent with what 7 

was shown over 2005-2014.  For SST (Fig. 3b), 90.9% of the global ocean has emerged with 8 

67% certainty, clearly having expanded beyond their limits from 2005-2014.  This includes 9 

expansion into the North Atlantic, and the high latitudes over the Southern Ocean.  For O2 10 

inventories (Fig. 3c), with 42.3% of the globe emerged with 67% certainty, the Southern Ocean 11 

increasingly emerges towards the end of the century, and the North Pacific subtropics have 12 

emerged with high confidence.  For the case of NPP (Fig. 3d), with 23.7% of the globe emerged 13 

with 67% certainty, there continues to be only weak emergence over most of the globe, the 14 

exceptions being a coherent structure spanning the southern subtropics and subtropical front 15 

regions of the South Indian Ocean, the equatorial Pacific upwelling region, and then patchy 16 

regions over the Southern Ocean the eastern mid-latitude and subpolar North Atlantic.   17 

 18 

Taken together, the results here indicate that the four drivers are not advancing in unison with the 19 

same patterns and rates of their detectability over the globe.  Ωarag emerges first, consistent with 20 

what has been found in previous modeling studies (Friedrich et al., 2012), NPP emerges last, and 21 

then O2 inventories and SST have their own contrasting patterns of emergence.  Stated 22 

differently, random uncertainty associated with natural decadal variability poses significantly 23 

more important challenges for NPP than for Ωarag, with O2 inventories and SST falling between 24 

NPP and Ωarag. 25 

 26 

 27 
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3.3 Local emergence confidence intervals for the multi-driver mean 1 

We now consider an average across the four ecosystem drivers of the confidence intervals for the 2 

same time intervals 2005-2014 (Fig. 4a) and 2075-2084 (Fig. 4b). To facilitate presentation and 3 

interpretation, we calculated averages within 14 biomes as defined by Henson et al. (2010). The 4 

biome definition separates the regions where phytoplankton growth is seasonally light limited 5 

(for mid to high latitudes), regions where the ocean is gaining heat (equatorial regions) and 6 

oligotrophic regions.   7 

 8 

For the 2005-2014 interval (Fig. 4a), the multi-driver confidence intervals have already risen 9 

above the threshold of one standard deviation (67% confidence interval) in the Equatorial 10 

Atlantic, the South Atlantic, and the Arabian Sea. The Indian and Pacific sectors of the Southern 11 

Ocean weigh in at 60% confidence intervals, thereby below one standard deviation.  With the 12 

exception of the South Atlantic, subpolar regions are minimum regions for confidence intervals.  13 

For the case of the Equatorial Atlantic, where in fact O2 inventories are increasing (Gnanadesikan 14 

et al., 2012; Cocco et al., 2013) (Fig. A1e), it is important to acknowledge that emergent O2 15 

inventories are thereby not to be understood as a driver.  Interestingly, the hemispheric 16 

asymmetry between the northern and southern subtropics of the Pacific is the reverse of the 17 

asymmetry found in the Atlantic.   18 

 19 

By the later period 2075-2084 (Fig. 4b), the confidence intervals averaged over the four drivers 20 

are higher than during the earlier period 2005-2014 except for the eastern equatorial Atlantic and 21 

the western equatorial Indian Oceans. There continues to be a hemispheric asymmetry between 22 

the subtropics of the northern and southern subtropical Pacific. Interestingly, the fact that 23 

subpolar regions have become maxima for the multi-driver mean during the later period 24 

represents a reversal of what is found during the earlier period. For both hemispheres this reflects 25 

an important contribution from the O2 inventories, as can be seen in the subpolar time series 26 

changes in Figs. 1b and 1f.  A relative decrease in variability in SST can be seen over the 27 

subpolar regions (Figs. A1d and A2d), contributing to the increased confidence in emergence 28 

over these regions (the differences between Fig. 2b and Fig. 3b). 29 
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 1 

As we did for the individual drivers, we also consider here the fraction of the global area that has 2 

emerged for the multi-driver mean over the periods 2005-2014 and 2075-2084.  Following the 3 

procedure used in Figs. 2 and 3, a 30 yr trend window was used to characterize signal-to-noise 4 

over the respective time interval year-by-year.  The result was then averaged over each of the 10 5 

yr time intervals gridpoint-by-gridpoint.  Subsequently, area-weighted spatial averages were 6 

considered. For the earlier period (2005-2014), 40.9% of the global ocean exhibits emergence 7 

with 67% confidence. By 2075-2084, 62.5% of the global ocean exhibits emergence with 67% 8 

confidence.  9 

 10 

Next we consider the emergence characteristics for the three drivers with highest emergence 11 

confidence intervals (rather than all four drivers) in the subsequent two panels.  This is shown for 12 

the time interval 2005-2014 in Fig. 4c, and for the time intervals 2075-2084 in Fig. 4d.  For each 13 

case, the fields presented in Fig. 2 and Fig. 3 were considered gridpoint-by-gridpoint to find the 14 

three maximum drivers, and these were then averaged over the same biome regions.  15 

Unsurprisingly, the confidence intervals are higher for this case with three drivers than with four.  16 

For the time interval 2005-2014, 87.8% of the global surface area has emerged above the 67% 17 

confidence interval (Fig. 4c), and for 2075-2084 98.8% has emerged above 67% (Fig. 4d) 18 

 19 

We then consider averages over the two top drivers for the period 2005-2014 (Fig. 4e) and 2075-20 

2084 (Fig. 4f).   Clearly the emergence characteristics are significantly higher here.  As is 21 

revealed in the structures of locally maximum and minimum confidence intervals, the dominant 22 

influences over most of the global ocean are Ωarag and SST in setting the even higher confidence 23 

intervals.  For the time interval 2005-2014, 97.94% of the global ocean is above the 67% 24 

confidence interval.  For the time interval 2075-2084, this has risen to 99.92% of the global 25 

ocean having risen above the 67% confidence interval.   26 

 27 
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Taken together, the six panels in Fig. 4 reveal a strong sensitivity to the number of drivers used to 1 

characterize multiple-driver emergence.  For the case of emergence over 2075-2084, it is 2 

interesting to note that the patterns are different.  For four drivers, the Southern Ocean has the 3 

strongest emergence, whereas with two drivers the tropical band has the strongest emergence.  4 

3.4 Sensitivity of Confidence Intervals to Length of Decadal Trend Window  5 

Next we consider the sensitivity of our confidence interval calculation for the period 2005-2014 6 

(Fig. 2) to the length of the window over which trends are calculated.  The sensitivity of the 7 

confidence intervals over 2005-2014 to the width of the window is considered in Fig. 5, where a 8 

window of 10 yr has been used instead of the 30 yr used in Fig. 2.   We show that for all four 9 

drivers, the choice of a 10 yr trend window results in important decreases in the confidence 10 

intervals over the global domain relative to a 30 yr trend window. 11 

 12 

For Ωarag (Fig. 5a), the confidence intervals are much lower in the regions directly impacted by El 13 

Niño variability with a 10 yr window than they are with a 30 yr window (Fig. 2a).  Additionally, 14 

smaller confidence intervals are in evidence through the North Atlantic and parts of the Arctic, as 15 

well as in a well-defined band across the North Pacific.  In fact, along much of both the west and 16 

east coasts of North America, confidence intervals are significantly lower than with the 30 yr 17 

window.  This may have important implications in pointing to the need for sustained (multi-18 

decadal) observing systems for ocean biogeochemistry in these regions.   19 

 20 

For SST as well, the pattern obtained with a 10 yr window (Fig. 5b) reveals large differences 21 

from the pattern obtained with a 30 yr window (Fig. 2b).  The relatively elevated values 22 

throughout much of the tropics and the subtropics have now disappeared, revealing relatively 23 

weak confidence intervals over global domain.  A similar loss of confidence is found in for O2 24 

inventories (Fig. 5c) and for NPP (Fig. 5d).  In fact for SST, O2 inventories, and NPP, using a 10 25 

yr window results in very weak confidence nearly everywhere over the global domain.   26 

 27 
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3.5 Time of emergence in individual ecosystem drivers 1 

Next we consider Time of Emergence (ToE) in Fig. 6. Here, we use a one standard deviation 2 

threshold to define ToE, and our intention is to represent another dimension to the emergence 3 

question, namely that of time. A 10 yr tolerance window with a robust Loess filter has been 4 

applied to the fields in Fig. 6, as described in Appendix B.  First we consider Ωarag (Fig. 6a), with 5 

this revealing that most of the emergence has already occurred by the start of the analysis period 6 

(before 1965), consistent with what was seen in the confidence interval analysis.  The only 7 

exceptions are relatively high dynamical variability zone within the equatorial Pacific, and certain 8 

high variability structures associated with western boundary current regions.  For SST (Fig. 6b), 9 

the ToE is within the 20th century for much of the tropics, with a tendency for this ToE to shift to 10 

the 21st century for much of the subtropical and subpolar regions.  For much of the high-latitude 11 

Southern Ocean region, there is no emergence during the analysis period (before 2085).  This is 12 

also true for important sectors of the northern North Atlantic.  For O2 inventories (Fig. 6c) an 13 

early ToE is evident for the Southern Ocean as well as the eastern equatorial Atlantic, largely 14 

consistent with what was seen in Fig. 2.  Alternating zonal structures of early and late ToE are 15 

seen in the Equatorial Pacific, and a patchwork of structures with very different ToE is in 16 

evidence over much of the ocean away from the Southern Ocean.  In fact, the patchwork-like 17 

structures are in even stronger evidence for NPP (Fig. 6d).  Consistent with what was seen in Fig. 18 

2d, relatively early ToE is in evidence for both the Agulhas and the Equatorial Pacific Cold 19 

Tongue regions.  Otherwise there are alternating bands of saturation for both early (pre-1965) and 20 

late (post-2085) ToE.  The adjacent early and late saturation regions are the consequence of 21 

choosing a threshold for ToE. Thus the boundaries between such regions may not in general be 22 

reflecting real biome structures in the model domain.  This is addressed in more detail in the 23 

Appendix (Fig. A3 and Fig. A4).   24 

 25 

4 Discussion  26 

 27 
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4.1 Interpretation of Main Results 1 

 2 

We set out to evaluate the emergence characteristics of four ecosystem drivers (surface Ωarag, 3 

SST, subsurface O2, and NPP) of marine ecosystems, with two questions driving this 4 

investigation.  The first motivation stems from an interest in identifying when the secular trend in 5 

drivers becomes evident or perceptible for local marine ecosystems relative to the natural 6 

background decadal variability to which the organisms have adapted.  The second pertains to the 7 

optimization of the ocean biogeochemical observing system, and the application of models to 8 

advance this optimization through iterative communication with the community of researchers 9 

evaluating network design.  Building on the previous work of Frölicher et al. (2009), this was 10 

pursued using a suite of Large Initial-Condition Ensemble Simulations, as it is only with this 11 

approach that one can infer the secular trend (ensemble mean) for a model by filtering natural 12 

variability through an averaging procedure.  The averaging procedure operates on not only 13 

patterns of climate modes such as ENSO (Wittenberg et al., 2014), but also on natural variability 14 

on smaller scales associated with variations in gyre boundaries that are not correlated to climate 15 

modes.  Importantly, with this large ensemble approach, one does not need to assume that 16 

variability in the system is stationary in time.   17 

 18 

Our main result is that there is a temporal hierarchy in the emergence of the four ocean ecosystem 19 

drivers above the level of background natural variability.  This is strongly evident in Fig. 1.  Ωarag 20 

emerges earliest, NPP emerges latest, and both O2 inventories and SST fall between the two.  21 

Additionally, three (SST, O2 inventories, and NPP) of the four drivers considered here exhibit 22 

large regions where detection of secular trends is significantly complicated by the presence of 23 

natural decadal variability in the climate system. Our results also revealed very pronounced 24 

differences in the patterns for the confidence intervals for the emergence of SST and O2 25 

inventories (Fig. 2).  For SST, the Southern Ocean emerges relatively late (post-2014) and the 26 

tropics emerge rather early (pre-2014), in line with earlier studies (Mora et al., 2013).  For O2 27 

inventories, on the other hand, the Pacific and Atlantic sectors of the Southern Ocean exhibit 28 

regions of relatively early emergence (pre-2014) and the tropics emerge rather late (post-2014).  29 
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The coalescence of the different global drivers in certain regions is already creating a number of 1 

hot-spots (Fig. 4), with the Southern Ocean and more generally the high latitudes projected to 2 

increase in importance by 2075-2084. 3 

 4 

Consistent results regarding the temporal hierarchy of ecosystem driver emergence were found 5 

through the analysis of confidence intervals (Fig. 2 and Fig. 3) and time of emergence (ToE) 6 

(Fig. 6) as diagnostics. However, we prefer the confidence interval analysis over the ToE analysis 7 

for two reasons.  First, for the four ecosystem drivers the saturation characteristics of the ToE 8 

analysis (emergence before 1965 or after 2085) are widespread, complicating interpretation.  9 

Second, and perhaps more importantly, ToE diagnostics require a specification of a threshold of 10 

signal-to-noise that is somewhat arbitrary (here we have considered both 1 and 2 standard 11 

deviations, but have chosen to emphasize the less conservative value of 1 in Fig. 6).   12 

 13 

The quantification of signal-to-noise at the center of our analysis relies on joint use of a suite of 14 

Large Initial-Condition Ensemble Simulations using an individual Earth System Model (GFDL’s 15 

ESM2M).  However, previously published analyses indicate that the collection of Earth System 16 

Models developed by different modeling centers exhibit disparate amplitudes for the secular 17 

trends in individual drivers (Bopp et al., 2013).  For example, different ESMs are likely to differ 18 

more in their projected changes in NPP than they are in Ωarag or SST, since at least with Ωarag or 19 

SST the ESMs are largely consistent in the sign of their response (Bopp et al. 2013, Steinacher et 20 

al. 2010, Cocco et al. 2013). In high latitudes, ESMs are generally consistent in simulating 21 

decreasing ocean O2 inventories under 21st century climate change (Cocco et al. 2013).  However, 22 

it is worth noting that in GFDL ESM2M global NPP changes by only 2% under the 23 

historical/RCP8.5 scenario, whereas global NPP tends to decrease by approximately 10% for a 24 

multi-model of CMIP5 ESMs under the same scenario (Laufkötter et al., 2015). Additionally, 25 

different Earth System Models exhibit different noise or underlying natural variability 26 

characteristics for individual drivers (Keller et al., 2014).  Such inter-model differences strongly 27 

suggest that the temporal and spatial characteristics of emergence should be model-dependent, as 28 

has been shown for the case of surface air temperature by Hawkins and Sutton (2011). 29 
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Alternative emissions scenarios may also lead to changes in both the signal and the noise. 1 

Investigations of the sensitivity of our results to alternative scenarios for anthropogenic emissions 2 

and other model projections may be subject to further studies.   3 

 4 

4.2 Mechanistic Interpretation 5 

 6 

Although our analysis has been focused on statistical questions (namely confidence intervals and 7 

time of emergence diagnostics), it is also important to consider the mechanisms that control 8 

emergence timescales.  The most important contrast seen in our results is in evidence in Fig. 2, 9 

namely the early (late) emergence of SST in the tropics (Southern Ocean), and the late (early) 10 

emergence of O2 inventories in the tropics (Southern Ocean) with the 30 yr window.  For SST, 11 

the contrast between the tropics and the Southern Ocean in Fig. 2 with a 30 yr window is largely 12 

reflecting the weakness of the SST trend over the Southern Ocean relative to the tropics.  In fact, 13 

the contrast between the tropics and the Southern Ocean is more generally representative of most 14 

of the rest of the global surface ocean (except in the northern North Atlantic) relative to the 15 

Southern Ocean (Fig. A1c).  The lack of SST warming reflects large-scale interhemispheric 16 

asymmetries in the mean ocean circulation.  The strong upwelling in the Southern Ocean nearly 17 

anchors sea surface temperature at pre-industrial level (Stouffer et al. 1989; Marshall and Speer, 18 

2012; Frölicher et al., 2015). 19 

 20 

For the tropics, the secular trend is sufficiently large over a 30 yr window to be more important 21 

than the natural decadal variability, but consistent with the spectral characteristics of ENSO for 22 

the underlying physical model (Wittenberg, 2009).  This is no longer true for the case of a 10 yr 23 

window in the tropics.  For the case of O2 inventories, the reverse holds.  In the Southern Ocean, 24 

de-oxygenation is much larger than natural variability due to the stratification-induced reduced 25 

supply of O2 from the surface into the thermocline (Frölicher et al, 2009; Gnanadesikan et al., 26 

2012).  In contrast, almost no O2 changes are projected to occur in the low O2 regions of the 27 

tropical and subtropical thermocline owing to a reduced O2 demand because of the lower 28 
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biological production and export of organic matter in the overlying near-surface waters 1 

(Gnanadesikan et al., 2012; Steinacher et al., 2010).  These biological drivers are expected to be 2 

modulated by perturbations to the rates of ocean interior and thermocline ventilation.  However, 3 

the confidence of the O2 projections in the low latitudes is low, as the GFDL ESM2M has biases 4 

in its representation of today’s observed O2 distribution (Gnanadesikan et al., 2012), a feature 5 

common to the current generation of Earth System models (Bopp et al., 2013).   6 

 7 

4.3 Perceptible changes in ocean drivers 8 

We have previously defined perceptible changes in drivers of ocean ecosystems as anthropogenic 9 

changes that are above the noise level of the natural background decadal variability to which 10 

organisms are adapted.  For the case where two of the four ecosystem drivers are used (Fig. 4e 11 

and Fig. 4f), our analysis has revealed that Ωarag and SST are the dominant drivers with early 12 

emergence in the tropics.  In fact, it should be emphasized that this is a result of our two-driver 13 

analysis, rather than an assumption or an imposed constraint.  In particular, the two-driver 14 

analysis presented in Fig. 4e for the recent past indicates that tropical coral reef habitats may be 15 

the primary regions currently experiencing perceptible changes relative to the background natural 16 

variability (Pelejero et al., 2005).  Thus our results are consistent with previous studies that argue 17 

that coral reefs are the marine ecosystems that are threated most by environmental changes (see 18 

the cross-chapter box on coral reefs in IPCC AR5, Gatusso et al, 2014a; also see Gattuso et al., 19 

2014b).  Although the results of the two-driver analysis are seen to hold through the tropics, the 20 

results may warrant particular attention in the Coral Triangle biodiversity hotspot region, 21 

spanning Indonesia, the Philippines, Malaysia, Papua New Guinea, and the Solomon Islands 22 

(Allen, 2008).   23 

 24 

It is important however to emphasize that the analyses for multiple drivers seen in Fig. 4 25 

consisted of averaging of confidence intervals obtained for the individual drivers.  In interpreting 26 

these results for SST and Ωarag in the Coral Triangle as the confidence intervals for the impacts of 27 

multiple drivers, it remains a scientific challenge to determine whether they are in fact acting 28 
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additively, synergistically, or antagonistically in their impact (Boldt et al., 2014, and references 1 

therein).  To date resource management strategies have tended to focus on the impact of 2 

individual drivers, with little consideration or attention to potential relationships and feedbacks 3 

between the drivers.  Addressing these questions is beyond the scope of our study, but it is our 4 

hope that the analysis considered here will contribute to motivating future work in this direction.  5 

What is clear, however, is that anthropogenic CO2 emissions to the atmosphere are the common 6 

driver of the perturbations considered here, and this underscores the necessary of a single policy 7 

response (reduction in emissions).  Substantial mitigation efforts are required if ocean ecosystems 8 

are to be spared from the “quadruple whammy” of the drivers considered here.  9 

 10 

4.4 Implications for Observing System Design 11 

It is also important to consider the implications of our study for optimization of the global ocean 12 

observing system.  With this goal in mind, our study can be considered as an Observing System 13 

Simulation Experiment (OSSE).  With an OSSE, one considers a model to be an analog for the 14 

real ocean, for which one has the fully resolved state evolution to round-off error.  Earlier OSSEs 15 

(Christian et al., 2008; Park et al., 2010; Plancherel et al., 2013; Majkut et al., 2014; Cassar et al., 16 

2014) have tended to focus on one realization of the evolution of the Earth system, and focused 17 

on the skill with which different observing strategies can reproduce variability in the Earth 18 

System through selective sub-sampling of the model output.  The target is to test the available 19 

skill in reproducing the real-world trends and variability with an incomplete observing system, 20 

without any claim to separating the signal associate with the secular trend and natural variability.   21 

 22 

For our experimental configuration considered as an OSSE, we address a different but 23 

complementary question.  We consider the case where the observing system has perfect skill in 24 

reproducing the trends and variability of the system of interest, but where the target is to identify 25 

the secular trend.  It is precisely this deconvolution that we address with the Large Initial-26 

Condition Simulations with the Earth System Model, thereby building on the previous analyses 27 

considered with fewer ensemble members (Frölicher et al, 2009; Christian, 2014).  The question 28 

is then as follows:  Given an observing system with perfect skill that allows one to perfectly 29 
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monitor the evolution of the system, how many years of continuous measurements are needed to 1 

identify the secular trend above the noise of background variability?  Our main result is that 2 

sustained decadal measurements will be needed even for the idealized case of a perfect observing 3 

system.   4 

 5 

Viewed in this way, our main results point to the importance of maintaining a sustained mult-6 

decadal observing system for ocean biogeochemistry and ecosystem drivers.  For the four drivers 7 

considered here, the confidence intervals found with a 30 yr window for calculating trends (Fig. 8 

2) are significantly higher than those found with a 10 yr window (Fig. 5).  For the case with a 10 9 

yr window, even Ωarag reveals broad expanses of non-emergence over the decade 2005-2014.  10 

This is in evidence, for example, over important parts of the Coral Triangle biodiversity hot spot 11 

spanning the Indo-Pacific Warm Pool region, as well as for the North Atlantic.  This underscores 12 

the potential importance of sustained multi-decadal continuous measurements in order to identify 13 

the rate of acidification associated with the secular trend in these regions. 14 

 15 

More generally, our analysis of conficence intervals for emergence for two versus four drivers 16 

(Fig. 4e) largely highlight the combined effects of Ωarag and SST in the tropics.  This implies that 17 

even with high resolution of temporal and spatial scales, a sustained multi-decadal (30 yr) 18 

observing system of the type considered by Ishii et al. (2009) in western Equatorial Pacific 19 

surface waters is needed to detect rate of the secular trend in acidification against the background 20 

noise of natural variability with confidence. 21 

 22 

 23 

5 Conclusions  24 

Here we have considered a suite of Large Initial-Condition Ensemble Simulations with GFDL’s 25 

Earth System Model ESM2M to evaluate the emergence characteristics of four drivers of ocean 26 

ecosystems under anthropogenic climate change.  The drivers chosen were Ωarag, SST, upper-27 

ocean inventories of O2, and net primary productivity (NPP).   There were two questions 28 
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underlying the analysis:  First, when and where will marine ecosystems experience perceptible 1 

changes in the ocean drivers, changes that lie outside of the range of natural variability to which 2 

they are adapted or accustomed?  Second, what are the implications for optimal design of a global 3 

observing system for the four drivers? 4 

 5 

The main result of our study is that among our four ecosystem drivers, there is a pronounced 6 

temporal and spatial hierarchy to emergence over global scales.  Using a one-standard deviation 7 

(67%) confidence interval threshold for signal-to-noise, and a 30 yr trend window, we find that 8 

the acidification driver (Ωarag) emerges earliest and NPP emerges latest over global scales.  9 

Between these two outliers, SST and O2 inventories have intermediate timescales of emergence, 10 

but opposing patterns between the two of them.  SST emerges earlier in the low latitudes and 11 

later in the high latitudes, while O2 inventories exhibit earlier emergence over high latitude 12 

regions than in the tropics.  We also considered a multiple-driver analysis where we combined 13 

the four individual drivers.  There we found that whereas 41% of the global ocean area exhibits 14 

emergence over 2005-2014, 63% has exhibited emergence by 2075-2084.  This four-driver 15 

analysis reveals a more pronounced emergence pattern over the extra-tropics than over the 16 

tropics.  We also considered the multiple-driver case where we included only two drivers by 17 

biome region, with very different results.  There the tropics emerge earliest, with the dominant 18 

drivers being Ωarag and SST.  Given that Ωarag and SST are the two most important drivers for 19 

coral reef ecosystems, this analysis identifies coral reefs as being especially vulnerable under 21st 20 

century climate change. 21 

 22 

Considered as an Observing System Simulation Experiment (OSSE), our results emphasize the 23 

need for a sustained global observing system for multiple decades for the task of identifying 24 

anthropogenic trends in ecosystem drivers.  This is true even for the case of a global bio-Argo 25 

array within a broad multi-platform observing system, as is revealed in the contrast between the 26 

confidence intervals for emergence of the secular trend between a 10 yr sustained observing 27 

system (Fig. 5) and a 30  yr sustained observing system (Fig. 2).   28 

 29 
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Appendix A: Secular trends and natural variability underlying signal-to-noise 1 

analysis  2 

We characterize here the secular trends (left columns in Figs. A1,A2; referred below as TREND) 3 

and standard deviations of the secular trends (right columns in Figs. A1,A2; referred below as 4 

NOISE) separately. Recall that the signal-to-noise ratio is defined as the ratio of these two fields. 5 

Ωarag decreases everywhere over the global domain (Fig. A1a), with minimum relative rates of 6 

decrease in the equatorial regions, and a general tendency towards stronger relative rates of 7 

decrease at high latitudes.  Largest NOISE of Ωarag is simulated in a number of dynamically 8 

active regions, including the margins of the subtropical gyres and the equatorial Pacific.  9 

However, with the exception of a few isolated regions, the TREND is everywhere significantly 10 

larger than the NOISE for Ωarag. For SST, the TREND over 2005-2014 is positive (warming) over 11 

most of the globe, with the notable exception of the western subpolar North Atlantic and large 12 

expanses of the Southern Ocean (cooling).  This stands in contrast to Ωarag, where the trend had 13 

the same sign over the entire domain.   14 

 15 

The NOISE for SST finds largest expression in the subpolar regions of the Northern Hemisphere 16 

and over parts of the Southern Ocean.  In fact it can be seen in the Fig. 1c,d that the extratropical 17 

regions of weak or negative TREND in SST are associated with enhanced variability.  The 18 

tropics, on the other hand, reveal only modest NOISE amplitude relative to the TREND.  Taken 19 

together, this helps to account for the fact that the confidence interval map in Fig. 2b reveals high 20 

confidence in the tropics relative to the subpolar regions. As has been stated in the main text, it 21 

may seem somewhat surprising that the signal-to-noise-ratio is relatively elevated in the 22 

Equatorial Pacific, given that this is the region of largest natural variability in the climate system.  23 

It is important to emphasize here that we are considering trends over a 30 yr interval in our 24 

quantification of NOISE rather than considering the standard deviation associated with 25 

interannual variability for each of the drivers. 26 

 27 

For the case of O2 inventories, a decreasing TREND can be seen in the well-ventilated 28 

thermocline of the high latitudes. Within the tropics and subtropics, structures of positive trend 29 



 22 

do occur.  As with SST but in contrast with Ωarag, the sign of the ensemble-mean response of O2 1 

inventories is not of the same sign everywhere.  However, there are also pronounced structures of 2 

larger NOISE in O2 inventories, which over many regions are associated with decadal variations 3 

in gyre boundaries and frontal regions.  The most prominent extended region where the TREND 4 

is larger than the NOISE is over a broad expanse of the Pacific and Atlantic sectors of the 5 

Southern Ocean (as seen in Fig. 2c).   6 

 7 

For the case of Net Primary Productivity (NPP), both the TREND and the NOISE patterns show 8 

relatively narrowly-defined but large-amplitude structures.  There is a trend in the zonal gradient 9 

in NPP across the equatorial Pacific, as well as a trend towards enhanced NPP along the 10 

poleward flanks of the Southern Hemisphere subtropical gyres.  For the NOISE, a series of 11 

relatively narrow structures of high amplitude are found winding through the tropics.  Over most 12 

regions of the globe, the NOISE is of sufficient amplitude relative to TREND to give the 13 

consistently lowest Confidence Interval distribution of the four drivers considered here (Fig. 2d).   14 

 15 

It is worth noting in Fig. A1 that the unforced components (right column) of the four drivers 16 

exhibit large-scale spatial coherence rather than small grid-scale noise.  However, these structures 17 

are distinct for each of the drivers.   18 

 19 

The same fields for the time interval 2075-2084 are considered in Fig. A2. The amplitudes in 20 

TRENDS have increased in general, but important elements of the TREND structures are similar 21 

as for the earlier period. The structures of the NOISE are quite similar to those found for the 22 

equivalent drivers during the earlier period.  However, the amplitude of the variations is in many 23 

cases different for 2075-2084 than for 2005-2014.  This indicates that the amplitude of the 24 

background natural variability is not stationary.  For the case of SST and O2, the standard 25 

deviation of natural decadal variations decreases over the Southern Ocean. 26 

 27 

Appendix B: Temporal filtering and trend detection 28 
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The task of calculating Time of Emergence (ToE) in Fig. 6 is complicated by the fact that the 1 

signal-to-noise ratio (SNR) in time series for individual grid points in the ocean model does not 2 

in general tend to be monotonically increasing over the period 1950-2100. Rather, the evolution 3 

of the SNR can reflect that for this particular diagnostic, the 30 ensemble members may not be 4 

sufficient to eliminate noise when averaged. 5 

 6 

As an illustration of this problem, we consider in Fig. A3 the evolution of the SNR for sea 7 

surface temperature a region in the Pacific sector of the Southern Ocean bounded by 130°W-8 

100°W and 45°S-60°S.  The time series of the SNR for the various points in this region are 9 

superposed in Fig. A3a. The non-monotonic nature of the increase in SNR through time is 10 

evident.  With this unfiltered SNR calculated directly from the annual mean model output, there 11 

are relatively short-timescale excursions above the two standard deviation threshold that precede 12 

by a number of decades the more permanent crossing of the one standard deviation threshold.  13 

However, this does not occur for all of the grid points in the domain of interest.  As a 14 

consequence of these early excursions above the one standard deviation threshold, the spatial 15 

pattern of ToE using a strict definition of first crossing (Fig. A3b) reveals a spatial pattern that 16 

has a ToE before 2014 (present time) over more than 50% of the region. 17 

 18 

It is important to understand the degree to which the ToE structure in Fig. A3b reflects short-19 

term versus longer-term or permanent transitions of the SNR about the one standard deviation 20 

threshold, rather than short-term excursions.  To evaluate this, we apply to the full suite of time 21 

series shown in Fig. A3a (gridpoint-by-gridpoint SNR for SST) a robust Loess filter.  We have 22 

chosen to use a 10 yr tolerance window with the robust Loess filter, with this serving effectively 23 

as a low-pass filter that is obtained using 10 yr local regressions over the entire time period for 24 

each individual gridpoint.  The result of applying the robust Loess filter is shown in Fig. A4a, 25 

where the filtered time series are shown as red lines overlaying the full time series shown in blue.  26 

The filtered time series are seen to behave as low-pass filters that effectively remove the higher 27 

frequency components.  When these smoothed time series are used to define ToE with the same 28 

two standard deviation threshold, the resulting pattern (Fig. A4b) reveals important differences 29 
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relative to the unfiltered time series.  The structures with post-2014 ToE now occupy most of the 1 

domain.  This indicates the strong sensitivity of the spatial pattern of ToE to the time-filtering of 2 

the SNR time series.    3 

 4 

The sensitivity of the Time of Emergence (ToE) to the width of the window used for calculating 5 

trends is considered in Fig. A5.  Here the window is chosen to be 10 yr, and this result is to be 6 

contrasted to what was found for ToE using a 30 yr window as considered in Fig. 6.  Clearly the 7 

narrower trend interval of 10-years results in saturation (post-2095 emergence for this case of a 8 

10-year trend window) on nearly global scales for all of the drivers except for Ωarag.  This 9 

indicates a strong sensitivity of ToE to the timescale chosen for the analysis, consistent with what 10 

was shown in Fig. 4 for the confidence interval sensitivity analysis.  Fig. A5 is valuable in that 11 

the strong saturation characteristics for three of the drivers (post-2085 emergence) are much more 12 

difficult to interpret than the parallel and favored analysis with confidence intervals. 13 

 14 

We also consider the sensitivity of the Time of Emergence (ToE) to the width of the tolerance 15 

window used for the robust Loess filter in Fig. A6a.  For each case, the sensitivity of the ToE to 16 

the width of the tolerance window (described above) is considered for each of the four drivers.  17 

For each case, the area-weighted global mean sensitivity is considered.  The sensitivity is weak 18 

for Ωarag, with the dynamic range of the sensitivity being only a few years as the tolerance 19 

window is modified from 5 yr to 25 yr.  The sensitivity is largest for O2 inventories, with a 20 

decrease of the ToE of 80 years as one transitions from a 5 yr to a 25 yr tolerance window.  This 21 

strong sensitivity is likely the expression of the red spectrum of modes of variability in 22 

thermocline depth impacting O2 inventories in their temporal variability.  The sensitivities of SST 23 

and NPP are quite similar, both being approximately 50% of the amplitude of the sensitivity seen 24 

for O2 inventories.  In fact, the sensitivity of NPP should be expected to be larger than that of 25 

SST, given that the sensitivity shown here may be obscured by the saturation characteristics of 26 

NPP. 27 

 28 



 25 

We also consider in Fig. A6b the sensitivity of the ToE to the choice of a SNR ratio of one in 1 

Fig. 6.  Here as well, the sensitivity considers the global area-weighted mean.  The sensitivity is 2 

strongest for SST, and then the second strongest is found for O2 inventories.  The sensitivity is 3 

weakest or Ωarag and for NPP, but as a caveat it needs to be emphasized that both of these fields 4 

exhibit saturation behavior in Fig. 6.  If the suite of 30 ensemble runs with ESM2M had been 5 

runs for a significantly longer time intervals, say from 1860-2300, then one would expect that the 6 

sensitivity for these two fields to be more pronounced.   7 

 8 
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 1 

 2 

Figure 1. Time series of (area weighted) averages of signal-to-noise ratio (SNR) for four marine 3 

ecosystem drivers, considered over a number of ocean regions: (a) Global, (b) 90°S-45°S, (c) 4 

45°S-15°S, (d) 15°S-15°N, (e) 15°N-45°N, and (f) 45°N-90°N.  The four drivers are Ωarag, SST, 5 

O2 inventories, and NPP.  For each driver, trends have been calculated individually on a 6 

gridpoint-by-gridpoint basis using a 30 yr trend window, and the SNR was subsequently 7 

calculated.  The vertical axis has a logarithmic scale (non-dimensional) representing the SNR..  8 

The 1-standard deviation threshold is shown as a solid horizontal line, and the 2-standard 9 

deviation threshold is shown as a dashed line in each panel. 10 

 11 
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 1 

Figure 2. Confidence interval maps averaged over 2005-2014 for (a) Ωarag, (b) SST, (c) O2 2 

inventories, and (d) NPP. For the case of O2 inventories in panel (c), shelf regions where the 3 

ocean depth is less than 600m deep are not included in the analysis.  For each case, a 30-year 4 

window has been used to calculated trends gridpoint-by-gridpoint for each year between 2005 5 

and 2014.  An average over 10 years was considered to remove shorter timescale fluctuations in 6 

the signal-to-noise ratio.  Note that the color scheme here is chosen such that saturation occurs 7 

(maroon color) above the 67% confidence interval.  Warm colors indicate confidence intervals 8 

ranging from 67-95% (one to two standard deviations), and cool colors span the range 0%-67% 9 

(less than one standard deviation).   10 
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 1 

Figure 3. Same as Fig. 2, but averaged over the 2075-2084 period.  2 

 3 
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 1 

Figure 4. Confidence intervals for two ten-year intervals, namely 2005-2014 (left column), and 2 

2075-2084 (right column).  The confidence intervals for (a) the four drivers (Ωarag, SST, O2 3 

inventories, and NPP) over 2005-2014 are taken as the average over the fields shown in Fig. 2, 4 

and (b) the confidence intervals shown for the four drivers over 2075-2084 are taken as the 5 

average of the fields shown in Fig. 3.  This is then considered for the case of the dominant three 6 

drivers in (c) for the period 2005-2014, and in (d) for the period 2075-2084.  Finally, the 7 

confidence intervals averaged for the dominant two drivers are shown in (e) over 2005-2014 and 8 

(f) over 2075-2084. 9 
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 2 

Figure 5. The confidence intervals for emergence of each of the drivers for the time period 2005-3 

2014, using a 10 yr window for calculating trends.  The analysis here is otherwise identical to 4 

that shown in Fig. 2, except that there a 30 yr window was chosen.  The panels show the 5 

distributions for (a) Ωarag, (b) SST, (c) O2 inventories, and (d) NPP.  This analysis reveals 6 

significantly lower confidence intervals for the 10 yr window than for the 30 yr window for each 7 

of the four drivers. 8 
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 1 

Figure 6.  Time of Emergence (ToE), calculated using a threshold of 1 standard deviation (67% 2 

confidence) for (a) Ωarag, (b) SST, (c) O2 inventories, and (d) NPP.  The color scheme has been 3 

chosen to distinguish between relative to the present (2014) with warm colors indicating a ToE 4 

post-2014 and cold colors indicating a ToE pre-2014. 5 
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 1 

Figure A1. Linear trends (left) and standard deviations of the linear trends (right) for (a-b) Ωarag, 2 

(c-d) SST, (e-f) O2 inventories from 100m-600m, and (g-h) net primary production averaged over 3 

2005-2014.  All fields are calculated using 30-year trend windows, and the trends are shown in 4 

units of %/year. 5 
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Figure A2. Same as Fig. A1, but averaged over 2075-2084.   2 
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 1 

Figure A3. Time of emergence of SST considered for a boxed region of the Pacific sector of the 2 

Southern Ocean (130°W-100°W and 45°S-60°S).  The SNR calculated individually using annual 3 

mean SST for each gridpoint in the domain is shown in panel (a), where a 30-year window is 4 

used to calculated TREND and NOISE.  Short timescale excursions of less than ten years are in 5 

evidence in modulations of maximum SNR.  The spatial pattern of ToE for SST over this region 6 

is shown in panel (b).  A ToE before the present time (pre-2014) is indicated by cool (blue) 7 

colors, while a later ToE is indicated with warm (orange) colors.  Saturation (ToE post-2085) is 8 

represented with maroon color.   9 

 10 

 11 
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 1 

Figure A4. The ToE is considered for the same region, but this time with application of a robust 2 

Loess filter with a tolerance window of ten years applied to the SNR of SST calculated for the 3 

individual surface grid points in the domain.  The SNR after application of the robust Loess filter 4 

is shown in panel (a) in red, superposed over the same blue time series considered in Fig. A3a.  5 

The filtering effect on the short timescale maximum excursions of the SNR is evident in the Fig.  6 

The net effect over the full domain of the robust Loess filter is shown in panel (b), revealing a 7 

later ToE over significant portions of the region of interest.   8 

 9 
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Figure A5. The Time of Emergence (ToE) for each of the four drivers has been calculated using 3 

a 10-year window for the calculation of trends, considering the time interval 1955-2095.  This is 4 

the complement to the results with ToE for a 30 yr window, shown in Fig. 6. 5 
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Figure A6. Sensitivity analysis for tolerance window width in years (left) -- using a one standard 2 

deviation threshold and revolved around a 10 yr window, as well as threshold level (right) -- 3 

using a 10 yr tolerance window and revolved around a standard deviation of one.  Caveats 4 

regarding averaging over fields that experience saturation are discussed in the text of the 5 

Supplementary Materials. 6 
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